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Abstract

We analyze how reputation concerns of a partially informed decision-maker af-

fect her ability to extract information from reputation-concerned advisors. Con-

trary to most of the literature, we show that the decision-maker�s concerns for her

reputation as an expert can improve information aggregation. When the decision-

maker�s reputation concerns are very low, she is tempted to ask for advice regard-

less of her private information, which undermines advisors�truth-telling incentives.

Very high reputation concerns destroy the incentives to seek advice. The optimal

strength of the decision-maker�s reputation concerns maximizes advice-asking with-

out undermining advisors�incentives. Prior uncertainty about the state of nature

calls for a more reputation-concerned decision-maker, unless the uncertainty be-

comes too high, in which case the reputation concerns become (almost) irrelevant.

Finally, higher prior competence of advisors may worsen the quality of decisions

when the decision-maker�s reputation concerns are not su¢ ciently strong.

JEL classi�cation: D82, D83

Keywords: reputation concerns, information aggregation, advice

1 Introduction

It is well documented that people can be reluctant to ask for advice or help from other

people, even when such advice/help can improve the quality of their decisions (e.g.,
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Lee (2002), Brooks et al. (2015)). One frequently cited reason for such behavior in

the management and psychology literature is the fear to appear incompetent, inferior,

or dependent (e.g., DePaulo and Fisher (1980), Lee (1997), Lee (2002), Brooks et al.

(2015)). In the economic theory literature, Levy (2004) provides a model in which a

decision maker excessively ignores/neglects the opportunity to ask advice in order to be

perceived competent.

Overall, the existing studies suggest that reputation concerns of a decision maker may

be detrimental to her ability to collect information from potential advisors, such as her

colleagues or subordinates. We show that the opposite can actually be true: even if

asking for advice damages the decision maker�s reputation in equilibrium, her reputation

concerns may actually help her to aggregate information possessed by other agents. The

key feature of our story, which distinguishes it from the previous literature, is that the

decision maker�s advice-seeking behavior a¤ects advisors�incentives to provide truthful

information. We argue that without reputation concerns the decision maker may ask

for advice excessively, that is, so often that it adversely a¤ects the advisors�incentives

to provide truthful information. The positive role for reputation concerns then is to

ensure that the decision maker asks for advice more often when it is needed more, that

is, when her available information leaves high uncertainty about the state of the world.

This advice-asking behavior improves the advisors�information provision incentives and,

therefore, results in better aggregation of information.

We consider a model in which a decision maker needs to take a decision/action from

a binary set. Which action is optimal depends on the unknown state of nature, which is

also binary. Prior to taking an action, the decision maker receives an informative binary

signal about the state. In addition, she can solicit advice from other agents (�advisors�),

each of whom has also received an informative binary signal. Our setup �ts a variety of

real-life settings. For example, the decision maker can be a CEO or a prime-minister,

and the advisors can be her colleagues, subordinates, designated advisors or any kind of

experts in the domain of the decision maker�s responsibilities. The crucial feature of the

model is that both the decision maker and the advisors have reputation concerns �they

want to appear competent, i.e., able to receive precise signals. The decision maker can

be one of two types: good and bad, the di¤erence being that the good type receives more

informative signals. Similarly, each of the advisors can also be one of two types: high and

low. Neither the decision maker nor any of the advisors knows his or her own type, but

the prior probabilities of good and high types are common knowledge. All advisors are

ex-ante identical. Whereas the decision maker cares both about taking the right action

and appearing competent (i.e., being of a good type), the advisors only have reputation

concerns (for simplicity).
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In this setup, similarly to Ottaviani and Sørensen (2001), an advisor�s reporting in-

centives can be described as simply �guessing the state�, given all available information.

Thus, an advisor will report his signal truthfully if and only if his posterior beliefs about

the state before accounting for his own signal (i.e., based only on the prior and decision

maker�s decision to ask for advice1) are su¢ ciently close to 1=2, so that di¤erent signals

result in di¤erent states appearing more likely for the advisor. Otherwise, no informative

advice happens (�babbling�or �herding�by the advisors).

Now, if the decision maker cares only about the quality of decisions, she will care

only about receiving advice, and, thus, will always want to ask for it. This means that,

in equilibrium, no information can be inferred by advisors from the decision maker�s

behavior. This has a bene�cial e¤ect when the prior belief about the state is close to

1=2: truthful reporting is ensured. However, if the prior is su¢ ciently far from 1=2, the

advisors will herd on the prior, and no informative advice will be provided. This is what

we call the situation of �excessive advice-seeking�: the decision maker�s �unrestrained�

advice-seeking behavior destroys provision of advice.

Now suppose the decision maker could commit to ask for advice only when she receives

a signal contradicting the prior. When �unrestrained�advice-seeking leads to herding by

the advisors, such commitment could improve the situation, provided that the combina-

tion of the prior and the decision maker�s signal contradicting the prior results in a belief

su¢ ciently close to 1=2 so that truthful reporting by advisors occurs. As a result, the

decision maker would manage to receive decision-relevant information precisely when it

is most needed (when her signal con�rms the prior, extra information is of much lower

value for her).

We show that decision maker�s reputation concerns (unless they are too extreme) can

help implement such commitment as a separating equilibrium. The key intuition can be

explained through a kind of �single-crossing�argument. The decision maker who received

the signal con�rming the prior has a strong reputational motive to convey this news to the

advisors. At the same time, her need for extra information is low, because she is already

quite con�dent about the state. In contrast, the decision maker who received the signal

contradicting the prior has either a weaker reputational incentive to lie (when the signal is

weaker than the prior) or a reputational incentive to actually reveal her true signal (when

the signal is stronger than the prior). At the same time, such decision maker cares a lot

about information aggregation, because the signal contradicting the prior makes her more

uncertain about the state, compared to the signal con�rming the prior. Thus, whenever

the weight on reputation in the decision maker�s utility is big enough, the separation of

1We assume that all advisors speak simultaneously. Sequential advice would not alter our results
qualitatively.
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the signal-types of the decision maker becomes possible in equilibrium.

In other words, in this equilibrium, the decision maker�s reputation concerns make

the decision maker ask for advice only when she is very uncertain about the state of

the world, and, realizing this decision maker�s behavior, the advisors have incentives to

report their information truthfully when asked.

We further show that, for a range of weights on reputation, there exists an equilibrium

with even more information aggregation. In this equilibrium, the decision maker always

asks for advice when her signal contradicts the prior and mixes between asking and not

asking when her signal con�rms the prior, and the advisors report truthfully when asked.2

We call this equilibrium partially separating. The optimal weight on reputation then is

the one that results in the partially separating equilibrium maximizing the frequency of

advice-asking without destroying the advisors�truthtelling incentives.

A further rise in the reputation concerns damages information aggregation, as it be-

comes too tempting for the decision maker who got the signal con�rming the prior to

reveal her type by refusing to ask for advice. As a result, the partially separating equi-

librium becomes unsustainable. In fact, when the weight on reputation is very high, even

the purely separating equilibrium may disappear, because even the decision maker with

the signal contradicting the prior may �nd it pro�table to pretend having received the

other signal and refuse to ask for advice.

We further study the interaction between the prior uncertainty about the state of

the world and reputation concerns. We show that greater uncertainty leads to a higher

optimal weight on reputation. The intuition is that higher prior uncertainty increases the

decision maker�s incentives to ask for advice even when decision maker�s signal con�rms

the prior. A higher weight on reputation is then needed to restrain this temptation.

However, when the prior uncertainty becomes so high that truthtelling by the advisors

arises even when the decision maker always asks for advice, restraining advice-asking is

not needed anymore, and any weight on reputation from 0 up to a certain value becomes

optimal.

The implication of this result is that at times of low uncertainty, i.e., when the organi-

zation is performing well and seems to be on the right track, it needs a leader concerned

with her reputation, but not too strongly. When the uncertainty about the right strat-

egy is large but not extremely large, the best leader is the one with su¢ ciently strong

reputation concerns. Finally, in the situations of a very high uncertainty (i.e., when the

organization faces important and non-obvious strategic choices), the reputation concerns

of the leader are actually irrelevant (unless they are too extreme) for two reasons: (1) the

2This equilibrium co-exists with the purely separating equilibrium for a range of parameters. However,
we argue that the partially separating equilibrium is more plausible than the purely separating one
because it is preferred ex-ante by the decision maker.
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advice-seeking incentives are so strong that reputation concerns cannot undermine them,

(2) the advisors are willing to tell the truth if their beliefs stay at the prior.

Another interesting result of our model is that an increase in the prior competence

of advisors may undermine information aggregation and, hence, worsen the quality of

decisions. This e¤ect is due to a greater temptation of the decision maker to ask for

advice even when her signal con�rms the prior, which may destroy advisors�truthtelling.

It is more likely to arise when the prior is strong and the reputation concerns are rather

weak.

There are a number of papers arguing that reputation concerns can be detrimental

for e¢ ciency, because they distort behavior of agents (e.g., Scharfstein and Stein (1990),

Trueman (1994), Prendergast and Stole (1996), E¢ nger and Polborn (2001), Morris

(2001), Levy (2004), Prat (2005), Ottaviani and Sørensen (2001, 2006a, 2006b), Ely and

Välimäki (2003)).3 In these papers, like in our work, reputation concerns are �career

concerns for expertise�which arise due to the future gains from being perceived smart

(except for Morris (2001) and Ely and Valimaki (2003), in which the agent have concerns

for being perceived as having certain preferences).

Of these papers, Levy (2004) and Ottaviani and Sørensen (2001, 2006a, 2006b) most

closely relate to our work. Ottaviani and Sørensen consider aggregation of information

from agents possessing private signals about the state of nature. Due to their reputation

concerns, agents have incentives to misreport their signals, which may result in herd

behavior in reporting and, ultimately, in the failure to aggregate information.

Levy (2004) presents a model in which a decision maker who knows her type needs to

take a decision. Like in our setup, the decision maker cares both about the outcome of

her action and the public perception of his ability. Levy shows that the decision maker

excessively contradicts prior public information or may abstain from asking for valuable

advice in order to raise her perceived competence.

Our model shares certain features of Levy (2004) and Ottaviani and Sørensen (2001,

2006a, 2006b): we have a reputation-concerned decision maker who decides whether to

ask for advice or not (Levy, 2004), and reputation-concerned advisors who are tempted

to herd on the public belief in their reporting behavior (the papers by Ottaviani and

Sørensen). Yet, the crucial distinction of our model from these papers is strategic inter-

action between reputation-concerned agents. In our model, the strategy of the DM (to

ask for advice or not depending on her signal) impacts on the advisors�behavior. Ab-

3A few papers provide a positive view of reputation concerns. Suurmond et al. (2004) present a model
in which reputation concerns help to implement better decisions through their e¤ect on information
acquisition by the agent. Klein and Mylovanov (2014) show that reputation concerns may provide
incentives for truthful reporting in a model of long-term dynamic interaction between the agent and the
principal. Also, in Morris (2001), reputation concerns of an advisor may actually make the reporting
behavior of a misaligned advisor less biased.
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sent such in�uence, the decision maker�s reputation concerns could only harm. Indeed,

assume, that the advisors would report their signals truthfully with the same (positive)

probability whenever asked, regardless of the decision maker�s strategy. Then the ab-

stention from advice-asking after receiving the signal con�rming the prior would be of no

help in inducing truthful reporting. Then, like in Levy (2004), the decision maker would

excessively avoid advice-seeking in order to signal her smartness, and zero reputation

concerns would thus be optimal.

Finally, we would like to note that our main results would arguably hold in an al-

ternative setup in which advisors�reputation concerns are replaced with concerns about

right decisions but acquisition and/or transmission of information is costly. Such a setup

generates the same problem of �excessive asking� by the decision maker with a signal

con�rming the prior, for if the advisors believe that they face such a decision maker, they

will lose incentives to acquire/transmit information. We elaborate on this more in the

Conclusion section.

The rest of the paper is organized as follows. In Section 2 we set up the model. Section

3 analyzes the equilibria of the model. In Section 4 we examine the e¤ects of the prior

uncertainty about the state and their prior competence. Section 5 provides a numerical

example. Section 6 concludes the paper.

2 The model

2.1 Players and information

There is a state of the world ! 2 f0; 1g. A decision maker has to take a decision d 2 f0; 1g.
The instrumental utility for the decision maker from the decision is 1 if the decision

matches the state of the world and 0 otherwise. The decision maker receives a private

signal � 2 f0; 1g about the state. Before taking her decision, she can, at no cost, consult
N advisors, each of whom has also received a private signal si 2 f0; 1g ; i 2 f1; :::; Ng.
Conditional on the state, all signals are independent.

The decision maker can be of two types, � 2 fG;Bg, which in�uence the precision of
her signal. Speci�cally,

g := Pr(� = !j� = G) > b := Pr(� = !j� = B) � 1=2.

That is, the Good type of the decision maker receives a more informative signal than

the Bad type.

Analogously, each advisor i = 1; :::; N can be of type ti 2 fH;Lg, with the High type
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receiving a more informative signal than the Low type.

h := Pr(si = !jti = H) > l := Pr(si = !jti = L) � 1=2.

The types of all agents are independent of each other and of the state of the world. No

agent knows his/her own type and types of others. There are common priors about the

state of the world, the type of the decision maker, and the type of each advisor, namely:

p := Pr(! = 0); q := Pr(� = G); r := Pr(ti = H);8i = 1; :::; N:

Without loss of generality, we assume that p � 1=2.
We will call the decision maker "signal-type 0" when she has received signal � = 0 and

"signal-type 1" otherwise (not to confuse the private information of the decision maker

with her unknown type �.)

2.2 Sequence of the events and payo¤s

The sequence of the events is as follows:

1. The nature draws the state ! and the competences of all players.

2. All players receive their private signals.

3. The decision maker decides whether to ask for advice or not. This is a binary

choice m 2 fm0;m1g, where m0 and m1 denote �not asking�and �asking�respectively.

It is impossible to ask a subgroup of advisors: either all advisors are invited to provide

advice or none. If the decision maker does not ask, the game proceeds to stage 5. If she

asks, the game proceeds to the next stage.4

4. If asked, the advisors provide their advice publicly to the decision maker. Specif-

ically, all advisors simultaneously5 and publicly send binary cheap-talk messages ai 2
f0; 1g ; i 2 f1; :::; Ng.
5. The decision maker takes a decision d 2 f0; 1g :
6. The state is revealed and the players receive their payo¤s.

The decision maker cares about matching her action with the state (instrumental

objective). However, she would also like to appear informed (reputation concerns). We

model the decision maker�s reputational payo¤ as the posterior belief of an �external

4In principle, after asking the decision maker could also make a non-veri�able statement about her
signal. At the end of Section 3.3.1, we will argue that such an option would not a¤ect our results
qualitatively.
In some real cases, it may be impossible to shut down advice-giving by simply not asking. Then, m0

and m1 can be interpreted as two non-veri�able statements about the signal before receiving advice. At
the end of Section 3.3.1, we will argue that all our results would survive under this modi�cation.

5The model can be extended to sequential advice, the qualitative results would remain the same.
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observer�, who observes the realized state, the decision, the whole pro�le of the advisors�s

messages (if they were asked for advice), and the decision maker�s decision whether to

ask for advice or not: Pr(Gjm; a; d; !), where a = (ai)Ni=1 (to be omitted if the decision
maker did not ask for advice).6

The decision maker�s aggregate payo¤ is a convex combination of the instrumental

and reputational objectives with weight � 2 [0; 1] attached to reputation:

uD(m; a; d; !) = (1� �)I(d; !) + �Pr(Gjm; a; d; !); where

I(d; !) =

(
1 if d = !;

0, if d = 1� !.

For simplicity, we assume that advisors only have reputation concerns, i.e., an advi-

sor�s payo¤ is

ui(m; a; d; !) = Pr(Hjm; ai; !); 8i = 1; :::; N;

provided that the decision maker asked for advice.7

The values of reputation at di¤erent terminal nodes are computed in the Appendix.

Note that, in any equilibrium of the game, the ex-ante expected reputation of any

player is equal to the prior belief about her/him, i.e., does not depend on a particular

equilibrium. Thus, since the agents�payo¤s are linear in reputation, the ex-ante welfare

comparisons boil down to comparing the likelihoods of taking a correct decision.

2.3 Assumptions

We make the following equilibrium selection assumptions.

A1 An advisor always reports the state that he considers more likely. When he considers

both states equally likely, he reports his true signal.

A2 The decision maker always takes the decision that corresponds to the state that she

considers more likely. When she considers two states equally likely, she takes the

decision that corresponds to her signal.

6The modeling assumption that the observer learns the advisors� suggestions is not a simplifying
assumption, quite the contrary: it entails that the two signal-types of the decision maker can separate
also through the decision. If the observer would not learn the suggestions, his opinion about the signal-
type of the decision maker would be an average of the opinions he has under the di¤erent suggestions
that induce, at least for one of the two signal-types, the observed decision. All our results would go
through.

7If the decision maker did not ask for advice, an advisor�s payo¤ is simply the prior belief r, but this
will not play any role in the model.
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A3 After observing a sequence of events that has probability 0 in equilibrium, the

observer puts probability 1 on the signal-type that corresponds to the observed

decision.

We will show in Section 3.1 that there always exists an equilibrium of the decision

stage which is compatible with A2. Analogously, we will show in Section 3.2 that the

advisors have no incentive to deviate from the behavior prescribed by A1.

A3 implies that the observer strongly believes (Battigalli and Siniscalchi, 2002) in

A2. That is, if the unexpected decision corresponds to a state that only one of the two

signal-types, at that point of the game, considers more likely, the observer believes that

the decision has been taken by that signal type, even if the observed asking or not asking

move was supposed to be chosen only by the other signal-type. A3 may seem rather

restrictive, but we make it for simplicity. Weaker assumptions on o¤-the-path beliefs

would not alter our qualitative results, but the exposition would get more complicated8.

Finally, to avoid uninteresting cases, we introduce the following restrictions on the

parameters.

A4 Signal-type 1, after the truthful report of only 0�s, considers state 0 more likely,

and after the truthful report of only 1�s, considers state 1 more likely.

A5 Upon inferring that the decision maker has received signal 0, each advisor believes

that state 0 is more likely regardless of the own signal ; upon inferring that the

decision maker has received signal 1, an advisor who received signal 1 believes that

state 1 is more likely.

A4 allows to focus on the case where at least signal-type 1 can change her mind after

the advices. A5 eliminates the trivial cases in which the advisors�opinions about which

state is more likely are independent from what they infer about the decision maker�s

signal. The �rst part of A5 is true if

Pr(! = 0jsi = 1; � = 0) =
Pr(si = 1j! = 0)Pr(! = 0j� = 0)

num:+ Pr(si = 1j! = 1)Pr(! = 1j� = 0)
> 1=2,

Pr(si = 1j! = 0)Pr(! = 0j� = 0) > Pr(si = 1j! = 1)Pr(! = 1j� = 0),

Pr(! = 0j� = 0) (r(1� h) + (1� r)(1� l)) > (1� Pr(! = 0j� = 0)) (rh+ (1� r)l),

Pr(! = 0j� = 0) > rh+ (1� r)l

8For example we could instead assume that after observing an out-of-equilibrium history of events
ending with decision i, the observer puts probability 1 on signal-type i if the other signal-type considers
state j 6= i weakly more likely given the pre-decision history.
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that is, the average advisors�signal precision cannot overturn the initial bias of the prior

plus a signal 0 to the decision maker. Analogously, the second part of A5 is true if

Pr(! = 0j� = 1) < rh+ (1� r)l

The probabilities of the states conditional on the decision maker�s signal are computed

in the Appendix.

3 Equilibrium analysis

3.1 The decision stage

Proceeding by backward induction, we start the equilibrium analysis from the �nal de-

cision stage. As anticipated in Section 2.3, for any history of preceding events, A2 pins

down one equilibrium of the decision stage.

If the two signal-types consider di¤erent states more likely, the prescribed decisions

are clearly optimal in terms of expected instrumental utility, and in terms of expected

reputation each signal-type prefers to be recognized as such rather than as the other one.

If the two signal-types consider the same state more likely, pooling on the corresponding

decision is sustained by the o¤-the-path beliefs pinned down by A3: after the opposite

decision, each signal-type, beside a lower instrumental utility, expects also a lower repu-

tation, since she would be recognized as the signal-type that corresponds to the less likely

state.

Formally, the following lemma is true:

Lemma 1 Consider an arbitrary history of events  prior to the decision stage (that is,

 is either m0 or (m1; a)). Then, for any beliefs about the signal-types after history  ,

the behavior prescribed by A2 is a Bayesian equilibrium of the game that starts after  .9

Proof. See the Appendix.

Apart from the considered equilibrium, there may exist other equilibria at the decision

stage. However, assuming di¤erent equilibrium behavior at the decision stage would not

change our qualitative results.

9The decision stage is a one-player game, where the player can be of two-types. Still, the payo¤ of
one type depends on the action that the other type would choose because the game has belief-dependent
payo¤s. For an in-depth analysis of games with belief-dependent payo¤s, see Battigalli and Dufwenberg
(2009).
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3.2 The advising stage and its welfare consequences

Ex-ante, the advisors are indi¤erent among all kinds of behaviors: their expected repu-

tation always coincides with the prior. As anticipated in Section 2.3, Assumption A1, we

select the behavior under which the advisors always report the state that they consider

more likely10, and, when they consider the two states equally likely, report their signal.

Using the arguments from the proof of Lemma 1, one can easily see that this is equilib-

rium behavior: the problem of an advisor is analogous to the decision stage problem of

the decision maker who cares only about her reputation.

Thus, when the two signal-types of advisor consider di¤erent states more likely, we

will say that the advisors report truthfully. When the two signal-types consider the same

state more likely, we will say that the advisors herd11 (on the corresponding message).

Given A5, upon inferring that the decision maker has received signal 1, truthful re-

porting occurs if and only if an advisor who received signal 0 believes that state 0 is

more likely: Pr(! = 0jsi = 0; � = 1) > 1=2. Similarly to the derivations following the

statement of A5, one can easily show that this inequality is equivalent to

Pr(! = 1j� = 1) � rh+ (1� r)l: (TR1)

Note that this condition is always satis�ed if Pr(! = 1j� = 1) � 1=2. In general, calling
! the more likely state conditional on asking, an advisor with the opposite signal still

believes that the state corresponding to his signal is more likely if:

Pr(!jm1) � rh+ (1� r)l: (TR2)

Now, suppose that signal-type 1 always asks and signal-type 0 asks with the highest

probability such that (TR2) is satis�ed, so that the advisors report truthfully. If such

probability is 1, the �rst best is realized: all information is always aggregated by the

decision maker, who then takes the decision that corresponds to the state that emerges

as more likely. If such probability is less than 1, we say that the second best is realized:

the decision maker aggregates all information with the highest possible frequency under

the incentive compatibility constraint of the advisors to report truthfully.

It is easy to see that signal-type 1 must indeed ask with probability 1 in the second

10When the two signal-types consider di¤erent states more likely, there is also a partially informative
communication equilibrium, in which one of the signal-types randomizes between reporting his signal
and lying (Ottaviani and Sørensen, 2001). Our qualitative results would remain intact if we assumed
that the advisors play in this way.
11Equivalently, we could assume that they �babble� instead of herding. In either case, what matters

is that their communication is totally uninformative. In general, when both signal-types of an advisor
consider the same state more likely, equilibrium communication is necessarily uninformative (Ottaviani
and Sørensen, 2001, Lemma 1).
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best. If she did not, then e¢ ciency could be improved in either of the two following

ways without violating (TR2). If signal-type 0 was asking with probability below 1, then,

obviously, the probabilities of asking by both signal-types could be increased in such a

way that (TR2) remains satis�ed. If signal-type 0 was already always asking, then ! = 0,

and Pr(!jm1) can only be reduced by increasing the probability of asking by signal-type

1; thus, e¢ ciency will improve and (TR2) will remain satis�ed.

3.3 The choice between asking and not asking and overall equi-

librium behavior

Before presenting our main propositions we formulate two auxiliary lemmas. The �rst

one concerns the behavior of expected reputation for signal-type 0.

Lemma 2 The expected reputation of signal-type 0 conditional on m = m0;m1 (i.e.

conditional on not asking or asking) is:

i) for a �xed m = m0;m1, strictly increasing in � := Pr(mj� = 0)=Pr(mj� = 1) when
� � 1, and also when � > 1 if p > gq + b(1� q).

ii) higher for m = m0 than for m = m1 when Pr(m1j� = 1) = 1.

Proof. See the Appendix.

The following lemma establishes an important �single crossing�result.

Lemma 3 Consider a strategy of the decision maker such that:

1. given the asking/not asking behavior prescribed by this strategy, truthful reporting

occurs after asking, i.e., (TR2) holds;

2. signal-type 1 always asks;

3. signal-type 0 weakly prefers to ask.

Then signal-type 1 strictly prefers to ask.

Proof. See the Appendix.

Condition 2 of the lemma cannot be dispensed with. Consider the following situation.

Both signal-types ask with probability 1=2; the only advisor reports truthfully; signal

type 1 considers state 1 just slightly more likely when the advice is 1, so she always

follows the advice, whereas signal-type 0 considers 0 more likely regardless of the advice,

so she always decides 0. Signal-type 0 prefers to ask, because it allows her to distinguish
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herself through the decision when a = 1 instead of pooling on non-asking (in terms of

the instrumental payo¤, asking is irrelevant for her, as it cannot a¤ect her decision). In

contrast, signal-type 1 prefers to pool with signal-type 0 by not asking. This is because

asking has almost no e¤ect her instrumental payo¤ (as she is instrumentally almost

indi¤erent between the two decision when a = 1), while reputationally she would like to

pool rather than risk being distinguished after advice.12

3.3.1 Equilibria with information aggregation

First, we partition the space of parameters according to the following driver: which state

does signal-type 1 consider more likely? From Equation (P) in the Appendix we get:

Pr(! = 1j� = 1) = g(1� p)q + b(1� p)(1� q)

g(1� p)q + b(1� p)(1� q) + (1� g)pq + (1� b)p(1� q)
:

It is straightforward to show that Pr(! = 1j� = 1) � 1=2 if and only if:

gq + b(1� q) � p;

that is, the average signal precision has to be stronger than the bias.

If Pr(! = 1j� = 1) < 1=2, clearly the advisors will report truthfully a 0 even if

they recognize signal-type 1 Then, truthful reporting of a 1 is guaranteed by A5. If

Pr(! = 1j� = 1) � 1=2, we partition the space of parameters according to the following
driver: do advisors report truthfully if they learn that the decision maker has received

signal 1? This is true if Condition (TR1) is satis�ed.

So, we have three cases.

Case 1. gq + b(1� q) < p (implying Pr(! = 1j� = 1) � hr + l(1� r));

Case 2. gq + b(1� q) � p and Pr(! = 1j� = 1) � hr + l(1� r);

Case 3. Pr(! = 1j� = 1) > hr + l(1� r) (implying gq + b(1� q) � p).

We are interested in the existence of equilibria with at least some information ag-

gregation, meaning that the decision maker sometimes asks for advice, and the advisors

report truthfully. Three types of equilibria will be of primary importance for us:

- Pooling on asking: both signal-types always ask for advice;

- Separating: signal-type 0 never asks for advice, signal-type 1 always asks;

12Here we rely on our equilibrium selection at the decision stage. Of course, if, at the decision stage,
signal-type 1 pooled with signal-type 0 by always taking d = 0, then she would be indi¤erent between
asking and not asking.

13



- �Good�13 partially separating: signal-type 0 randomizes between asking and not

asking, signal-type 1 always asks.

In the �pooling on asking�equilibrium the �rst best is attained. However, it cannot

exist when �pooling on asking�fails to induce truthful reporting (which will be the case

when p > hr+l(1�r)). In such a case, our focus will be on the separating and, especially,
the �good� partially separating equilibrium, because the latter implements the second

best. Importantly, these two equilibria will generally exist only for an intermediate range

of �; whereas equilibria arising for too high or too low values of � will result in poorer or

no information aggregation (we will discuss them at the end of this subsection). Thus,

generally, the ex-ante e¢ ciency will be non-monotonic in �.

We start with the existence conditions for the separating and the �good�partially

separating equilibria. The following result provides the main insight of the paper.

Proposition 1 Suppose Pr(! = 1j� = 1) � hr + l(1 � r) (Cases 1 and 2). Then,

a separating equilibrium in which signal-type 0 never asks for advice and signal-type 1

always asks for advice exists if and only if � 2 [�; �], with � 2 [0; 1), and � 2 (�; 1)

when gq + b(1� q) < p, � = 1 when gq + b(1� q) � p. Moreover, a partially separating

equilibrium in which signal-type 0 asks for advice with probability � > 0 and signal-type 1

always asks exists if and only if � 2 [�;b�], where b� 2 [�; 1). In both equilibria the advisors
report truthfully, and in the partially separating equilibrium at b�, if p > hr + l(1� r) the
second best is attained (else the �rst best is attained, i.e., � = 1).

Proof. Take a candidate separating equilibrium in which signal-type 1 always asks and

signal-type 0 never asks.

It is easy to observe that the di¤erence in expected reputation between asking and not

asking is negative for signal-type 0 and, in Case 1, signal-type 1,14 whereas it is zero for

signal-type 1 in Case 2.15 By truthful reporting after asking, the di¤erence in the expected

instrumental payo¤ between asking and not asking is non negative for signal-type 0 and,

by A4, positive for signal-type 1.16

Hence, the di¤erence in the expected utility between not asking and asking is strictly

increasing in � for both signal-types. For � = 0, signal-type 0 prefers to ask and signal-

type 1 strictly prefers to ask. For � = 1, signal-type 0 strictly prefers not to ask and
13We call it �good�because other partially separating equilibria that may exist result in lower infor-

mation aggregation (we will call them �bad�thereafter).
14A signal-type prefers to be recognized as the signal-type that corresponds to the state that she

considers more likely rather than as the opposite signal-type. For the formalization of this argument, see
the proof of Lemma 1 in the Appendix.
15In Case 2, after not asking signal-type 1 decides 1, so by A3 she is recognized as signal-type 1, just

like after asking.
16This is because, by A4, advisors� information is decision-relevant for signal-type 1 with a positive

probability. See the proof of Lemma 3 for the formal argument.
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signal-type 1 strictly prefers not to ask in Case 1 and is indi¤erent in Case 2. Thus, each

signal-type is indi¤erent in the candidate separating equilibrium only for one value of �.

Let � be the value at which signal-type 0 is indi¤erent and let � be the value at which

signal-type 1 is indi¤erent. By Lemma 3, at � signal-type 1 strictly prefers to ask. Thus

� > � (� = 1 in Case 2) and at � signal-type 0 strictly prefers not to ask.

Thus the separating equilibrium exists if and only if � 2 [�; �]
Consider now the partially separating equilibrium of the lemma. For � < �, no such

equilibrium can exist: since signal-type 0 prefers to ask with Pr(m1j� = 0) = 0, by Lemma
2 (part (i)) a fortiori she strictly prefers to ask when Pr(m1j� = 0) > 0.
For � = 1, by Lemma 2 (part (ii)), signal-type 0 strictly prefers not to ask for any

value of Pr(m1j� = 0). Thus, for any given Pr(m1j� = 0) there must be a value of �

between � and 1 such that signal-type 0 is indi¤erent between asking and not asking.

Let b� < 1 be such value for the maximum Pr(m1j� = 0) such that the advisors report

truthfully. By Lemma 2 (part (i)), for every � 2 [�;b�) there exists a lower value of
Pr(m1j� = 0) such that signal-type 0 is indi¤erent between asking and not asking, and
the advisors report truthfully. In contrast, any � > b� (if b� < 1) would require a higher

value of Pr(m1j� = 0) for signal-type 0 to be indi¤erent, but this would be incompatible
with the advisors�truthtelling. By Lemma 3, signal-type 1 strictly prefers to ask, thus

she will not deviate.

Note that b� can be smaller or larger than �. Note also that when signal-type 0

cannot change her mind after advices, she has no instrumental gain from asking and,

thus, � = b� = 0.
In Case 3, for separating and partially separating equilibrium in which signal-type 1

always asks the following holds.

Proposition 2 Suppose Pr(! = 1j� = 1) > hr+l(1�r) (Case 3). There exists a separat-
ing equilibrium for every value of � but it does not trigger truthful reporting. There exists

a partially separating equilibrium in which signal-type 0 asks for advice with probability

� > 0 and signal-type 1 always asks if and only if � 2 [b�;b�], where b�;b� 2 (0; 1). In the
partially separating equilibrium the advisors report truthfully and at b�, if p > hr+ l(1�r)
the second best is attained (else the �rst best is attained, i.e., � = 1).

Proof. It is straightforward to observe that the candidate separating equilibrium is

always an equilibrium: since Pr(! = 1j� = 1) > hr + l(1 � r), the advisors herd, hence

there is no di¤erence in expected instrumental utility between asking and not asking, and

in terms of expected reputation, since Pr(! = 1j� = 1) > 1=2, both signal-types prefer

to be recognized as such rather than as the other one.

15



For the partially separating equilibrium, let � be the minimum value of Pr(m1j� = 0)
such that the advisors report truthfully when Pr(m1j� = 1) = 1. It exists because by

Pr(! = 0j� = 1) < 1=2 and p � 1=2, Pr(! = 0jm1) = 1=2 = Pr(! = 1jm1) for some

Pr(m1j� = 0) < 1 when Pr(m1j� = 1) = 1. The partially separating equilibrium kicks

in at b� such that signal-type 0 is indi¤erent between not asking and asking given that
Pr(m1j� = 0) = �. It exists up to b� de�ned like in Case 1-2 and optimal in the same
sense.

The intuition behind Propositions 1 and 2 is as follows. The decision maker who

received the signal con�rming the prior (signal-type 0) has a strong reputational incentive

to convey this news to the advisors. At the same time, her need for extra information

is low, because she is already quite con�dent about the state. In contrast, the decision

maker who received the signal contradicting the prior (signal-type 1) has either a weaker

reputational incentive to lie (when the signal is weaker than the prior � Case 1) or

a weaker reputational incentive to actually reveal her true signal (when the signal is

stronger than the prior �Cases 2 and 3). At the same time, such decision maker cares

more about information aggregation, because the signal contradicting the prior makes

her more uncertain about the state, compared to the signal con�rming the prior.

Thus, whenever the weight on reputation in the decision maker�s utility is big enough,

the separation (either full or partial) of the signal-types of the decision maker becomes

possible in equilibrium.

When pooling on asking triggers truthful reporting, the �rst best can be implemented

in a pooling equilibrium up to precisely b�. Note indeed that if pooling triggers truthful
reporting, the partially separating equilibrium at b� coincides with the pooling one with
weak incentive to ask for signal-type 0.

Proposition 3 If p � hr + l(1 � r) a pooling equilibrium in which both signal-types

always ask for advice and the advisors report truthfully exists if and only if � 2 [0;b�]. If
p > hr + l(1� r) such an equilibrium does not exist.

Proof. For � = b�, if p � hr+ l(1� r), by Proposition 1 for Case 1-2 and by Proposition
2 for Case 3, there exists a partially separating equilibrium with Pr(m1j� = 0) = 1 in

which signal-type 0 is indi¤erent between asking and not asking. Thus, the partially

separating equilibrium is a pooling equilibrium, in which by Lemma 2 (part (ii)) the

expected reputation of signal-type 0 after not asking, under A3, is higher than after

asking. Thus, for � > b� signal-type 0 strictly prefers not to ask and for � < b� she strictly
prefers to ask, and by Lemma 3 signal-type 1 too.

Apart from the three described equilibria, there may exist other equilibria with infor-

mation aggregation. To begin with, an equilibrium in which only signal-type 0 asks with
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a positive probability and the advisors report truthfully does not exist due to A5. There

may exist, however, the following equilibria:

- �Bad�partially separating I: signal-type 0 never asks for advice, signal-type 1 ran-

domizes between asking and not asking;

- �Bad� partially separating II: signal-type 0 always asks for advice, signal-type 1

randomizes between asking and not asking;

- �Fully mixed� equilibrium: both signal-types randomize between asking and not

asking.

We will prove in Proposition 4 that none of these equilibria exist for � < � in Cases 1

and 2, and for � < b� in Case 3. Then, it is easy to observe that each of these equilibria,
(i) if it exists for � � b�, is ex-ante strictly worse than the pooling equilibrium on asking

or the �good� partially separating one for the same �, and (ii) if it exists for � > b�,
is ex-ante strictly worse than the pooling equilibrium on asking or the �good�partially

separating one arising at � = b�.
To see (ii), just notice that any pro�le of strategies in which signal-type 1 asks with

probability less than one is strictly worse than the second best (see Section 3.2).

To see (i), let us consider the three �bad�equilibria one by one.

First, take a �bad�partially separating equilibrium of type I. With respect to this

equilibrium, both signal-types ask with a non lower probability in the �good�partially

separating equilibrium for any � 2 [�;b�] in Cases 1 and 2 and for any � 2 [b�;b�] in Case 3
(as well as in the separating equilibrium, existing for � 2 [�; �] in Cases 1 and 2).
Second, take a �bad�partially separating equilibrium of type II. Signal-type 0 asks

with higher probability than signal-type 1. If this still triggers truthful reporting by the

advisors, then pooling on asking triggers truthful reporting by the advisors too ((TR2)

is a fortiori satis�ed), and it is an equilibrium for any � � b�.
Finally, take a �fully mixed�equilibrium. If signal-type 0 asks more frequently than

signal-type 1, then pooling on asking must trigger truthful reporting too, and it is an

equilibrium for any � � b�. If signal-type 0 asks less frequently than signal-type 1, for any
� 2 [�;b�] in Cases 1 and 2 and for any � 2 [b�;b�] in Case 3, the �fully mixed�equilibrium
is worse than the �good�partially separating equilibrium, for the following reason. In

order not to be inferior to the �good�partially separating equilibrium, the �fully mixed�

equilibrium must yield a higher probability of asking by signal-type 0. This, coupled

with a lower than 1 probability of asking by signal-type 1, implies by Lemma 2 (part (i))

that the expected reputation of signal-type 0 after asking is higher than in the "good"

partially separating equilibrium. After not asking, if signal-type 1 considers state 1 more

17



likely and hence decides 1, the expected reputation of signal-type 0 is the same in the

two equilibria. Else, we have p � gq + b(1 � q), so by Lemma 2 (part (i)) the expected

reputation of signal-type 0 after not asking is higher in the �good�partially separating

equilibrium. Hence, in both cases, in the "fully mixed equilibrium" signal-type 0 would

strictly prefer to ask, a contradiction.

Remark on declarations after asking. Given the selected behavior of the advisors, we

can argue that modifying the game by allowing the decision maker to make a declaration

about her signal after asking would change substantially nothing in the model.

Consider an equilibrium of the modi�ed game in which both signal-types ask with

positive probability, make di¤erent and informative declarations � and �0, and, to make

the case interesting, at least one declaration, say �, triggers truthful reporting. Call

� the relative probability that signal-type 0 asks and makes declaration �, i.e. � :=

Pr(m1; �j� = 0)=Pr(m1; �j� = 1).
First, suppose that � � 1 and �0 triggers herding. If �0 and not asking are played

with the same relative probability by the two signal-types, or the two signal-types con-

sider di¤erent states more likely (so that after � they separate with the decision), �0 can

obviously be eliminated and substituted with not asking. Else, by Lemma 2 (part (i)),

signal-type 0, between �0 and not asking, will strictly prefer and play only the one that

she plays relatively more often, say �0. Clearly, signal-type 1 will imitate signal-type 0.

Thus, �0 can be eliminated and substituted with not asking.

Second, suppose that � � 1, �0 triggers truthful reporting, and Pr(m1; �0j� = 0)=Pr(m1; �0j� =
1) � 1 too. Hence, signal-type 0 does not always ask. By Lemma 2 (part (i)), signal-type
0 strictly prefers and makes only one of the two declarations, say �. Then, by analo-

gous argument, signal-type 1 would strictly prefer � to �0 if she would consider state 0

more likely. Since sometimes she declares �0, it must be that she considers state 1 more

likely. Hence, signal-type 0 is indi¤erent between � and not asking when after asking she

is recognized. But then, since expected reputation depends only on relative probabili-

ties, there also exists (and aggregates more information) our "good" partially separating

equilibrium, where signal-type 0 asks with frequency �.

Third, suppose that � > 1. Then, also pooling on asking triggers truthful reporting

and can be implemented in equilibrium without declarations for all � � b�. The original
equilibrium using � and �0 can exist also above b�, but not up to � = 1, by the incentives
of signal-type 0 as formalized by Lemma 2 (part (i)). So it is true that under some

restrictive conditions on the parameters, the declarations extend the implementation of

the �rst best above b�. However, as shown, the introduction of the declarations would
not a¤ect at all our results for the intermediate values of � we are interested in, and it

would only con�rm the message that intermediate values � are generally optimal, while
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too high or too low values of � harm information aggregation.

Remark on substituting �asking�and �not asking�with declarations. In some

real-life contexts, it could be impossible to prevent an advisor from expressing his opinion

by not asking. In such cases, �not asking�essentially becomes unfeasible, and m0 and m1

should be interpreted as two non-veri�able statements about the signal prior to receiving

advice. Such a modi�cation would not a¤ect our results. First, all the �good�equilibria

of our model would survive. To see this, simply notice that in any of these equilibria

non-asking is played only by signal-type 0. Then, we can substitute non-asking with

message m0 (and asking �with message m1) without any e¤ect, because, due to A5, the

advisors will herd after m0. Second, any novel equilibrium that could appear would have

exactly the same features as pooling on asking with subsequent declarations � and �0 in

the game with declarations after asking �simply replace � and �0 with m0 and m1. So,

the argument and the conclusions of the remark on declarations after asking apply here

as well.

3.3.2 General picture and the e¤ect of reputation concerns

Consider �rst p � hr + l(1� r _). The �pooling on asking�exists and, thus, the �rst best

can be implemented in equilibrium, if and only if � 2 [0;b�]. Any equilibrium existing for

� > b� is obviously inferior. Thus, for p � hr + l(1 � r _), we reach the familiar from the

literature conclusion that too high reputation concerns hamper e¢ cient decision making.

Consider now p > hr + l(1 � r). For � > b� the second best cannot be implemented
anymore; thus the conclusion is qualitatively the same as in the case when p � hr+ l(1�
r _): too high reputation concerns are harmful. However, for low � the picture changes

drastically. Speci�cally, the following proposition is true:

Proposition 4 Assume p > hr + l(1 � r). Then, for � < � in Cases 1 and 2, and for

� < b� in Case 3, there exists no equilibrium with any information aggregation.

Proof. Consider �rst Cases 1 and 2 and assume there is such an equilibrium for some

� < �. Then, it must be that signal-type 0 always asks, because, by Proposition 1,

when � < �, signal-type 0 prefers asking even when the reputational loss from asking, by

Lemma 2, is the largest (i.e., when the observer believes that the two signal-types always

separate). But then Pr(!jm1) � p > rh+ (1� r)l, implying no truthful reporting by the
advisors.

Consider now Case 3 and assume there is an equilibrium with some information ag-

gregation for some � < b�. From the proof of Proposition 2, it is clear that the ratio

Pr(m1j� = 0)=Pr(m1j� = 1) must be at least � in order to induce truthtelling by the
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advisors. At the same time, for b�, signal-type 0 is indi¤erent between asking and not ask-
ing when this ratio is exactly � and, by Lemma 2 (part (i)), would strictly prefer asking

if Pr(m1j� = 0)=Pr(m1j� = 1) > �. Since the di¤erence in expected intrumental utility

between asking and not asking is positive, for � < b� and Pr(m1j� = 0)=Pr(m1j� = 1) > �

she would strictly prefer asking as well.

Thus, when the prior is su¢ ciently strong ( p > hr+ l(1� r)), too low reputation con-
cerns are unambiguously bad as they result in a complete failure of information aggrega-

tion. The intuition is simple: when the decision makers cares little about her reputation,

she is tempted to ask for advice regardless of her signal. However, the advisors then have

no incentives to report truthfully, as they keep believing strongly in the state suggested

by the prior.

Given the negative e¤ect of crossing b�, our overall analysis suggests that the e¤ect
of the decision maker�s reputation concerns on information aggregation is generally non-

monotonic. Both too high and too low reputation concerns are detrimental for informa-

tion aggregation. Too low reputation concerns provoke excessive advice-seeking, which

undermines the advisors� reporting incentives. Too high reputation concerns result in

excessive advice avoidance.

4 Comparative statics

In this section we perform the analysis of the impact of the prior uncertainty about the

state of nature and the prior competence of the advisors on the e¤ects of reputation

concerns. We start from the e¤ect of the uncertainty on �.

Proposition 5 � is decreasing in p, that is, it is increasing in the prior uncertainty.

Proof. See the Appendix.

The intuition behind this result is as follows. Recall that � is determined by the

incentive compatibility constraint of signal-type 0 under full separation. As p goes down,

advisors�information becomes more valuable for signal-type 0, while her expected repu-

tation payo¤ from revealing her signal relative to pooling with signal-type 1 diminishes,

because she is less sure that the state is 0. Thus, a higher minimum weight of reputation,

�, is needed to make signal-type 0 abstain from asking for advice.

Now let us move to the e¤ects of p on b� and b�.
Proposition 6 Both b� and b� are decreasing in p, that is, they are increasing in the prior
uncertainty.

Proof. See the Appendix.
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Like at �, at both b� and b� signal-type 0 is indi¤erent between asking and not asking.
Thus, for given �, the intuition is the same as for Proposition 5: as the uncertainty rises,

the weight of reputation needs to be increased in order to keep signal-type 0 indi¤erent.

In addition, when p moves towards 1=2, the posterior conditional on asking also decreases

for given �. Consequently, the maximum and the minimum � under which the advisors

report truthfully, corresponding to b� and b� respectively, go up. In order to support a
higher � in equilibrium, � needs to be raised even further, because an increase in �

decreases the relative reputational bene�t from not asking.

Notice also that by lowering p we move from Cases 1 and 2 to Case 3 at some point,

meaning that the lower bound on � switches from � to b�. However, it is easy to observe
that b� > �, because a higher weight of reputation is needed to keep signal-type 0 indi¤er-

ent when � is positive rather than 0. Thus, the switch does not break the monotonicity

of the change in the lower bound on �.

It should be noted that considering the lower bounds on the reputation concerns, �

and b�, is relevant only when p > hr+ l(1� r). When p � hr+ l(1� r), by proposition 3,
the equilibrium with pooling on asking exists for any � 2 [0;b�], so � below � or b� is not
detrimental.

The implications of the above analysis can be summarized as follows:

Corollary 1 When the prior uncertainty is su¢ ciently low, p > hr + l(1 � r), greater

prior uncertainty calls for higher reputation concerns, as both � (or b�) and b� rise. When
the prior uncertainty is high enough, p � hr + l(1 � r), reputation concerns do not

matter unless they are too high (above b�), with the upper bound increasing in the prior
uncertainty.

Higher prior uncertainty increases the decision maker�s incentives to ask for advice

even when decision maker�s signal con�rms the prior. A higher weight on reputation is

then needed to restrain this temptation. However, when the prior uncertainty becomes so

high that truthtelling by the advisors arises even when the decision maker always asks for

advice, restraining advice-asking is not needed anymore, and any weight on reputation

from 0 up to a certain value becomes optimal.

The implication of this result is that at times of low uncertainty, i.e., when the organi-

zation is performing well and seems to be on the right track, it needs a leader concerned

with her reputation, but not too strongly. When the uncertainty about the right strategy

is large but not extremely large, the best leader is the one with rather strong reputation

concerns. Finally, in the situations of a very high uncertainty (i.e., when the organization

faces important and non-obvious strategic choices), the reputation concerns of the leader

are actually irrelevant (unless they are too extreme) for two reasons: (1) the advice-
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seeking incentives are so strong that reputation concerns cannot undermine them, (2)

there is no problem of �excessive asking�, as the advisors are willing to tell the truth

when they believe that the decision maker always asks for advice.

Let us consider the e¤ect of the prior competence of advisors, i.e., hr+ l(1�r). Prima
facie, it seems that the arguments we applied for the analysis of the prior uncertainty

work here as well. Indeed, higher advisors�competence raises the instrumental payo¤

from asking, which makes asking more attractive for signal-type 0 and, thus, should push

the thresholds on � upwards. In addition, it allows for higher � to be compatible with

truthelling by advisors, which should also work towards increasing b�. Yet, there are
complications.

First, in contrast to decreasing p, an increase in the advisors�competence improves

their truthtelling incentives for any beliefs formed after being asked: not just when

signal-type 0 asks �too often�, but also when signal-type 0 asks �too rarely�(given that

signal-type 1 always asks). This means, that, in Case 3, the lowest � compatible with the

advisors�truthelling decreases rather than increases, which works towards decreasing b�.
More troublesome, the expected reputational payo¤ of signal-type 0 from asking is

likely to decrease. This is because, with higher advisors�competence, there is a lower

chance for signal-type 0 to separate and reveal her signal after asking when the pro�le

of advises coupled with the prior still favors 0. For instance, consider a pro�le of advises

with more 0s than 1s and such that signal-type 1 still considers state 1 more likely

after receiving this advice. Then, the two signal-types separate with the decisions after

observing such a pro�le. Reputation-wise this is good for signal-type 0, because she

prefers revealing her signal to pooling with signal-type 1. However, when the competence

of advisors rises, the same pro�le of advices eventually makes signal-type 1 believe that

state 0 is more likely and switch to decision 0. This kills the possibility for signal-type 0

to reveal her signal and leads to a discrete drop in her reputation.

The ultimate e¤ect on the thresholds is unclear then (for given �). For each speci�c

change in the advisors�competence, the ultimate answer will depend on what change,

caused by switching from not asking to asking, is larger: an increase in the instrumental

utility of signal-type 0 or a fall in her expected reputational payo¤.

Nevertheless, it is rather clear that an increase in the prior competence of advisors

may worsen the quality of decisions for given �. To show this, it is su¢ cient to consider

Case 1 under the assumption that p > hr + l(1 � r) (so that pooling on asking with

subsequent truthful reporting is impossible) and show that � can increase, which would

mean widening the zone with no information aggregation (see Proposition 4). As an ex-

ample, consider the following setup: (1) there are two advisors, (2) signal-type 1 considers

state 0 more likely prior to advices, (3) the pro�le of advices (1; 1) makes signal-type 0

22



believe that state 1 is more likely. Then the two signal-types pool with their decisions

after asking for any pro�le of advices: after (0; 0) or (0; 1), both signal-types take deci-

sion 0, whereas after (1; 1) they both take decision 1. Now consider � = � and raise the

competence of advisors. The expected instrumental utility of signal-type 0 after asking

clearly increases (this can be formally derived looking at �IU0 from the proof of Lemma

3 in the Appendix). At the same time, her expected reputation after asking does not

change, because the two signal-types still pool on the same decision all the time. Hence,

� should go up in order to keep signal-type 0 indi¤erent between asking and not asking.

If, for given �, this results in � crossing � from below, e¢ ciency drops as no information

aggregation is possible below �.

Thus, higher advisors�competence may be detrimental to e¢ ciency because it may

produce �excessive asking�, thereby killing advisors�truthtelling altogether. The follow-

ing proposition can thus be formulated:

Proposition 7 For given reputation concerns, when p > hr+ l(1�r) and the reputation
concerns are not su¢ ciently strong, greater prior competence of advisors (i.e., higher

hr + l(1� r)) can worsen the quality of decisions.

5 Numerical example

Fix the following values of the parameters:

q = r =
1

2
; g = h =

7

9
; b = l =

5

9
; n = 3.

We leave the prior uncertainty p free to study how it in�uences the e¤ect of reputation

concerns on information aggregation. Note that the average signal precision, i.e. the

ex-ante probability that a state generates the corresponding signal, is the same for the

decision maker and for the advisors (2=3). This has two implications. First, if both

signal-types of the decision maker always ask, each signal-type of the advisor has the

same posterior over the state of the world as the decision maker of the same signal-type.

Second, the posterior over the state of the world of the decision maker depends only on

the total number of signals of each kind that she learns, including her own. Note that this

is not a "limit case", in the sense that whether the decision maker is better informed than

the advisors or not does not determine per se any qualitative di¤erence in the results.

First, we compute the decision maker and the advisors beliefs as a function of p. We

can use the average signals precision (2=3) as a deterministic signal precision (see, for

instance, Equation (P) in the Appendix). Denote by o(s) the number of 0�s in a pro�le
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of advices s. Then we have:

Pr(! = 0j� = 0) = 2p

p+ 1
= Pr(! = 0jsi = 0);

Pr(! = 0j� = 1) = p

2� p
= Pr(! = 0jsi = 1);

Pr(! = 0j� = 0; s) =
(2
3
)o(s)+1(1

3
)3�o(s)p

(2
3
)o(s)+1(1

3
)3�o(s)p+ (1

3
)o(s)+1(2

3
)3�o(s)(1� p)

=

8>>>><>>>>:
16p
1+15p

if o(s) = 3
4p
1+3p

if o(s) = 2

p if o(s) = 1
p

4�3p if o(s) = 0

Pr(! = 0j� = 1; s) =

8>>>><>>>>:
4p
1+3p

if o(s) = 3

p if o(s) = 2
p

4�3p if o(s) = 1
p

16�15p if o(s) = 0

Pr(! = 0jm1) =
(2Pr(m1j� = 0) + Pr(m1j� = 1))p

(2 Pr(m1j� = 0) + Pr(m1j� = 1))p+ (2Pr(m1j� = 1) + Pr(m1j� = 0))(1� p)
:

As p changes, we have the following situations.

� p > 16
17
. Then Pr(! = 0j� = 1; s) > 1

2
for o(s) = 0. This case contradicts A4.(second

part) and thus it is not analyzed.

� 4
5
< p � 16

17
. Then, for Pr(m1j� = 0) = 0 and Pr(m1j� = 1) > 0, Pr(! = 0jm1) >

hr + l(1 � r), thus the advisors never report truthfully. This case contradicts A5

(second part) and thus it is not analyzed.

� 2
3
< p � 4

5
. Then Pr(! = 0j� = 1) = Pr(! = 0jsi = 1) > 1

2
. This is Case 1;

moreover the advisors herd in case of pooling on asking. Note also that Pr(! =

0j� = 0; s) � 1=2 if o(s) = 0. Hence, unless p = 4
5
, signal-type 0 changes her mind

if all the advisors suggest 1. Signal-type 1, instead, follows the majority of the

advisors.

� 1
2
< p � 2

3
. Then Pr(! = 0j� = 1) = Pr(! = 0jsi = 1) � 1

2
. This is Case 2;

moreover the advisors report truthfully in case of pooling on asking. The reactions

of the decision maker to the advices are the same as in the previous case.

For no value of p we fall in Case 3, for which it is necessary (but not su¢ cient) that

the advisors�signals have worse average precision than the decision maker�s one.

So, we consider only Case 1 (2
3
< p � 4

5
) and Case 2 (1

2
< p � 2

3
).
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Both signal-types of the decision maker react to the advisors�suggestions in the same

way in the two cases. Moreover, signal-type 0 always decides 0 after not asking. Thus, we

can compute all values of instrumental utility and reputation in the same way for both

cases, except for signal-type 1 when she does not ask.

The expected instrumental utility for signal-type 0 after not asking is Pr(! = 0j� =
0) = 2p

p+1
and for signal-type 1 it is Pr(! = 0j� = 1) = p

2�p in Case 1 and Pr(! = 1j� =
1) = 2�2p

2�p in Case 2. After asking, the expected instrumental utility for signal-type 0 isP
s:o(s)�1 Pr(! = 0; sj� = 0) + Pr(! = 1; s = (1; 1; 1)j� = 0) =

=
P

s:o(s)�1 Pr(sj! = 0)Pr(! = 0j� = 0) + Pr(s = (1; 1; 1)j! = 1)Pr(! = 1j� = 0) =

= (1� 1

33
)
2p

p+ 1
+
23

33
(1� 2p

p+ 1
) =

2

3

2p

p+ 1
+
8

27
=
44p+ 8

27p+ 27
;

and for signal-type 1 it is

P
s:o(s)�2 Pr(! = 0; sj� = 1) +

P
s:o(s)<2 Pr(! = 1; sj� = 1) =

=
P

s:o(s)�2 Pr(sj! = 0)Pr(! = 0j� = 1) +
P

s:o(s)<2 Pr(sj! = 1)Pr(! = 1j� = 1) =

= (
23

33
+ 3 � 1

3
� 2

2

32
)

p

2� p
+ (
23

33
+ 3 � 1

3
� 2

2

32
)(1� p

2� p
) = (

23

33
+ 3 � 1

3
� 2

2

32
) =

20

27
:

Suppose now that signal-type 1 always asks and signal-type 0 asks with probability �.

Then, after not asking, the advisors believe that the decision maker has received signal

0 after decision 0 (by equilibrium strategy or A3) and signal 1 after decision 1 (by A3).

Using the same notation as in the Appendix (x := Pr(Gj� = !); y := Pr(Gj� 6= !)), the

expected reputation for signal-type 0 after not asking is:

Pr(! = 0j� = 0)x+ Pr(! = 1j� = 0)y =

=
2p

p+ 1
� 7
12
+ (1� 2p

p+ 1
) � 1
3
=
1

4

2p

p+ 1
+
1

3
=
5p+ 2

6p+ 6
;

and for signal-type 1, in Case 1 (where she optimally decides 0), it is:

Pr(! = 0j� = 1)x+ Pr(! = 1j� = 1)y =

=
p

2� p
� 7
12
+ (1� p

2� p
) � 1
3
=
1

4

p

2� p
+
1

3
=

8� p

24� 12p:

and in Case 2 (where she optimally decides 1), it is:

Pr(! = 0j� = 1)y + Pr(! = 1j� = 1)x =

=
p

2� p
� 1
3
+ (1� p

2� p
) � 7
12
=
7

12
� 1
4

p

2� p
=
7� 5p
12� 6p:
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After asking, the expected reputation of the two signal-types is di¤erent since they decide

di¤erently if o(s) = 1. Using v and w de�ned in the Appendix (at the end of subsection

Preliminaries), for signal-type 0 it is:

Pr(!=1; o(s) 6= 1j0)v + Pr(!=0; o(s) 6= 1j0)w + Pr(!=1; o(s)=1j0)y + Pr(!=0; o(s)=1j0)x =

= (1� 31
3

22

32
)(1� 2p

p+ 1
)v + (1� 32

3

1

32
)
2p

p+ 1
w + (3

1

3

22

32
)(1� 2p

p+ 1
)y + (3

2

3

1

32
)
2p

p+ 1
x =

=
5

9
(1� 2p

p+ 1
)
7 + 2�

12 + 6�
+
7

9

2p

p+ 1

7�+ 2

12�+ 6
+
4

9
(1� 2p

p+ 1
)
1

3
+
2

9

2p

p+ 1

7

12
=

=
35 + 10�

108 + 54�
+

2p

p+ 1
(
49�+ 14

108�+ 54
� 35 + 10�

108 + 54�
� 2

54
) +

4

27
;

and for signal-type 1:

Pr(!=1; o(s) 6= 1j1)v + Pr(!=0; o(s) 6= 1j1)w + Pr(!=1; o(s)=1j1)x+ Pr(!=0; o(s)=1j1)y =

= (1� 31
3

22

32
)(1� p

2� p
)v + (1� 32

3

1

32
)

p

2� p
w + (3

1

3

22

32
)(1� p

2� p
)x+ (3

2

3

1

32
)

p

2� p
y =

=
5

9
(1� p

2� p
)
7 + 2�

12 + 6�
+
7

9

p

2� p

7�+ 2

12�+ 6
+
4

9
(1� p

2� p
)
7

12
+
2

9

p

2� p

1

3
=

=
35 + 10�

108 + 54�
+

p

2� p
(
49�+ 14

108�+ 54
� 35 + 10�

108 + 54�
� 5

27
) +

7

27
:

To look for � and � we need to compute the values of reputation for � = 0. Then, for

signal-type 0 the expected reputation after asking is:

35

108
+

2p

p+ 1
(
28

108
� 35

108
� 4

108
) +

16

108
=
51

108
� 11

108

2p

p+ 1
=

29p+ 51

108p+ 108

Recalling that for � = 0, w = y and v = x (see the Appendix, Preliminaries), for

signal-type 1 it simply is:

Pr(!=1; o(s) 6= 1j1)x+ Pr(!=0; o(s) 6= 1j1)y + Pr(!=1; o(s)=1j1)x+ Pr(!=0; o(s)=1j1)y =

= Pr(!=0j1)y + Pr(!=1j1)x = p

2� p

1

3
+ (1� p

2� p
)
7

12
=
7

12
� 1
4

p

2� p
=
7� 5p
12� 6p:

The di¤erence in expected utility between asking and not asking for signal-type 0 is

zero for � such that:

(1� �)(
44p+ 8

27p+ 27
� 2p

p+ 1
) + �(

29p+ 51

108p+ 108
� 5p+ 2
6p+ 6

) = 0

(1� �)(32� 40p) + �(15� 61p) = 0

� =
32� 40p
17 + 21p

:
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As expected, for p = 4=5, � = 0: signal-type 0 has no strict incentive to follow three

1 suggestions, so there is no gain from asking. For p = 2=3, � = 16
93
. So, in Case 1

� 2
�
0; 16

93

�
. Recall that in Case 1 pooling on asking does not trigger truthful reporting.

Thus, there is no information aggregation up to �, i.e. there is no information aggregation

for too low reputation concerns. As uncertainty increases, i.e. as p decreases, � increases.

That is, there higher reputation concerns are needed to obtain some degree of information

aggregation. For p = 1=2, � = 24
55
, so in Case 2, � 2

�
16
93
; 24
55

�
. However in Case 2, pooling

on asking triggers truthful reporting and can be implemented from � = 0.

The di¤erence in expected utility between asking and not asking for signal-type 1 in

Case 1 is zero for � such that:

(1� �)(
20

27
� p

2� p
) + �(

7� 5p
12� 6p �

8� p

24� 12p) = 0

(1� �)(
160� 134p
108(2� p)

) + �(
54� 81p
108(2� p)

) = 0

� =
160� 134p
106� 53p :

As expected, for p = 2=3, � = 1. Note indeed that in Case 2, the expected reputation

after asking and not asking is the same, so no value of � makes signal-type 1 indi¤erent

between asking and not asking. For p = 4=5, � = 132
209
. Thus, also � increases as p

decreases.

To compute b�, we need to compute the highest value of � such that the advisors report
truthfully. It solves:

Pr(! = 0jm1) =
2b�p+ pb�p+ 2 + b�� p

=
2

3
:

b� = 4� 5p
4p� 2 :

For p = 4=5, b� = 0, so the �good�partially separating equilibrium where signal-type 1

always asks boils down to the separating equilibrium with weak incentive for signal-type

0. In this sense, b� = �. As anticipated, for p = 2=3, b� = 1 so for every p > 2=3 there

is no pooling equilibrium on asking with truthful reporting. Now we look for the value

of � such that signal-type 0 is indi¤erent between asking and not asking for p = 2=3 and

� = 1: this is the upper bound for b� in Case 1. Substituting � = 1 in the reputation

after asking, the di¤erence in expected utility for signal-type 0 between asking and not
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asking is zero for b� such that:
(1� b�)( 44p+ 8

27p+ 27
� 2p

p+ 1
) + b�( 45

162
+

2p

p+ 1
(
12

162
) +

4

27
� 5p+ 2
6p+ 6

) = 0

(1� b�)(48� 60p) + b�(59� 136p) = 0
b� = 48� 60p

76p� 11 :

For p = 2=3, it is 144�120
152�33 =

24
119
. So, in Case 1, b� 2 �0; 24

119

�
. Note that, as expected, b� > �:

at p = 2=3, 24
119

> 16
93
.

In case 2, pooling on asking triggers truthful reporting. So, we are interested in b� as
the maximum weight on reputation such that the pooling equilibrium on asking exists

under A3. For the limit case p = 1=2, we obtain b� = 18
27
= 2=3. Thus, in Case 2, the

pooling equilibrium on asking exists up to b� 2 � 24
119
; 2
3

�
.

Also b� increases as p decreases. That is, more uncertainty requires (in Case 1) or allows
(in Case 2) higher reputation concerns to achieve the best feasible level of information

aggregation.

6 Conclusion

In this paper we have studied how reputation concerns of a decision maker a¤ect her abil-

ity to extract decision-relevant information from potential advisors. Too high reputation

concerns provoke excessive advice-avoidance due to the decision-maker�s desire to appear

well informed. Too low reputation concerns result in excessive advice-seeking, which de-

stroys advisors�incentives to provide truthful information. In general, some intermediate

reputation concerns are optimal, as they create a credible commitment (in equilibrium)

to abstain from asking for advice too frequently and, at the same time, do not trigger

too much advice-avoidance.

A rise in the prior uncertainty about the state of nature increases the temptation

to ask for advice. This may disrupt aggregation of information when the prior uncer-

tainty is relatively low, i.e., when the problem of excessive advise-seeking is relevant. In

such a case, higher optimal reputation concerns are needed in order to restrain excessive

advice-seeking. For the same reason, when the prior uncertainty is low and the reputa-

tion concerns are not strong enough, higher prior competence of advisors may destroy

information aggregation and worsen the quality of decisions.

A key ingredient of our story is that advisors are willing to provide information only

when they feel uncertain about the state of nature. Although in our model this behavior

stems from their reputation concerns, there may also be other reasons that generate a
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similar incentive. For example, assume that advisors have no reputation concerns but

need to invest in acquiring or transmitting information to the decision maker. Assume in

addition that they care about the quality of decisions. Then their incentives to invest will

be stronger (and hence the quality of information received by the decision maker will be

higher) the more undecided they think the decision maker is. Consequently, like in our

model, it will be crucial to avoid �excessive asking�by a decision maker with the signal

con�rming the prior. At the same time, the temptation to ask for advice should increase

in the prior uncertainty and the competence of advisors. Thus, we conjecture that such

a framework will generate the same main results as the current one.17 A formal analysis

of this alternative setup can be a subject of future work.

Appendix

Preliminaries

Fix a signal-type � and a state !. Let ! be the other state. The probability of !

conditional on � is

Pr(!j�) = Pr(�j!;G) Pr(!) Pr(G) + Pr(�j!;B) Pr(!) Pr(B)
numerator + Pr(�j!;G) Pr(!) Pr(G) + Pr(�j!;B) Pr(!) Pr(B) (P)

For the theoretical analysis, we do not need to compute the probability of a state con-

ditional on the advices. For the numerical example of Section 5, such probabilities are

computed for the speci�c case.

For any pro�le of advisors�truthfully reported signals s, let o(s) denote the number

of 0�s in s. By A2 the decision after s is 1 if and only if o(s) < j for some 0 � j � n

in case � = 0 and o(s) < j0 for some j0 � j in case � = 1. Denote by S the set of all

possible s. Let S be the set of s such that j � o(s) < j0 and bS its complement. In other
words, S is the subset of S such that, for any s 2 S, either signal-type ignores advisors�
information and takes the decision corresponding to her own signals. In contrast, for any

s 2 bS, both signal-types ignore their signals and take the same decision, suggested by s.
While S is empty when j0 = j, bS is always non-empty because by A4 j0 � n. For a

pro�le s to belong to bS, it must contain either enough 0�s to make signal-type 1 believe
that state 0 is more likely, or su¢ ciently many 1�s (de�nitely more than n=2) to make

17One di¤erence of such a setting from the current one is that it is not the uncertainty about the state
per se that would matter for the advisors�incentives, but whether they believe that they face a decision
maker who is undecided. This would matter when the decision maker after receiving signal 1 is rather
con�dent that the state is 1. In the current model, pooling on asking triggers truthful reporting in such
a case. Yet, in the alternative setup, the advisors will have weak incentives, for they know that the
decision maker is not undecided.
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signal-type 0 believe that state 1 is more likely. However, since ! = 0 is weakly more

likely a priori, the minimum number of 1�s needed to �change the mind�of signal-type

0 is weakly higher than the minimum number of 0�s needed to �change the mind� of

signal-type 1. Therefore, the likelihood that s falls into bS should be weakly higher when
! = 0.

Formally, consider �rst all pro�les s belonging to bS such that o(s) � n=2. It must be

that either Pr(! = 1j� = 0; s) > 1=2 (s contains so many 1�s that signal-type 0 considers
! = 1 more likely) or Pr(! = 0j� = 1; s) > 1=2 (despite o(s) � n=2, s contains enough

0�s to make signal-type 1 believe that ! = 0 is more likely). Then, any pro�le s0 such

that o(s0) = n � o(s) also belongs to bS, because: (1) if Pr(! = 1j� = 0; s) > 1=2, then

Pr(! = 0j� = 1; s0) > 1=2 as well (s0 contains as many 0�s as s contains 1�s, and p � 1=2),
(2) if Pr(! = 0j� = 1; s) > 1=2, then Pr(! = 0j� = 1; s0) > 1=2 (s0 contains more 0�s

than s does).

Since all advisors are identical and, for every i, Pr(si = !j!) does not depend on !,
Pr(sj! = 1) = Pr(s0j! = 0).
If there are any remaining pro�les s00 belonging to bS, they must have o(s00) � n=2,

implying Pr(s00j! = 0) � Pr(s00j! = 1). Thus, we conclude that

Pr(bSj! = 0) � Pr(bSj! = 1): (S)

This formula will be used in the proof of Lemma 3.

It will be convenient to label and compare the reputations at some speci�c terminal

nodes under A2 and A3. Fix a terminal history �.

Suppose �rst that, after observing �, the observer infers that decision maker has

de�nitely received a speci�c signal �: Pr(�j�) = 1.18 Then the reputation depends only
on whether � = ! or � 6= !, i.e., one of the two values of reputation is realized:

Pr(Gj�; !) = Pr(Gj� = !) =
Pr(� = !jG) Pr(G)

Pr(� = !)
=

gq

gq + b(1� q)
=: x;

Pr(Gj�; !) = Pr(Gj� 6= !) =
Pr(� 6= !jG) Pr(G)

Pr(� 6= !)
=

(1� g)q

(1� g)q + (1� b)(1� q)
:= y:

It is straightforward to show that, since 1=2 � b < g, we have x > y.

Suppose now that � does not necessarily reveal the signal-type perfectly. Speci�cally,

suppose that either (i) � = (m1; a; d) and both signal-types after a consider state ! = d

strictly more likely (for instance, a = s 2 bS), or (ii) � = (m0; d = 0) with Pr(m0; d =

18This is the case when (i) � = (m1; a; d) and the two signal-types after a consider di¤erent states
more likely, (ii) � = (m1; s; d) and s 2 S, (iii) � = (m0; d = 1), (iv) � = (m0; d = 0) and signal-type 1
always asks or considers state 1 more likely, (v) � has probability 0 in equilibrium (by A3).
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0j�) = Pr(m0j�) 6= 0 for both �. In case (i), note that

Pr(�j!; �) = Pr(m1j�) � Pr(aj!;m1) � Pr(dj�; a;m1) = Pr(m1j�) � Pr(aj!;m1),

where Pr(dj�; a;m1) = 1 by A2. The reputation of the decision maker at � when state !

is observed is then

Pr(Gj�; !) = Pr(�j!;G) Pr(Gj!)
Pr(�j!;G) Pr(Gj!) + Pr(�j!;B) Pr(Bj!) =

=
[Pr(mj!; � = !) Pr(� = !j!;G) + Pr(mj!; � 6= !) Pr(� 6= !j!;G)] Pr(G)+

numerator + [Pr(mj!; � = !) Pr(� = !j!;B) + Pr(mj!; � 6= !) Pr(� 6= !j!;B)] Pr(B) =

=
Pr(mj!; � = !)gq + Pr(mj!; � 6= !)(1� g)q

numerator + Pr(mj!; � = !)b(1� q) + Pr(mj!; � 6= !)(1� b)(1� q)
= Pr(Gjm;!);

(R)

where in case (i), Pr(aj!;m1) has been simpli�ed in the second line. Let � = Pr(m1j� =
0)=Pr(m1j� = 1) or � = Pr(m0; d = 0j� = 0)=Pr(m0; d = 0j� = 1). We have:

Pr(Gj�; ! = 1) = gq + �(1� g)q

gq + �(1� g)q + b(1� q) + �(1� b)(1� q)
=: v;

Pr(Gj�; ! = 0) = �gq + (1� g)q

�gq + (1� g)q + �b(1� q) + (1� b)(1� q)
=: w:

It is easy to observe that:

x = v > w = y if � = 0;

x > v > w > y if � 2 (0; 1);

x > v = w > y if � = 1;

x > w > v > y if � > 1;

and that for � > 0,

v + w > x+ y.

Proofs

Proof of Lemma 1

Consider an arbitrary history of events  prior to the decision stage (that is,  is

either m0 or (m1; a)). Fix any signal-type �, and without loss of generality suppose that

she considers state 0 (weakly) more likely, that is Pr(! = 0j�;  ) � 1=2. Suppose that if
she takes d = 1, she is perceived as signal-type 1. This would be the equilibrium belief

if signal-type 1 considers state 1 more likely or an o¤-the-path belief pinned down by A3
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when signal-type 1 considers state 0 more likely.

Then if signal-type � takes d = 1, her expected reputation is

Pr(! = 0j�;  ) � Pr(Gj� 6= !) + [1� Pr(! = 0j�;  )] � Pr(Gj� = !) =

= Pr(! = 0j�;  ) � y + [1� Pr(! = 0j�;  )] � x:

If signal-type � takes d = 0 and the other signal-type, at  , considers state 1 more

likely (which implies � = 0), the expected reputation of signal-type � is:

Pr(! = 0j�;  ) � Pr(Gj� = !) + [1� Pr(! = 0j�;  )] � Pr(Gj� 6= !) =

= Pr(! = 0j�;  ) � x+ [1� Pr(! = 0j�;  )] � y:

Since Pr(! = 0j�;  ) � 1=2 and x > y, d = 0 yields non lower reputation than d = 1 to

signal-type �.

If signal-type � takes d = 0 and also the other signal-type, at  , considers state 0

more likely, the expected reputation of signal-type � is:

Pr(! = 0j�;  ) � Pr(Gj ; d = 0; ! = 0) + [1� Pr(! = 0j�;  )] � Pr(Gj ; d = 0; ! = 1) =

= Pr(! = 0j�;  ) � w + [1� Pr(! = 0j�;  )] � v:

Since Pr(! = 0j�;  ) � 1=2, w > y, and w+ v � x+ y, d = 0 yields non lower reputation

than d = 1 to signal-type �.

Obviously, instrumental utility only reinforces the no-deviation incentives.

Proof of Lemma 2.

For brevity, let q := 1 � q, p := 1 � p, g := 1 � g, b := 1 � b. For m = m0;m1 and

� = Pr(mj� = 0)=Pr(mj� = 1), from Equations (P) and (R) we get:

Pr(! = 0j� = 0) = gpq + bpq

gpq + bpq + gpq + bpq
;

Pr(Gjm;! = 0) = �gq + gq

�gq + gq + �bq + bq
;

Pr(! = 1j� = 0) = gpq + bpq

gpq + bpq + gpq + bpq
;

Pr(Gjm;! = 1) = �gq + gq

�gq + gq + �bq + bq
:
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For brevity, let

� : =
1

gpq + bpq + gpq + bpq

C(�) : = Pr(! = 0j� = 0)Pr(Gjm;! = 0) + Pr(! = 1j� = 0)Pr(Gjm;! = 1) =

= �

�
(gpq + bpq)(�gq + gq)

�gq + gq + �bq + bq
+
(gpq + bpq)(�gq + gq)

�gq + gq + �bq + bq

�
:

We have

D(�) : = Pr(! = 0j� = 0)@ Pr(Gjm;! = 0)
@�

=

= �
(gpq + bpq)(gq(�gq + gq + �bq + bq)� (gq + bq)(�gq + gq))

(�gq + gq + �bq + bq)2
=

= �
(gpq + bpq)(gqbq � bqgq)

(�gq + gq + �bq + bq)2
= �pqq(gb� bg)

(gq + bq)

(�gq + gq + �bq + bq)2
> 0;

and

E(�) : = Pr(! = 1j� = 0)@ Pr(Gjm;! = 1)
@�

=

= �
(gpq + bpq)(gq(�gq + gq + �bq + bq)� (gq + bq)(�gq + gq))

(�gq + gq + �bq + bq)2
=

= �
(gpq + bpq)(gqbq � gqbq)

(�gq + gq + �bq + bq)2
= �pqq(bg � gb)

(gq + bq)

(�gq + gq + �bq + bq)2
< 0:

Denote:

A(s) : = Pr(sj!=0) Pr(!=0j�=0) Pr(Gjm1; !=0) + Pr(sj!=1) Pr(!=1j�=0) Pr(Gjm1; !=1);

B(s) : = Pr(sj!=0) Pr(!=0j�=0) Pr(Gj�=0; !=0) + Pr(sj!=1) Pr(!=1j�=0) Pr(Gj�=0; !=1):

First, we show that Part (i) holds form = m1. The expected reputation of signal-type

0 after asking is: P
s2bSA(s) +

P
s2S

B(s).

Since
P

s2S B(s) does not depend on �, we can focus on
P

s2bS A(s). Fix any s; s0 with
o(s) � n=2 and o(s0) = n � o(s). As already observed in the Preliminaries, bS can be
partitioned into pairs s; s0 with o(s0) = n � o(s) and unpaired s with o(s) � n=2. Thus,Pbs2bS A(bs) is increasing in � when A(s) + A(s0) and A(s) are increasing in �. This is

what we show next.

Since Pr(si = !j!) depends neither on !, nor on i, we have Pr(s0j! = 1) = Pr(sj! = 0)
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and Pr(sj! = 1) = Pr(s0j! = 0). Thus,

A(s) + A(s0) = [Pr(sj! = 0) + Pr(s0j! = 0)] � C(�).

Since the �rst factor does not depend on �, the sign of the derivative is determined by:

@C(�)

@�
= D(�) + E(�) = �qq(gb� bg)

�
p(gq + bq)

(�gq + gq + �bq + bq)2
� p(gq + bq)

(�gq + gq + �bq + bq)2

�
;

@C(�)

@�
> 0,

 
gq + 1

�
gq + bq + 1

�
bq

gq + 1
�
gq + bq + 1

�
bq

�

�

!2
>
gq + bq

gq + bq

p

p
:

The latter inequality is always veri�ed when � � 1, because then the left hand side is

bigger than 1, whereas the right hand side is smaller than 1. Since the term in brackets

is always bigger than (gq + bq)=gq + bq, a su¢ cient condition for the inequality to hold

also when � > 1 is:

gq + bq

gq + bq
>

p

p

(1� g)q + (1� b)(1� q)

gq + b(1� q)
>

(1� p)

p

p > gq + b(1� q);

as desired. Moreover,

@A(s)

@�
= Pr(sj! = 0)D(�) + Pr(sj! = 1)E(�)

is positive too whenever @C(�)=@� = D(�)+E(�) > 0, because Pr(sj! = 0) � Pr(sj! =
1) and D(�) > 0 > E(�).

Now we want to show that Part (i) holds also for m = m0. Note that C(�) represents

precisely the expected reputation of signal-type 0 after not asking. Hence Part (i) holds

also for m = m0.

For Part (ii), write the expected reputation of signal-type 0 after not asking when

signal-type 1 always asks as
P

s2S[bS B(s). Then, the di¤erence with the expected repu-
tation of signal-type 0 after asking reads:

P
s2bS B(s)�Ps2bS A(s):

34



Fix s; s0 with o(s) � n=2 and o(s0) = n� o(s). As before, it is enough to show that:

B(s) +B(s0) > (A(s) + A(s0))j�=1;

B(s) > A(s)j�=1:

Since Pr(Gj� = 0; !) = lim�!1 Pr(Gjm1; !), B(s) + B(s0) = (A(s) + A(s0))j�!1. Note
that lim�!1C(�) > C(1) = q. Then, B(s) +B(s0) > (A(s) + A(s0))j�=1 and

Pr(! = 0j� = 0) � x+ Pr(! = 1j� = 0) � y > Pr(! = 0j� = 0) � q + Pr(! = 1j� = 0) � q:

Thus, by Pr(sj! = 0) � Pr(sj! = 1) and x > q > y,

B(s) = Pr(sj! = 0)Pr(! = 0j� = 0) � x+ Pr(sj! = 1)Pr(! = 1j� = 0) � y >

> Pr(sj! = 0)Pr(! = 0j� = 0) � q + Pr(sj! = 1)Pr(! = 1j� = 0) � q = A(s)j�=1;

where the last equality comes from Pr(Gjm;! = 1) = Pr(Gjm;! = 0) = q when � = 1.

�

Proof of Lemma 3.

Throughout the proof, the 0 and 1 after the conditioning bar means � = 0 and

� = 1. The di¤erence in expected instrumental utility between asking and not asking for

signal-type 0 is:

�IU0 : =
P

s:o(s)<j

[Pr(! = 1; sj0)� Pr(! = 0; sj0)] =

= Pr(! = 1j0)
P

s:o(s)<j

Pr(sj! = 1)� Pr(! = 0j0)
P

s:o(s)<j

Pr(sj! = 0):

For signal-type 1, if Pr(! = 0j� = 1) > 1=2 it is:

�IU1 : =
P

s:o(s)<j0
[Pr(! = 1; sj1)� Pr(! = 0; sj1)] �

� Pr(! = 1j1)
P

s:o(s)<j

Pr(sj! = 1)� Pr(! = 0j1)
P

s:o(s)<j

Pr(sj! = 0);

where the inequality holds because for every s with o(s) < j0,

Pr(! = 1; sj1)� Pr(! = 0; sj1) = [Pr(! = 1js; 1)� Pr(! = 0js; 1)] � Pr(sj1) > 0. (F)
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If Pr(! = 1j� = 1) � 1=2, it is:

�IU 01 : =
P

s:o(s)�j0
[Pr(! = 0; sj1)� Pr(! = 1; sj1)] �

� Pr(! = 0j1)
P

s:o(s)>n�j
Pr(sj! = 0)� Pr(! = 1j1)

P
s:o(s)>n�j

Pr(sj! = 1);

where the inequality holds because j0 � n� j + 1 and for every s with o(s) � j0,

Pr(!=0; sj1)� Pr(!=1; sj1) = (Pr(!=0js; 1)� Pr(!=1js; 1)) Pr(sj1) > 0.

It follows immediately from Pr(! = 0j� = 0) > Pr(! = 0j� = 1) that �IU1 is higher

than �IU0. Note furthermore that since Pr(si = !j!) depends neither on !, nor on i,
we have: P

s:o(s)<j

Pr(sj! = 1) =
P

s:o(s)>n�j
Pr(sj! = 0).

Then it follows immediately from Pr(! = 0j� = 0) > Pr(! = 1j� = 1) that �IU 01 is

higher than �IU0.

The di¤erence in expected reputation for signal type 0 is:

�R0 :=
P
s2bS[Pr(!=0; sj0)(w�x)+Pr(!=1; sj0)(v�y)]+

P
s2S
[Pr(!=0; sj0)(x�x)+(Pr(!=1; sj0)(y�y)]:

For signal-type 1, if Pr(! = 0j� = 1) > 1=2 it is:

�R1 :=
P
s2bS[Pr(!=0; sj1)(w�x)+Pr(!=1; sj1)(v�y)]+

P
s2S
[Pr(!=0; sj1)(y�x)+Pr(!=1; sj1)(x�y)];

and if Pr(! = 1j� = 1) � 1=2 it is:

�R01 :=
P
s2bS[Pr(!=0; sj1)(w�y)+Pr(!=1; sj1)(v�x)]+

P
s2S
[Pr(!=0; sj1)(y�y)+Pr(!=1; sj1)(x�x)]:

The second term of�R0 and�R01 is zero, whereas the second term of�R1 is non negative

because for every s 2 S, Equation (F) holds. The �rst term of �R1 is strictly bigger than
the �rst term of �R0 because w � x < 0, v � y > 0, and, by Pr(! = 0j0) > Pr(! = 0j1),

P
s2bS Pr(! = 0; sj1) = Pr(bSj! = 0)Pr(! = 0j1) < Pr(bSj! = 0)Pr(! = 0j0) = P

s2bS Pr(! = 0; sj0);P
s2bS Pr(! = 1; sj1) = Pr(bSj! = 1)Pr(! = 1j1) > Pr(bSj! = 1)Pr(! = 1j0) = P

s2bS Pr(! = 1; sj0):

So, if Pr(! = 0j� = 1) > 1=2, signal-type 1 strictly prefers to ask. If Pr(! = 1j� = 1) �
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1=2, suppose by contraposition that signal-type 1 prefers not to ask. Then, since �IU 01 is

positive, �R01 must be negative. So, by w� y > x� v, we have Pr(! = 0; bSj1) < Pr(! =
1; bSj1). Then, rewriting the �rst term of �R01 as:

(w � x)
P
s2bS Pr(! = 1; sj� = 1) + (v � y)

P
s2bS Pr(! = 0; sj� = 1)+

(v � w)
P
s2bS Pr(! = 1; sj� = 1) + (w � v)

P
s2bS Pr(! = 0; sj� = 1);

the second line is positive, and then the �rst line is negative. The �rst line is bigger than

�R0, because w�x < 0, v�y > 0, and, by Equation (S) and Pr(! = 0j0) > Pr(! = 1j1),

P
s2bS Pr(! = 1; sj1) = Pr(bSj! = 1)Pr(! = 1j1) < Pr(bSj! = 0)Pr(! = 0j0) = P

s2bS Pr(! = 0; sj0);P
s2bS Pr(! = 0; sj1) = Pr(bSj! = 0)Pr(! = 0j1) > Pr(bSj! = 1)Pr(! = 1j0) = P

s2bS Pr(! = 1; sj0):

Hence �R0 is smaller than �R01, and since also �IU0 is smaller than �IU
0
1, signal-type

0 strictly prefers not to ask, contradicting Condition 3 of the Lemma. �
The technical reason why Condition 2 of the Lemma cannot be dispensed with is that

the proof fails in the comparisons of reputations for s 2 S.

Proof of Proposition 5

By inspection of�IU0 in the proof of Lemma 3, it is easy to observe that the di¤erence

in expected instrumental utility between asking and not asking increases when p decreases.

Since we are interested in �, we �x the beliefs of the observer that she has when signal-

type 1 always asks, signal-type 0 never asks, and A3 holds. Then, after asking and each

vector of advices, it is optimal for signal-type 0 to take the decision that corresponds to

the state that she considers more likely.

Suppose �rst that, as p changes, bS does not change. Since � = 0, it follows from

section Preliminaries of the Appendix that v = x and w = y. Then the di¤erence in

expected reputation between asking and not asking for signal-type 0, �R0, reads:

Pr(bSj! = 0)Pr(! = 0j� = 0)(y � x) + Pr(bSj! = 1)Pr(! = 1j� = 0)(x� y).

As only Pr(!j� = 0) depends on p, Pr(! = 0j� = 0) decreases as p decreases, and y < x,

the di¤erence in expected reputation is increasing as p decreases.

Thus, the di¤erence in the overall expected payo¤ of signal-type 0 between asking

and not asking goes up. Then, since the di¤erence in expected instrumental utility is

positive,19 for signal-type 0 to remain indi¤erent between asking and not asking as p

19Hence, when signal-type 0 is indi¤erent between asking and not asking, the di¤erence in expected
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decreases, � must increase.

Consider now a change in bS as p marginally decreases. Namely, suppose that for

some k � n and each vector of advices s with o(s) = k, one of the two signal-types

switches from considering state 0 to considering state 1 more likely. When the switching

signal-type is 0, if she were to still decide 0, the reasoning for the case in which bS does
not change holds. By switching to decision 1, she improves her expected utility of asking.

When the switching signal-type is 1, as she switches to decision 1, the expected utility of

signal-type 0 improves too, because she considers state 0 more likely and hence prefers to

be recognized as signal-type 0 rather than as signal-type 1 as it happened before. Thus,

a change in bS may only increase the di¤erence in the expected payo¤ of signal-type 0
between asking and not asking, and this makes � increase even further. �

Proof of Proposition 6

By inspection of�IU0 in the proof of Lemma 3, it is easy to observe that the di¤erence

in expected instrumental utility between asking and not asking increases when p decreases.

Since we are interested in b� and b�, we must focus on the case in which signal-type 1 always
asks and signal-type 0 asks with probability � > 0.

Suppose �rst that, as p changes, bS does not change. The di¤erence in expected

reputation between asking and not asking for signal-type 0, �R0, reads:

Pr(bSj! = 0)Pr(! = 0j� = 0)(w � x) + Pr(bSj! = 1)Pr(! = 1j� = 0)(v � y)].

As only Pr(!j� = 0) depends on p, Pr(! = 0j� = 0) decreases as p decreases, and

w�x < v�y, the di¤erence in expected reputation is increasing as p decreases. Moreover,
the maximum and, in Case 3, the minimum � under which the advisors report truthfully

weakly increase as p decreases. This observation follows from the fact that the probability

of state 0 conditional on asking decreases as p decreases; thus, to restore the maximum

or the minimum probability of state 0 conditional on asking under which the advisors

report truthfully, the probability that signal-type 0 asks must increase (see Condition

(TR2)). By Lemma 2, part (i), an increase in � when signal-type 1 always asks induces

an increase in expected reputation of signal-type 0 after asking.

Thus, the di¤erence in the overall expected payo¤ of signal-type 0 between asking and

not asking goes up. Then, since the di¤erence in expected instrumental utility is positive,

for signal-type 0 to remain indi¤erent between asking and not asking as p decreases, b�
and, in Case 3, b� must increase.
reputation is negative. Note that the di¤erence in expected instrumental utility could also be zero, but
in this case the di¤erence in expected reputation would be negative, hence signal-type 0 would ask only
for � = b� = 0.
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Consider now a change in bS as p marginally decreases. Namely, suppose that for

some k � n and each vector of advices s with o(s) = k, one of the two signal-types

switches from considering state 0 to considering state 1 more likely. When the switching

signal-type is 0, if she were to still decide 0, the reasoning for the case in which bS does
not change holds. In the new equilibrium where she takes decision 1, she improves her

expected utility, since in case of deviation to decision 0 she would obtain exactly the same

expected utility as if she were still expected to decide 0 (by A3). When the switching

signal-type is 1, this means that, after s, signal-type 1 considers state 0 and state 1 equally

likely. Then, conditional on s only, state 0 is more likely than 1. Thus, given s, signal-type

0 prefers to be recognized as signal-type 0 rather than pooling with signal-type 1 on the

decision. This observation is equivalent to Lemma 2, part (ii), as the probability of state

0 conditional on s is higher than 1=2 like the prior p. Hence, the switch of signal-type 1 to

decision 1 makes the expected utility of signal-type 0 after s increase. Thus, a change inbS may only increase the di¤erence in the expected payo¤ of signal-type 0 between asking
and not asking, and this makes b� and b� increase even further. �
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