
An introduction to property testing∗

1 Introduction

In many applications one deals with large datasets: genome data, social networks, high
resolution images. To investigate such data, it is useful to estimate properties by algorithms
that run in sublinear time. In some cases accessing data might be hard, for example if
data arrives through a congested network, or if data needs to be collected through expensive
experiments. In such cases, one is interested to minimize the numbers of queries to the
dataset. In this chapter, we will study algorithm that work in linear and constant time, and
such algorithms can only use a small fraction of their input. We use the RAM-model for
computation.

There are only a few natural problems that can be solved in sublinear time deterministi-
cally. One such problem is approximating the diameter of a set of points within a factor 2.
In this problem the input is an n× n distance matrix, which is a matrix that represents the
pairwise distances of n points in a metric space. Such a matrix is always symmetric, has zeros
on the diagonal, and satisfies the triangle inequality: Di,j +Dj,k ≥ Di,k, for all i, j, k in [1, n].
The task is solved by a very simple algorithm:

Data: An n× n distance matrix Di,j

Result: (k, `) such that Dk,` ≥ 1
2 maxi,j{Di,j}

Return (1, `) for an ` for which D1,` is maximal.

This algorithm uses only one column of the matrix, and runs in time O(
√

input size). Why
is the answer never less than half of the maximal pairwise distance?

Most sublinear algorithms are probabilistic in nature. In these notes, we study property
testing: given a large object, does it have a property or it needs to be modified in many
places before it satisfies the property? For example, given a graph, can we check whether it is
connected, or do we need to add many edges before it becomes connected? In case the graph
is not connected, but close to be connected, we do not care about the answer.

Property testing can be useful when exact decision procedures are slow (sometimes even
NP -hard). Property testing is useful in the following settings:

• If we are guaranteed that for the object, the property either holds or is far from true,
then we don’t need the exact decision procedure at all.

∗Author: Bruno Bauwens. Lecture notes for the course: Theoretical Computer Science at Higher School of
Economics, 2015-2016.
Initial version: May 7, 2016.

1

• In some cases it is enough to have an object which approximately satisfies the property,
because other algorithms can somehow “fix” the object. (This was the case in the proof
of NP ⊂ PCP(n, 1), see further.)

• In many cases, if the test rejects, it also presents a “witness” or “proof” that the property
is false. In the case of a negative instance, a property testing algorithm can speed up a
slow decision procedure.

We used the notion of property testing implicitly in the chapter about the PCP-theorem,
when we proved that NP ⊂ PCP(n, 1). In this proof, we constructed a tester to check
whether a function is linear or far from linear. These notes are helpful to better understand
the proof of NP ⊂ PCP(n, 1).

In the next section definitions are presented. Then we study property testing of half-
planes, sorted lists, monotone functions and connectedness of graphs. For this part we follow
the slides from [7]. In the last part, we prove that there exists a testing procedure for each
regular language.

2 Definition

Two strings x and y of equal length are said to be ε-far from each other if they differ in more
than ε|x| bits.

Definition 1. Let L be a language over some alphabet. A tester for L is a probabilistic
algorithm that either rejects or accepts its input (x, ε) with ε > 0 such that:

• If x ∈ L, then the algorithm accepts with probability at least 2/3.

• If x is ε-far from y for all y ∈ L, then the algorithm rejects with probability at least 2/3.

If x 6∈ L but x is close to some element in L, we don’t care about the result. See figure 1.
For example, let L be the set of bitstrings that only contain zeros. There exists a tester for
L that runs in time O(1/ε). The tester operates as follows.

Data: String x
Result: Accepts if x only contains zeros.

Rejects with probability ≥ 2/3 if x has more than a fraction ε of ones.

• Sample s = d2/εe positions of x uniformly and independently at random;

• If a one is found, reject; otherwise, accept.

The above algorithm works:

- If x ∈ L, then the algorithm always accepts.

- If x contains at least a fraction ε of ones, then a randomly selected sample is zero with
probability at most 1− ε ≤ exp(−ε). s samples are zero with probability at most

(1− ε)s ≤ exp(−sε) ≤ exp(−2) ≤ 1/3.

Thus, the algorithm accepts with probability at most 1/3.

2

Figure 1: From [7].

The technique above will be used frequently and we refer to it through the following lemma.

Lemma 2 (Witness lemma). If an event happens with probability at least p, then in d2/pe
independent repetitions of the experement, the probability that the event never happens is at
most 1/3.

3 Testing properties of images

Imagine we are given a high resolution picture. We can only query a few bits of the picture.
Can we detect whether the picture fits some template in constant time (regardless of the
resolution)? See figure 2. We consider a special case, we test wheter a figure represents a
halfplane.

The input is a picture of n×n pixels that are either black or white. A half-plane is such a
picture for which a line can be drawn such that all black pixels are on one side of the line and
all white pixels are on the other. See figure 3. A picture is ε-far from another picture, if at
least a fraction ε of pixels needs to be changed to transform the first picture into the second.

Theorem 3 (Raskhodnikova [6]). There exists a tester for half-planes that runs in time
O(1/ε).

Proof. The idea is to first learn the rough structure of the picture by inspecting the corners
and borders. Then, the interior is sampled to check whether this image respects this outline.

For each of the four borders of the picture, we can test whether the pixels in the corners
have equal colour. The number of borders with different corners in a polygon is always even.
In our case, this number can be 0, 2 or 4. The algorithm works as follows:

3

Figure 2: Does a picture fit some template? From [7].

Figure 3: From [7].

Data: ε > 0 and an n× n picture
Result: Accepts if the picture is a half-plane.

Rejects with probability ≥ 2/3 if it is ε-far from a half-plane.

1. If there are 4 sides with different corners, reject. [The image is not a half-plane.]

2. If all corners have the same colour, [the image is a half-plane iff all pixels have the
same colour], sample 2/ε pixels and reject if one of them has a different colour,
otherwise accept.

3. [Now, we have two sides with opposite colours.] On each such side, find two pixels of
different colour within distance ε/2 using binary search.

4. The four pixels from the previous step define 2 regions B and W as indicated in
figure 4. Sample 4/ε pixels from B ∪W and reject if one of them has the wrong
colour; otherwise accept.

4

Figure 4: Testing whether a picture is a half-plane. From [7].

The binary search requires O(log(1/ε)) time. The algorithm runs in time O(1/ε). It is
easily verified that if the picture is a half-plane, then the algorithm always accepts. It remains
to show that if the picture is far from a half-plane, then the algorithm rejects. The case
where all corners have the same colour is obvious, so we only need to bound the probability
of acceptance in step 4. If the picture is far from any half-plane, then in particular it is far
from a half-plane with some line through the area outside B ∪W . This area contains at most
εn2/2 pixels. Because, the picture differs by at least εn2 pixels from this half-plane, at least
εn2/2 pixels differ in B ∪W . By the witness lemma, the algorithm will accept in step 4 with
probability at most 1/3.

Exercise 1. Let the picture be represented in the plain R×R such that neighbouring pixels
are at distance 1. We say that a picture is obtuse if there is a polygon that contains precisely
the black pixels, whose edges all have length more than 2 and whose (inner) angles are at
least 90◦ and at most 180◦. See figure 5. Show that there exists a tester for the set of obtuse
pictures that runs in time O(1/ε2). (Hint: consider an algorithm that samples all points
whose coordinates are multiples of εn/c for some c.)

Remark that any obtuse picture must be convex, in the sense that any triangle whose corners
are black pixels can not contain white pixels. The result can be proven for convex pictures
but the proof is more difficult, see [6].

4 Testing whether a list is sorted

Input: ε > 0 and a list x1, x2, . . . , xn of integer numbers.
Question: is the list sorted: x1 ≤ x2 ≤ · · · ≤ xn, or is it ε-far from sorted, i.e., more than a
fraction ε of values xi need to be changed to obtain a sorted list.

Attempts:

• Pick a random i < n and verify that xi ≤ xi+1.
Fails for 111111000000, which is 1/2-far from sorted.

5

Figure 5: Left: an obtuse picture. Right: a picture that is not obtuse.

• Pick random i ≤ j ≤ n and verify that xi ≤ xj .
Fails for 1032547698, which is 1/2-far from sorted.

Theorem 4 (Dodis et al. [2]). There exists a tester for sorted lists that runs in time O(log n/ε).

In the test, we use a directed graph G = ([1, n], E) which is in some sense a 2-spanner:

• Edges leaving in a node i only go to nodes j with j > i.

• For all i < j ≤ n there is a path of length at most 2 from i to j.

Such a graph can be constructed by an inductive procedure. If the graph has 1 or 2 vertices,
the construction is obvious. Now assume n ≥ 3. Recall that n/2 = bn/2c. First we connect
all vertices strictly below n/2 to n/2, and n/2 to all vertices strictly above n/2.

Now, we need to connect all pairs of vertices below n/2 and all pairs of vertices above n/2.
We repeat the procedure twice, once for the vertices 1 . . . n/2− 1 and once for n/2 + 1 . . . n.

We repeat this process recursively until n ≤ 2. In total, we have log n levels of recursion, and
the final graph has at most n log n edges. We are now ready to present the algorithm.

Data: ε > 0 and a list x1, . . . , xn
Result: Accepts if x1 ≤ x2 ≤ · · · ≤ xn.

Rejects with probability ≥ 2/3 if the list is ε-far from sorted.

• Sample 4 log n/ε edges (i, j) from the graph above.

• If xi ≤ xj for all these edges (i, j), then accept; otherwise reject.

6

Proof. We say that an edge (i, j) is violated if xi > xj . We say that a vertex i is bad if it is the
start point or end point of some violated edge. Otherwise i is called good. The correctness of
the algorithm follows from the two claims below.

1: All good vertices are sorted.

Indeed, let i and j be two good vertices such that i < j. Either they are connected, hence
xi ≤ xj . Otherwise, they are at distance 2 and connected through a vertex xk. Because i and
j are good, the edges are not violated, and xi ≤ xk ≤ xj .

2: If the list is ε-far from sorted, then more than ε/(2 log n) edges are violated.

Indeed, if there were at least a fraction 1 − ε of good vertices, than the list is ε-close to be
sorted. Hence, the list has more than a fraction ε of bad vertices. Every edge can be incident
on at most 2 vertices, hence, the graph has more than εn/2 bad edges. Recall that the graph
has at most n log n edges. Hence, the ratio of bad edges is as in the claim and the theorem is
proven.

Exercise 2. We say that a list x1, . . . , xn is Lipschitz if |xj − xi| ≤ |j − i| for all i, j ∈ [1, n].
Show that there is a tester for the set of lists that are Lipschitz that runs in time O((log n)/ε).
(This is remarkable, because testing whether a circuit computes a Lipschitz function is NP-
complete.)

5 Testing whether a function is monotone

A binary function on strings is monotone if for all strings a, b we have f(a0b) ≤ f(a1b).

Input: ε > 0 and a list of 2n values describing a binary function on n-bit strings.
Question: is the function monotone or is it far from monotone, i.e., more than ε2n values
need to be changed to have a monotone function.

0

1 0

1

0

1 0

1

1

1 1

1

0

0 0

0

Figure 6: Left: monotone function; Right: 1/2-far from monotone

Theorem 5 ([3, 2]). There exists a tester for monotone functions that runs in time O(n/ε).

Because the input has size 2n, this is indeed a sublinear time algorithm.

Proof. We position the n-bit strings in a canonical way on the hypercube. A (directed) edge of
the hypercube is any pair (x, y) where x = a0b and y = a1b for some strings a, b. A function is
monotone if and only if for each edge (x, y) of the hypercube we have f(x) ≤ f(y). Otherwise
we call the edge (x, y) bad.

7

Data: ε > 0, n and a list of 2n values f(x) for all n-bit x
Result: Accepts if f is monotone.

Rejects with probability ≥ 2/3 if f is ε-far from monotone.

• Sample 2n/ε directed edges (x, y) from the hypercube.

• If f(x) ≤ f(y) for all these edges, then accept; otherwise reject.

Clearly, the algorithm always accepts if f is monotone. There are n2n−1 edges in the
hypercube. By the witness lemma, it suffices to show that if f is ε-far from monotone, then
more then a fraction ε/n of edges are bad, i.e., at least ε2n−1 edges are bad. Let B be the set
of bad edges. We show the contrapositive: if |B| ≤ ε2n−1, then changing at most ε2n values
of f can make f monotone. This follows from Lemma 6.

Lemma 6. If T edges of the hypercube are bad, then f can be made monotone by changing
at most 2T values.

Theorem 5 is proven except for Lemma 6.

Proof of Lemma 6. Let Bi be the set of bad edges in direction i ≤ n, i.e., the edges (x, y)
that differ in the ith bit.

B = B1 ∪B2 ∪ · · · ∪Bn

Note that for each i, the edges in Bi are all disjoint. We modify the function f in n steps: in
the ith step we swap the values of f on each edge in Bi. It only needs to be shown that this
operation does not increase |Bj | for all j ≤ n, i 6= j.

An edge in Bi can be incident on at most two edges of Bj and these two edges of Bj are
incident on at most two edges in Bi. These edges form a rectangle, and hence, we can check
the claim for rectangles. More precisely, we prove that for a rectangle: swapping values of f
on bad edges in direction i does not increase the rectangle’s number of bad edges in direction j.
We consider 4 cases.

1. The rectangle has no bad edges in direction i. Nothing is swapped and the claim is
trivially true.

2. The rectangle has two bad edges in direction i. Then the values of f on the rectangle
are fixed:

1 0

1 0

i

j =⇒

0 1

0 1

Swapping the values does not change the number of edges in direction j.

3. The rectangle has one bad edge in direction i and the values on the opposing edge
are equal. Swapping the values on the bad edge also “swaps” the edges in direction j. The
number of bad edges in direction j remains the same. (Below the picture for v = 1.)

8

1 0

v v

=⇒

0 1

v v

4. The rectangle has one bad edge in direction i and the values on the opposing edge are
different. This assumption fixes all the values of the rectangle, and swapping the values of f
decreases the number of edges in Bj .

1 0

0 1

=⇒

1 0

0 1

In all cases, the number of bad edges in direction j does not increase and the lemma is
proven.

6 Testing whether a graph is connected

We consider graphs of bounded degree. Many graphs are of this type, for example, the graph
representing all links between web pages in the internet, or the graph representing social
networks. We consider algorithms that have a graph G = (V,E) as input and whose queries
about G are of the form (v, i) where v ∈ V and i ∈ N. Upon such a query the ith neighbour
of v is returned. If no such neighbour exists, a default value is returned.

Note that a list of all neighbours of all nodes has at most 2dn entries. We say that two
graphs G1 = (V,E1) and G2 = (V,E2) are ε-far if more than ε2dn entries differ in the lists
corresponding to E1 and E2.

Theorem 7 (Goldreich [4]). There exists a tester for the set of connected graphs of degree d
that runs in time O(1/(ε2d)).

Proof. The tester executes the following algorithm:

Data: ε > 0, d, n and a graph G with vertices [1, n] and maximum degree d.
Result: Accepts if G is connected.

Rejects with probability ≥ 2/3 if G is ε-far from connected.

- If n < 4/εd, check directly whether G is connected.

- Otherwise, repeat s = 8/εd times:

• Pick a random vertex u.

• Check whether the connected component of u is large:
perform breath first search from u and stop after finding 4/εd vertices.

- Reject if a small component was found, otherwise accept.

9

Obviously, connected graphs are always accepted. The following two lemmas imply that if a
graph is ε-far from being connected, it is rejected with probability at least 1/3.

Lemma 8. If G is ε-far from being connected, it has at least εdn/2 connected components.

Lemma 9. If G has at least rn components for some r > 0, then G has at least rn/2
components of size at most 2/r.

The proof of the second lemma is an exercise. We now prove Lemma 8. We show that if
G has less than εdn/2 components, we can modify less than ε2nd entries of E to transform G
into a connected graph of degree d. Indeed, adding an edge between two components requires
to modify two entries of E. However, if all vertices of a component have already d neighbours,
we first need to remove an edge in each of the two components we are connecting. We must
do this carefully in order not to separate a component into two parts, and this is always
possible. (Remove an edge that does not belong to a spanning tree.) In total we change at
most 4 entries of E to connect two components.

Exercise 3. Prove lemma 9. (A hint can be found at the end of these notes.)

7 Testing whether a string is accepted by an automaton

Before, we said that two strings are ε-close if one string could be transformed to the other by
modifying at most an ε fraction of its bits. Besides modification of a symbol, we will now also
consider the operations of inserting a single symbol, deleting a single symbol, and replacement
of a substring, i.e., transforming a string w = xaby to xbay, where x, a, b, y are all strings.
The edit distance dE(x, y) between strings x and y is the minimal number of these operations
needed to transform x to y.1 For example, dE(0000, 0) = 3. The strings 400022101010 and
401010100003 have distance at most 4 as witnessed by the following transformation (in fact
they have distance 3):

400022101010 modify the 5th symbol to ‘3’
400032101010 delete the 6th symbol
40003101010 move symbols 2 to 5 to position 12
41010100003 insert a symbol ‘0’ at position 2
401010100003 = final string

Observe that dE(x, y) = dE(y, x) and that dE(x, y) + dE(y, z) ≥ dE(x, z). In this section, we
say that x is ε-far from y if dE(x, y) > ε|x|. If |x| = |y|, then x is ε-far from y if and only if
y is ε-far from x.

Input: ε > 0, a nondeterministic finite automaton A, a string x
Question: Does A accept x or is x ε-far from any string accepted by A?

Theorem 10 ([1, 5]). There exists an algorithm that answers the question above using a
number of bits of x that is polynomial in the size of A (and does not depend on |x|).

1The term edit distance, can cover many different types of distances. It is often used with the operations
insertion, deletion and modification of a single symbol. We will also use the movement of substrings.

10

Unfortunately, there exist A for which the algorithm has a computation time that is
exponential in the size of A. There exists a stronger version of the theorem that uses the
same distance as from the previous sections (i.e. the hamming distance), for more details
we refer to [1]. Before we prove Theorem 10, we first prove a special case. Recall that P(S)
denotes the collection of all subsets of a set S. Let δ : Q × A → P(Q) be the transition
function of the automaton A = (Q,A, q0, δ, F). We define the extension δ′ : Q× A∗ → P(Q)
of δ over words by induction: δ(q, empty word) = q and for a ∈ A, δ′(q, ax) = δ′(δ(q, a), x).

Definition 11. An automaton is strongly connected if for every two states q1 and q2, there
exists a word x that brings the automaton from state q1 to q2, i.e., δ′(q1, x) 3 q2.

Proposition 12. For each nondeterministic strongly connected finite automaton A there
exists a tester for the set LA of strings accepted by this automaton.

Proof. We say that a string x is feasible if there exists a sequence of states that is consistent
with the transitions of A on input x, more precisely, if there exists a q ∈ Q such that d′(q, x)
is not empty. The tester for A operates as follows.

Data: ε > 0, a strongly connected automaton A, |x|, and string x.
Result: Accepts if A accepts x.

Rejects with probability ≥ 2/3 if x is ε-far from any string in LA.

• Let r = ε/2(m+ 1) where m is the number of states of A.

• If |x| < 2/r, check directly whether A accepts x.

• Select 4/r random substrings of x of length 2/r.

• If all strings are feasible, then accept, otherwise reject.

Clearly, any string accepted by A is also accepted by the algorithm. Now suppose that a
string is ε-far from any string in LA. The witness lemma and the following lemma imply that
that algorithm accepts with probability at most 1/3.

Lemma 13. Let r = ε/2(m+ 1). If x is ε-far from being accepted by A, then x has at least
|x|r/2 infeasible substrings of length 2/r.

To prove Proposition 12, it suffices to prove this lemma.

Proof of Lemma 13. A cut of a string x is a list of strings [w1, w2, . . . , we] such that x =
w1w2 . . . we. The lemma follows from the following two claims:

Claim 14. If dE(x, LA) > (h+1)(m+1), then there exists a cut of x with at least h infeasible
substrings.

Claim 15. If a cut of an n-bit string has at least rn infeasible substrings for some r > 0, it
has at least rn/2 infeasible substrings of size less than 2/r.

Indeed, if |x| < 1/r, the lemma is trivially true. If dE(x, LA) > ε|x|, then it has a cut for
which the amount of infeasible strings is at least

ε|x|/(m+ 1)− 1 ≥ 2r|x| − 1 ≥ r|x|,

11

Now the lemma follows immediately from the second claim.

It remains to prove the claims. The second claim is proven in a similar way as Lemma 9.
We prove the contra positive of the first claim: If every cut of x has less than h infeasible
strings, then dE(x, LA) ≤ (h+ 1)(m+ 1).

Construct a cut [w1, w2, . . . , wh′] as follows: let w1 be the minimal infeasible segment of x.
Remove w1 from x and let w2 be the minimal infeasible initial segment of what remains, and
so on. In this way, we obtain a list of h′−1 infeasible strings, (because the last part might be
feasible). Hence, h′ ≤ h. By construction, removing the last symbol from a word wi in the
cut, makes the word feasible. Let [v1, v2, . . . , vh′] be a list of feasible words obtained in this
way.

We need to create a string in LA that has small edit distance with v1v2 . . . vh′ . Let qi and
q′i be the first and the last state of A in a sequence of states that witnesses that vi is feasible
(thus δ′(qi, vi) 3 q′i). Because A is strongly connected, there exists a string u0 that transfers
A from the initial state to q1. We can assume that this string has length at most m. In a
similar way, there exist strings u1, u2, . . . of length at most m that transfer A from q′1 to q2,
from q′2 to q3, and so on. Let uh′ be a string that connects qh′ to an accept state. The string

u0v1u1v2 . . . vh′uh′

is accepted by A and can be obtained from v1v2 . . . vh′ by at most (h′ + 1)m insertions. In
turn, this word can be obtained from x = w1w2 . . . wh′ by at most e deletions. The total
number of operations is bounded by (h′+1)(m+1) and the claim follows because h′ ≤ h.

Proof of Theorem 10. Now, the automata is not strongly connected. We first present some
definitions. Consider the directed graph G whose vertices are the states Q and for which
there is an edge from q to each element in ∪a∈Aδ′(q, a), i.e., to all states that can be reached
from q by reading at most one symbol of the alphabet A.

A strongly connected component of a vertex of a graph is the union of all cycles through
this vertex. These components define a directed graph Ĝ, where there is an edge from one
component to another, if there exists a path from an element of the component to an element
of the other component. An example is given in figure 7. Note that Ĝ has no directed cycles.
This implies that there are at most 2m different paths in Ĝ. Why?

Let P be a path in Ĝ, we say that a string x is P -feasible if x is feasible and the list of
states that witnesses feasibility “follows” P in Ĝ, i.e., the path q1, . . . , q` in G can be grouped
in |P | (possibly empty) sublists

[q1, . . . , qa], [qa+1, . . . , qb], . . . , [qe+1 . . . q`]

such that subsequent sublists contain only states from subsequent components of P .2

Clearly, in Claim 15 we can replace infeasible by P -infeasible substrings for any path P
in Ĝ. For Claim 14 we need to increase the bound:

Claim 16. If dE(x, LA) > (h+ 1)(m+ 1)2, then for every path P in Ĝ there exists a cut of x
with at least h P -infeasible substrings.

2This definition differs from [5].

12

Sstart

A1

A2

A3

B C1

C2

C3

C4

D

Sstart

A1, A2, A3

B C1, C2, C3, C4 D

Figure 7: An automaton and its graph Ĝ of connected components

Proof of Claim 16. In the same way as above, we prove the counter positive. Assume that for
some path P , every cut contains less than h P -infeasible substrings. We need to transform x
to a string that is accepted by A using only a few insertions, deletions and block-movements.
As before, we select a cut of x of minimal infeasible substrings. This cut has size h′ ≤ h.
We make the substrings feasible by removing the last symbol, and in this way we obtain a
list [v1, . . . , vh′] of at most h P -feasible substrings. Each vi, contains |P | parts, corresponding
to each component in P , i.e., we can write each vi as the concatenation of |P | words vi =
vi,1vi,2 . . . vi,|P |. Before we glue these components together, we move all blocks corresponding
to each component together. This requires at most hm block movements (or even (m−1)(h′−
1) movements). Now we have to glue these hm blocks to each other, and this needs to be
connected to the start state and some final state. In total the number of performed operations
is at most

make feasible︷︸︸︷
h +

move blocks︷︸︸︷
hm +

glue blocks︷︸︸︷
hm2 +

start+accept︷︸︸︷
2m ≤ (h+ 1)(m+ 1)2.

With this claim, we can generalize Lemma 13.

Lemma 17. Let r = ε/2(m+ 1)2 and let P be a path of Ĝ. If x is ε-far from being accepted
by A, then x has at least r|x|/2 P -infeasible substrings of length 2/r.

13

Data: ε > 0, finite automaton A, |x| and string x.
Result: Accepts if A accepts x.

Rejects with probability ≥ 2/3 if x is ε-far from any string in LA.

1. Let r = ε/2(m+ 1)2 where m is the number of states of A.

2. If |x| < 2/r, check directly whether A accepts x.

3. Select 4(m+ 1)/r random substrings of x of length 2/r.

4. For each path P in Ĝ: if all the substrings are P -feasible, then accept.

5. If the algorithm did not accept in the previous step, then reject.

Now it remains to explain why dE(x, LA) > ε|x| implies that the algorithm accepts with
probability at most 1/3. Let us inspect step 4 of the algorithm for a fixed path P . By the same
reasoning as above, we know that checking only 4/r randomly selected substrings, will lead to
acceptance with probability at most 1/3. If we repeat this check m+ 1 times, (i.e., we check
4(m + 1)/r random substrings), we will accept with probability at most 1/3m+1 ≤ 2−m/3.
There are at most 2m paths in Ĝ, hence by the union bound, the probability that one of these
tests fails, is at most 1/3. The theorem is proven.

Exercise 4. In this exercise we use again the string distance from the previous sections (we
say that x is ε-far from y if x and y have different length or differ in more than ε|x| places).

(1) Show Proposition 12 under the additional assumption that there is a state with a self
loop. Thus, show that if A is strongly connected and has a state with a self loop, then there
exists a tester for LA.

(2) Prove that for an automaton A for which every strongly connected component has a
state with a self loop, there exists a tester for LA.

Exercise 5. Lemma 4 in the chapter about probabilistically checkable proofs presents a
criterion for checking whether a function is close to linear. Write the resulting algorithm in
detail and show that class of linear functions is testable. How many samples are used by the
algorithm?

Hint for exercise 3. Note that the sum of the sizes of all components is at most n.

References

[1] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages
are testable with a constant number of queries. SIAM Journal on Computing, 30(6):1842–
1862, 2001.

[2] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms for monotonicity. In Randomization,
Approximation, and Combinatorial Optimization. Algorithms and Techniques, pages 97–
108. Springer, 1999.

[3] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

14

[4] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages 406–415.
ACM, 1997.

[5] Frédéric Magniez and Michel de Rougemont. Property testing of regular tree languages.
Algorithmica, 49(2):127–146, 2007.

[6] Sofya Raskhodnikova. Approximate testing of visual properties. In Approximation, Ran-
domization, and Combinatorial Optimization.. Algorithms and Techniques, pages 370–381.
Springer, 2003.

[7] Sofya Raskhodnikova. Sublinear algorithms. Technical report, Penn State University,
2012. Slides: www.cse.psu.edu/∼sxr48/sublinear-course/2012.html.

15

