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Abstract. Iterated Admissibility (IA) is a powerful but conceptually puz-
zling solution concept for games in strategic form. Focusing on �nite games,
Brandenburger, Friedenberg and Keisler [17] provide epistemic foundations for
IA within continuous and belief-complete type structures, in which players�in-
teractive beliefs are represented by Lexicographic Conditional Probability Sys-
tems, the notion of Certainty is replaced by "Assumption", and the notion of
Rationality requires� on top of lexicographic expected utility maximization�
that every open event is deemed possible (although its probability may be
in�nitesimal). They show that each iteration n of the IA procedure character-
izes the behavioral implications of Rationality and (n�1)-Mutual Assumption
of Rationality, but Rationality and Common Assumption of Rationality is im-
possible. Dekel, Friedenberg and Siniscalchi [25] extend the result, allowing
for all Lexicographic Probability Systems (LPS�s). In this paper, we introduce
novel notions of Cautiousness and Assumption for LPS�s, whose preference-
based foundations build on a weak "in�nitely more likely than" relation be-
tween uncertain events. We weaken the notion of rationality of [17] and [25]
to a notion of Cautious Rationality by requiring that only the payo¤ relevant
events are deemed possible, and prove that IA characterizes the behavioral
implications of Cautious Rationality and Common Assumption of Cautious
Rationality in a canonical, belief-complete type structure.
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1 Introduction

Iterated Admissibility (henceforth IA, the iterated deletion of weakly dominated strate-
gies) is an important and widely applied solution concept for games in strategic form.1

In dynamic games with generic payo¤s at terminal nodes, IA coincides with Pearce�s
[40] extensive-form rationalizability (Shimoji [43]), a prominent solution concept whose
foundations are well understood (Battigalli and Siniscalchi [5]). Yet, while IA has an
independent intuitive appeal, its theoretical foundations have proved to be elusive (see,
e.g., Samuelson [41]). Thus, the decision-theoretic principles and the hypotheses about
strategic reasoning that yield IA require careful scrutiny.
A recent literature� starting with the seminal contribution of Brandenburger, Frieden-

berg and Keisler ([17], henceforth BFK)� has tackled this issue building on two key ideas.
The decision-theoretic aspects of the problem have been represented and solved through
the Lexicographic Expected Utility theory of [9]. Lexicographic Expected Utility prefer-
ences are represented by Lexicographic Probability Systems (henceforth LPS�s), i.e., lists
of probabilistic conjectures in a priority order, each of which becomes relevant when the
previous ones fail to identify a unique best alternative. In games with complete informa-
tion, opponents�strategies constitute the payo¤-relevant uncertainty. In order to come up
with an educated conjecture about opponents�choices, a player naturally starts reason-
ing about opponents�beliefs and strategies. BFK modeled this aspect with the tools of
Epistemic Game Theory, the formal, mathematical analysis of how players reason about
each other in games.2

Inspired by BFK, we adopt Lexicographic Expected Utility and Epistemic Game The-
ory for our epistemic foundation of IA in �nite games. However, we start from partially
di¤erent basic principles. Speci�cally, we provide notions of Rationality, Cautiousness
and Assumption that, appropriately combined, justify the choice of iteratively admissible
strategies in the following sense: IA characterizes the behavioral implications of Cau-
tious Rationality and Common Assumption of Cautious Rationality. Before moving to a
detailed discussion of BFK and of the related literature, we brie�y introduce the main
features of our approach.

1. We model players�beliefs as LPS�s. In line with recent �ndings and developments
in the �eld, we do not require the LPS�s to be mutually singular, i.e., we do not
require the di¤erent conjectures in the LPS to have (essentially) disjoint supports.

2. We de�ne a simple notion of Cautiousness that, together with Lexicographic Ex-
pected Utility maximization, justi�es the choice of admissible strategies.

3. We use a monotone notion of "in�nitely more likely than" with the following inter-
pretation: A player deems an event in�nitely more likely than another if she prefers
to bet on the �rst rather than on the second regardless of the winning prizes for the
two bets.

1For instance, IA has been applied in voting (Moulin [39]) and money-burning games (Ben Porath
and Dekel [8]).

2See Dekel and Siniscalchi [24] for a recent survey.
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4. We de�ne a notion of Assumption of an event with the following preference-based
foundation: Every payo¤-relevant implication of the event is deemed in�nitely more
likely than the complement of the event. Under our notion of "in�nitely more likely
than", this implies that the whole event is deemed in�nitely more likely than its
complement too, despite the absence of mutual singularity.

5. We show that in a canonical lexicographic type structure� hence, absent extrane-
ous restrictions on players�hierarchies of beliefs� there are states consistent with
Cautious Rationality and Common Assumption of Cautious Rationality (henceforth
RcCARc), and the behavioral implication of these epistemic conditions is that play-
ers choose within the (nonempty) set of iteratively admissible strategies.

The remainder of the Introduction is structured as follows. First, we illustrate the
issues pertaining to the justi�cation of IA and how Lexicographic Expected Utility helps
to address them. Second, we summarize the seminal contribution of BFK, which inspired
our work. Third, we highlight three issues of their construction that we �nd problematic,
and we discuss how they have been separately addressed in the related literature. It
turns out that our notions of Cautiousness and Assumption are weaker than all their
counterparts in this literature. Thus, our hypotheses are the most general (so far) among
those that justify IA. However, as we will discuss in Section 6, our results are robust to
the introduction of additional restrictions to the notion of Assumption.

1.1 Iterated Admissibility and Lexicographic Expected Utility
theory

Consider the iterated deletion of weakly dominated strategies in the following game.3

AnnnBob L C R
T (4; 1) (4; 1) (0; 1)
U (0; 1) (0; 1) (4; 1)
M (3; 1) (2; 1) (2; 1)
D (9; 1) (0; 1) (0; 1)
B (0; 0) (4; 1) (0; 1)

Figure 1

Strategy L is weakly dominated by C and R, while B is weakly dominated by T . In
the reduced game without L and B, D is (strictly) dominated by M . All the remaining
strategies are iteratively admissible, including M , although the latter is not the unique
best reply to any conjecture over C and R. Note that, in the reduced game, L is a (not
unique) best reply to every conjecture over T , U andM . How can we justify the fact that
M is iteratively admissible and L is not?
Strategy L displays the "inclusion-exclusion" problem, �rst identi�ed by Samuelson

[41]. A strategy is weakly dominated if and only if it is not a best reply to any fully mixed

3This is an elaboration of an example due to Pierpaolo Battigalli ([3]; see also the Introduction Section
of BFK).
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conjecture (see Section 3). Thus, L is eliminated in the �rst round because it is never
optimal when Bob assigns positive probability to B (i.e., he "includes" B). On the other
hand, if Bob is certain that Ann uses the same criterion, he must exclude the possibility
that B is played. To justify the fact that L is not iteratively admissible, just sticking to
fully mixed conjectures is not a viable solution: D would be erroneously rescued. This
tension can be solved as follows.
Bob has a primary hypothesis under which Ann avoids weakly dominated strategies;

thus, it assigns probability 0 to B. This conjecture leaves Bob indi¤erent between L, C
and R, so he considers a secondary hypothesis. The secondary hypothesis does not exclude
that Ann may play a weakly dominated strategy; thus it assigns positive probability to
B. Since L is not a best reply to this conjecture, Bob does not choose L.
StrategyM can instead be justi�ed under the same assumptions about Ann�s strategic

reasoning. Ann�s primary hypothesis, under which Bob avoids weakly dominated strate-
gies, assigns probability 1

2
to C and R. Strategy M is a best reply to this conjecture,

but not the only one. Therefore Ann considers a secondary hypothesis, which assigns
probability 1

2
to L and R. Strategy M is a best reply to this conjecture and a rational

Ann may choose it. Note that both conjectures of Ann need to assign positive probability
to R.
Blume et al. [9] introduce a model of choice under uncertainty, known as Lexicographic

Expected Utility theory, which allows to formalize the beliefs and the choice criterion
mentioned above. The beliefs of the decision maker are represented by LPS�s, �nite
sequences of probability measures (�1; :::; �n) over the space of uncertainty. The intended
interpretation is the one above: �1 represents the decision maker�s primary theory about
the state of the world; �2 represents a secondary, alternative theory which the decision
maker entertains but regards as "in�nitely less plausible" than �1; and so on. In light
of this interpretation, the decision maker �rst compares her alternatives according to the
expected utility they yield under �1; in case a few alternatives yield the same expected
utility, she compares them (and only them) under �2, and so on.
To identify which LPS�s over strategies justify the iteratively admissible strategies and,

more importantly, which hypotheses motivate them, it is necessary to analyze players�
interactive beliefs. Next we summarize the approach of BFK.

1.2 The epistemic framework of BFK

BFK use lexicographic type structures� i.e., type structures in which beliefs are LPS�s� as
the analogue of standard type structures, i.e., type structures in which beliefs are proba-
bility measures. Type structures are a convenient modelling device, due to Harsanyi [30],
to describe players�hierarchies of beliefs; that is, their beliefs about the play of the game
(�rst-order beliefs), their beliefs about players�beliefs about play (second-order beliefs),
and so on. Type structures enrich the standard description of a game, by providing a
language that allows to express assumptions about players�mutual beliefs in rationality,
and then derive implications about behavior.
Within the epistemic apparatus of lexicographic type structures, BFK introduce a

notion of Rationality which incorporates the admissibility requirement, and they use a
notion of Assumption in place of Certainty to solve the inclusion-exclusion problem. To
illustrate these notions, we append to the game of Figure 1 a lexicographic type structure
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T = hSi; Ti; �iii2f1;2g, where Ann is player 1 and Bob is player 2. First, for each player
i 2 f1; 2g, there is an underlying space of primitive uncertainty S�i, i.e., the strategy set
of the co-player; so, for instance, S2 = fL;C;Rg is the underlying space of uncertainty
for player 1. Second, for each player i 2 f1; 2g, there is a set Ti of types. Here we
describe an example with one possible type for Ann, viz. T1 = ft01g, and two possible
types for Bob, viz. T2 = ft02; t002g. Third, for each player i 2 f1; 2g, there is a belief map �i
which assigns to each type an LPS over the his/her underlying space of uncertainty and
the co-player�s types. In BFK, such LPS is required to be a Lexicographic Conditional
Probability System (henceforth, LCPS), i.e., a mutually singular LPS. In this example,
we associate Ann�s type t01 with a length-2 LCPS �1 (t

0
1) = (�

1
1; �

2
1), where �

1
1 and �

2
1 are

probability measures over S2 � T2. Type t02 is associated with a full support measure
over S1 � T1 (i.e., a length-1 LPS). Type t002 is associated with a measure over S1 � T1
without full support. Figure 2 illustrates the probabilities assigned by the two measures
in �1 (t

0
1) to the elements of the set S2 � T2. For instance, the strategy-type pair (L; t02)

has probability 0 under �11, and
1
4
under �21.

�1 (t
0
1) t02 t002

L 0; 1
4

0; 1
4

C 1
2
; 0 0; 1

10

R 1
2
; 0 0; 2

5

Figure 2

Player 1�s �rst-order belief over fL;C;Rg is given by a length-2 LPS
�
margS2�

1
1;margS2�

2
1

�
,

where, the symbol margS2 stands for the marginalization operator. A standard procedure,
which will be discussed in Section 2, shows how it is possible to specify all higher-order
beliefs. Figure 3 describes player 1�s �rst-order belief induced by �1 (t

0
1).

L C R
margS2�

1
1 0 1

2
1
2

margS2�
2
1

1
2

1
10

2
5

Figure 3

Within the framework of (lexicographic) type structures, a state speci�es a strategy-
type pair for each player; e.g., in the type structure T , a possible state is (U;L; t01; t02),
that is, an element of the set S1 � S2 � T1 � T2.
BFK�s notion of Rationality. In a type structure, Rationality is a property of

strategy-type pairs. BFK de�ne a strategy-type pair (si; ti) to be rational if (1) si is a
lexicographic best reply to the �rst-order belief induced by ti, and (2) the LCPS �i (ti)
associated with ti is of full-support. The support of an LPS is de�ned as the union of the
supports of each component measure; so, for instance, the LCPS �1 (t

0
1) = (�

1
1; �

2
1) is of

full-support. Moreover, the reader can easily verify that strategies T , U and M are best
replies to margS2�

1
1, but M does better than T and U against margS2�

2
1. To distinguish

between our notion of Cautious Rationality and BFK�s notion of Rationality, we will refer
to the latter as "Open-minded Rationality" (Ro).4

4The motivation for this terminology is twofold. First, full-support aims to capture the idea that a
player takes all strategies and types of the co-players into consideration. Second, full-support is equivalent
to the requirement that every open set in the space of strategy-type pairs be assigned positive probability
by at least one measure of the LPS.
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So, the statement "Ann is open-minded rational" is represented in structure T by
event Ro1 = f(M; t01)g. For Bob, the open-minded rational strategy-type pairs associate
the full-support belief of type t02 with the weakly dominant strategies C and R, but no
pair (s2; t002) can satisfy Open-minded Rationality because �2(t

00
2) is not of full-support.

Thus, Ro2 = f(C; t02) ; (R; t02)g.
BFK�s notion of Assumption. In BFK, Assumption of an event E requires two

things. First, it requires that E be deemed in�nitely more likely than not-E, without
necessarily ruling out the possibility that not-E occurs. In BFK, this means that the
LCPS assigns probability 1 to E under the �rst m � 1 measures and probability 0
under the remaining measures. Under �1 (t

0
1), R

o
2 is deemed in�nitely more likely than its

complement, because �11 (f(C; t02) ; (R; t02)g) = 1 and �21 (f(C; t02) ; (R; t02)g) = 0. Second,
Assumption requires that all the parts of E, i.e., the non-empty, relatively open subsets
of E, be deemed in�nitely more likely than not-E. This means that the LCPS assigns
positive probability to each part under one of the �rst m measures. Under �1 (t

0
1), both

proper subsets of Ro2, viz. f(C; t02)g and f(R; t02)g, are deemed in�nitely more likely than
the complement of Ro2 (�nite sets are endowed with the discrete topology, in which all
subsets� including singletons� are open). Therefore, we say that type t01 assumes R

o
2.

BFK�s results. BFK provide an epistemic justi�cation of each iteration of the IA
(maximal) elimination procedure within lexicographic type structures with continuous
and onto belief maps, henceforth, "belief-complete" structures. One of their main results
states that, within belief-complete type structures, the strategies which survive m + 1
steps of iterated elimination of inadmissible strategies in a �nite game are those consistent
with Open-minded Rationality and mth-mutual Assumption of Open-minded Rationality
(RomARo) for every natural number m. They prove that belief-complete type structures
exist, but their proof is not constructive. This contrasts with analogous work on other
solution concepts, where a canonical, belief-complete type structure is constructed and
type sets consists of all the collectively coherent hierarchies of beliefs (e.g., [4] and [5]).
Since they do not explicitly state their results in terms of belief hierarchies, the meaning
of key epistemic properties of beliefs, such as the full-support property, or the property
that some event is assumed, is partially self-referential. These and other features of
their approach are somewhat problematic. In what follows we illustrate them and also
summarize how these issues have been addressed in the literature.

1.3 Issues with BFK�s approach and related literature

Issue 1. BFK restrict attention to LCPS�s. There are reasons to �nd this restriction
uncompelling.
First, the �nite-order beliefs implied by a type structure for LCPS�s are LPS�s but not

necessarily LCPS�s. As Figure 3 shows, player 1�s �rst-order belief induced by T is not
an LCPS. It is also possible that none of the �nite-order beliefs induced by the LCPS
of a type are LCPS�s (we show this in our companion paper [20]). On the other hand,
�rst-order beliefs with overlapping supports are actually needed to justify some iteratively
admissible strategies, as can be veri�ed for M in the example above. Finally, as noted
by Lee [34], the di¤erence between an LPS and LCPS may be merely cosmetic, as they
could represent the same lexicographic preference relation.
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Dekel et al. [25] provide further interesting arguments for why mutual singularity is
not a compelling hypothesis (see, e.g., the "coin example" in their introduction). Then,
they provide a characterization in terms of LPS�s (not just LCPS�s) of BFK�s preference-
based notion of Assumption. With this, they show that BFK�s results about the epistemic
characterization of IA hold through, including the impossibility result discussed in Issue
3 below. The preference-based notion of Assumption in BFK is based on the notion of
"in�nitely more likely than" of Blume et al. [9]. As we will discuss (cf. Appendix A;
see also [9, p. 70]), such notion of "in�nitely more likely than" has some unappealing
properties, especially in absence of mutual singularity.

Issue 2. As we mentioned, Open-minded Rationality includes a full-support condition
over strategies and types. Intuitively, this condition aims to capture the idea that a
player does not exclude any belief hierarchy induced by the types of the opponent. Yet,
the full-support condition crucially depends on the topology of the type space. Therefore,
a strategy-type pair may be regarded as open-minded rational or not depending on the
topology, even if the type induces the same hierarchy of beliefs (see Example 1 in Section
4.2).
In a related vein, BFK�s notion of Assumption also depends on the topology on types,

as observed by Dekel and Siniscalchi ([24, p. 691, footnote 99]). The recent work of
Keisler and Lee [33] highlights the fact that two belief-complete type structures can induce
the same hierarchies of beliefs, yet the topology on the type sets can be changed in an
appropriate way so that the types may not assume the same set of events.

Issue 3. BFK considered the natural conjecture that, in all belief-complete type struc-
tures, the strategies that survive all rounds of IA are exactly the strategies that are played
in states at which there is Open-minded Rationality and Common Assumption of Open-
minded Rationality (RoCARo)� i.e., states at which there is RomARo for every natural
number m. However, they obtain a negative result: In every belief-complete continuous
type structure (i.e., with continuous belief maps) RoCARo is not possible at any state.
Keisler and Lee [33] show that the impossibility ceases to hold when continuity is

dropped. This result is di¢ cult to interpret and makes the original impossibility even more
puzzling: What does a topological condition like continuity of the belief maps represent
in terms of players�belief hierarchies? This question is closely related to the topological
dependencies outlined in Issue 2.
Yang [44] and Catonini [18] propose a modi�cation of BFK�s notion of Assumption

which yields a non-empty "common assumption of rationality" event under some condi-
tions. In [18], the result is obtained in a canonical type structure for LCPS�s (see [20] for
its construction and properties). In [44], the result is obtained in the larger canonical type
structure for LPS�s, but the de�nition and the preference-based foundation of Assump-
tion still crucially require the LPS to be a (full-support) LCPS. Therefore, it is impossible
to assess whether the types associated with non-mutually singular LPS�s assume a given
event or not.

In our view, our notions of Cautiousness, "in�nitely more likely than" and Assumption
satisfactorily address these issues. Players are cautious whenever their �rst-order beliefs
have full-support, and this is a condition that can be expressed in terms of belief hiearchies
and primitives of the model.
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The main departures of our preference-based notion of Assumption from BFK are
two. (a) As a building-block, we use an "in�nitely more likely than" relation between
events� due to Lo [37]� which is weaker than the one in [9]. This allows to obtain a
simple characterization of Assumption for all LPS�s (as in [25]) and, at the same time,
to provide a transparent comparison between Assumption and a weaker notion, namely
"Weak Belief"� a notion which is well suited for the epistemic analysis of Permissibility
(cf. Discussion Section).
(b) In our version of Assumption, players have a "cautious attitude" towards an as-

sumed event E, i.e., they consider each payo¤-relevant implication of E "in�nitely more
likely than" not-E. This is in line with the notion of Cautiousness, which coincides with
Assumption if E is the whole space of uncertainty (e.g., E = S2 � T2 for player 1 in the
example above). The choice of payo¤-relevant subsets of E can be expressed in terms of
players�preferences over the primitive space of uncertainty. This makes the whole analysis
invariant to the topology on types and allows to obtain a non-empty RcCARc event in
su¢ ciently rich (in terms of hierarchies) type structures. Interestingly, the same holds
through in the canonical type structure for LCPS�s constructed in [20], which constitutes
a common ground for the comparison with BFK (see Section 6.4).
Therefore, we provide a characterization of IA using expressible epistemic assumptions

about rationality and beliefs, that is, assumptions which are expressible in a language
describing primitive terms (strategies) and terms derived from the primitives (beliefs
about strategies, beliefs about strategies and beliefs of others, etc.)� cf. Battigalli et al.
([6]).
It should be mentioned that Dekel et al. [25] put forward two variants of BFK�s

preference-based notion of Assumption which admit a simpler characterization in terms
of LPS�s. Both variants are based on two extensions of the notion of "weak dominance"
to in�nite state spaces. Their approach is therefore di¤erent form ours, despite the fact
that one of their variants of Assumption admits an LPS-based characterization which is
similar to our version.5 However, those alternative notions of Assumption in [25] also
depend on the topology on types, so the aforementioned drawbacks (cf. Issues 2-3) still
apply. Further comments on this issue and on the related literature are deferred to the
Discussion Section.

1.4 Structure of the paper

The remainder of this paper is structured as follows. Section 2 gives some preliminary
technical concepts and notations that will be used throughout. Section 3 provides formal
de�nitions of LPS�s, type structures and hierarchies of lexicographic beliefs. Most of the
results in this section are proved in our companion paper ([20]). We record only the
properties that will be important for the statement of our results. Section 4 introduces
the underlying game-theoretic framework, and the notions of Cautious Rationality and
Assumption. In Section 5, we state and prove the main result. Section 6 concludes with
a discussion and further comments on the related literature. Appendix A illustrates the

5Speci�cally, this is the case for the notion of TWD-Assumption ([25, De�nition 4.4])� see the Discus-
sion Section. In the Supplemental Appendix, we show that TWD-Assumption can be given an alternative
preference-based foundation in terms of the notion of "in�nitely more likely than" we use in this paper.
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notion of "in�nitely more likely than" and the preference-based foundation of Assumption
and Cautiousness. Appendix B collects all the proofs omitted from the main text.

2 Preliminaries

We begin with some de�nitions and the basic notation that will be used throughout the
paper.6 A measurable space is a pair (X;�X), where X is a set and �X is a �-�eld,
the elements of which are called events. When it is clear from the context which �-�eld
on X we are considering, we suppress reference to �X and simply write X to denote a
measurable space. All the sets considered in this paper are assumed to be metrizable
topological spaces, and they are endowed with the Borel �-�eld. A Polish space is a
topological space which is homeomorphic to a complete, separable metrizable space. A
Lusin space is a topological space which is the continuous, injective image of a complete,
separable metrizable space. Clearly, a Polish space is also Lusin. 7

If (Xn)n2N is a countable collection of pairwise disjoint topological spaces, then the set
X = [n2NXn is endowed with the direct sum topology.8 The set X is Lusin (resp. Polish)
provided each Xn is Lusin (resp. Polish). Fix a countable collection of pairwise disjoint
topological spaces (Yn)n2N, and let Y = [n2NYn. For a given indexed family of mappings
(fn)n2N, where fn : Xn ! Yn, let f : X ! Y be the function de�ned as

f (x) = fn (x) , x 2 Xn.

Following the terminology in [26], the map f : X ! Y is called the combination of the
functions (fn)n2N, and is often denoted by [n2Nfn.
We consider any product, �nite or countable, of topological spaces as a topological

space with the product topology. As such, a countable product of Lusin (resp. Polish)
spaces is also Lusin (resp. Polish). Furthermore, given topological spaces X and Y , we
denote by ProjX the canonical projection from X�Y onto X; in view of our assumption,
the map ProjX is continuous. Finally, for a measurable space X, we denote by IdX the
identity map on X, that is, IdX (x) = x for all x 2 X.

3 Hierarchies of lexicographic beliefs and lexicographic
type structures

3.1 Lexicographic probability systems

Given a topological space X, we denote byM (X) the set of Borel probability measures
on X. The set M (X) is endowed with the weak* -topology. Thus, if X is Lusin (resp.

6A more detailed presentation of the following concepts, as well as related mathematical results, can
be found in [11], [22], [26]. In the remainder of the paper, we shall make use of the results mentioned in
this section, sometimes without referring to them explicitly.

7If X is a Lusin topological space, and �X is the corresponding Borel �-�eld, then the measurable
space (X;�X) is Standard Borel ([22, Proposition 8.6.13]).

8In this topology, a set O � X is open if and only if O \ Xn is open in Xn for all n 2 N. The
assumption that the spaces Xn are pairwise disjoint is without any loss of generality, since they can be
replaced by a homeomorphic copy, if needed (see [26, p. 75]).
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Polish), then M (X) is also Lusin (resp. Polish). We denote by N (X) (resp. Nn (X))
the set of all �nite (resp. length-n) sequences of Borel probability measures on X, that
is,

N (X) = [n2NNn (X)

= [n2N (M (X))n .

Each � = (�1; :::; �n) 2 N (X) is called lexicographic probability system (LPS).
We say that � is a mutually singular LPS, or a lexicographic conditional proba-
bility system (LCPS), if there are Borel sets E1; :::; En in X such that, for every l � n,
�l (El) = 1 and �l (Em) = 0 for m 6= l. Write L (X) (resp. Ln (X)) for the set of LCPS�s
(resp. length-n LCPS�s). Both topological spaces N (X) and L (X) are Lusin provided
X is Lusin. In particular, if X is Polish, so are N (X) and L (X).9
For every Borel probability measure � on a topological space X, the support of �,

denoted by Supp�, is the smallest closed subset C � X such that � (C) = 1. The support
of an LPS � = (�1; :::; �n) 2 N (X) is thus de�ned as Supp� = [l�nSupp�l. So, an
LPS � = (�1; :::; �n) 2 N (X) is of full-support if [l�nSupp�l = X. We write N+

n (X)
for the set of all full-support, length-n LPS�s and N+ (X) (resp. L+ (X)) for the set of
full-support LPS�s (resp. full-support LCPS�s).
Suppose we are given topological spaces X and Y , and a Borel map f : X ! Y . The

map ef :M (X)!M (Y ), de�ned by

ef (�) (E) = �
�
f�1 (E)

�
, � 2M (X) , E 2 �Y ,

is called the image (or pushforward) measure map of f . For each n 2 N, the mapbf(n) : Nn (X)! Nn (Y ) is de�ned by

(�1; :::; �n) 7! bf(n) ((�1; :::; �n)) = � ef (�k)�
k�n

.

Thus the map bf : N (X)! N (Y ) de�ned by

bf (�) = bf(n) (�) , � 2 Nn (X) ,

is called the image LPS map of f . In other words, the map bf is the combination of
the functions

� bf(n)�
n2N
, and it is Borel measurable.

In particular, if X and Y are Lusin spaces, then the marginal measure of � 2
M (X � Y ) on X is de�ned by margX� = gProjX (�). Consequently, the marginal of
� 2 N (X � Y ) on X is de�ned by margX� = dProjX (�), and the function dProjX :
N (X � Y )! N (X) is continuous and surjective.

3.2 Hierarchies of lexicographic beliefs

In this section, we review the formal construction of the canonical hierarchic space, that
is, the space of all hierarchies of lexicographic beliefs displaying Coherence and common

9We refer the reader to our companion paper [20] for a proof of those results.
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Full Belief of Coherence. (Precise de�nitions will be given below.) For an in-depth, formal
analysis and details of the construction, which parallels the architecture originally devel-
oped by Brandeburger and Dekel [15], the reader can consult [20]. Here, we emphasize
only the properties which will be important for our results.
Fix a two-player set I;10 given a player i 2 I, we denote by �i the other player in

I. For each i 2 I, let S�i be a non-empty space� called space of primitive uncertainty�
describing aspects of the strategic interaction that player i is uncertain about. Throughout
this paper, S�i will represent player �i�s strategy set: Player i does not know which
strategy player �i is going to choose. Yet, other interpretations are also possible; for
instance, S�i may include player �i�s set of payo¤ functions, among which the true one is
not known to player i. We assume that for each i 2 I, Si is a Lusin space with cardinality
jSij � 2.11
Each player i 2 I is endowed with a lexicographic belief on S�i; such belief is called

�rst-order (lexicographic) belief. However, �rst-order beliefs do not exhaust all the un-
certainty faced by each player: Player i realizes that player �i has a �rst-order belief on
Si as well, and this belief is unknown to him. Thus, player i�s second-order beliefs are
represented by an LPS over S�i and the space of �i�s �rst-order beliefs. Continuing in
this fashion, one is naturally led to consider in�nite hierarchies of lexicographic beliefs.
Formally, for each i 2 I de�ne inductively the collection of spaces

�
Xk
i

�
k�0 as

X0
i = S�i, (3.1)

Xk+1
i = Xk

i �N
�
Xk
�i
�
; k � 0. (3.2)

An element hk+1i =
�
�1i ; �

2
i ; :::; �

k+1
i

�
2
Qk
l=0N

�
X l
i

�
is a (k + 1)-order belief hierarchy,

and �k+1i =
�
�k+1;1i ; :::; �k+1;ni

�
2 N

�
Xk
i

�
denotes i�s (k + 1)-order LPS, with �k+1;mi 2

M
�
Xk
i

�
being the m-level of the (k + 1)-order LPS. It is easily seen that, according to

our notation,

Xk+1
i = X0

i �
kY
l=0

N
�
X l
�i
�
.

The set of all possible, in�nite hierarchies of LPS�s for player i is H0
i =

Q1
k=0N

�
Xk
i

�
.

The space H0
i is endowed with the product topology, so that H

0
i is a Lusin space.

The notion of coherence for hierarchies of beliefs (de�ned below) says that beliefs
at di¤erent orders cannot contradict each other. To state this formally, let ProjXk�1

i
:

Xk
i ! Xk�1

i denote the coordinate projection, for all k � 1. Recall that the marginal of
�k+1i 2 N

�
Xk
i

�
over Xk�1

i , viz. margXk�1
i
�k+1i , is de�ned as the image LPS of �k+1i under

ProjXk�1
i
, namely dProjXk�1

i

�
�k+1i

�
.

De�nition 1 A hierarchy of beliefs hi = (�1i ; �
2
i ; :::) 2 H0

i is coherent if

margXk�1
i
�k+1i = �ki , 8k � 1.

10The analysis can be trivially extended to more than two players.
11This assumption is made mainly to avoid trivial cases and streamline the exposition. All the results

in this paper remain true under the weaker assumption that jSij � 2 for at least one player i 2 I.
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This de�nition of coherence is a simple generalization of the notion of coherence as in
[38] or [15]; the two notions coincide if each �ki is a standard probability measure (i.e.,
a length-1 LPS). Note that a hierarchy of beliefs satisfying this coherence requirement
consists of an in�nite sequence of LPS�s of the same length.12

For each player i 2 I, the space of all coherent hierarchies of beliefs is denoted by
H1
i . Standard arguments (cf. [20]) show that each H

1
i is a closed subset of H

0
i , hence

Lusin. By a version of the Kolmogorov Extension Theorem for LPS�s (cf. [15, Lemma
1]), it can be shown that a coherent hierarchy for a player can be summarized by a single
LPS over the cartesian product of his own space of primitive uncertainty and opponents�
hierarchies. So we record the following result (cf. [15, Proposition 1]).

Proposition 1 For each i 2 I, there exists a homeomorphism fi : H
1
i ! N

�
S�i �H0

�i
�

such that
margXk�1

i
fi
��
�1i ; �

2
i ; :::;

��
= �ki , 8k � 1.

The homeomorphism just described implies that a player i�s coherent hierarchy of
LPS�s determines his LPS over player �i�s hierarchies of beliefs. However, even if player
i�s hierarchy hi 2 H1

i is coherent, fi (hi) could deem possible an incoherent hierarchy of
the other player, that is, player i may believe (in an appropriate sense de�ned below) that
player �i�s hierarchy is not coherent. We consider the case in which there is common Full
Belief of Coherence.
Formally, we say that player i, endowed with a coherent hierarchy hi, fully believes

an event E � S�i�H0
�i if fi (hi) (E) = 1, where 1 denotes a �nite sequences of 1s; that is

to say, every probability measure of the LPS fi (hi) 2 N
�
S�i �H0

�i
�
assigns probability

1 to E.13 Common Full Belief of coherence is imposed by de�ning inductively, for each
i 2 I, the following sets:

H l+1
i =

�
hi 2 H1

i

��fi (hi) �S�i �H l
�i
�
= 1

	
, l � 1,

Hi = \l�1H l
i .

The set �i2IHi is naturally interpreted as the set of players�hierarchies such that each
player fully believes that the other player�s hierarchy is coherent, fully believes that the
other player fully believes that his hierarchy is coherent, and so on. The following Propo-
sition shows that a homeomorphism result, analogous to the one provided by Proposition
1, also holds for each space of hierarchies Hi.

Proposition 2 The restriction of fi to Hi induces a homeomorphism f i from Hi onto
N (S�i �H�i).

12As we shall see below, from any type in a lexicographic type structure we can derive a corresponding
coherent hierarchy with the property of all orders of beliefs being of the same length. In Section 6.5, we
will compare the notion of coherence in De�nition 1 with the alternative notion due to Lee ([35]).
13For a preference-based characterization of the notion of Full Belief, see Appendix A. Full Belief

coincides with what Asheim and Søvik [2] call "certain belief". BFK put forward a notion of "belief"
which coincides with Full Belief under the additional assumption that the LPS (actually, an LCPS) is of
full-support ([17, Proposition A.1]).
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Hereafter, we shall refer to the set H = �i2IHi as the canonical hierarchic space.
We conclude this section with a few remarks concerning the topological structure of

the canonical hierarchic spaces H. First note that H is a Lusin space; in particular, H
is Polish provided each space Si is Polish. Note however that H is not compact, even
if the underlying spaces of primitive uncertainty are compact (e.g., �nite, as we shall
assume in Section 5). To see this, observe thatM (X) is compact if X is compact, and
this in turn implies that the space Nn (X) is also compact for some �nite n 2 N. But
the same conclusion does not hold for the space N (X).14 By contrast, the canonical
hierarchic spaces of both standard beliefs and conditional beliefs turn out the be compact
metrizable if each space Si is compact metrizable.

3.3 Lexicographic type structures

The following de�nition is a natural generalization of the standard de�nition of epistemic
type structures with beliefs represented by probability measures, i.e., length-1 LPS (cf.
[31]).

De�nition 2 An (Si)i2I-based lexicographic type structure is a structure T = hSi; Ti; �iii2I ,
where

1. for each i 2 I, Ti is a Lusin space;

2. for each i 2 I, the function �i : Ti ! N (S�i � T�i) is measurable.

We call each space Ti type space and we call each �i belief map.15 Members of
type spaces, viz. ti 2 Ti, are called types. Say ti 2 Ti is a mutually singular type if
�i (ti) 2 L (S�i � T�i). Say ti 2 Ti is a full-support type if �i (ti) 2 N+ (S�i � T�i).
Each element (si; ti)i2I 2 S � T is called state (of the world).

A lexicographic type structure� or type structure, for short� formalizes Harsanyi�s
implicit approach to model hierarchies of beliefs. But clearly the canonical hierarchic
space H = �i2IHi gives rise to an (Si)i2I-based type structure Tu = hSi; Ti; �iii2I , by
setting Ti = Hi and �i = f i for each i 2 I. Hereafter, we shall refer to Tu = hSi; Hi; f iii2I
as the canonical (lexicographic) type structure.
The formalism of lexicographic type strucures was �rst introduced by BFK ([17, Sec-

tion 7]) under the additional requirement that each belief is represented by an LCPS.
In what follows, we will say that a type structure T = hSi; Ti; �iii2I is an LCPS type
structure if the range of each belief map �i is contained in L (S�i � T�i).

De�nition 3 An (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I is
14This is an instance of a well-known mathematical fact (see [26, Theorem 2.2.3]): If (X�)�2� is an

indexed family of non-empty compact spaces jX�j > 1 for all � 2 �, then the direct sum [�2�X� is
compact if and only if the right-directed set � is �nite.
15Observe that some authors ([4], [31]) use the terminology "type space" for what is called "type

structure" here.
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� �nite if the cardinality of each type space Ti is �nite;

� compact if each type space Ti is compact;

� belief-complete if each belief map �i is onto;

� continuous if each belief map �i is continuous.

Analogous de�nitions hold if T = hSi; Ti; �iii2I is an LCPS type structure.

The idea of belief-completeness was introduced by Brandenburger [14] and adapted to
the present context. Note that each type space in a belief-complete type structure has the
cardinality of the continuum. The structure Tu is a particular instance of a belief-complete
and continuous type structure. But there exist also belief-complete and continuous type
structures which are di¤erent from Tu.16 While �nite type structures are trivially compact
and continuous (but not belief-complete), the argument given at the end of the previous
section shows that a belief-complete, compact and continuous lexicographic type structure
cannot exist in the current framework.

3.4 From types to belief hierarchies

A type structure provides an implicit representation about players�uncertainty, in the
sense that it does not describe hierarchies of beliefs directly. In this Section we show
that it is possible to associate with the subjective belief of each type an explicit hierarchy
of beliefs. To accomplish this task, we �x a given (Si)i2I-based type structure T =
hSi; Ti; �iii2I , and we de�ne, for each player i 2 I, a hierarchy description map di : Ti !
H0
i associating with each ti 2 Ti a corresponding hierarchy of LPS�s. Each hierarchy

description map is de�ned inductively (cf. [4]):

� (base step: k = 1) For each i 2 I and ti 2 Ti, de�ne the �rst-order hierarchy
description map d1i : Ti ! N (S�i) by

d1i (ti) = margS�i (�i (ti)) .

For each i 2 I, de�ne  1�i : S�i � T�i ! X1
i = S�i �N (Si) by

 1�i =
�
IdS�i ; d

1
�i
�
.

16A simple but elegant argument was �rst used by BFK ([17, Proposition 7.2]) to state the existence
of a belief-complete type structure T = hSi; Ti; �iii2I where each type space is Polish and each Si is a
�nite, discrete space. Such an argument can be easily adapted to our framework as follows. Every Lusin
space is analytic, so it is the image of the Baire space NN under a continuous map ([22, Corollary 8.2.8];
see also [32, p. 85])). For given spaces of primitive uncertainty (Si)i2I , let Ti = NN, for each i 2 I. The
above result implies the existence of continuous belief maps �i from Ti onto N (S�i � T�i). These maps
give us a belief-complete lexicographic type structure.
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� (inductive step: k + 1, k � 1) Suppose we have already de�ned, for each i 2 I, the
functions dki : Ti ! N

�
Xk�1
i

�
and  k�i : S�i � T�i ! Xk

i = Xk�1
i �N

�
Xk�1
�i
�
. For

each i 2 I and ti 2 Ti, de�ne dk+1i : Ti ! N
�
Xk
i

�
by

dk+1i (ti) = b k�i (�i (ti)) ;
the map  k+1�i : S�i � T�i ! Xk+1

i is de�ned by

 k+1�i =
�
 k�i; d

k+1
�i
�
,

so that  k+1�i =
�
IdS�i ; d

1
�i; :::; d

k
�i; d

k+1
�i
�
.

For each i 2 I, the hierarchy description map di : Ti ! H0
i is de�ned as di (ti) =

(d1i (ti) ; d
2
i (ti) ; :::), ti 2 Ti; the map  �i : S�i � T�i ! S�i �H0

�i is de�ned in a natural
way as  �i =

�
IdS�i ; d�i

�
.

In [20], it is shown that each di is a measurable function, and it is continuous if each

belief map is continuous. An analogous conclusion holds for the map b �i = \�
IdS�i ; d�i

�
:

N (S�i � T�i)! N
�
S�i �H0

�i
�
.

3.5 Type morphisms and universality

In what follows, given a type structure T = hSi; Ti; �iii2I , we denote by T the Cartesian
product of type spaces, that is, T = �i2ITi.

De�nition 4 Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be two (Si)i2I-based lexi-
cographic type structures. For each i 2 I, let 'i : Ti ! T 0i be a measurable map such
that

�0i � 'i = \�
IdS�i ; '�i

�
� �i.

Then the function ('i)i2I : T ! T 0 is called type morphism (from T to T 0).
The morphism is called type isomorphism if the map ('i)i2I is a Borel isomorphism.

Say T and T 0 are isomorphic if there is a type isomorphism between them.

The notion of type morphism captures the idea that a type structure T is "contained
in" another type structure T 0 if T can be mapped into T 0 in a way that preserves the
beliefs associated with types. Condition (2) in the de�nition of type morphism expresses

consistency between the function 'i : Ti ! T 0i and the induced function
\�

IdS�i ; '�i
�
:

N (S�i � T�i)! N
�
S�i � T 0�i

�
. That is, the following diagram commutes:

Ti
�i���! N (S�i � T�i)??y'i ??y \(IdS�i ;'�i)

T 0i
�0i���! N (S�i � T 0�i)

. (3.3)

The notion of type morphism does not make any reference to hierarchies of LPS�s. But,
as one should expect, the important property of type morphisms is that they preserve the
explicit description of lexicographic belief hierarchies.
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Proposition 3 Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be two (Si)i2I-based lex-
icographic type structures. If ('i)i2I : T ! T 0 is a type morphism from T to T 0, then
di (ti) = di ('i (ti)) for each ti 2 Ti, i 2 I.

Proposition 3 clari�es the sense in which a type structure T can be regarded as "sub-
structure" of T 0. In words, Proposition 3 states that if T can be mapped into T 0 via type
morphism, then every (Si)i2I-based belief hierarchy that is generated by some type in T
is also generated by its image in T 0. Heifetz and Samet [31, Proposition 5.1] provide the
above result for the case of standard type structures. Proposition 3 is indeed a straight-
forward generalization of Heifetz and Samet�s result, and its proof relies on standard
arguments.17

We now ask: Is there a type structure into which any other type structure can be
mapped? Alternatively put, since a type structure generates hierarchies of LPS�s, does
there exist a type structure that generates all hierarchies of beliefs? A type structure
satisfying this requirement is called universal.

De�nition 5 An (Si)i2I-based type structure T 0 = hSi; T 0i ; �
0
iii2I is universal if for every

other (Si)i2I-based type structure T = hSi; Ti; �iii2I there is a unique type morphism from
T 0 to T .18

Not surprisingly (and in line with standard results on hierarchies of beliefs� cf. [38],[4]),
the canonical type structure Tu turns out to be universal, as stated in the following

Theorem 1 Let T = hSi; Ti; �iii2I be an arbitrary (Si)i2I-based lexicographic type struc-
ture, and, for each i 2 I, let di : Ti ! H0

i be the hierarchy description map. Then, for
each i 2 I,
1. di(Ti) � Hi,

2. (di)i2I is the unique type morphism from T to Tu = hSi; Hi; f iii2I .
Thus Tu is a universal lexicographic type structure, and it is unique up to type
isomorphism.

Note that, since any two universal type structures are isomorphic, and Tu is belief-
complete, as immediate consequence of Theorem 1 we get:

Corollary 1 Every universal type structure is belief-complete.

The reverse implication of Corollary 1 does not hold, i.e., a belief-complete type struc-
ture is not necessarily universal. We will see (Section 6.3) that this has an implication for
the epistemic analysis of IA.

17The statement of Proposition 3 can be rephrased by saying that every type morphism is also a hier-
archy morphism, i.e., a map between type structures which preserves the hierarchies of beliefs associated
with types. See [29] for a general analysis on the relationship between hirerarchy and type morphisms.
18Within the framework of category theory, (Si)i2I -based type structures for player set I, as objects,

and type morphisms, as morphisms, form a category. The "universal type structure" is a terminal object
in the category of type structures.
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4 Cautiousness, Assumption and Iterated Admissi-
bility

4.1 Iterated Admissibility

Consider a �nite game G = hI; (Si; ui)i2Ii, where I is a two-player set and, for every
i 2 I, Si is the set of strategies with jSij � 2 and ui : S ! R is the payo¤ function.
Each strategy set Si is given the obvious topology, i.e., the discrete topology. De�ne the
expected payo¤ function �i by extending ui onM(Si)�M(S�i) in the usual way:

�i(�i; ��i) =
X

(si;s�i)2Si�S�i

�i(si)��i(s�i)ui(si; s�i):

The notion of admissible strategy is standard.

De�nition 6 Fix a set Xi � X�i � Si � S�i. A strategy si 2 Si is admissible with
respect to Xi �X�i if and only if there exists ��i 2 M(S�i) such that Supp��i = X�i
and �i(si; ��i) � �i(s

0
i; ��i) for every s

0
i 2 Xi. If strategy si 2 Si is admissible with respect

to Si � S�i, we simply say that si is admissible.

Remark 1 Fix a set Xi�X�i � Si�S�i. A strategy si 2 Si is weakly dominated with
respect to Xi �X�i if there exists �i 2 M(Si) with �i (Xi) = 1 such that �i(�i; s�i) �
�i(si; s�i) for every s�i 2 X�i and �i(�i; s0�i) > �i(si; s

0
�i) for some s

0
�i 2 X�i. A standard

result ([40, Lemma 4]) states that a strategy si 2 Si is not weakly dominated with respect
to Xi �X�i if and only if it is admissible with respect to Xi �X�i.

The set of iteratively admissible strategies (henceforth IA set) is de�ned inductively.

De�nition 7 For each i 2 I, set S0i = Si and for every m 2 N, let Smi be the set of
all si 2 Sm�1i which are admissible w.r.to Sm�1i � Sm�1�i . A strategy si 2 Smi is called
m-admissible. A strategy si 2 S1i = \1m=0Smi is called iteratively admissible.

Note that Smi � Sm+1i 6= ; for all m 2 N. Moreover, since each strategy set Si is �nite,
there exists M 2 N such that

Q
i2I S

1
i =

Q
i2I S

M
i . Consequently, the IA set

Q
i2I S

1
i is

non-empty.
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4.2 Rationality and Cautiousness

For any two vectors x = (xl)
n
l=1 ; y = (yl)

n
l=1 2 Rn, we write x �L y if either (1) xl = yl

for every l � n, or (2) there exists m � n such that xm > ym and xl = yl for every l < m.
Append to the game G a type structure T = hSi; Ti; �iii2I .

De�nition 8 . A strategy si 2 Si is optimal under �i(ti) = (�1i ; :::; �ni ) 2 N (S�i�T�i)
if �

�i(si;margS�i�
l
i)
�n
l=1
�L
�
�i(s

0
i;margS�i�

l
i)
�n
l=1
, 8s0i 2 Si.

We say that si is a lexicographic best reply to margS�i�i(ti) on S�i if it is optimal
under �i(ti).

De�nition 9 A type ti 2 Ti is cautious (in T ) if margS�i�i(ti) 2 N+ (S�i).

Thus, for strategy-type pairs we de�ne the following notions.

De�nition 10 Fix a strategy-type pair (si; ti) 2 Si � Ti.

1. Say (si; ti) is rational (in T ) if si is optimal under �i (ti).

2. Say (si; ti) is cautiously rational (in T ) if it is rational and ti is cautious. Let
Rci be the set of all cautiously rational (si; ti) 2 Si � Ti.

3. Say (si; ti) is open-minded rational (in T ) if it is rational and �i (ti) 2 N+ (S�i � T�i).

Open-minded Rationality is the notion of rationality employed by BFK, Dekel et al.
[25], and Yang [44], and it includes a full-support requirement on types. BFK show
([17, Lemma 7.2]) that if a strategy-type pair (si; ti) is open-minded rational, then si is
admissibile. The following result states that an analogous conclusion holds for the weaker
notion of Cautious Rationality.

Proposition 4 If strategy-type pair (si; ti) 2 Si � Ti is cautiously rational, then si is
admissible.

Proof : By de�nition, if (si; ti) 2 Rci , then si is a lexicographic best reply tomargS�i�i(ti) 2
N+(S�i), where �i(ti) = (�1i ; :::; �

k
i ) 2 N (S�i � T�i). By [10, Proposition 1], to every

margS�i(�
1
i ; :::; �

k
i ) 2 N+ (S�i) there corresponds a probability measure �i 2 M (S�i),

with Supp�i = S�i, such that �i(si; �i) � �i(s
0
i; �i) for every s

0
i 2 Si. �

Furthermore, Cautious Rationality has a convenient invariance property under type
morphisms between type structures. The following results state this formally.
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Lemma 1 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be lexicographic type structures,
such that there exists a type morphism ('i)i2I : T ! T � from T to T �. Fix a type ti 2 Ti.
Thus

(i) margS�i�i (ti) 2 N+ (S�i) if and only if margS�i�
�
i ('i (ti)) 2 N+ (S�i).

(ii) A strategy-type pair (si; ti) is rational in T if and only if (si; 'i (ti)) is rational in
T �.

Proof : Part (i): Let O be a non-empty, open subset of S�i. Fix a type ti 2 Ti, and
let �i (ti) =

�
�1i (ti) ; :::; �

n
i (ti)

�
be the associated LPS. If margS�i�i (ti) 2 N+ (S�i), then

there is l � n such that �li (ti) (O � T�i) > 0. It follows from the de�nition of type
morphism that margS�i�

�
i ('i (ti)) 2 N+ (S�i), since

(��i )
l ('i (ti))

�
O � T ��i

�
= �li (ti)

��
IdS�i ; '�i

��1 �
O � T ��i

��
= �li (ti) (O � T�i) > 0.

An analogous argument shows that the reverse implication is also true.
Part (ii): Pick an arbitrary ti 2 Ti. It is enough to show that

margS�i�i (ti) = margS�i�
�
i ('i (ti)) .

But this follows from the fact that a type morphism preserves �rst-order beliefs (Proposi-
tion 3). Hence (si; ti) is rational in T if and only (si; 'i (ti)) is rational in T �, as required.
�

Corollary 2 A strategy-type pair (si; ti) is cautiously rational in T if and only (si; 'i (ti))
is cautiously rational in T �.

Note that an analogous invariance property does not hold for Open-minded Rational-
ity. Consider for instance a �nite type structure T and the canonical type structure Tu.19
For any full-support type ti in T , the corresponding type di (ti) has �nite support too,
so it cannot be a full support type in Tu. Thus, open-mindedness does not represent a
condition on the hierarchy of beliefs, whereas cautiousness captures full-support of �rst-
order beliefs. Moreover, open-mindedness depends crucially on the topology of the type
spaces. As a consequence, the invariance does not hold even when the two type structures
are isomorphic (but not homeomorphic). The following example elaborates on this point
further.

19As is shown in [20], a full-support type in Tu corresponds to a full-support hierarchy, i.e., a hierarchy
with the property of all orders of beliefs being of full-support.
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Example 1 Let T = hSi; Ti; �iii2I be a symmetric type structure in which Ti = Q\ [0; 1].
The set Q\[0; 1] is endowed with the relative topology inherited from the Euclidean topology
on [0; 1], and this makes each Ti a Lusin space, but not Polish. We can construct an
isomorphic type structure T � = hSi; T �i ; ��i ii2I as follows. Let T �i = Q \ [0; 1] be given the
discrete topology, so that T �i becomes a Polish space. So, Ti and T

�
i are Borel isomorphic

(they originate the same Borel �-�eld, namely the power set), but not homeomorphic.
For each i 2 I, let 'i : Ti ! T �i be the identity map. Moreover, each belief map �

�
i

satis�es ��i = \(IdSi ; 'i)��i � ('i)
�1. It is easy to check that ('i)i2I is a type isomorphism.

Fix ti 2 Ti such that �i (ti) 2 N+
1 (S�i � T�i) and �i (ti)

���
s0�i; 0

�	�
= 0 for some

s0�i 2 S�i. The set
��
s0�i; 0

�	
is closed in Ti, but (cl)open in T �i . It turns out that

��i ('i (ti))
���

s0�i; 0
�	�

= 0, hence 'i (ti) 2 T �i is not a full-support type.

4.3 Assumption

In this Section, we introduce our notion of Assumption, which is given a preference-based
treatment in Appendix A. Here, for its operational convenience, we state the de�nition of
Assumption in terms of LPS�s.

De�nition 11 Fix a type structure T = hSi; Ti; �iii2I and a non-empty event E � S�i�
T�i. Fix also ti 2 Ti with �i (ti) = (�1; :::; �n). We say that E is assumed under �i (ti)
at level m � n if the following conditions hold:

(i) �l (E) = 1 for all l � m;

(ii) for every elementary cylinder C = fs�ig�T�i, if E \C 6= ; then �k (E \ C) > 0 for
some k � m.

We say that E is assumed under �i (ti) if it is assumed under �i (ti) at some level
m � n.
We say that ti 2 Ti assumes E if E is assumed under �i (ti).

The notion of Assumption captures the idea that event E and its payo¤-relevant
components, viz. E \ C 6= ;, are in�nitely more likely than not-E. Condition (i) in
De�nition 11 simply states that the player is (almost fully) con�dent in E. That is, the
player thinks that E is in�nitely more likely to occur than not-E. Condition (ii) adds a
cautious attitude towards the event. That is, the player entertains the hypothesis that
every payo¤-relevant implication of E is in�nitely more likely to occur than not-E. This
is the same attitude that cautiousness re�ects towards the whole space S�i � T�i; note,
indeed, that a type ti 2 Ti is cautious if and only if ti assumes S�i� T�i (cf. Remark A.1
in Appendix A).
Both attitudes can be properly formalized with the same preference-based notion of

"in�nitely more likely than". The notion of "in�nitely more likely than" we adopt in this
paper is (strictly) weaker than the one in Blume et al. [9], and it allows to keep the two
di¤erent attitudes separated. Moreover, it is monotone and can be intuitively interpreted
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in terms of bets. Finally, it features other desirable properties, also in absence of mutual
singularity and in presence of signi�cant Savage-null events. We compare our approach
with the one based on [9] in Appendix A.
We now discuss some important properties of Assumption.

Lemma 2 Fix a type structure T = hSi; Ti; �iii2I . For type ti 2 Ti, let �i (ti) = �i.

1. If E and F are non-empty events in S�i � T�i which are assumed under �i at level
m, then ProjS�i (E) = ProjS�i (F ). If E and F are assumed under �i, then either
ProjS�i (E) � ProjS�i (F ) or ProjS�i (F ) � ProjS�i (E).

2. Fix non-empty events E1; E2; ::: in S�i�T�i. Suppose that, for each k, Ek is assumed
under �i. Thus \kEk and [kEk are assumed under �i.

Assumption satis�es one direction of conjunction as well as one direction of disjunction
(Lemma 2.2). The failure of the other direction of conjunction reveals that, although the
"in�nitely more likely than" relation is monotone (cf. Property P2 in Appendix A),
Assumption fails to satisfy monotonicity. That is, if E is assumed under �i, the same
conclusion need not follow for an event F satisfying E � F . The reason why this can
occur is that, if E � F , there may be some payo¤-relevant components of F�E which are
not deemed in�nitely more likely than not-F .20 This can be illustrated by the following
simple example.

Example 2 Let S�i =
�
s1�i; s

2
�i; s

3
�i
	
and T�i =

�
t��i
	
. Consider the LPS �i = (�

1
i ; �

2
i ) 2

N (S�i � T�i) with �1i
���

s1�i; t
�
�i
�	�

= 1 and �2i
���

s2�i; t
�
�i
�	�

= �2i
���

s3�i; t
�
�i
�	�

= 1
2
.

Consider the events E =
�
s1�i
	
� T�i and F =

�
s1�i; s

2
�i
	
� T�i. Clearly, E � F ;

however, E is assumed under �i at level 1, while F is not assumed (indeed, �1i (F ) = 1
and �2i (F ) =

1
2
, and, with m = 1, Condition (ii) of De�nition 11 is not satis�ed for

C =
�
s2�i
	
� T�i).

For each player i 2 I, let Ai : �S�i�T�i ! �Si�Ti be the operator de�ned by

Ai (E�i) = f(si; ti) 2 Si � Ti jti assumes E�ig , E�i 2 �S�i�T�i.

Corollary D.1 in the Supplemental Appendix shows that the setAi (E�i) is Borel in Si�Ti
for every event E�i � S�i � T�i; so the operator Ai : �S�i�T�i ! �Si�Ti is well-de�ned.
The Assumption operatorAi has invariance properties under type morphisms between

type structures which are analogous to the ones of (Cautious) Rationality (cf. Lemma 1
and Corollary 2).21

20So, in our version of Assumption, non-monotonicity hinges only on the "cautious attitude" towards
the event (namely, Condition (ii) of De�nition 11). In a related vein, the notion of Strong Belief ([5])
shares with Assumption a similar feature. Indeed, Strong Belief is based on a monotone likelihood relation
between uncertain events (conditional probability-one belief), but it does not satisfy monotonicity (cf.
[5, Section 3.2]; we thank Pierpaolo Battigalli for this observation). By contrast, in BFK�s version of
Assumption, non-monotonicity is also a consequence of a non-monotonicity property of the "in�nitely
more likely than" relation of Blume et al. [9] (see Appendix A, Proposition A.3).
21We thank an anonymous referee for suggesting to us the result stated in Lemma 3.

21



Lemma 3 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be lexicographic type structures
such that there exists a type morphism ('i)i2I : T ! T � from T to T �. Let E�i � S�i�T�i
and E��i � S�i � T ��i be non-empty events satisfying the following conditions:

1)
�
IdS�i ; '�i

�
(E�i) � E��i;

2) ProjS�i (E�i) = ProjS�i
�
E��i
�
.

Then (IdSi ; 'i) (Ai (E�i)) � Ai

�
E��i
�
.

Corollary 3 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be isomorphic type struc-
tures, and let ('i)i2I : T ! T � be the corresponding type isomorphism. Fix ti 2 Ti. Thus
ti assumes an event E�i � S�i � T�i if and only if 'i (ti) assumes

�
IdS�i ; '�i

�
(E�i).

Lemma 3 will play an instrumental role in the proof of our main results (Theorem 2
and Lemma 5). The implications of Corollary 3 will be discussed extensively in Section
6.
Our notion of Assumption is weaker than, and is implied by, the corresponding notions

due to Dekel et al. [25] and, as for LCPS�s, BFK and Yang [44]. A comparison between
the notions of Assumption is deferred to the Discussion Section (Section 6.2). Here, we
just stress that our version of Assumption is, in a precise sense, "topology-free": First,
di¤erently than in BFK and [44], it does not impose any full-support restriction on the
LPS under which the event is assumed; second, Condition (ii) in De�nition 11, di¤erently
from Condition (iii) in BFK and Dekel et al. [25] (cf. Section 6.2), does not depend on
the topology of the type spaces. As mentioned earlier, also Cautiousness is topology-free.
Therefore, all the results in the following sections do not depend on the topology of the
type spaces.

5 Common Assumption of Cautious Rationality and
the main result

We now provide an epistemic foundation of IA in "su¢ ciently rich" (i.e., belief-complete)
type structures. In what follows, �x a type structure T = hSi; Ti; �iii2I and, for each
player i 2 I, let R1i = Rci . For each m > 1, de�ne Rmi inductively by

Rm+1i = Rmi \Ai

�
Rm�i
�
.

We write R0i = Si � Ti and R1i = \m2NRmi for each i 2 I. If (si; ti)i2I 2
Q
i2I R

m+1
i , we

say that there is Cautious Rationality and mth-order Assumption of Cautious
Rationality (RcmARc) at this state. If (si; ti)i2I 2

Q
i2I R

1
i , we say that there is Cau-

tious Rationality and Common Assumption of Cautious Rationality (RcCARc)
at this state.
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Note that, for each m > 1,

Rm+1i = R1i \
�
\l�mAi

�
Rl�i
��
,

and each Rmi is Borel in Si � Ti (see Lemma D.5 in the Supplemental Appendix).
By an easy induction argument, using Corollary 2 and Corollary 3, we can claim:

Remark 2 Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be (Si)i2I-based type structures
such that there exists a type isomorphism ('i)i2I : T ! T 0 from T to T 0. Thus there
is RcmARc (resp. RcCARc) at state (si; ti)i2I if and only if there is R

cmARc (resp.
RcCARc) at state (si; 'i (ti))i2I .

We now state the main result of this paper.

Theorem 2 Fix a belief-complete type structure T = hSi; Ti; �iii2I . The following state-
ments hold:

(i) for each m � 0,
Q
i2I ProjSi (R

m
i ) =

Q
i2I S

m
i ;

(ii) if T is universal, then
Q
i2I R

1
i 6= ; and

Q
i2I ProjSi (R

1
i ) =

Q
i2I S

1
i .

The proof of Theorem 2 will make use of the following results.

Lemma 4 Fix a player i 2 I. If si 2 Smi , then there exists �si 2 M(S�i) such that
Supp�si = Sm�1�i and

�i(si; �si) � �i(s
0
i; �si), 8s

0
i 2 Si.

Lemma 5 Fix the canonical type structure Tu = hSi; Hi; f iii2I . There exists a �nite type
structure T � = hSi; T �i ; ��i ii2I such that, for each i 2 I and each m � 1,
(i) ProjSi (R

�;m
i ) = Smi ,

(ii) (IdSi ; di) (R
�;m
i ) � Rmi .

For a proof of Lemma 4, see [17, Lemma E.1]. The proof of Lemma 5 is delegated to
the next section.

Proof of Theorem 2: Part (i): For m = 0 the statement is immediate. We show by
induction that the statement holds for m � 1. One direction of the proof makes use of a
selection argument; that is, for each i 2 I and each m � 0, there are maps �mi : Si ! Ti
such that the maps (IdSi ; �

m
i ) : Si ! Si � Ti satisfy (IdSi ; �

m
i ) (si) = (si; �

m
i (si)) 2

Rmi n Rm+1i provided si 2 Smi .
22 (Of course, each map �mi is continuous, since strategy

22This implies that each map (IdSi ; �
m
i ) satis�es ProjSi � (IdSi ; �

m
i ) = IdSi . Put di¤erently, (IdSi ; �

m
i )

is a continuous selection of the correspondence Proj�1Si : Si ! 2R
m
i nR

m+1
i .
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sets are endowed with the discrete topology.) To this end, we �rst de�ne, for each i 2 I,
the map �0i : Si ! Ti as follows: �x some t0i 2 Ti such that margS�i�i (t

0
i ) =2 N+ (S�i)

(such t0i exists by belief-completeness), and let �
0
i (si) = t0i for all si 2 Si. It follows that

(si; �
0
i (si)) 2 R0i nR1i 6= ; for all si 2 Si, because �0i (si) 2 Ti is not cautious.
(m = 1) Fix i 2 I. Let si 2 ProjSi (R1i ), so that (si; ti) 2 R1i for some ti 2 Ti. By

Proposition 4, si is admissible, i.e., si 2 S1i . This shows that ProjSi (R1i ) � S1i .
Conversely, let si 2 S1i . So there is a probability measure �1i 2 M (S�i), with

Supp�1i = S�i, such that si is a (lexicographic) best reply to �1i . Let � : S�i !
S�i � T�i be the function de�ned by � (s�i) =

�
s�i; �

0
�i (s�i)

�
, s�i 2 S�i, where �0�i :

S�i ! T�i is the (constant) function we previously de�ned. The map � is continuous
and is such that � (s�i) 2 R0�i n R1�i for all s�i 2 S�i. Hence the pushforward mea-
sure e� (�1i ) 2 M (S�i � T�i) is well-de�ned, and satis�es e� (�1i ) �R1�i� = 0; moreover
margS�ie� (�1i ) = �1i 2 N+

1 (S�i). By belief-completeness, there is t1si 2 Ti such that
�i
�
t1si
�
= e� (�1i ). Clearly, �si; t1si� 2 R1i n R2i , and this shows that S1i � ProjSi (R1i nR2i ),

and so S1i � ProjSi (R1i ).
By arbitrariness of i 2 I, it follows that

Q
i2I ProjSi (R

1
i ) =

Q
i2I S

1
i . We can conclude

the proof of the basis step by de�ning a pro�le of continuous maps (�1i : Si ! Ti)i2I as
follows: for each i 2 I,

�1i (si) =

�
t1si, if si 2 S1i ,

�0i (si) , if si 2 Si n S1i .
It turns out that (si; �1i (si)) 2 R1i nR2i whenever si 2 S1i , as required.
(m � 2) Suppose that the statement has been shown to hold for all l = 1; :::;m � 1,

and that, for each i 2 I and l � m� 1, we have shown the existence of continuous maps
�li : Si ! Ti satisfying

�
si; �

l
i (si)

�
2 Rli nRl+1i for all si 2 Sli. We show that the statement

is true for l = m.
Fix a player i 2 I, and let si 2 ProjSi (Rmi ), so that (si; ti) 2 Rmi for some ti 2 Ti. It

follows from the de�nition of Rmi that (si; ti) 2 Rm�1i , so, by the induction hypothesis,
si 2 Smi . Also, Rm�1�i is assumed under �i (ti) = (�

1
i ; :::; �

n
i ) at some level k � n, hence

[l�kSuppmargS�i�
l
i = ProjS�i

�
Rm�1�i

�
= Sm�1�i ,

where the �rst equality follows from Lemma B.2 and the second equality follows from
the induction hypothesis. So we can form a nested convex combination of the measures
margS�i�

l
i, for l = 1; :::; k, to get a probability measure �i 2 M (S�i), with Supp�i =

Sm�1�i , such that si is a best reply to �i (see [10, Proposition 1]). Thus, si is admissible
w.r.to Si � Sm�1�i , and a fortiori w.r.to Sm�1i � Sm�1�i . Hence ProjSi (R

m
i ) � Smi .

Conversely, let si 2 Smi . By Lemma 4, it follows that, for all l = 1; :::;m, there is
�li 2M(S�i), with Supp�li = Sl�1�i , for which si is a best reply among all strategies in Si.
We now show the existence of an LPS �i = (�

1
i ; :::; �

m
i ) 2 N (S�i � T�i) such that

(a) margS�i�
l
i = �m+1�li for each l = 1; :::;m; and

(b) Rm�l�i is assumed under �i at level l for each l = 1; :::;m � 1, while Rm�i is not
assumed.
To this end, we use the fact that we have already shown the existence of functions

�0i (�),...,�m�1i (�) (induction hypothesis) for each i 2 I. We construct probability measures
�li 2M(S�i � T�i) as follows:

�li =
^�

IdS�i ; �
m�l
�i
� �
�m+1�li

�
, 8l 2 f1; :::;mg .
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Let �i 2 N (S�i � T�i) be the concatenation of those measures, i.e., �i = (�
1
i ; :::; �

m
i ). It

readily follows that �i satis�es property (a), since ProjS�i �
�
IdS�i ; �

m�l
�i
�
= IdS�i for all

l 2 f1; :::;mg. We now show that also property (b) holds. Using the properties of the
functions �m�l�i (�) speci�ed above, we get that, for all l 2 f1; :::;mg,

�li
�
Rm�l�i nRm+1�l�i

�
= �m+1�li

��
IdS�i ; �

m�l
�i
��1 �

Rm�l�i nRm+1�l�i
��
= �m+1�li

�
Sm�l�i

�
= 1:

(5.1)
Speci�cally, for l = 1 this yields

�1i
�
Rm�1�i nRm�i

�
= 1,

�1i
�
Rm�i
�
= 0,

hence condition (i) of Assumption is satis�ed for Rm�1�i , while R
m
�i cannot be assumed

under �i. Moreover, note that

SuppmargS�i�
1
i = Supp�

m
i = Sm�1�i .

By the induction hypothesis, Sm�1�i = ProjS�iR
m�1
i , hence Condition (ii)�of Lemma B.2

holds. Analogous arguments show that all the conditions of Assumption are satis�ed for
Rm�l�i at level l for each l = 2; :::;m� 1. This shows that property (b) is satis�ed.23
It now follows from belief-completeness that there is tmsi 2 Ti such that �i

�
tmsi
�
=

(�1i ; :::; �
m
i ); this implies

�
si; t

m
si

�
2 Rmi n Rm+1i , hence si 2 ProjSi

�
Rmi nRm+1i

�
, and a

fortiori si 2 ProjSi (Rmi ).
By arbitrariness of i 2 I, it follows that

Q
i2I ProjSi (R

m
i ) =

Q
i2I S

m
i . To con-

clude the proof of the inductive step, it remains to de�ne a pro�le of continuous maps
(�mi : Si ! Ti)i2I . This is done by letting, for each i 2 I,

�mi (si) =

�
tmsi , if si 2 Smi ,

�0i (si) , if si 2 Si n Smi .

Clearly, each map �mi : Si ! Ti satis�es (si; �mi (si)) 2 Rmi nRm+1i whenever si 2 Smi .
Part (ii): We can assume, without loss of generality, that T is the canonical type

structure (Corollary 1). Then, by Lemma 5, there exists a �nite type structure T � =
hSi; T �i ; ��i ii2I such that, for each i 2 I and each m � 1,
(a) ProjSi (R

�;m
i ) = Smi ,

(b) (IdSi ; di) (R
�;m
i ) � Rmi .

Since (R�;mi )m2N is a weakly decreasing sequence of �nite sets, there exists N 2 N
such that R�;Ni = R�;1i . So, it follows from (a) that ProjSi (R

�;1
i ) = S1i . Then, for every

si 2 S1i , there exists ti 2 T �i such that (si; ti) 2 R�;mi for all m 2 N. It thus follows
from (b) that (IdSi ; di) ((si; ti)) 2 Rmi for all m 2 N. Hence (IdSi ; di) ((si; ti)) 2 R1i .
Consequently S1i � ProjSi (R

1
i ) 6= ;. By Part (i) of the theorem, ProjSi (R1i ) � S1i .

The conclusion follows. �

23Moreover, since the sets
�
Rl�i

�
l2f1;:::;mg are monotonically (weakly) decreasing, then Eq. (5.1) yields

�li
�
Rm�1�i

�
= 0 for all l 2 f2; :::;mg, and this shows that condition (iii) of BFK-Assumption (see De�nition

12 below) is satis�ed for Rm�1�i .
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5.1 Construction of the �nite type structure T � and the proof
of Lemma 5

Let M be the smallest natural number such that
Q
i2I S

1
i =

Q
i2I S

M
i . By Lemma 4, it

follows that, for every n 2 f1; :::;M + 1g and si 2 Sni , there exists �
n
si
2 M(S�i) such

that Supp�nsi = Sn�1�i and

�i(si; �
n
si
) � �i(s

0
i; �

n
si
), 8s0i 2 Si.

We use this result to construct a �nite type structure T � = hSi; T �i ; ��i ii2I as follows.
For each i 2 I and k 2 f0; 1; :::;M + 1g, de�ne sets T ki as follows:

T ki = Ski � fkg ;

in other words, each T ki is a homeomorphic copy of S
k
i , but all the T

k
i �s are pairwise

disjoint sets. In particular, note that, since SMi = SM+1
i , then both TMi and TM+1

i are
homeomorphic copies of SMi .
For each i 2 I, type spaces T �i are de�ned by

T �i =
S

k2f0;1;:::;M+1g
T ki .

In what follows, we will denote a type ti 2 T ki by (si; k).
Next, for each i 2 I, belief maps ��i : T

�
i ! N (S�i � T ��i) are de�ned by an induc-

tive procedure which speci�es, for all k 2 f0; 1; :::;M + 1g, the properties of the LPS�s
associated with each (si; k) 2 T ki .

(k = 0) For each i 2 I and si 2 S0i , let ��i ((si; 0)) be any probability measure on S�i�T ��i
such that

SuppmargS�i�
�
i ((si; 0)) 6= S�i.

(k = 1) For each i 2 I and si 2 S1i , let �
�
i ((si; 1)) be any probability measure �

1
si
on

S�i � T ��i such that

�1si (f(s�i; (s�i; 0))g) = �1si (fs�ig) , 8s�i 2 S�i,

which implies �1si
�
S�i � T 0�i

�
= 1.

(1 < k �M) Suppose we have already de�ned, for each i 2 I and si 2 Sk�1i , the LPS
��i ((si; k � 1)) 2 Nk�1(S�i � T ��i). Thus, for each i 2 I and si 2 Ski , de�ne
��i ((si; k)) 2 Nk(S�i � T ��i) by

��i ((si; k)) =
�
�ksi ; �

�
i ((si; k � 1))

�
,

where �ksi 2M(S�i � T ��i) satis�es

�ksi (f(s�i; (s�i; k � 1))g) = �ksi (fs�ig) , 8s�i 2 S
k�1
�i ,

so that �ksi
�
S�i � T k�1�i

�
= 1.
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(k =M + 1) For each i 2 I and si 2 SMi = SM+1
i , de�ne ��i ((si;M + 1)) 2 NM+1(S�i �

T ��i) by
��i ((si;M + 1)) =

�
�M+1
si

; ��i ((si;M))
�
,

where �M+1
si

2M(S�i � T ��i) satis�es

�M+1
si

(f(s�i; (s�i;M + 1))g) = �M+1
si

(fs�ig) , 8s�i 2 SM�i.

so that �M+1
si

�
S�i � TM+1

�i
�
= 1.

Observe that for all k 2 f1; :::;M + 1g:

� ��i ((si; k)) =
�
�ksi ; �

k�1
si

; :::; �1si
�
;

� margS�i�ksi = �ksi;

� Supp�ksi � S�i � T k�1�i for k < M + 1 and Supp�M+1
si

� S�i � TM+1
�i ;

� for every ti 2 T ki , ��i (ti) is a length-k LPS, and for every ti 2 T 0i , ��i (ti) is a length-1
LPS.

For each i 2 I, de�ne the following sets:

�Ski �Tki = f(si; ti) 2 Si � T �i jti = (si; k)g , 8k 2 f0; :::;Mg ,
�SMi �T

M+1
i

= f(si; ti) 2 Si � T �i jti = (si;M + 1)g .

That is, each set�Ski �Tki is homeomorphic to the diagonal of S
k
i �Ski ;24 thus, each measure

of an LPS ��i ((si; k)) =
�
�ksi ; �

k�1
si

; :::; �1si
�
is concentrated on those "diagonal" sets, namely

Supp�ksi = �Sk�1�i �Tk�1�i
, 8k 2 f1; :::;Mg ,

Supp�M+1
si

= �SM�i�T
M+1
�i

.

The remainder of this Section is devoted to show that T � satis�es the requirements
of Lemma 5. To this end, we �rst record, for future reference, two properties of the type
structure T �.

Claim 1 For all k 2 f1; :::;M + 1g, each type (si; k) 2 T ki is cautious.
24The diagonal of Ski � Ski is the set�

(si; s
0
i) 2 Ski � Ski jsi = s0i

	
,

which is homeomorphic to �Ski �Tki under the coordinate projection ProjSki �Ski : �Ski �Tki ! Ski � Ski .
Furthermore, the diagonal of Ski � Ski is homeomorphic to Ski .
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Proof: For all k 2 f1; :::;M + 1g, each type (si; k) 2 T ki is associated with the LPS
��i ((si; k)) =

�
�ksi ; �

k�1
si

; :::; �1si
�
, with �1si satisfying

SuppmargS�i�
1
si
= Supp�1si = S�i.

�

The following property of T � is not crucial for the proof of the main result; however,
it shows that such �nite type structure can be used to characterize IA under stronger
notions of Assumption. Speci�cally, Assumption could be strenghtened with Condition
(iii) in the de�nition of "BFK-Assumption" for LCPS� see Section 6.2, De�nition 12.

Claim 2 The type structure T � is an LCPS type structure. Furthermore, for each ti 2 T �i ,
the induced hierarchy di (ti) = (d1i (ti) ; d

2
i (ti) ; :::) is such that

dki (ti) 2 L
�
Xk�1
i

�
, 8k � 2.

Proof : For k = 0; 1, every type (si; k) 2 T ki is associated with a probability measure,
hence the result is trivially true. So, pick any (si; k) 2 T ki with k � 2. Then ��i ((si; k)) =�
�ksi ; �

k�1
si

; :::; �1si
�
has the property that Supp�lsi � S�i�T l�1�i for all l < k, while Supp�ksi �

S�i � T k�i if k = M + 1, and Supp�ksi � S�i � T k�1�i otherwise. Since all the sets T ki �s are
pairwise disjoint, then ��i ((si; k)) is mutually singular.
To prove the second statement, it is enough to show that d2i (ti) 2 L (S�i �N (Si)).

This will imply dki (ti) 2 L
�
Xk�1
i

�
for all k � 3 (see [20]). As above, pick any (si; k) 2 T ki

for which k � 2, and recall that ��i ((si; k)) =
�
�ksi ; �

k�1
si

; :::; �1si
�
. Thus

d2i ((si; k)) = b 1�i (��i ((si; k)))
=

�e 1�i ��ksi� ; e 1�i ��k�1si

�
; :::; e 1�i ��1si�� ,

where  1�i =
�
IdS�i ; d

1
�i
�
. Let (El)

k
l=1 be Borel sets in S�i � N (Si) such that El =

S�i �N+
l (Si) for all l = 1; :::; k. Clearly, the sets (El)

k
l=1 are pairwise disjoint. By Claim

1 and by construction, it turns out that, for all l = 2; :::; k � 1,

e 1�i ��li� (El�1) = �lsi

��
IdS�i ; d

1
�i
��1 �

S�i �N+
l�1 (Si)

��
= �lsi

�
S�i � T l�1�i

�
= 1;

where the last equality follows from the fact that Supp�lsi � S�i � T l�1�i . An analogous

argument for l = k shows that e 1�i ��ksi� (Ek�1) = 1 if k �M , while e 1�i ��M+1
si

�
(EM+1) =

1. To complete the proof, observe that e 1�i ��1si� (S�i � (N (Si) nN+ (Si))) = 1 be-
cause �1si

�
S�i � T 0�i

�
= 1 and types in T 0�i are not cautious. This shows that d

2
i (ti) 2

L (S�i �N (Si)), as required. �

The following result establishes the main properties of the sets of states (i.e., strategy-
type pro�les) (si; ti)i2I 2 S � T � consistent with RcmARc.
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Claim 3 Fix the type structure T �. For each player i 2 I, the following properties hold:

1. for all k 2 f1; :::;Mg,

��i ((si; k))
�
R�;k�i

�
= 0; si 2 Ski ;

2. for all k 2 f0; 1; :::;Mg,
�Ski �Tki � R�;ki �R

�;k+1
i ;

3. �SMi �T
M+1
i

� R�;M+1
i ;

4. for all l � 1, R�;M+1
i = R�;M+l

i .

The proof of Claim 3, although simple, is provided in Appendix B because some
of the details are rather tedious. Here, we just remark that, in parts 2-3 of Claim 3,
the sets

�
�Ski �Tki

�
k=0;:::;M

and �SMi �T
M+1
i

are included in, but not necessarily equal to,�
R�;ki �R

�;k+1
i

�
k=0;:::;M

and R�;M+1
i , respectively. The following is an example in which

strict inclusion occurs. Suppose there are distinct si; s0i 2 S1i such that the measures
�1si and �1s0i

� which exist by Lemma 4� satisfy �1si = �1s0i
. Then, clearly (si; (s0i; 1)) 2

R�;1i �R
�;2
i , but (si; (s

0
i; 1)) =2 �S1i�T 1i .

We now show that RcCARc holds in T �, and epistemically justi�es the IA set.

Claim 4 Fix the type structure T �. Thus, for each player i 2 I, the following statements
hold true:

(1) for each k � 0, ProjSi
�
R�;ki

�
= Ski ;

(2) ProjSi (R
�;1
i ) = SMi ;

(3) for each k 2 f0; 1; :::;Mg, ProjSi
�
R�;ki

�
= ProjSi

�
R�;ki nR�;k+1i

�
.

Proof : Part (1): The inclusion ProjSi
�
R�;ki

�
� Ski follows from the same arguments as

those in the proof of part (i) of Theorem 2. On the other hand, it follows from Claim 3

that �Ski �Tki � R�;ki for all k � 0. Hence Ski � ProjSi
�
R�;ki

�
for all k � 0.

Part (2): Claim 3.4 entails R�;1i = \m�M+1R
�;m
i = R�;M+1

i 6= ; for each i 2 I. So, it
readily follows from part (1) that ProjSi (R

�;1
i ) = SMi .

Part (3): Claim 3.2 yields

ProjSi

�
R�;ki

�
= Ski � ProjSi

�
R�;ki nR�;k+1i

�
, 8k 2 f0; 1; :::;Mg .

The opposite inclusion trivially holds. �
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Note that Claim 4.(3) shows that the sets
�
R�;ki

�
k�0

stop shrinking at step k =M +1

(indeed, R�;M+1
i = R�;M+l

i for all l � 1, by Claim 3.4). By way of constrast, in a belief-
complete type structure, these sets keep shrinking forever. This can be easily seen in one
direction of the proof of part (i) of Theorem 2, in which it is shown that Rmi n Rm+1i 6= ;
for all m � 0.25
Finally, we show that

Claim 5 Fix type structure T � and the canonical type structure Tu. Thus, for each player
i 2 I,

(IdSi ; di)
�
R�;ki

�
� Rki , 8k � 1.

Proof : By induction on k.
(k = 1) If (si; ti) 2 R�;1i , then (si; di (ti)) 2 R1i by Lemma 1.
(k � 2) Suppose that the statement is true for k � 1. Let (si; ti) 2 R�;ki . So (si; ti) 2

R�;k�1i and, by the induction hypothesis, (si; di (ti)) 2 Rk�1i . So we need to show that
(si; di (ti)) 2 Ai

�
Rk�1�i

�
; this will imply (si; di (ti)) 2 Rki , as required.

Now note that
(a)
�
IdS�i ; d�i

� �
R�;k�1�i

�
� Rk�1�i ,

(b) ProjS�i

�
R�;k�1�i

�
= ProjS�i

�
Rk�1�i

�
.

Part (a) is the induction hypothesis, while part (b) follows fromClaim 4.(1) and part (i)

of Theorem 2. Since (si; ti) 2 Ai

�
R�;k�1�i

�
, then Lemma 3 yields (si; di (ti)) 2 Ai

�
Rk�1�i

�
.

�

We can conclude this Section by providing the proof of Lemma 5.

Proof of Lemma 5: Immediate from Claim 4.(1) and Claim 5. �

6 Discussion

6.1 Weak Belief and Permissibility

A weaker concept than Assumption (and Full Belief) of an event is that of Weak Belief.
Formally, an event E is weakly believed if E is "in�nitely more likely than" not-E. As
shown in Appendix A, this requires that �1 (E) = 1 for a given LPS (�1; :::; �n). Using this
condition on LPS�s, Brandenburger [13] introduced the solution concept of Permissibility,
and showed its equivalence to the Dekel-Fudenberg procedure where one round of elimi-
nation of inadmissible strategies is followed by iterated elimination of strictly dominated
strategies ([23]; see also [12], [7]).

25Moreover, it can be deduced from Theorem 2.(i) that ProjSi (R
m
i ) = ProjSi

�
Rmi nRm+1i

�
for all

m � 0 (cf. [17, Lemma E.3]).
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Permissibility in �nite games can be given an epistemic foundation in our framework.
To see this, �x a type structure T = hSi; Ti; �iii2I . For each player i 2 I, one can de�ne
an operatorWBi : �S�i�T�i ! �Si�Ti as follows:

WBi (E�i) = f(si; ti) 2 Si � Ti jti weakly believes E�ig , E�i 2 �S�i�T�i.

Note that, di¤erently from the Assumption operator Ai, WBi is monotone. This is
so because Weak Belief in E�i does not impose any cautious attitude toward E�i, i.e.,
payo¤-relevant components of E�i are not required to be "in�nitely more likely than"
not-E�i. In [21], we show that the notions of Cautious Rationality and Weak Belief can
be appropriately combined to justify the choice of permissible strategies in the following
sense: Permissibility characterizes the behavioral implications of Cautious Rationality
and Common Weak Belief of Cautious Rationality in a universal type structure. This
gives an analogue of Theorem 2, thus providing an a¢ rmative answer to a question raised
by BFK ([17, p. 333]).
It should be noted that we cannot replace the notion of "in�nitely more likely than"

with the one of Blume et al. [9] in the de�nition of Weak Belief. As we discuss in
Appendix A, the latter notion is not monotone. As such, if the operatorWBi were based
on a notion of Weak Belief in terms of the "in�nitely more likely than" relation of [9],
thenWBi would not be monotone as well, hence not well suited for an epistemic analysis
of Permissibility.

6.2 Alternative notions of Assumption: Comparison with Dekel
et al. [25]

As mentioned earlier, the concept of Assumption was �rst introduced by BFK ([17, Sec-
tion 5]) for the case in which beliefs are represented by full-support LCPS�s. The recent
contribution of Dekel et al. [25] covers the general case with unrestricted LPS�s. To facil-
itate the comparison with our notion of Assumption, we record the LPS-based de�nition
of "BFK-Assumption" ([25, De�nition 3.2]).

De�nition 12 Fix a type structure T = hSi; Ti; �iii2I and a non-empty event E � S�i�
T�i. Fix also ti 2 Ti with �i (ti) = (�1; :::; �n). Say that E is BFK-assumed under
�i (ti) at level m � n if the following conditions hold:

(i) �l (E) = 1 for all l � m;

(ii) E � [l�mSupp�l; and

(iii) for each l > m, there exists
�
�l1; :::; �

l
m

�
2 Rm such that, for each Borel F � E,

�l (F ) =
mX
j=1

�lj�
j (F ) .
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Condition (i) and Condition (iii) of De�nition 12 say that E is "in�nitely more likely
than" (in the sense of [9]) not-E (see De�nition A.6 and Proposition A.4 in Appendix A).
If the LPS �i (ti) in De�nition 12 is, in fact, an LCPS (as in BFK, [18] and [44]), then
Condition (iii) is equivalent to the following condition:

(iii)��l (E) = 0 for all l > m.

Dekel et al. [25] also provide two weaker notions of BFK-Assumption. The �rst one,
called "PWD-Assumption", turns out to be equivalent to BFK-Assumption for LCPS�s.
The second one, called "TWD-Assumption", requires that only Conditions (i)-(ii) of

De�nition 12 hold. Note that, if Condition (i) holds, then Condition (ii) is equivalent to
the following condition:

(ii)� for every open set O � S�i� T�i, if E \O 6= ; then �l (E \O) > 0 for some l � m.

Condition (ii) of our notion of Assumption (De�nition 11) is weaker than Condition
(ii)�. This is so because, technically, every elementary cylinder, viz. C = fs�ig � T�i,
is a (cl)open set. The weakening of Condition (ii)� is crucial for our main result, in
particular for Theorem 2.(ii).26 Therefore, it is straightforward to show that our notion
of Assumption is weaker than all their counterparts mentioned above.
The di¤erence between our notion of Assumption and the other ones is sharper in

terms of preference-based foundations. We thoroughly discuss these aspects in Appendix
A and Supplemental Appendix C. Here, we point out that we can include Condition (iii)
of De�nition 12 in our de�nition of Assumption and obtain a new notion with a similar
preference-based foundation as in [25]. The main result of the paper (Theorem 2) would
continue to hold under this stronger notion of Assumption. Sections C and E of the
Supplemental Appendix discuss the required modi�cations.

6.3 Belief-completeness vs terminality

Part (i) of Theorem 2 is an analogue of Theorem 6.2 in Dekel et al. [25]. In the Sup-
plemental Appendix, it is shown that, for any �nite non-degenerate game, there exists
an associated belief-complete type structure T = hSi; Ti; �iii2I in which the set of statesQ
i2I R

1
i is empty. The reason why this can occur is simple: While a belief-complete

type structure induces all beliefs about types, it need not induce all possible hierarchies
of beliefs.
To elaborate, �x a type structure T = hSi; Ti; �iii2I . Following the terminology in

[27], we say that T is �nitely terminal if, for each hierarchy hi = (�1i ; �
2
i ; :::) 2 Hi

there is ti 2 Ti such that
�
d1i (ti) ; :::; d

k
i (ti)

�
=
�
�1i ; :::�

k
i

�
for all k 2 N. We say that

T is terminal if, for each hierachy hi 2 Hi there is ti 2 Ti such that di (ti) = hi. In
words, a type structure is �nitely-terminal if it induces all �nite-order beliefs. When a
type structure induces all possible hierarchies of beliefs (e.g., the canonical one), the IA
strategies are consistent with RcCARc and so there is some state at which there is RcCARc

26As shown by Dekel et al. [25], the negative result in BFK is retained if the notion of BFK-Assumption
is replaced by TWD-Assumption.
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(Theorem 2.(ii)). But, for a given belief-complete type structure that does not induce all
hierarchies of beliefs, the same conclusion need not follow.
How do terminal type structures relate to belief-complete type structures? In the

context of ordinary probabilities (i.e., Subjective Expected Utility preferences) Frieden-
berg ([27, Theorem 3.1]) shows that a belief-complete type structure is terminal provided
each type space is compact and each belief map is continuous.27 In the lexicographic
case, however, there is no analogue of the aforementioned result. It is shown in [20]
that a belief-complete type structure is �nitely terminal. Such result is, in some sense,
tight: Belief-completeness is insu¢ cient to establish terminality, even though the con-
tinuity requirement on the belief maps is met. As already remarked (see Section 3.3),
a belief-complete, lexicographic type structure cannot be compact and continuous; as
such, Friedenberg�s result (cf. [27, Theorem 3.1]) cannot be extended to the lexicographic
framework.
That said, it should be emphasized that the so-called "BFK�s impossibility result"

([17, Theorem 10.1] and [25, Theorem 6.3]) does not hinge on the terminality property:
As shown by Keisler and Lee [33], BFK�s analysis of IA depends on topological features
of belief-complete type structures which are unrelated to belief hierarchies. By contrast,
our message is in line with analogous works on other solution concepts, such as Iterated
(Strict) Dominance: Friedenberg and Keisler [28] show that, for any non-degenerate �nite
game, there exists an associated belief-complete, standard type structure in which no
strategy is consistent with Rationality and Common Belief of Rationality. They also
show that this arises due to the lack of terminality of belief-complete type structures.
Therefore, our negative result is an analogue of Friedenberg and Keisler�s result in the
lexicographic framework.

6.4 Mutual singularity and comparison with BFK

The proof of part (ii) of Theorem 2 relies on showing the existence of a �nite type structure
T � = hSi; T �i ; ��i ii2I with some desirable properties for the application of Lemma 5. The
properties of T � stated in Claim 2 are of particular interest. In [20], we identify a class �
of lexicographic type structures, the so-called "strongly LCPS type structures", and we
show the existence of a canonical, belief-complete and continuous LCPS type structure,
viz. T MS

u = hSi;�i; giii2I , which is universal within this class. That is, every type
structure in � can be mapped into T MS

u by the unique type morphism (di)i2I , as in
Theorem 1. Claim 2 establishes that T � 2 �.
The following is a version of Theorem 2 for the case in which beliefs are represented

by LCPS.

Theorem 3 Fix a �nite game hI; (Si; ui)i2Ii and an associated belief-complete type struc-
ture T = hSi; Ti; �iii2I . The following statements hold true:
27The reverse implication is not true: A terminal type structure need not be belief-complete, unless the

type structure is belief-non-redundant ([27, Proposition 4.1]), i.e., if distinct types induce distinct hier-
archies of beliefs. This de�nition of belief-non-redundancy naturally extends to the case of lexicographic
type structures. Note, however, that this notion pertains to hierarchies of LPS�s, not necessarily to hi-
erarchies of lexicographic preferences. Multiple LPS�s may represent the same lexicographic preference
relation. See [36] for a detailed analysis of this issue.
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(i) if T is an LCPS type structure, then, for each m � 0,
Q
i2I ProjSi (R

m
i ) =

Q
i2I S

m
i ;

(ii) if T is isomorphic to T MS
u , then

Q
i2I R

1
i 6= ; and

Q
i2I ProjSi (R

1
i ) =

Q
i2I S

1
i .

Part (i) of Theorem 3 is an analogue of Theorem 9.1 in BFK, and its proof follows
from arguments similar to those in the proof of Theorem 2.(i).28 This result, if compared
to Theorem 2.(i), may be surprising at �rst glance, since it only allows the players to
hold a restricted set of LPS�s representing their beliefs. However, as it is shown in [20],
every belief-complete LCPS type structure is �nitely terminal. In other words, the type
structure T in the statement of Theorem 3.(i) has the same descriptive power as that of
any other belief-complete (but possibly not LCPS) type structure, as long as �nite-order
epistemic conditions� such as Theorem 3.(i)� are concerned.
Part (ii) of Theorem 3 follows from the same proof as the one we provided for Theorem

2.(ii), but with Tu replaced by T MS
u . This last result is our key point of di¤erence with

BFK�s negative result ([17, Theorem 10.1]).

6.5 Hierarchies of lexicographic minimal beliefs and coherence

In this paper, we have adopted a notion of coherence for hierarchies of LPS�s (see De�nition
1) which is weaker than the one in the recent work by Lee [35]. The starting point in
Lee�s analysis is that multiple LPS�s may represent the same Lexicographic Expected
Utility preference relation (cf. [9, p. 66]). Speci�cally, Lee restricts attention to minimal
beliefs, that is, minimal-length representations of lexicographic preferences� for instance,
(�; �) 2 N (X) represents the same preference relation on X as the minimal LPS (�).
His notion of coherence allows a (k + 1)-order belief �k+1i to be a longer LPS than k-order
belief �ki . Using such notion of coherence, Lee provides a "bottom-up" construction (à
la Mertens and Zamir [38]) of the space of hierarchies of minimal beliefs in which some
hierarchies cannot be generated by any type structure. The reason why this occurs is
that, while the length of all k-order beliefs �ki is �nite for all k 2 N, this may not be
the case for k ! 1. Consequently, there are hierarchies that cannot be summarized by
a single LPS, which must necessarily have a �nite length (cf. Proposition 1). Lee uses
this fact to provide an epistemic justi�cation of IA under the notion of Assumption as in
Dekel et al. [25] (De�nition 12), so to overturn "BFK�s impossibility result".
In a companion paper [19], we provide an in-depth analysis on the relationship between

Lee�s approach and ours. Here, we just summarize the main �ndings and results, by
referring the reader to [19] for details. First, by selecting only the hierarchies with an upper
bound on the length of all �nite-order beliefs, we show that a construction of a "canonical"
type structure for hierarchies of minimal beliefs is possible, along the lines outlined in this
paper (cf. Section 3). The canonical space of hierarchies constructed in this way turns
out to be behaviorally equivalent to the canonical hierarchic space H = �i2IHi. This is so
because Lee�s notion of coherence preserves coherence of preferences exactly in the same

28One direction of the proof, namely ProjSi (R
m
i ) � Smi for all m � 1, is the same as that in the

proof of Theorem 2.(i). For the other direction, we cannot rely on the selection argument used in the
proof of Theorem 2.(i), since this does not yield mutually singular LPS�s. The proof requires some minor
modi�cations to the proof of Theorem 9.1 in [17]. Details are available on request.
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way as the notion of coherence in De�nition 1 does. This version of the canonical type
structure satis�es a terminality property analogous to that in Theorem 1, although it is
not belief-complete in the sense of De�nition 3.29 Indeed, under an appropriate notion of
hierarchy morphism, every type structure can be mapped into it in a way that preserves
the hierarchies of minimal beliefs. We show that a property analogous to Lemma 3 holds,
and, with some minor necessary changes, all the main results stated here hold through.
We �nally remark an important conceptual point: Our results are insensitive to the

presence of redundancies in the representation of Lexicographic Expected Utility pref-
erences. As shown in [36, Section 2.4], there are many minimal-length LPS�s which are
preference-equivalent, so the canonical type structure with minimal beliefs is not the most
parsimonious representation of hierarchies of Lexicographic Expected Utility preferences.
A costruction of a non-redundant, canonical space of hierarchies of Lexicographic Ex-
pected Utility preferences is still possible (see [34]), and an analogue of Theorem 2 holds
for this version of the canonical type structure.

6.6 RcCARc in arbitrary type structures

BFK introduce the concept of self-admissible set (SAS) as a suitable, weak-dominance
analogue of best-reply set� a concept, due to Pearce [40], based on strict dominance.
To formally de�ne the SAS concept, we need an additional de�nition. Fix a �nite

game hI; (Si; ui)i2Ii. Say that a strategy s0i 2 Si of player i supports si 2 Si, if there
exists a mixed strategy �i with s0i 2 Supp�i and �i(�i; s�i) = �i(si; s�i) for all s�i 2 S�i.

De�nition 13 Fix a �nite game hI; (Si; ui)i2Ii. A set Q =
Q
i2I Qi � S is an SAS if,

for every player i,
(a) each si 2 Qi is admissible,
(b) each si 2 Qi is admissible with respect to Si �Q�i,
(c) for every si 2 Qi, if s0i supports si then s0i 2 Qi.

Every �nite game admits an SAS� in particular, the IA set is an SAS. But, as shown
by BFK, many games possess other SAS�s, which are even disjoint from the IA set. A
comprehensive analysis of the properties of SAS�s in a wide class of games is given in [16].
The notion of RcCARc in arbitrary type structures can be characterized in terms of

SAS�s as follows.

Theorem 4 Fix a �nite game hI; (Si; ui)i2Ii.
(1) For each type structure T = hSi; Ti; �iii2I ,

Q
i2I ProjSi (R

1
i ) is an SAS.

(2) For each SAS Q =
Q
i2I Qi � S, there exists a �nite type structure T = hSi; Ti; �iii2I

such that Y
i2I
ProjSi (R

1
i ) =

Y
i2I

Qi.

29For instance, the LPS f i (hi) = (�; �) 2 N (S�i �H�i) is not minimal, so it is not represented in the
canonical type structure with minimal beliefs.
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Note that, for the speci�c case in which Q is the IA set, the �nite type structure T �
in Section 5.1 satis�es part (2) of Theorem 4.
Theorem 4 can be proven using arguments which are similar to those in BFK or Dekel

et al. [25]. We discuss the required modi�cations in the Supplemental Appendix.

Appendix A: Preference-based representation of As-
sumption

Fix a lexicographic type structure T = hSi; Ti; �iii2I , where each strategy set Si is �nite.
To ease notation, it will be convenient to set 
 = S�i�T�i and to drop i�s subscript from
LPS�s �i on 
.
An act on 
 is a Borel measurable function f : 
 ! [0; 1]. We denote by ACT(
)

the set of all acts on 
. A Decision Maker has preferences over elements of ACT(
). For
x 2 [0; 1], write �!x for the constant act associated with x, i.e., �!x (!) = x for all ! 2 
.
Each constant act is identi�ed with the associated outcome in a natural way. In what
follows, we assume that the outcome space [0; 1] is in utils, i.e., material consequences are
replaced by their von Neumann-Morgenstern utility. Given a Borel set E � 
 and acts
f; g 2ACT(
), de�ne (fE; g
nE) 2ACT(
) as follows:

(fE; g
nE)(!) =

�
f(!), ! 2 E,
g(!), ! 2 
�E.

Let % be a preference relation on ACT(
) and write � (resp. �) for strict preference
(resp. indi¤erence). The preference relation % satis�es the following axioms:

Axiom 1 Order: % is a complete, transitive, re�exive binary relation on ACT(
).

Axiom 2 Independence: For all f; g; h 2ACT(
) and � 2 (0; 1],

f � g implies �f + (1� �)h � �g + (1� �)h, and

f � g implies �f + (1� �)h � �g + (1� �)h.

Moreover, let %E denote the conditional preference given E, that is, f %E g if and
only if (fE; h
nE) % (gE; h
nE) for some h 2ACT(
). Standard results (see [9, p. 64] for a
proof) show that, under Axioms 1 and 2, (fE; h
nE) % (gE; h
nE) holds for all h 2ACT(
)
if it holds for some h.
Throughout, we maintain the assumption that � is a Lexicographic Expected Utility

representation of %, i.e., %=%�. (This makes sense, since each Lexicographic Expected
Utility representation satis�es Axioms 1 and 2.) In what follows, we call C � 
 an
elementary cylinder if C = fs�ig�T�i, for some s�i 2 S�i. Given s�i and event E, we
say that Es�i is a relevant part of the event E if Es�i = C \ E 6= ; for the elementary
cylinder C = fs�ig � T�i. Clearly, every non-empty event E can be written as a �nite,
disjoint union of all its relevant parts.

De�nition A.1 Say that %� exhibits cautiousness if, for every elementary cylinder
C = fs�ig � T�i, there are f; g 2ACT(
) such that f ��C g.
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Recall that an event E � 
 is Savage-null under % if f �E g for all f; g 2ACT(
).
Say that E is non-null under % if it is not Savage-null under %. Say that event E � 

is fully believed under % if f �
nE g for all f; g 2ACT(
). We thus have:

Proposition A.1 Fix � = (�1; :::; �n) 2 N (
). An event E � 
 is Savage-null under
%� if and only if �l (E) = 0 for all l � n.

Proof : If �l (E) = 0 for all l � n, then obviously f ��E g for all f; g 2ACT(
). On the
other hand, if E � 
 is Savage-null under %�, then �!1 ��E

�!
0 . That is,�Z

E

d�l +

Z

nE

fd�l
�n
l=1

=

�
0 +

Z

nE

fd�l
�n
l=1

, 8f 2 ACT (
) ,

which implies �l (E) = 0 for all l � n. �

Corollary A.1 Fix � = (�1; :::; �n) 2 N (
). A non-empty event E � 
 is fully believed
under %� if and only if �l (E) = 1 for all l � n.

The set of binary acts (bets) on 
 is the set of all acts of the form (�!x E;�!y 
nE), for
x; y 2 [0; 1] and event E � 
. As the rankings of binary acts reveal the Decision Maker�s
underlying beliefs or likelihoods, we introduce an "in�nitely more likely than" relation
between events which is based on bets.

De�nition A.2 Fix events E;F � 
. Say that E is more likely than F if for all
x; y 2 [0; 1] with x > y,

(�!x E;�!y 
�E) %� (�!x F ;�!y 
�F ).
Say that E is deemed in�nitely more likely than F , and write E �� F , if for all

x; y; z 2 [0; 1] with x > y,

(�!x E;�!y 
�E) �� (�!z F ;�!y 
�F ).

In words, E is more likely than F if the Decision Maker prefers to bet on E rather
than on F given the same prizes for the two bets; this choice-theoretic notion is due to
Savage ([42, p. 31]). On the other hand, E is in�nitely more likely than F if betting on E
is strictly preferable to betting on F , and strict preference persists no matter how bigger
the prize z for winning the F bet is. This notion of "in�nitely more likely than" is due
to Lo ([37, De�nition 1]).30

Note that, according to De�nition A.2, if E ��� F , then E is non-null under %�, while
F may, but need not, be Savage-null under %�. When %� has a Subjective Expected
Utility representation, E ��� F implies that F is Savage-null.
The likelihood relation ��� possesses some natural properties. First, it is irre�exive,

asymmetric and transitive. Moreover, if E ��� F , then

(P1) E is in�nitely more likely than any Borel subset of F ; and

30Lo introduces such de�nition for a wide class of preferences, including the Lexicographic Expected
Utility model.
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(P2) any Borel superset of E is in�nitely more likely than F .

We will refer to (P2) as the monotonicity property of ���.
The next step is to characterize the likelihood order ��� between pairwise disjoint

events in terms of LPS�s representing %�. To this end, we need additional notation.
Given an LPS � = (�1; :::; �n) 2 N (
) and non-empty event E � 
, let

IE = inf
�
l 2 f1; :::; ng

���l (E) > 0	 .
Proposition A.2 Fix � = (�1; :::; �n) 2 N (
) and disjoint events E;F � 
 with E 6= ;.

1. E is more likely than F if and only if�
�l (E)

�n
l=1
�L
�
�l (F )

�n
l=1
.

2. E �� F if and only if IE < IF .

Proof : Part 1: Let x; y 2 [0; 1] with x > y. The statement follows from the following
chain of logically equivalent relations.

(�!x E;�!y 
�E) % �(�!x F ;�!y 
�F )

()
�Z

E

xd�l +

Z

�E

yd�l
�n
l=1

�L
�Z

F

xd�l +

Z

�F

yd�l
�n
l=1

()
�
x�l (E) + y�l (
�E)

�n
l=1
�L
�
x�l (F ) + y�l (
�F )

�n
l=1

()
�
x�l (E) + y � y�l (E)

�n
l=1
�L
�
x�l (F ) + y � y�l (F )

�n
l=1

()
�
(x� y)�l (E)

�n
l=1
�L
�
(x� y)�l (F )

�n
l=1

()
�
�l (E)

�n
l=1
�L
�
�l (F )

�n
l=1
.

Part 2: The statement is clearly true if F is Savage-null under %�, so that, by Proposition
A.1, IF = inf ; = +1. So, in what follows, let F be non-null under %�.
(Necessity) Arguing contrapositively, suppose that IE � IF . We consider two cases:
(a) IE > IF . Let x = z = 1 and y = 0. We clearly have (

�!
1 F ;

�!
0 
nF ) �� (

�!
1 E;

�!
0 
nE),

so E �� F fails.
(b) IE = IF . In this case, observe that �IF (E) ; �IF (F ) 2 (0; 1). Let x = �IF (F ),

z = 1 and y = 0. For all l < IF , it holds thatZ
(�!x E;

�!
0 
nE)d�

l =

Z
(
�!
1 F ;

�!
0 
nF )d�

l = 0,

while Z
(
�!
1 F ;

�!
0 
nF )d�

IF = �IF (F ) > �IF (F ) � �IF (E) =
Z
(�!x E;

�!
0 
nE)d�

IF ,

where the strict inequality follows from the observation above. Again, this shows that
E ��� F fails.
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(Su¢ ciency) Let IE < IF , and pick any x; y; z 2 [0; 1] with x > y. For all l < IE, it
holds that Z

(�!x E;�!y 
nE)d�l =
Z
(�!z F ;�!y 
nF )d�l = y.

Next note that, since (x� y)�IE (E) > 0, then

x�IE (E) + y�IE (
nE) > y�IE (
nF ) = y,

that is, Z
(�!x E;�!y 
nE)d�IE >

Z
(�!z F ;�!y 
nF )d�IE .

This shows that (�!x E;�!y 
�E) �� (�!z F ;�!y 
�F ), as required. �

We now introduce a new notion of belief, which we call Weak Belief, and we state
and prove a characterization result in terms of LPS�s for such notion.

De�nition A.3 Fix a non-empty event E � 
. Say that E is weakly believed under
%� if E ��� 
�E.

Theorem A.1 Fix � = (�1; :::; �n) 2 N (
) and a non-empty event E � 
. Thus E is
weakly believed under %� if and only if �1 (E) = 1.

Proof : We have �1 (E) = 1 if and only if IE = 1 and I
�E > 1. Thus the result follows
immediately from Proposition A.2. �

Next the notion of Assumption in terms of the likelihood order ���.

De�nition A.4 Fix � = (�1; :::; �n) 2 N (
). A non-empty event E � 
 is assumed
under %� if it satis�es the following condition:
(*) for every relevant part Es�i of E, Es�i ��� 
 n E.

That is, the event E is assumed under %� if every relevant part of E is deemed
in�nitely more likely than 
 n E. Since E can be written as a �nite, disjoint union of
all its relevant parts, it follows from the the monotonicity of ��� (Property P2) that E
is weakly believed, i.e., E ��� 
 n E. However, the opposite is not true. Indeed, the
notion of Assumption is stronger that the notion of Weak Belief, as it captures cautious
behavior. Note indeed the following

Remark A.1 Fix � = (�1; :::; �n) 2 N (
). The preference relation %� exhibits cautious-
ness if and only if 
 is assumed under %� :

We now state and prove a characterization result for the notion of Assumption. For
the reader�s convenience, we restate the LPS-based de�nition of Assumption given in the
main text, but in terms of relevant parts.

De�nition A.5 Fix � = (�1; :::; �n) 2 N (
). A non-empty event E � 
 is assumed
under � at level m � n if satis�es the following conditions:

(i) �l (E) = 1 for all l � m;
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(ii) for every relevant part Es�i of E, �
k
�
Es�i

�
> 0 for some k � m.

We say that E � 
 is assumed under � if it is assumed under � at some level
m � n.

Theorem A.2 Fix � = (�1; :::; �n) 2 N (
) and a non-empty event E � 
. Thus E is
assumed under %� if and only if E is assumed under �.

Proof : The proof is immediate if 
 n E is Savage-null under %�, so, in what follows, let

 n E be non-null under %�.
(Necessity) Let m = I
nE � 1. Then, for every k � m, �k(
 n E) = 0, hence

�k(E) = 1. Thus, m satis�es condition (i) of De�nition A.5. Since every relevant part
Es�i of E satis�es Es�i ��� 
 n E, then Proposition A.2 yields IEs�i < I
nE. Thus,
condition (ii) of De�nition A.5 is satis�ed.
(Su¢ ciency) If E is assumed under � at level m, then condition (i) of De�nition A.5

implies m+1 = I
nE. By this, condition (ii) yields that each Es�i satis�es IEs�i < I
nE,
hence, by Proposition A.2, Es�i � 
 n E. �

We conclude this section with a brief comparison between the notion of "in�nitely more
likely than" in De�nition A.2 and the one of Blume et al. [9]. (A more detailed analysis
is provided in the Supplemental Appendix C.) Speci�cally, Blume et al. [9] examine a
partial order ��

S on events of 
 which is stronger than ���.

De�nition A.6 Fix disjoint events E;F � 
 with E 6= ;. Thus E ��
S F if

1 E is non-null under %�, and

2 for all f; g 2 ACT (
), f ��E g implies f �
�
E[F g.

Condition 2 in De�nition A.6 states that, when comparing any two acts f and g
that give the same consequences in states not belonging to E [ F , if f ��E g, then the
consequences in F "do not matter" for the strict preference f �� g.31 In particular, if
F = 
 n E, then Condition 2 corresponds to "Strict Determination", which is stated as
axiom in BFK.
It is easy to check that if E ��

S F then E ��� F . The reverse implication is true
provided both E and F are singleton sets� cf. Lemma C.3 in the Supplemental Appendix.
The key di¤erence is represented by the following property (for a proof, see Proposition
C.1.(ii) in the Supplemental Appendix):

Proposition A.3 Fix � = (�1; :::; �n) 2 N (
) and non-empty, pairwise disjoint events
E;F � 
, with E non-null under %�. The following property holds:
31The de�nition of the partial order ��

S is taken from [2, p. 65]. De�nition 5.1 in Blume et al. [9, pp.
70-71] states that E ��

S F if condition 2 in De�nition A.6 is replaced by the following condition:

f �E g implies
�
f
nF ; hF

�
�E[F

�
g
nF ; h

0
F

�
for all h; h0 2 ACT(
). (Condition 1 is automatically satis�ed in [9, De�nition 5.1], since the Authors
consider a �nite state space without Savave-null events.) It is easy to check the equivalence between the
two de�nitions.
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(**) Let E1 � 
 be a non-empty event such that E1 � E and E1 is non-null under
%�. Thus, if E ��

S F , then E1 �
�
S F .

In words, Proposition A.3 states that ��
S requires that each non-null Borel subset

E1 � E be in�nitely more likely than F . The cost is a non-monotonicity property of the
order ��

S. That is, if E;F;G � 
 are non-empty, pairwise disjoint events with E �
�
S F ,

it may not be the case that E [G��
S F . Yet, it can be easily shown that E [G�

�
S F

provided G is Savage-null under %�. In other words, the union of E with a non-null event
can reduce the likelihood ranking of an event, while the union with a Savage-null event,
paradoxically, cannot.
Moreover, consider the following example, which is a variant of an example in [9, p.

70].

Example A.1 Let 
 = S�i � T�i be such that S�i =
�
s1�i; s

2
�i; s

3
�i
	
and T�i =

�
t��i
	
.

Consider the LPS � = (�1; �2) 2 N (
) with �1
���

s1�i; t
�
�i
�	�

= �1
���

s2�i; t
�
�i
�	�

= 1
2

and �2
���

s1�i; t
�
�i
�	�

= �2
���

s3�i; t
�
�i
�	�

= 1
2
. Consider the event E =

�
s1�i; s

2
�i
	
� T�i

and take binary acts

f =
��!
1 f(s1�i;t��i)g;

�!
0 fs2�i;s3�ig�T�i

�
,

g =

 
�!
1 f(s3�i;t��i)g;

���!�
1

2

�
fs1�i;s2�ig�T�i

!
.

Note that E ��
S 
�E fails, because f ��E g while g �� f . However, E = Es1�i [ Es2�i,

with Es1�i �
�
S 
�E and Es2�i �

�
S 
�E.

Example A.1 shows that even if all the (relevant) parts of an event E are in�nitely more
likely than not-E (in the sense of Blume et al. [9]), then E need not be in�nitely more
likely than its complement. This problem was one of the motivations for the introduction
of LCPS�s (see Blume et al. [9, pp. 70-71]).
The likelihood order��

S between disjoint events can be given the following LPS-based
characterization (for a proof, see Proposition C.2 in the Supplemental Appendix):

Proposition A.4 Fix � = (�1; :::; �n) 2 N (
) and disjoint events E;F � 
 with E 6= ;.
Thus E ��

S F if and only if the following conditions hold:

(1.1) IE < IF ;

(1.2) for all l � IF , there exists
�
�l1; :::; �

l
IF�1

�
2 RIF�1 such that, for each Borel G � E,

�l (G) =

IF�1X
j=1

�lj�
j (G) .

Note: for the speci�c case in which F = 
�E and is non-null under %�, Conditions
(1.1) and (1.2) are equivalent to Conditions (i) and (iii) of BFK-Assumption (De�nition
12) with m = I
�E � 1.
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Proposition A.4 clari�es the sense in which E ��
S 
�E is not su¢ cient to characterize

the notion of BFK-Assumption. As shown by Proposition A.3, E ��
S 
�E implies that

only the non-null Borel subsets of E are "in�nitely more likely than" 
�E.32 In case of
a full-support LPS � on a �nite space 
, an event E is BFK-assumed under %� if and
only if E ��

S 
�E.33 However, as far as an in�nite space 
 is concerned, it is important
to specify a class of Borel subsets of E which must be non-null in order to capture IA
(cf. BFK�s Supplemental Appendix). BFK impose the requirement that every relatively
open subset of E be non-null. (See their "Nontriviality" axiom.) In Section C of the
Supplemental Appendix, we show that the requirement of the relevant parts as non-null
Borel subsets gives an LPS-based version of BFK-Assumption which satis�es Condition
(ii) of our notion of Assumption (De�nition 11) in place of Condition (ii) of De�nition 12.

Appendix B: Omitted proofs

It will be useful to single out an alternative characterization of Assumption:

Lemma B.1 Fix an LPS � = (�1; :::; �n) 2 N (
) and a non-empty event E � 
. Thus
E is assumed under � if and only if there exists m � n such that � satis�es Condition
(i) of De�nition 11 plus the following condition:
(ii)�E �

�
[l�mSuppmargS�i�l

�
� T�i.

Proof : Suppose E is assumed under � at level m. We show that � satis�es Condition
(ii)�. Consider the clopen cylinder

O =
�
S�i�

�
[l�mSuppmargS�i�

l
��
� T�i.

We claim that O \E = ;, so that condition (ii)�holds. To see this, suppose instead that
O \ E 6= ;. Thus, by Condition (ii) of De�nition 11, there exists U = fs�ig � T�i � O
such that U \ E 6= ; and �k (U \ E) > 0 for some k � m. As such, �k (O \ E) > 0 for
some k � m. This implies that margS�i�

k
�
S�i�

�
[l�mSuppmargS�i�l

��
= �k (O) > 0

for some k � m, and so

O \
��
[l�mSuppmargS�i�

l
�
� T�i

�
6= ;,

a contradiction.
Conversely, suppose that Conditions (i) and (ii)� hold. It is immediate to show

that Condition (ii) of De�nition 11 holds. Indeed, by Condition (ii)�, for each s�i 2
[l�mSuppmargS�i�l the corresponding cylinder set U = fs�ig� T�i satis�es the required
properties. �

For later use, we also �nd it convenient to state the following

32It noteworthy that this result is insensitive to the cardinality of the space of uncertainty 
, as it is
stated only in purely decision-theoretic terms.
33This is so because the full-support condition on � guarantees that all non-empty subsets of 
 (a

�nite, discrete space) are non-null.
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Lemma B.2 Let ti 2 Ti assume the event E � S�i � T�i at level m, where �i (ti) =
(�1i ; :::; �

n
i ). Thus

[l�mSuppmargS�i�
l
i = ProjS�i (E) .

Proof : The set containment "�" follows from condition (ii)�of Lemma B.1. Indeed

ProjS�i (E) � ProjS�i
��
[l�mSuppmargS�i�

l
i

�
� T�i

�
= [l�mSuppmargS�i�

l
i.

Conversely, �x s�i =2ProjS�i (E). Thus (fs�ig � T�i) \ E = ;. By Condition (i) of
De�nition 11, �li (E) = 1 for each l � m, so �li (fs�ig � T�i) =margS�i�

l
i (fs�ig) = 0.

This implies s�i =2 SuppmargS�i�li. �

Remark B.1 The result in Lemma B.2 can be equivalently stated as

ProjS�i
�
[l�mSupp�li

�
= ProjS�i (E) .

Proof of Lemma 2: (Part 1) Let �i = (�1i ; :::; �
n
i ) and suppose that E and F are

assumed under �i at level m. Using Lemma B.2, we get that ProjS�i (E) =ProjS�i (F ).
If instead F is assumed or under �i at level p > m, then ProjS�i (E) �ProjS�i (F ) since
[l�mSuppmargS�i�li � [l�pSuppmargS�i�li.
(Part 2) Let �i = (�

1
i ; :::; �

n
i ) and suppose that, for each k, Ek is assumed under �i at

some levelmk. LetmK = min fmk jk = 1; 2; :::g. Also, let EK be the set which is assumed
under �i at level mK . We show that \kEk is assumed under �i at level mK . First note
that, for each k, �li (Ek) = 1 for all l � mK . By the �-additivity property of probability
measures, it follows that �li (\kEk) = 1 for all l � mK . Finally, it follows from Lemma
B.1 that

\kEk � EK �
�
[l�mK

SuppmargS�i�
l
i

�
� T�i.

Using again Lemma B.1, condition (ii) of De�nition 11 is established. The proof for [kEk
is similar. �

Proof of Lemma 3: Let (si; ti) 2 Ai (E�i), and set 'i (ti) = t�i . We show that event
E��i is assumed under �

�
i (t

�
i ), that is, conditions (i) and (ii) of De�nition 11 are satis�ed.

Since event E�i is assumed under �i (ti) =
�
�1i (ti) ; :::; �

n
i (ti)

�
, then there existsm � n

such that �li (ti) (E�i) = 1 for all l � m. Next note that

E�i �
�
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

�
�
�
IdS�i ; '�i

��1 �
E��i
�
,

where the �rst set containment is obvious, while the second one follows from condition
1). Hence, by de�nition of type morphism, it follows that, for all l � n,

�li (ti) (E�i) � �li (ti)
��
IdS�i ; '�i

��1 �
E��i
��

= ��;li ('i (ti))
�
E��i
�

= ��;li (t
�
i )
�
E��i
�
,
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which implies ��;li (t
�
i )
�
E��i
�
= 1 for all l � m, so that condition (i) of De�nition 11 is

satis�ed.
To show that Condition (ii) of De�nition 11 is also satis�ed, we proceed as follows.

Consider an elementary cylinder C = fs�ig � T ��i satisfying E
�
�i \ C 6= ;. It turns out

that�
IdS�i ; '�i

��1 �
C \ E��i

�
=

��
IdS�i ; '�i

��1
(C)
�
\
��
IdS�i ; '�i

��1 �
E��i
��

=
�
fs�ig � '�1�i

�
T ��i
��
\
��
IdS�i ; '�i

��1 �
E��i
��

= (fs�ig � T�i) \
��
IdS�i ; '�i

��1 �
E��i
��

� (fs�ig � T�i) \
��
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

��
� (fs�ig � T�i) \ E�i,

where the fourth line follows from condition 1) of the Lemma. Since (fs�ig � T�i)\E�i 6=
; (by condition 2) of the Lemma) and E�i is assumed under �i (ti) at level m � n, then
there exists l � m such that �li (ti) ((fs�ig � T�i) \ E�i) > 0. But

�li (ti) ((fs�ig � T�i) \ E�i) � �li (ti)
��
IdS�i ; '�i

��1 �
C \ E��i

��
= ��;li (t

�
i )
�
C \ E��i

�
,

and since C is an arbitrary elementary cilynder, this shows that Condition (ii) of De�nition
11 is satis�ed, thus concluding the proof. �

Proof of Claim3: (Part 1) By induction on k 2 f1; :::;Mg.
(k = 1) Pick any si 2 S1i . Thus

��i ((si; 1))
�
R�;1�i

�
= �1si

�
R�;1�i

�
= 0,

because (i) Supp�1si �
�
S�i � T 0�i

�
by de�nition, and (ii) R�;1�i \

�
S�i � T 0�i

�
= ;, since

each type in T 0�i is not cautious.
(k + 1) Suppose that the statements has been shown to hold for k � M � 1, i.e., for

each i 2 I and si 2 Ski ,
��i ((si; k))

�
R�;k�i

�
= 0.

This implies that, for each i 2 I,

R�;k+1�i \
�
S�i � T k�i

�
= ;. (6.1)

Pick arbitrary i 2 I and si 2 Sk+1i . We need to show that every measure in the LPS
��i ((si; k + 1)) =

�
�k+1si

; ��i ((si; k))
�
assigns probability 0 to the event R�;k+1�i . To this

end, �rst note that si 2 Ski , and since R
�;k+1
�i � R�;k�i , then, by the induction hypothesis,

��i ((si; k))
�
R�;k+1�i

�
= 0. Furthermore, since Supp�k+1si

�
�
S�i � T k�i

�
, then (6.1) yields

�k+1si

�
R�;k+1�i

�
= 0. This shows that ��i ((si; k + 1))

�
R�;k+1�i

�
= 0, as required.

(Part 2) We prove by induction on k 2 f0; 1; :::;Mg that

si 2 Ski =) (si; (si; k)) 2 R�;ki �R
�;k+1
i .
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This will imply the thesis.
(k = 0) Let si 2 Si, i 2 I. It follows from the construction of T � that type (si; 0) is

not cautious, so (si; (si; 0)) =2 R�;1i .
(k + 1) Suppose that the statement has been shown to hold for k � M , i.e., for each

i 2 I,
si 2 Ski =) (si; (si; k)) 2 R�;ki �R

�;k+1
i .

Fix player i and si 2 Sk+1i . Note that type (si; k + 1) is cautious (Claim 1), and recall
that

margS�i�
�
i ((si; k + 1) = margS�i

��
�k+1si

; �ksi ; :::; �
1
si

��
=

�
�k+1si

; �ksi ; :::; �
1
si

�
.

So, for each s0i 2 Si it holds that�
�i(si; �

k+1
si
); �i(si; �

k
si
); :::; �i(si; �

1
si
)
�
�L
�
�i(s

0
i; �

k+1
si
); �i(s

0
i; �

k
si
); :::; �i(s

0
i; �

1
si
)
�
,

where the (lexicographic) inequality follows from the fact that si is a best reply to �lsi for all
l = 1; :::; k + 1. This shows that (si; (si; k + 1)) 2 R�;1i . We now show that (si; (si; k + 1))
satis�es two additional requirements, namely
(a) (si; (si; k + 1)) 2 \l�kAi

�
R�;l�i

�
, and

(b) (si; (si; k + 1)) =2 Ai

�
R�;k+1�i

�
.

By property (a), we will conclude that (si; (si; k + 1)) 2 R�;k+1i = R�;1i \
�
\l�kAi

�
R�;l�i

��
;

by property (b), we will conclude that (si; (si; k + 1)) =2 R�;k+2i = R�;k+1i \ Ai

�
R�;k+1�i

�
.

This will show (si; (si; k + 1)) 2 R�;k+1i �R�;k+2i , as desired.
For property (a): Recall that ��i ((si; k + 1) =

�
�k+1si

; ��i ((si; k)
�
. Hence, using the

same argument as in the proof of part (i) of Theorem 2, we get that ProjS�i

�
R�;l�i

�
� Sl�i

for each l = 1; :::; k. By the induction hypothesis and �k+1si
(�Sk�i�Tk�i) = 1, it follows

that �k+1si
(R�;k�i ) = 1 and SuppmargS�i�

k+1
si

= Sk�i. So (si; k + 1) assumes R
�;k
�i . Since

�k+1si
(R�;l�i) = 1 for each l = 1; :::; k � 1, then, by the induction hypothesis, (si; k) assumes

R�;l�i at some level m
0. Thus, with m = m0 + 1, Condition (i) of Assumption (De�nition

11) and Condition (ii)�of Lemma B.1 are satis�ed. Therefore (si; k + 1) also assumes R
�;l
�i

(l � k).
For property (b): By the induction hypothesis, it follows that �Sk�i�Tk�i \ R

�;k+1
�i = ;.

Since �k+1si
(�Sk�i�Tk�i) = 1, then (si; k + 1) does not assume R

�;k+1
�i .

(Part 3) We show by induction on k 2 f0; 1; :::;M + 1g that �SMi �T
M+1
i

� R�;ki for
each i 2 I. For k = 0 the statement is immediate. We use a separate argument for
k � 1. The same argument as in the proof of Part 2 can be applied for k = 1. For
k 2 f2; :::;M + 1g, suppose that �SMi �T

M+1
i

� R�;k�1i holds true for each i 2 I. We need
to show that, for each i 2 I, �SMi �T

M+1
i

� R�;ki . Since R
�;k
i = R�;k�1i \Ai

�
R�;k�1�i

�
, then

by the induction hypothesis it is enough to prove that �SMi �T
M+1
i

� Ai

�
R�;k�1�i

�
. To do

this, �x i 2 I and si 2 SMi . Recall that �
�
i ((si;M + 1)) = (�M+1

si
; ��i ((si;M)). Since
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�M+1
si

(�SM�i�T
M+1
�i

) = 1, by the induction hypothesis it follows that �M+1
si

(R�;k�1�i ) = 1. The
conclusion follows from arguments analogous to those in the proof of Part 2.
(Part 4) Let (s0i; ti) 2 R�;M+1

i . First note that ti 2 TM+1
i , because (Si � T ki ) \

Ai

�
R�;M�i

�
= ; (this follows from Part 1, according to which ��i ((si; k))

�
R�;k�i

�
= 0

for all k 2 f1; :::;Mg and all si 2 Ski ). So, by construction of the belief maps in T �,
��i (ti) = (�

M+1
si

; �Msi ; :::; �
1
si
) for some si 2 SM+1

i . We now claim that R�;M+1
�i is assumed

under ��i (ti). To this end, recall that Supp�
M+1
si

= �SM�i�T
M+1
�i

, so, by Part 3, it follows

that �M+1
si

(R�;M+1
�i ) = 1. Since SuppmargS�i�

M+1
si

= SM+1
�i , this in turn implies the claim.

Therefore (s0i; ti) 2 Ai

�
R�;M+1
�i

�
, and so (s0i; ti) 2 R�;M+2

i . Certainly R�;M+2
i � R�;M+1

i ;

with this, we can conclude that R�;M+2
i = R�;M+1

i . We can apply the same reasoning

for every l > 1 and (s0i; ti) 2 R�;M+l
i to conclude that (s0i; ti) 2 Ai

�
R�;M+l
�i

�
; this yields

R�;M+l+1
i = R�;M+l

i = R�;M+1
i , as required. �
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