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Abstract. Lexicographic type structures (Brandendenburger, Friedenberg, Kiesler,
ECMA 2008) have become a standard tool for the epistemic analysis of strategic rea-
soning in �nite static games. Yet, the implicit approach of type structures does not
allow to fully understand which limitations are imposed by di¤erent structures and
how their choice in�uences epistemic characterization results. Here we start from
hierarchies of lexicographic beliefs and construct two di¤erent canonical structures,
one for all hierarchies and one for those which can be represented by a mutually sin-
gular LPS over strategy-hierarchy pairs of the opponent. It turns out that the latter
includes also hierarchies where beliefs are not mutually singular at any order. Thus,
mutual singularity is an in�nite-order notion rather than a �nite-order one. More-
over, we analyze the terminality properties of the canonical type structures, i.e. how
they relate to other, generic lexicographic type structures. Our canonical structures
are proved to be fundamental for the epistemic analysis of iterated admissibility in
other papers (Catonini 2012, Catonini and De Vito, 2016)
Keywords: lexicographic probability systems, hierarchies of beliefs, lexicographic

type structures, universality, terminality.

1 Introduction

Brandendenburger, Friedenberg and Kiesler [15] (henceforth, BFK) de�ned lexicographic type
structures as the analogue of the traditional ones for lexicographic probability systems [7] (hence-
forth, LPS). Strictly speaking, they call lexicographic type structures those structures where the
belief map associates each type with a mutually singular LPS over the cartesian product of
the opponent�s strategies and types. An LPS is mutually singular if each measure in the list
assigns probability 1 to an event to which all other measures assign probability 0. Intuitevely
speaking, mutual singularity means that each measure represents a conjecture over the space of
uncertainty conditional on the realization of an event that has probability zero according to the
previous measures; indeed, Blume, Brandenburger and Dekel [7], who axiomatize LPS�s with
and without mutual singularity, refer to mutually singular LPS�s as Lexicographic Conditional
Probability Systems. On the other hand, Dekel, Friedenberg and Siniscalchi [21] prove that
the results of BFK hold through if the requirement of mutual singularity for LPS�s is relaxed
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Therefore, in this paper, we construct and analyze both mutually singular and non-mutually
singular structures.

Our aim is to take an explicit approach and identify all the hierarchies of lexicographic
beliefs we are interested in, so to provide a synthetic representation of them in a canonical
type structure. First, we do this operation starting from all hierarchies of lexicographic beliefs
(satisfying a minimal coherence requirement). Second, we restrict attention to those hierarchies
which admit a mutually singular LPS representation over strategy-hierarchy pairs of the oppo-
nent. Both choices turn out to be appropriate for di¤erent reasons. In the �rst case, we are
able to obtain a universal type structure that encompasses all other lexicographic structures
(with or without mutual singularity) as a belief-closed subspace. In the second case, we obtain
a mutually singular structure that encompasses all other stuctures where the mutual singularity
of the LPS�s is not trivially obtained through redundancies. It is noteworthy that the mutually
singular, canonical type structure includes hierarchies whose beliefs are not mutually singular
at any order. This shows that mutual singularity is really an in�nite order notion rather than a
�nite order one. Indeed, the inclusion of these hierarchies is crucial to obtain universality of the
canonical structure in the class of all lexicographic type structures without redundancies, i.e.,
where each two types induce di¤erent hierarchies.

2 Preliminaries and notation

We begin with some de�nitions and the basic notation that will be used throughout the paper.1

A measurable space is a pair (X;�X), where X is a set and �X is a �-�eld, the elements of which
are called events. When it is clear from the context which �-�eld on X we are considering, we
suppress reference to �X and simply write X to denote a measurable space. Further, if X and
Y are measurable spaces, and the function f : X ! Y is measurable, we denote by � (f) the
�-�eld on X generated by f , i.e., E 2 � (f) � �X if and only if there exists F 2 �Y such that
E = f�1 (F ). All the sets considered in this paper are assumed to be metrizable topological
spaces, and they are endowed with the Borel �-�eld. A Polish space is a topological space which
is homeomorphic to a complete, separable metrizable space. A Lusin space is a topological space
which is the continuous, injective image of a complete, separable metrizable space.2 Clearly, a
Polish space is also Lusin. Every metrizable Lusin space is measure-theoretic isomorphic to a
Borel subset of some Polish space.

If fXngn2N is a countable collection of pairwise disjoint topological spaces, then the set
X = [n2NXn is endowed with the direct sum topology.3 The set X is metrizable Lusin (resp.
Polish) provided each Xn is metrizable Lusin (resp. Polish). For a given family of mappings
ffngn2N, where fn : Xn ! Y , let f : X ! Y be the function de�ned as

f (x) = fn (x) , x 2 Xn.

Following the terminology in [25], the map f : X ! Y is called the combination of the functions
ffngn2N, and is often denoted by [n2Nfn.

We consider any product, �nite or countable, of topological spaces as a topological space
with the product topology. As such, a countable product of metrizable Lusin (resp. Polish)

1A more detailed presentation of the following concepts, as well as related mathematical results, can be found
in [8], [25], [46], [49], [52]. In the remainder of the paper, we shall make use of the results mentioned in this
section, sometimes without referring to them explicitly.

2 If X is a Lusin topological space, and �X is the corresponding Borel �-�eld, then the measurable space
(X;�X) is Standard Borel ([20, Proposition 8.6.13]).

3The assumption that the spaces Xn are pairwise disjoint is without any loss of generality, since they can be
replaced by a homeomorphic copy, if needed (see [25, p.75]).
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spaces is also metrizable Lusin (resp. Polish). Furthermore, given topological spaces X and Y ,
we denote by ProjX the canonical projection from X � Y onto X; in view of our assumption,
the map ProjX is continuous and open (i.e., the image of each open set in X � Y is an open set
in X under the map ProjX). Finally, for a measurable space X, we denote by IdX the identity
map on X, that is, IdX (x) = x for all x 2 X.

3 Hierarchies of lexicographic beliefs and lexicographic type
spaces

3.1 Lexicographic probability systems

Given a topological space X, we denote by M (X) the set of Borel probability measures on
X. The setM (X) is endowed with the weak* -topology. Then, if X is metrizable Lusin (resp.
Polish), thenM (X) is also metrizable Lusin (resp. Polish).

Given a topological space X, let N (X) (resp. Nn (X)) be the set of all �nite (resp. length-n)
sequences of Borel probability measures on X, that is,

N (X) = [n2NNn (X)
= [n2N (M (X))n .

De�nition 1 Call each � = (�1; :::; �n) 2 N (X) a lexicographic probability system (LPS).
Say � is a mutually singular LPS if there are Borel sets fElgl�n in X such that, for every
l � n, �l (El) = 1 and �l (Em) = 0 for m 6= l. Write L (X) (resp. Ln (X)) for the set of
mutually singular (resp. length-n) LPS�s.

Both topological spaces N (X) and L (X) are metrizable Lusin provided X is metrizable
Lusin (Lemma 8, Appendix 5.1.2).4 In particular, if X is Polish, so are N (X) and L (X).5

For every Borel probability measure � on a topological space X, the support of �, denoted
by Supp�, is the smallest closed subset of X such that � (Supp�) = 1. The support of a LPS
� = (�1; :::; �n) 2 N (X) is thus de�ned as Supp� = [l�nSupp�l.

De�nition 2 A LPS � = (�1; :::; �n) 2 N (X) is of full-support if[
l�n
Supp�l = X.

Write N+ (X) (resp. L+ (X)) for the set of full-support LPS�s (resp. full-support mutually
singular LPS�s).

4 If X is equipped with a metric, then the topology of N (X) can be generated by the same speci�c metric used
by BFK (cf. [15, p.321]).

5BFK show that, under the assuption that X is Polish, L (X) is Borel in N (X) ([15, Corollary C.1]). Lemma 8
in Appendix 5.1.2 shows that a stronger statement holds true: L (X) is a G�-subset (i.e. a countable intersection
of open subsets) of N (X), hence a Polish subspace of N (X) if X is Polish. Such result is not entirely new: A
special case of Lemma 8 can also be deduced from an older result due to Burgess and Mauldin ([16, Theorem 2]).
See Appendix 5.1.2 for further details.
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Suppose we are given topological spaces X and Y , and a Borel map f : X ! Y . The mapef :M (X)!M (Y ), de�ned byef (�) (E) = �
�
f�1 (E)

�
, � 2M (X) , E 2 �Y ,

is called the image (or pushforward) measure map of f . For each n 2 N, the map bf(n) : Nn (X)!
Nn (Y ) is de�ned by

(�1; :::; �n) 7! bf(n) ((�1; :::; �n)) = � ef (�k)�
k�n

.

Thus the map bf : N (X)! N (Y ) de�ned bybf (�) = bf(n) (�) , � 2 Nn (X) ,
is called the image LPS map of f . In other words, the map bf is the combination of the
functions

� bf(n)�
n2N

, and it is Borel measurable (Lemma 4).

In particular, if X and Y are metrizable Lusin spaces, then the marginal measure of � 2
M (X � Y ) on X is de�ned as margX� = gProjX (�). Consequently, the marginal of � 2
N (X � Y ) on X is de�ned as margX� = dProjX (�), and, by Lemma 4.(2) in Appendix 5.1.1,dProjX : N (X � Y )! N (X) is a continuous, surjective and open map.

3.2 Hierarchies of lexicographic beliefs

Fix a two-players set I;6 given a player i 2 I, we denote by �i the other player in I. For each
i 2 I, let S�i be a non-empty space� called space of primitive uncertainty� describing aspects
of the strategic interaction that player i is uncertain about. Throughout this paper, S�i will
represent player �i�s strategy set: Player i does not know which strategy player �i is going to
choose. Yet, other interpretations are also possible; for instance, S�i may include player �i�s
set of payo¤ functions, among which the true one is not known to player i. We assume that for
each i 2 I, S�i is a metrizable Lusin space.

Each player i 2 I is endowed with a lexicographic belief on S�i; such prior is called �rst-order
lexicographic belief. However, �rst-order beliefs do not exhaust all the uncertainty faced by each
player: Player i realises that player �i has at least one �rst-order belief on Si as well, and this
belief is unknown to her. Thus, player i�s second-order beliefs are represented by a LPS over S�i
and the space of �i�s �rst-order beliefs. Continuing in this fashion, each player is completely
characterized by an in�nite hierarchy of lexicographic beliefs.

Formally, for each i 2 I de�ne inductively the collection of spaces
�
Xk
i

	1
k=0

as

X0
i = S�i, (3.1)

Xk+1
i = Xk

i �N
�
Xk
�i

�
; k � 0. (3.2)

An element hk+1i =
�
�1i ; �

2
i ; :::; �

k+1
i

�
is a (k+1)-order belief hierarchy, where �ki =

�
�k;1i ; :::; �k;ni

�
2

N
�
Xk�1
i

�
denotes i�s k-order LPS, with �k;qi 2M

�
Xk�1
i

�
being the q-level of the k-order LPS.

It is easily seen that, according to our notation,

Xk+1
i = X0

i �
kY
l=0

N
�
X l
�i

�
.

6The analysis can be trivially extended to more than two players.
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The set of all possible, in�nite hierarchies of LPS�s for player i is H0
i =

Q1
k=0N

�
Xk
i

�
. The

space H0
i is endowed with the product topology, thus, according to Lemma 8 in Appendix 5.1.2,

H0
i is a metrizable Lusin space.
The notion of coherence for hierarchies of beliefs (de�ned below) says that beliefs at di¤erent

orders cannot contradict each other. To state this formally, let ProjXk�1
i

: Xk
i ! Xk�1

i denote the

coordinate projection, for all k � 1. Recall that the marginal of �k+1i 2 N
�
Xk
i

�
over Xk�1

i , viz.

margXk�1
i

�k+1i , is de�ned as the image LPS of �k+1i under ProjXk�1
i
, namely dProjXk�1

i

�
�k+1i

�
.

Since each map ProjXk�1
i

is onto, continuous and open (by de�nition of product topology), it

follows from Lemma 4.(2) in Appendix 5.1.1 that so is the induced map dProjXk�1
i
.

De�nition 3 A hierarchy of beliefs hi =
�
�1i ; �

2
i ; :::

�
2 H0

i is coherent if and only if, for each
k � 1,

margXk�1
i

�k+1i = �ki .

This de�nition of coherence is a simple generalization of the notion of coherence as in [39]
or [14]; the two notions coincide if each �ki is a standard probability measure (i.e. a length-1
LPS). Note that a hierarchy of beliefs satisfying this coherence requirement consists of an in�nite
sequence of LPS�s of the same length.7

We now introduce the concepts of mutual singularity and full-support for hierarchies of
LPS�s.

De�nition 4 Say hi =
�
�1i ; �

2
i ; :::

�
2 H0

i is mutually singular (at order k) if there exists
k � 1 such that �ki is mutually singular.

De�nition 5 Say hi =
�
�1i ; �

2
i ; :::

�
2 H0

i is of full-support at order k � 1 if �ki is a full-
support LPS. Say hi is of full-support if, for all k � 1, �ki is of full-support.

The relation between coherent belief hierarchies and the notions of mutual singularity and
full-support is given in the following proposition, which exhibits an interesting "duality":

Proposition 1 Fix a coherent hierarchy hi =
�
�1i ; �

2
i ; :::

�
2 H0

i .

1. If hi is mutually singular at order k � 1, then hi is mutually singular at order k0, for all
k0 � k.

2. If hi is of full-support at order k � 1, then hi is of full-support at order k0, for all k0 � k.

7As we shall see below, from any type in a lexicographic type structure we can derive a corresponding coherent
hierarchy with the property of all orders of beliefs being of the same length.
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Proof: Part 1 follows from Lemma 5.(1) in Appendix 5.1.1. Since each coordinate projection
ProjXk�1

i
: Xk

i ! Xk�1
i is a continuous surjection, Part 2 follows from Lemma 7.(1) Appendix

5.1.1. �

For each player i 2 I, the space of all coherent hierarchies of beliefs is denoted byH1
i . For each

i 2 I, write e�0i for the set of mutually singular hierarchies of LPS�s, and write e�1i = e�0i \H1
i for

the set of mutually singular and coherent hierarchies of LPS�s. Mutually singular and coherent
hierarchies where mutual singularity is satis�ed at order 1 have already been the subject of
research in epistemic game theory� see [30] and [53].

Lemma 1 For each i 2 I,

(i) H1
i is a closed subset of H

0
i .

(ii) The set e�1i is a Borel subspace of H1
i , and it is a Polish subspace of H

1
i provided each Si is

Polish.

Our primary focus will be on hierarchies of beliefs which satisfy coherence and mutual sin-
gularity. The following lemma plays the central mathematical role in the construction of the
canonical hierarchic space in the next section.

Lemma 2 Fix a countable collection of Lusin spaces fWlgl�0, and, for each k � 0, let Zk =
�kl=0Wl. Fix a sequence of LPS�s (�k)k2N where, for each k � 1, �k 2 N (Zk�1) and margZk�1�

k+1 =

�k. Thus, there exists a unique LPS � on Z = �1l=0Wl such that

margZk�1� = �k, 8k � 1.

Furthermore,

1. If there is k� � 1 such that �k� is mutually singular, then � is mutually singular.

2. � is of full-support if and only if, for each k � 1, �k is of full-support.

Lemma 2 is essentially a version of the Kolmogorov Extension Theorem for LPS�s (cf. [14,
Lemma 1]), and its proof is relegated in Appendix. It is noteworthy that the reverse implication
of part 1 of Lemma 2 is not true. That is, the LPS � 2 N (Z) could be mutually singular, even
though every LPS �k+1 2 N (Zk) does not satisfy an analogous requirement.8 This fact will
play a crucial role in the construction of a canonical hierarchic space consistent with mutual
singularity, as we will see in the next section.

8Consider the case in which the lenght of each LPS is 2. Examples where the reverse implication of Lemma
2.1 does not hold can be found in statistical inference and in the convergence theory of set martingales (see
[47, Chapter 9] for a modern treatment). This literature goes back, at least, to the pioneering contribution of
Kakutani [32], the so-called Dicothomy Theorem for in�nite product measures.
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3.3 The canonical hierarchic space(s)

In this section, we construct the canonical hierarchic space, that is, the space of all hierarchies
of lexicographic beliefs consistent with (common belief of) coherence (and mutual singularity,
in a second step). To this end, we �rst show that a coherent hierarchy for a player is equivalent
to a belief over the cartesian product of his own space of primitive uncertainty and opponents�
hierarchies. So we start from the following result (cf., [14, Proposition 1]).

Proposition 2 For each i 2 I, there exists a homeomorphism fi : H
1
i ! N

�
S�i �H0

�i
�
such

that
margXk�1

i
fi
��
�1i ; �

2
i ; :::;

��
= �ki , 8k � 1.

Proof: Note that, for each i 2 I, the set S�i �H0
�i can be written as

S�i �H0
�i = Xk�1

i �
1Y

l=k�1
N
�
X l
�i

�
.

We denote by ProjXk�1
i

the projection map from S�i � H0
�i onto X

k�1
i . For each i 2 I, let

�i : N
�
S�i �H0

�i
�
! H1

i be the "diagonal" map
9 de�ned by

�i 7�!
�
�ki (�i)

�
k�1

=
�dProjXk�1

i
(�i)

�
k�1

=
�
margXk�1

i
�i

�
k�1

.

The existence of the map �i follows from Lemma 2. To see this, in Lemma 2 set W0 = X0
i and

Wl = N
�
X l�1
�i

�
for all l � 1. So Zk = �kl=0Wl = Xk

i for each k � 0, and Z = S�i � H0
�i.

Since X0
i is Lusin, it follows from an iterated application of Lemma 8 that all the Zk�s and Z

are Lusin spaces. Thus each hierarchy hi 2 H0
i de�nes a sequence of LPS�s over Lusin spaces,

and the conditions of Lemma 2 are satis�ed.
Since ProjXk�1

i
is a continuous, open surjection between Lusin spaces, it follows from Lemma

4.(2) that each �ki is a continuous, open surjection from N
�
S�i �H0

�i
�
to N

�
Xk�1
i

�
. Continu-

ity of each �ki implies continuity of the map �i (cf. [42, Theorem 19.6] or [25, p.79]). By Lemma
2 the map �i is a bijection, so there exists some k � 1 for which dProjXk�1

i
is injective� hence,

in view of the above, a continuous open bijection onto its image. By the Diagonal Theorem
([25, Theorem 2.3.20]), it turns out that, for each i 2 I, �i is a continuous open bijection, i.e.,
a homeomorphism. To conclude the proof, set fi = ��1i . �

The homeomorphism just described implies that a player i�s coherent hierarchy of LPS�s
determines his LPS over player �i�s hierarchies of beliefs. However, even if player i�s hierarchy
hi 2 H1

i is coherent, fi (hi) could deem possible an incoherent hierarchy of the other player, that
is, player i may believe (in an appropriate sense de�ned below) it is possible that player �i�s
hierarchy is not coherent. We consider the case in which there is common full belief of coherence.

Formally, we say that player i, endowed with a coherent hierarchy hi, fully believes an
event E � S�i � H0

�i if fi (hi) (E) =
�!
1 , where

�!
1 denotes a �nite sequences of 1s; that is

9Let fZngn�1 be a sequence of sets, and let f : X ! Y �
Q1
n=1 Zn be the function de�ned by f (x) =

(f1 (x) ; f2 (x) ; :::), where fn : X ! Zn. The function f is called the diagonal of the mappings ffngn�1 in many
standard texbooks in topology (e.g. [25]).
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to say, every probability measure of the LPS fi (hi) 2 N
�
S�i �H0

�i
�
assigns probability 1 to

E.10 Common full belief of coherence is imposed by de�ning inductively, for each i 2 I, the
following sets:

H l+1
i =

n
hi 2 H1

i

���fi (hi)�S�i �H l
�i

�
=
�!
1
o
, l � 1,

Hi = \l�1H l
i .

The set �i2IHi is naturally interpreted as the set of players�hierarchies such that each player
fully believes that the other player�s hierarchy is coherent, fully believes that the other player
fully believes that his hierarchy is coherent, and so on. Proposition 3 below shows that common
full belief of coherence closes the model, in the sense that each player�s coherent hierarchy induces
all possible beliefs over his own space of primitive uncertainty and opponents�hierarchies.

Proposition 3 The restriction of fi to Hi induces a homeomorphism f i from Hi onto N (S�i �H�i).

Proof: It is easily seen that

Hi =
n
hi 2 H1

i

���fi (hi) (S�i �H�i) = �!1 o .
Indeed, if hi 2 Hi, then by �-additivity of LPS�s it follows that

fi (hi) (S�i �H�i) = fi (hi)
�
S�i � \l�1H l

�i

�
= lim

l!1
fi (hi)

�
S�i �H l

�i

�
=

�!
1 .

On the other hand, suppose that hi 2 H1
i , and fi (hi) (S�i �H�i) =

�!
1 . Clearly, hi 2 Hi =

\l�1H l
i . The restriction of the homeomorphism fi to Hi is hereditarily continuous, injective and

open, so it remains to show that fi (Hi) is homeomorphic to N (S�i �H�i). But this follows
from Lemma 9, so there exists a homeomorphism f i from Hi onto N (S�i �H�i). �

Herafter, we shall refer to the set H = �i2IHi as the canonical hierarchic space. It should be
noted that if a hierarchy hi 2 Hi is mutually singular (De�nition 4), then f i (hi) is a mutually
singular LPS by Lemma 2, formally f i (hi) 2 L (S�i �H�i). As already remarked, the reverse
implication is not true. Using the canonical homeomorphism of Proposition 3, let

�1i =
�
hi 2 Hi

��f i (hi) 2 L (S�i �H�i)	 .
That is, �1i is the set of all hierarchies consistent with common full belief of coherence that can
be summarized by a mutually singular belief over S�i�H�i. Hereafter, we shall refer to the set
�1i as the set of hierarchies with a mutually singular representation. In view of the above, �

1
i

properly includes the set e�1i \ Hi, i.e., the set of mutually singular hierarchies consistent with
common full belief of coherence.

Clearly, if a hierarchy hi 2 �1i is consistent with common full belief of coherence, then the
induced LPS f i (hi) is mutually singular, but player i does not necessarily fully believe that his
opponents hierarchies are mutually singular as well. We thus consider the case in which there is

10This notion of full belief for LPS has been given an axiomatic, preference-based treatment by BFK ([15,
Proposition A.1]).
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common full belief of the event "coherence and mutual singularity" among the players. We do
this by �rst de�ning, for each i 2 I, the map gi : �1i ! L (S�i �H�i) as gi =

�
f i
��1
. Then, we

de�ne inductively, for each i 2 I, the following sets:

�l+1i =
n
hi 2 �1i

���gi (hi)�S�i � �l�i� = �!1 o , l � 1,
�i = \l�1�li.

The set � = �i2I�i is referred to as the canonical hierarchic space consistent with mutual
singularity. The following Proposition shows that a homeomorphism result, analogous to the
one provided by Proposition 3, also holds for each space of hierarchies �i.

Proposition 4 The restriction of f i to �i induces a homeomorphism gi : �i ! L (S�i � ��i).

Proof: Using the same arguments as those in the proof of Proposition 3, it is immediate to
check that

�i =
n
hi 2 �1i

���gi (hi) (S�i � ��i) = �!1 o .
The remainder of the proof is virtually identical to that of Proposition 3. �

We conclude this section with a few remarks concerning the topological structure of the
canonical hierarchic spaces H and �. Tipically, the literature on hierarchies of beliefs (e.g., [4],
[14]) begins with an underlying space of uncertainty that is a Polish space. It then imposes the
weak*-topology on the sets of beliefs which yields, by construction, a corresponding Polish space
of hierarchies of beliefs. In the present context of lexicographic beliefs, if each space Si is Polish,
so are H and �� this is easily seen by using Lemma 1 in the base step and then proceeding
by induction on the sets H l

i and �
l
i. But a similar conclusion holds if each space Si is simply

metrizable Lusin; that is, the Lusin property of the topologies on both H and � is inherited
from the topology on each space of primitive uncertainty.11

We mention a further topological property of the canonical hierarchic spaces under consid-
eration: Both H and � are not compact, even if the underlying spaces of primitive uncertainty
are compact (e.g., �nite). To see this, note thatM (X) is compact if X is compact, and this in
turn implies that the spaces Nn (X) and Ln (X) are also compact for some �nite n 2 N. But
the same conclusion does not hold for the spaces N (X) and L (X).12 By contrast, the canon-
ical hierarchic spaces of both standard beliefs and conditional beliefs turn out the be compact
metrizable if each space Si is compact metrizable.

Finally, we point out that our topological assumptions imposed on the space of LPS�s are
"natural" in the sense that they do not alter the conceptually appropriate measure-theoretic
structure on the space of belief hierarchies. To illustrate, �x an event E � X and a number
p 2 Q\ [0; 1]. Say that player i p-believes E for length-n LPS

�
�1i ; :::; �

n
i

�
if �li (E) � p,

for all l � n (cf., [29] and [41]; if p = 1, this corresponds to the notion of full belief introduced
before). The statement "player �i p-believes the event E for some �nite length LPS ��i" can be
expressed by the set bpn (E) =

��
�1�i; :::; �

n
�i
�
2 N (X)

���li (E) � p;8l � n
	
. To formalize higher

11 It should also be noted that both the space of standard belief hierarchies in [14] and the space of conditional
belief hiearchies in [4] are metrizable Lusin provided all sets of primitive uncertainty are assumed to be metrizable
Lusin. The Kolmogorov Extension Theorem, which plays a central role in the construction of the canonical space,
is indeed applicable even for the case in which every factor space is Lusin (or Souslin) - see Theorem 5 and
subsequent discussion in the Appendix for details.
12This is an instance of a well-known mathematical fact (see [25, Theorem 2.2.3]): If fX�g�2� is a family of

non-empty compact spaces, then the direct sum [�2�X� is compact if and only if the right-directed set � is �nite.
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order statements such as "player i p-believes that �player �i p-believes E�" we need to require
that the set bpn (E) be an event in N (X). Lemma 12 in Appendix 5.1.2 shows that, under our
topological assumptions, this is indeed the case: The Borel �-�eld on the space N (X) coincides
with AN (X), which is exactly the �-�eld generated by sets of the form

f(�1; :::; �n) 2 N (X) j�l (E) � pl;8l � ng ,

where pl 2 Q\ [0; 1] for all l � n, and E is an event in X.

3.4 Lexicographic type structures

The following de�nition is a natural generalization of the standard de�nition of epistemic type
structure with beliefs represented by probability measures, i.e., length-1 LPS (cf. [29]).

De�nition 6 An (Si)i2I-based lexicographic type structure is a structure T = hSi; Ti; �iii2I ,
where

1. for each i 2 I, Ti is a metrizable Lusin space;

2. for each i 2 I, the function �i : Ti ! N (S�i � T�i) is measurable.

We call each space Ti type space and we call each �i belief map.13 Members of type spaces,
viz. ti 2 Ti, are called types. Say ti 2 Ti is a mutually singular type if �i (ti) 2 L (S�i � T�i).
Say ti 2 Ti is a full-support type if �i (ti) 2 N+ (S�i � T�i). Each element (si; ti)i2I 2 S � T
is called state (of the world).

A lexicographic type structure� or type structure, for short� formalizes Harsanyi�s implicit
approach to model hierarchies of beliefs. But clearly the canonical hierarchic space H = �i2IHi
constructed in the previous section gives rise to an (Si)i2I -based lexicographic type structure
Tu = hSi; Ti; �iii2I , by setting Ti = Hi and �i = f i for each i 2 I. Hereafter, we shall refer to
Tu = hSi;Hi; f iii2I as the canonical lexicographic type structure.

The formalism of lexicographic type strucures was �rst introduced by BFK ([15, Section 7])
under the additional requirement that each belief is represented by a mutually singular LPS.
The following de�nition translates their notion of type structure into our setting.

De�nition 7 Call a lexicographic type structure T = hSi; Ti; �iii2I mutually singular if, for
each i 2 I, every ti 2 Ti is a mutually singular type. (I.e., the range of each belief map �i is
contained in L (S�i � T�i).)

It is easily seen that also the canonical hierarchic space � gives rise to a type structure T �u =
hSi;�i; giii2I which is mutually singular. Analogously to the case of Tu, we call T �u the canonical
mutually singular lexicographic type structure. In light of Proposition 3 and Proposition 4, both
Tu and T �u satisfy a "richness" property, called completess (cf. [13]).

13Observe that some authors ([4], [29]) use the terminology "type space" for what is called "type structure"
here.
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De�nition 8 An (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I is complete if
each belief map �i is onto.

Note that each type space in a complete lexicographic type structure has the cardinality of
continuum. The structures Tu and T �u are particular instances of complete type structures. But
there exist also complete type structures which are di¤erent from Tu and T �u .14

3.5 From types to belief hierarchies

A lexicographic type structure provides an implicit representation about players�uncertainty, in
the sense that it does not describe hierarchies of beliefs directly. In this Section we show that
it is possible to associate with the subjective belief of each type an explicit hierarchy of beliefs.
To accomplish this task, we �x a given (Si)i2I -based type structure T = hSi; Ti; �iii2I , and we
de�ne for each player i 2 I a hierarchy description map di : Ti ! H0

i associating with each
ti 2 Ti a corresponding hierarchy of LPS�s. Following the terminology in [29], the hierarchy
di (ti) =

�
d1i (ti) ; d

2
i (ti) ; :::

�
is called the i-description of ti. Each hierarchy description map is

de�ned inductively (cf. [4]):

� (base step: k = 1) For each i 2 I, ti 2 Ti, de�ne the �rst-order hierarchy description map
d1i =

dProjS�i � �i : Ti ! N (S�i) by

d1i (ti) = margS�i (�i (ti)) .

For each i 2 I, let  0�i : S�i ! S�i be the identity map, and de�ne  1�i : S�i � T�i !
X1
i = S�i �N (Si) as

 1�i =
�
IdS�i ; d

1
�i
�
.

� (inductive step: k+1, k � 1) Suppose we have already de�ned, for each i 2 I, the functions
dki : Ti ! N

�
Xk�1
i

�
and  k�i : S�i � T�i ! Xk

i = Xk�1
i � N

�
Xk�1
�i

�
. For each i 2 I,

ti 2 Ti, de�ne dk+1i : Ti ! N
�
Xk
i

�
as

dk+1i (ti) = b k�i (�i (ti)) ;
consequently, the map  k+1�i : S�i � T�i ! Xk+1

i is de�ned as

 k+1�i =
�
 k�i; d

k+1
�i

�
,

so that  k+1�i =
�
s�i; d1�i; :::; d

k
�i; d

k+1
�i

�
.

It turns out that, for each i 2 I, the map  �i : S�i � T�i ! S�i � H0
�i is given by

 �i =
�
IdS�i ; d�i

�
.

An easy check (use Lemma 4 in the base step, and then proceed by induction) shows that each
di is a measurable function, and is continuous if each belief map is continuous. Consequently,

the map b �i = \�
IdS�i ; d�i

�
: N (S�i � T�i) ! N

�
S�i �H0

�i
�
is continuous provided di is

continuous.

14A simple but elegant argument was �rst used by BFK ([15, Proposition 7.2]) to state the existence of a belief-
complete type structure T = hSi; Ti; �iii2I where each type space is Polish and each Si is a �nite, discrete space.
Such an argument can be easily adapted to our framework as follows. Every Lusin space is analytic, so it is the
image of the Baire space NN under a continuous map ([20, Corollary 8.2.8]; see also [34, p. 85])). For given spaces
of primitive uncertainty (Si)i2I , let Ti = N

N, for each i 2 I. The above result implies the existence of continuous
belief maps �i from Ti onto N (S�i � T�i). These maps give us a complete lexicographic type structure.
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3.6 Type morphisms and universality

In what follows, we let T = �i2ITi. If X and Y are topological spaces, we say that the map
f : X ! Y is bimeasurable if it is Borel measurable and, for each Borel set B � X, f (B) is
Borel in Y .

De�nition 9 Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be two (Si)i2I-based lexicographic
type structures. For each i 2 I, let 'i : Ti ! T 0i be a measurable map such that

�0i � 'i = \�
IdS�i ; '�i

�
� �i,

where \�
IdS�i ; '�i

�
: N (S�i � T�i)! N

�
S�i � T 0�i

�
is the image LPS map under

�
IdS�i ; '�i

�
:

S�i�T�i ! S�i�T 0�i. Then the function ('i)i2I : T ! T 0 is called type morphism (from T
to T 0).

The morphism is called bimeasurable (resp. type isomorphism) if the map ('i)i2I is
bimeasurable (resp. an isomorphism). Say T and T 0 are isomorphic if there is a type isomor-
phism between them.

The notion of type morphism captures the idea that a type structure T is "contained in"
another type structure T 0 if T can be mapped into T 0 in a way which preserves the beliefs
associated with types. Condition (2) in the de�nition of type morphism expresses consistency

between the function 'i : Ti ! T 0i and the induced function
\�

IdS�i ; '�i
�
: N (S�i � T�i) !

N
�
S�i � T 0�i

�
. That is, the following diagram commutes:

Ti
�i����! N (S�i � T�i)??y'i ??y \(IdS�i ;'�i)

T 0i
�0i����! N (S�i � T 0�i)

. (3.3)

The notion of type morphism does not make any reference to hierarchies of LPS�s. But, as
one should expect, the important property of type morphisms is that they preserve the explicit
description of lexicographic belief hierarchies.

Proposition 5 Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be two (Si)i2I-based lexicographic
type structures. If ('i)i2I : T ! T 0 is a type morphism from T to T 0, then di (Ti) � di (T

0
i ) for

each i 2 I.

In words, Proposition 5 states that if T can be embedded into T 0, then every (Si)i2I -based
belief hierarchy that is generated by some type in T is also generated by some type in T 0. This
formalizes the idea of viewing type morphisms as a manner to relate types in one structure to
types in a wider structure. Heifetz and Samet ([29, Proposition 5.1]) provide the above result
for the case of standard type structures. Proposition 5 is indeed a straightforward generalization
of Heifetz and Samet�s result, and its proof is omitted, since it relies on standard arguments.15

But there is also another important, conceptual property of type morphism as we elaborate
in Appendix 5.2. Every lexicographic type structure de�nes the set of belief hierarchies that are
15The statement of Proposition 5 can be rephrased by saying that every type morphism is also a hierarchy

morphism, i.e., a map between type structures which preserves the hierarchies of beliefs associated with types.
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allowed for each player. So, in a sense speci�ed below, a lexicographic type structure represents
a set of restrictions on players�hierarchies of beliefs that are "transparent", that is, not only the
restrictions hold, but there is common full belief in those restrictions. This idea of "transparency"
(referred to as "context" by BFK16) is captured by the notion of self-evident event in a
type structure. Fix two (Si)i2I -based lexicographic type structures, viz. T and T 0, and a
bimeasurable type morphism ('i)i2I : T ! T 0 between them. If ('i)i2I is bimeasurable, then
the set S � �i2I'i (Ti) is a well de�ned event in S � T 0, and it is called self-evident in T 0.17
Proposition 12 in Appendix 5.2 shows that (a) if T is mapped via type morphism into T 0, then
T corresponds to a self-evident event in T 0; and (b) every self-evident event in T corresponds
to a "smaller" type structure.

Put di¤erently, such result says that, if T can be mapped into T 0 by a (bimeasurable) type
morphism ('i)i2I , we can essentially regard T as a (measurable) substructure of T 0. This raises
the following question: Is there a lexicographic type structure into which any other type structure
can be mapped? Alternatively put, since a lexicographic type structure generates hierarchies
of LPS�s, does there exists a type structure that generates all hierarchies of beliefs? A type
structure satisfying this requirement is called universal.

De�nition 10 An (Si)i2I-based type structure T 0 = hSi; T 0i ; �0iii2I is universal if for every
other (Si)i2I-based type structure T = hSi; Ti; �iii2I there is a unique type morphism from T 0 to
T . In this case, the set S � T 0 is called universal belief space.

Of course, any two universal type structures are isomorphic.
We state now the main result of this section.

Theorem 1 Let T = hSi; Ti; �iii2I be an arbitrary (Si)i2I-based lexicographic type structure,
and, for each i 2 I, let di : Ti ! H0

i be an i-description map. Then, for each i 2 I,

1. di(Ti) � Hi,

2. (di)i2I is the unique type morphism from T to Tu = hSi;Hi; f iii2I .
Thus Tu is the unique universal lexicographic type structure (up to type isomorphism).

Note that the type structure T in Theorem 1 does not necessarily give rise to a self-evident
event in Tu. This is so because the type morphism (di)i2I from T to Tu may fail to be bimea-
surable.18 We now provide su¢ cient conditions on type structures under which the requirement
of bimeasurability is satis�ed.

16As BFK put it ([15, p.319]), a speci�c lexicographic type structure can be thought of as "... giving the
"context" in which the game is played", so that "... who the players are in the given game can be seen as a
shorthand for their experiences before the game. The players�possible characteristics� including their possible
types� then re�ect the prior history or context."
17By bimeasurability of 'i, the set 'i (Ti) is a Lusin subspace of T

0
i , hence Borel in T

0
i . The product space

S��i2I'i (Ti) is sometimes called belief-closed subspace of S�T 0 (cf. [14, Remark 2] and [50]). Here, we refrain
from using such terminology since the original de�nition of belief-closed subspace, due to Mertens and Zamir
[39], is stated within the formalism of belief spaces and belief morphisms. Both de�nitions of belief spaces and
belief morphisms are more comprehensive than those of type structures and type morphisms, respectively. But, as
remarked by Heifetz and Samet ([29, Section 6]), they do not give rise to di¤erent de�nitions of epistemic types.
18The bimeasurability condition for type morphisms is automatically satis�ed in Mertens and Zamir�s framework

(cf. [39]), since all the spaces are compact and all the relevant functions are continuous.
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De�nition 11 Call a lexicographic type structure T = hSi; Ti; �iii2I countable (resp. �nite)
if the cardinality of each type space Ti is countable (resp. �nite).

We recall that each �nite or countable set is endowed with the discrete topology (which
makes it a Polish space), so the above de�nition of �nite (resp. countable) type structure is
well-posed. We also introduce an important class of type structures, namely type structures
satisfying a non-redundancy condition. A type structure is non-redundant if any two distinct
types induce distinct lexicographic belief hierarchies. Formally:

De�nition 12 An (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I is non-redundant
if, for each i 2 I, the i-description map di is injective.19 Say T is redundant if it is not non-
redundant.

It is evident from this de�nition that both Tu and T �u are non-redundant, as each i-description
map turns out to be an isomorphism. The following result (see Appendix 5.2 for the proof)
shows that, for countable andnor non-redundant type structures, the bimeasurability problem
for (di)i2I is avoided.

20

Proposition 6 If T = hSi; Ti; �iii2I is countable or non-redundant lexicographic type structure,
then S � �i2Idi (Ti) is a self-evident event in Tu. Conversely, for each self-evident event S �
�i2IEi � S�H in Tu, there exists a non-redundant type structure T 0 = hSi; T 0i ; �0iii2I such that
(di)i2I : T

0 ! �i2IEi is a type isomorphism.

3.7 Mutually singular type structures and universality

Note that Theorem 1 identi�es the structure Tu = hSi;Hi; f iii2I as the terminal object in the
category of all possible type structures, i.e., type structures where LPS�s are not required to be
mutually singular. This raises the following question: Is there a universal structure within the
class of mutually singular type structures? One would expect the structure T �u = hSi;�i; giii2I
to be the natural candidate for this class of type structures. But the following example shows
T �u could not work for a very simple reason: A mutually singular type may induce a hierarchy
of beliefs which is not mutually singular and cannot be represented by a mutually singular LPS
over opponent�s strategies and hierarchies.

Example 1 Consider the following game, where S1 = fU;M;Dg and S2 = fL;C;Rg.

1n2 L C R

U (4; 1) (4; 1) (0; 1)

M (0; 1) (0; 1) (4; 1)

D (3; 1) (2; 1) (2; 1)

19Mertens and Zamir ([39, De�nition 2.4 and Proposition 2.5]) formulate the non-redundancy condition in
terms of a separation condition which is equivalent the property stated here. According to their formulation, a
type structure T = hSi; Ti; �iii2I is non-redundant if the �-�eld on each Ti generated by di separates the points.
It is shown in [38] that both de�nitions are equivalent within the framework of standard type structures. The
extension of this result to the case of lexicographic type structures is straightforward.
20Di¤erent conditions, weaker than countability and non-redundancy, can be imposed on lexicographic type

structures to guarantee the bimeasurability property of a type morphism (see [3, Appendix A] for details). Count-
ability and non-redundancy su¢ ce for the purposes of the present paper.
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We append to this game the following mutually singular type structure T = hSi; Ti; �iii2I . For
the set of types, take T1 = ft01g and T2 = ft02; t002g. The belief maps �1 : T1 ! L (S2 � T2) and
�2 : T2 ! L (S1 � T1) are de�ned as follows. Player 1�s type t01 is associated with a length-2
LPS �1 (t

0
1) =

�
�11; �

2
1

�
, such that

�11
�
fCg �

�
t02
	�

= �11
�
fRg �

�
t02
	�
=
1

2
,

�21
�
fLg �

�
t002
	�

= �21
�
fRg �

�
t002
	�
=
1

2
.

Player 2�s belief map is such that �2 (t
0
2) = �2 (t

00
2), a mutually singular LPS. It is easily veri�ed

that the LPS �1 (t
0
1) =

�
�11; �

2
1

�
is mutually singular� speci�cally, �11 and �

2
1 have disjoint sup-

ports, given by Supp�11 = fC;Rg�ft02g and Supp�21 = fL;Rg�ft002g, respectively. However, the
induced �rst-order belief margS2 (�1 (t

0
1)) =

�
margS2�

1
1;margS2�

2
1

�
is not mutually singular� the

supports of the marginal probability measures are given by the sets fC;Rg and fL;Rg, respec-
tively. Moreover, margT2�

1
1 and margT2�

2
1 assign probability 1 respectively on t

0
2 and t

00
2, which

obviously induce the same hierarchy of player 2. The two things together imply that (i) all in-
duced higher-order beliefs are not mutually singular (formal proof in Appendix 5.3), and that
(ii) the induced hierarchy can be represented only by a non mutually singular, length-2 LPS over
strategy-hierarchy pairs of the opponent, where both component measures assign probability 1=2
to the same pair.

Example 1 shows two di¤erent, but related di¢ culties concerning the notion of mutual sin-
gularity for lexicographic type structures. The �rst di¢ culty is, in some sense, operational: The
type structure T = hSi; Ti; �iii2I described in Example 1 is simple enough to conclude by a sim-
ple induction argument (see Appendix 5.3) that the hierarchy d1 (t01) is not mutually singular at
any order and cannot be represented by a mutually singular LPS over strategy-hierarchy pairs
of the opponent. But, for more "complicated" type structure, doing these checks could be a
very di¢ cult task.

The second di¢ culty is instead conceptual: Is there a (sub)class of mutually singular type
structures such that T �u = hSi;�i; giii2I is the universal structure within this class? If the
answer is a¢ rmative, then what modeling assumptions are captured by the mutual singularity
condition on a type structure? How do those assumptions relate to the notion of mutually
singular hierarchies?

We overcome such di¢ culties by providing a strengthening of the notion of mutual singularity,
called strong mutual singularity, which is de�ned within the (lexicographic) type structure
formalism, without any reference to hierarchies of beliefs. This notion, which is of measure-
theoretic nature, solves the aforementioned problems (both conceptual and operational), and
builds on the important work of Friedenberg and Meier [28] concerning the relationship between
hierarchies and type morphisms.

We begin our analysis with a measurability condition concerning the belief maps of a type
structure, following Friedenberg and Meier [28]:

De�nition 13 Fix a type structure T = hSi; Ti; �iii2I , and, for each i 2 I, sub-�-�elds FTi �
�Ti. Say that �i2IFTi is closed under T if, for each i 2 I, E�i � F�i 2 �S�i � FT�i,
(p1; p2; :::; pn) 2 (Q\ [0; 1])n, it holds that

(�i)
�1
n�
�1i ; :::; �

n
i

�
2 N (S�i � T�i)

����li (E�i � F�i) � pl;8l � n
o
2 FTi.
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For a given type structure T = hSi; Ti; �iii2I , let
�
�i2IF�Ti

	
�2� be the family of all sub-�-

�elds closed under T . For each i 2 I, de�ne GTi = \�2�F�Ti . Clearly, �i2IGTi is a sub-�-�eld of
�i2IFTi , and it is closed under T . So �i2IGTi is called the coarsest �-�eld closed under T .

Referring back to Example 1, note that there are two �-�elds closed under T , namely f;; T1g�
f;; T2; ft02g ; ft002gg and f;; T1g � f;; T2g. The latter is the coarsest �-�eld closed under T .

Next result extends [28, Proposition 5.1] to the present framework.

Proposition 7 For a given type structure T = hSi; Ti; �iii2I it holds that

�i2IGTi = �i2I� (di) .

The notion of �i2IGTi is de�ned within the domain of lexicographic type structures, so this
leaves open the question as to how to interpret the condition. Proposition 7 above establishes
that the coarsest �-�eld closed under T is precisely the �-�eld generated by the hierarchy de-
scription maps. So substantially �i2IGTi de�nes a sub-language of type spaces which corresponds
to the players�language in the hierarchy space.

Given � = (�1; :::; �n) 2 N (X) and a sub-�-�eld FX � �X , say � is a mutually singular
w.r.to FX if, for each l = 1; :::; n, there are sets El 2 FX such that �l (El) = 1 and �l (Em) = 0
for l 6= m.

Proposition 8 Fix a mutually singular type structure T = hSi; Ti; �iii2I . A type ti 2 Ti induces
a hierarchy di (ti) 2 �1i if and only if �i (ti) is mutually singular w.r.to �S�i � GT�i.

The above result provides an operationally convenient way to check whether a mutually
singular type, viz. ti 2 Ti, induces or not a hierarchy which is has a mutually singular represen-
tation. The notion of coarsest �-�eld closed under T is de�ned on the type structure alone. So,
in order to check the mutually singular representation of a hierarchy induced by the type ti, there
is no need to leave the domain of type structures� we simply need to check that �i (ti) is mutu-
ally singular w.r.to �S�i �GT�i . To see the signi�cance of this, refer back to Example 1: Player
1�s type t01 cannot induce a hierarchy with a mutually singular representation, in that the corre-
sponding LPS �1 (t

0
1) =

�
�11; �

2
1

�
is not mutually singular w.r.to �S2 �GT2 = 2S2 �f;; T2g. Note

that Proposition 8 is automatically satis�ed in the mutually singular canonical type structure
T �u = hSi;�i; giii2I .

With this in place, we can now introduce an important class of lexicographic type structures.

De�nition 14 Let T = hSi; Ti; �iii2I be a mutually singular type structure. Say T is strongly
mutually singular if, for each player i 2 I, each type ti 2 Ti is such that �i (ti) is mutually
singular w.r.to �S�i � GT�i.

Note that T �u = hSi;�i; giii2I is strongly mutually singular. We can now state the main
result concerning the class of strongly mutually singular type structures.

Theorem 2 Let T = hSi; Ti; �iii2I be an arbitrary strongly mutually singular type structure,
and, for each i 2 I, let di : Ti ! H0

i be the i-description map. Then, for each i 2 I,
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1. di(Ti) � �i,

2. (di)i2I is the unique type morphism from T to T �u = hSi;�i; giii2I .
Thus T �u is the unique universal lexicographic type structure (up to type isomorphism)
within the class of strongly mutually singular type structures.

We next provide an interesting case to check whether a type structure is strongly mutually
singular. We have already introduced the concept of non-redundant type structure (De�nition
12).21 Now the claim is:

Proposition 9 Let T = hSi; Ti; �iii2I be a mutually singular type structure. If T is non-
redundant, then T is strongly mutually singular.

Proof: First note that, if T = hSi; Ti; �iii2I is non-redundant, then each belief map �i :
Ti ! L (S�i � T�i) is injective, hence a measure-theoretic embedding by Souslin Theorem. To
see this, observe that the map (di)i2I is bimeasurable by Proposition 6, so that also the mapb �i = \�

IdS�i ; d�i
�
is bimeasurable. By Theorem 1, the following diagram commutes:

Ti
�i����! L(S�i � T�i)??ydi ??y \(IdS�i ;d�i)

Hi
f i����! N (S�i � H�i)

.

As such, each belief map �i is bimeasurable. Now, pick any ti 2 Ti. Since b �i is bimeasurable,
then b �i (�i (ti)) is a mutually singular LPS over S�i � H�i. But b �i (�i (ti)) = f i (di (ti)),
so Corollary ?? implies that di (ti) 2 �1i . It follows from Proposition 8 that �i (ti) is mutually
singular w.r.to �S�i � GT�i . Since ti 2 Ti is arbitrary, the conclusion follows. �

Note that the canonical type structure T �u is non-redundant, so the result in Proposition 9
holds automatically.

We conclude this section with an example which shows how the issue of non-redundancy
characterizes strongly mutually type structures.

Example 2 We consider two variants of Example 1. In the �rst case we show that a redundant
type structure T can be strongly mutually singular, which shows that Proposition 9 above provides
a su¢ cient, but not necessary, condition for T to be strongly mutually singular. In the second
variant, we provide an example where Proposition 9 above holds.

For the �rst case: Suppose that the belief map �1 : T1 ! L (S2 � T2) is de�ned as follows:
Player 1�s type t01 is associated with a length-2 LPS �1 (t

0
1) =

�
�11; �

2
1

�
, so that

�11
�
fCg �

�
t02
	�

= �11
�
fRg �

�
t02
	�
=
1

2
,

�21
�
fLg �

�
t002
	�

= 1.

21Given a measurable space (X;�X), say that B � �X is separated if for each x; x0 2 X there is B 2 B such
that x 2 B and x0 =2 B. In the context of standard type structures, Friedenberg and Meier show that a type
structure T = hSi; Ti; �iii2I is non-redundant if and only if, for each i 2 I, GTi is separated ([28, Lemma 7.2]).
Of course, such result holds true even if T is a lexicographic type structure.
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Clearly the LPS �1 (t
0
1) =

�
�11; �

2
1

�
is mutually singular, since �11 and �

2
1 have disjoint supports,

given by Supp�11 = fC;Rg � ft02g and Supp�11 = fLg � ft002g, respectively. Furthermore, the
induced �rst-order belief margS2 (�1 (t

0
1)) =

�
margS2�

1
1;margS2�

2
1

�
is also mutually singular -

the supports of the marginal probability measures are the sets fC;Rg and fLg, respectively. So,
the type structure is strongly mutually singular, despite the fact that it is redundant. Note also
that this new LPS �1 (t

0
1) =

�
�11; �

2
1

�
is mutually singular w.r.to �S2 �GT2 = 2S2 �f;; T2g. (The

sets fC;Rg � T2 and fLg � T2 are disjoint and satisfy the required properties.)
For the second case: Suppose now that Player 2�s belief map is such that �2 (t

0
2) 6= �2 (t

00
2),

both mutually singular, and �1(t
0
1) is as in Example 1. So the type structure T is non-redundant.

The LPS �1 (t
0
1) =

�
�11; �

2
1

�
is mutually singular w.r.to �S2 � GT2 = 2S2 � f;; T2; ft02g ; ft002gg -

indeed, the sets Supp�11 = fC;Rg � ft02g and Supp�21 = fL;Rg � ft002g are disjoint and satisfy
the required properties.

4 Terminal type structures

Besides completeness, the literature on epistemic game theory have provided a related notion
of "large" type structures, namely (�nitely) terminal type structures. In the de�nition
below, �x two (Si)i2I -based lexicographic type structures, namely T = hSi; Ti; �iii2I and T 0 =
hSi; T 0i ; �0iii2I .

De�nition 15 An (Si)i2I-based type structure T is �nitely terminal if, for each (Si)i2I-based
type structure T 0, each type t0i 2 T 0i and each k 2 N, there is a type ti 2 Ti such that�

d1i (ti) ; :::; d
k
i (ti)

�
=
�
d1i
�
t0i
�
; :::; dki

�
t0i
��
.

De�nition 16 An (Si)i2I-based type structure T is terminal if, for each (Si)i2I-based type
structure T 0 and each type t0i 2 T 0i , there is a type ti 2 Ti with di (t0i) = di (ti).

De�nition 15 and De�nition 16 are due to Friedenberg [27]. Clearly, the canonical type
structure Tu = hSi;Hi; f iii2I is terminal (and, of course, also �nitely terminal). This section
addresses the following question: Is a complete lexicographic type structure terminal? In the
context of ordinary probabilities (i.e., Subjective Expected Utility preferences) Friedenberg ([27,
Theorem 3.1]) shows that a complete type structure is terminal provided each type space is com-
pact and each belief map is continuous. In the lexicographic case, however, there is no analogue
of the aforementioned result. Yet we provide a limited statement: A complete lexicographic
type structure is �nitely terminal. We do this by showing a stronger result: A type structure
which induces all mutually singular LPS�s is �nitely terminal. As a by-product, this entails that
the canonical mutually singular type structure T �u = hSi;�i; giii2I is �nitely terminal.

In what follows, for each player i 2 I, letHk
i denote the of k-order belief hierarchies consistent

with common full belief in coherence; that is,

H
k
i =

(�
�1i ; �

2
i ; :::; �

k
i

�
2 �k�1l=0N

�
X l
�i

� ����� 9hi 2 Hi;
Proj�k�1l=0 N(Xl

�i)
(hi) =

�
�1i ; �

2
i ; :::; �

k
i

� ) .
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So, for each player i 2 I, we de�ne a k-order hierarchy description map edki : Ti ! �k�1l=0N
�
X l
�i
�

as follows: For all k 2 N,

edki (ti) = �d1i (ti) ; d2i (ti) ; :::; dki (ti)� , ti 2 Ti.
Remark 1 For all k 2 N, it holds that

edki (ti) 2 Hk
i , 8ti 2 Ti.

To see this, note that edki (ti) = Proj�k�1l=0 N(Xl
�i)
(di (ti)) , 8ti 2 Ti,

and di (ti) 2 Hi by Theorem 1.
It is also noteworthy that, for all k 2 N,

edki (ti) = �edk�1i (ti) ; d
k
i (ti)

�
, ti 2 Ti.

Let us reformulate De�nitions 15 and 16 in a more compact way:

Remark 2 An (Si)i2I-based type structure T is �nitely terminal if, for each (Si)i2I-based
type structure T 0, we have

edki �T 0i� � edki (Ti) , 8k 2 N, 8i 2 I.
An (Si)i2I-based type structure T is terminal if, for each (Si)i2I-based type structure T 0,

we have22

di
�
T 0i
�
� di (Ti) , 8i 2 I.

The following result establishes the relationship between any (�nitely) terminal type struc-
ture and Tu.

Proposition 10 Fix an (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I .

(i) T is �nitely terminal if and only if edki (Ti) = H
k
i for each k 2 N and each i 2 I.

(ii) T is terminal if and only if di (Ti) = Hi for each i 2 I.

Proof: We prove only part (ii) (the proof of Part (i) is virtually identical). Since di (Ti) � Hi,
we need to show that Hi � di (Ti). We shall make use of the characterization of the notion of
terminality given in Remark 2.

If T is terminal, then for the structure Tu it holds that

di (Hi) = Hi � di (Ti) .

22Cf. Remark 3.1 in Friedenberg and Meier [28] concerning the de�nition of hierarchy morphism.
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Conversely, let T be such that di (Ti) = Hi. For every other type structure T 0 = hSi; T 0i ; �0iii2I
it holds that di (T 0i ) � Hi = di (Ti), so T is terminal. �

Thus, Proposition 10 provides a useful characterization of the (�nite) terminality property
of each type structure we shall be using in the proof of the main result. It is basically a version
of Result 2.1 (and Proposition B1.(ii)) in Friedenberg [27]. Of course, if T is terminal, then it
is also �nitely terminal.

In order to provide the main result of this section, we need an additional de�nition. We
say that a type structure T = hSi; Ti; �iii2I is ms-complete if �i (Ti) � L (S�i � T�i) for each
i 2 I.

Theorem 3 Fix an (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I . Thus, if T is
ms-complete, then T is �nitely terminal.

Proof : For each i 2 I and k � 1, de�ne the map d
k
i :
�
dki
��1 �L�Xk�1

i

��
! L

�
Xk�1
i

�
as d

k
i (ti) = dki (ti) for all ti 2

�
dki
��1 �L�Xk�1

i

��
. We �rst show the following fact: If T is

ms-complete, then, for all k � 1, the map dki is onto, for each player i 2 I. This is true for k = 1:
By Lemma 5.(3), for each �1i 2 L

�
X0
i

�
= L (S�i) there exists �i 2 L (S�i � T�i) such thatdProjS�i (�i) = �1i . By ms-completeness, there exists t

(1)
i 2 Ti such that �i

�
t
(1)
i

�
= �i. Hence,

d1i (t
(1)
i ) = �1i . This shows that d

1
i is onto. Hence also the Borel map  

1
�i =

�
IdS�i ; d

1
�i

�
is onto.

Suppose by way of induction that the statement is true for k � 1 and we have de�ned the Borel
surjective map  

k
�i =

�
 
k�1
�i ; d

k
�i

�
: S�i � T�i ! Xk

i . By Lemma 5.(3), for each �
k+1
i 2 L

�
Xk
i

�
there exists �i 2 L (S�i � T�i) such that

d
 
k
�i (�i) = �k+1i . By ms-completeness, there exists

t
(k+1)
i 2 Ti such that �i

�
t
(k+1)
i

�
= �i. Hence, dki (t

(k+1)
i ) = �k+1i , and this shows that d

k+1
i is

onto. Hence, also the Borel map  
k+1
�i =

�
 
k
�i; d

k+1
�i

�
: S�i � T�i ! Xk+1

i is surjective.

We now show that, for all k � 1, the map edki : Ti ! H
k
i is onto for each i 2 I. By

Proposition 10, it will follow that T is �nitely terminal, as required. Fix k � 1 and pick any�
�1i ; �

2
i ; :::; �

k
i

�
2 H

k
i . Let

�
�1i ; �

2
i ; :::; �

k
i ; �

k+1
i

�
2 H

k+1
i such that �li = �li for all l � k and

�k+1i 2 L
�
Xk
i

�
. In view of the above, the map d

k+1
i is onto, so there exists t(k+1)i 2 Ti such that

d
k+1
i

�
t
(k+1)
i

�
= dk+1i

�
t
(k+1)
i

�
= �k+1i . We need to show that

edki �t(k+1)i

�
=
�
�1i ; �

2
i ; :::; �

k
i

�
=
�
�1i ; �

2
i ; :::; �

k
i

�
.

Fix l � 1 with l � k. By coherence of the induced hierarchies, it follows that

margXl�1
i

�
dk+1i

�
t
(k+1)
i

��
= dli

�
t
(k+1)
i

�
.

But
�
�1i ; �

2
i ; :::; �

k
i ; �

k+1
i

�
is also coherent, so

margXl�1
i
�k+1i = �li.

Since dk+1i

�
t
(k+1)
i

�
= �k+1i , we can conclude that

dli

�
t
(k+1)
i

�
= �li.
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�

Since a complete type structure is ms-complete, the main result of this section immediately
follows from Theorem 3.

Corollary 1 Fix an (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I . Thus, if T is
complete, then T is �nitely terminal.

Denote by Ti [hi jk ] the set of types in Ti whose induced hierarchy of lexicographic beliefs
agree with hi =

�
�1i ; �

2
i ; :::

�
at level k. Clearly the sequence fTi [hi jk ]gk�1 is non-increasing, and

\k�1Ti [hi jk ] represents the sets of types whose induced hierarchy of beliefs agree with hi. This
raises the question as to whether \k�1Ti [hi jk ] 6= ;. If we impose the requirement of continuity
of each belief map �i, then each k-order hierarchy description map edki is continuous (by Lemma
4), and Ti [hi jk ] is the continuous inverse image of the singleton

�
�1i ; :::; �

k
i

�
2 Hk

i , i.e., a closed
subset of Ti. If each Ti were compact, then an analogous conclusion would hold for Ti [hi jk ],
so that \k�1Ti [hi jk ] 6= ; by the �nite intersection property. This would imply the existence
of ti 2 \k�1Ti [hi jk ] � Ti such that di (ti) = hi, i.e., ehi (Ti) = H i for each i 2 I. However, a
complete type structure with continuous belief maps and compact type spaces does not exist in
this setting. As such, the conclusion of the Corollary 1 appears to be tight.

5 Appendix

5.1 Proofs for Section 3

5.1.1 Properties of image LPS maps

We �rst report an auxiliary technical fact we shall be using in the proofs that follow.

Lemma 3 Let ffngn2N be a countable family of mappings between topological spaces, where
fn : Xn ! Y . Thus if each map fn is continuous (resp. Borel measurable, open), then [n2Nfn :
X ! Y is continuous (resp. Borel measurable, open).

Proof: Let O be open in Y . Thus

([n2Nfn)�1 (O) = [n2Nf�1n (O) .

Therefore, if each fn is continuous (resp. Borel measurable), then each f�1n (O) is open (resp.
Borel), which in turn implies that ([n2Nfn)�1 (O) is open (resp. Borel). If U is open in X, then

([n2Nfn) (U) = [n2Nfn (U) .

So, if each fn is open, then [n2Nfn (U) is open in Y , establishing the result. �

Remark 3 For the continuous and open cases, the result remains true for an arbitrary (not
necessarily countable) family of mappings.
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Lemma 4 Let X and Y be metrizable Lusin spaces, and �x a map f : X ! Y . Thus:

(1) If f is continuous (resp. Borel measurable), then bf : N (X) ! N (Y ) is continuous (resp.
Borel measurable).

(2) If f : X ! Y is a Borel measurable surjection, so is the induced map bf : N (X)! N (Y ).
Additionally, if f is continuous and open, so is bf .

Proof: (1) Since bf is the combination of the functions � bf(n)�
n2N

, where bf(n) : Nn (X) !
Nn (Y ), by Lemma 3, it is enough to show that, for each n 2 N, bf(n) is continuous or Borel
measurable. By [1, Theorem 15.14], the image measure map ef is continuous, provided f is con-
tinuous. If f is assumed to be only Borel measurable, we conclude that ef is Borel measurable by
using two mathematical facts. First, the Borel �-�eld onM (X) is generated by sets of the form
f� 2M (X) : � (E) � pg, where E 2 �X and p 2 Q\ [0; 1] (use [34, Theorem 17.24]). Second,
each set ef�1 (f� 2M (Y ) : � (E) � pg) can be written as

�
� 2M (X) : �

�
f�1 (E)

�
� p
	
. The

conclusion that bf is continuous and/or Borel measurable follows from the fact that each space
Nn (X) is endowed with the product topology.

(2) If f : X ! Y is measurable and onto, then the map ef :M (X) ! M (Y ) is onto as a
consequence of the Von Neumann Selection Theorem ([8, Theorem 91.15]), and this implies the
desired conclusion. Furthermore, if f is continuous and open, then by [9, Corollary 2.1] it follows
that the map ef :M (X) ! M (Y ) is a continuous, open surjection. An analogous conclusion
holds for the map bf : N (X)! N (Y ) by virtue of Lemma 3. �

Lemma 5 Let X and Y be metrizable Lusin spaces, and �x a Borel measurable map f : X ! Y
and � = (�1; :::; �n) 2 N (X).

(1) If the image LPS bf (�) is mutually singular, so is �.
(2) Let � be mutually singular. Suppose that the Borel sets fElgl�n � �X satisfying the require-

ment of mutual singularity for � (De�nition 1) are such that El 2 � (f), for each l � n.
Thus the image LPS bf (�) is mutually singular.

(3) Let f : X ! Y be onto. Thus, for each � 2 L (Y ), there exists � 2 L (X) such thatbf (�) = �.

Proof: (1) If bf (�) = � ef (�1) ; :::; ef (�n)� is mutually singular, then for each l = 1; :::; n, there
are Borel sets El in Y such that �l

�
f�1 (El)

�
= 1 and �l

�
f�1 (Em)

�
= 0 for l 6= m. Clearly,

the collection
�
f�1 (El)

	n
l=1

� �Y satis�es the required properties of mutual singularity for �.
(2) By de�nition of � (f), for each El there exists Fl 2 �Y such that El = f�1 (Fl). The

collection fFlgnl=1 � �Y satis�es the required properties of mutual singularity for bf (�).
(3) Let � 2 L (Y ). By Lemma 4.(2), there exists � 2 N (X) such that bf (�) = �. By part

(1), � 2 L (X). �

In what follows we shall make use of the following characterization of full-support LPS�s.

Lemma 6 Fix � = (�1; :::; �n) 2 N (X). The following are equivalent:
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(1) � is of full-support.

(2) For each non-empty, open set G � X, there exists l 2 N, l � n, such that �l (G) > 0.

(3) For each non-empty, basic open set B � X, there exists l 2 N, l � n, such that �l (B) > 0.

Proof: The equivalence (1)()(2) is stated and proved in [15, Lemma C.1].
(2)=)(3). Obvious.
(3)=)(1). We prove the contrapositive. If � is not of full-support, then U = X�([nl=1Supp�l)

is non-empty and open in X. Thus there exists a non-empty, open basic element B of X such
that B � U . It turns out that �l (B) � �l (U) = 0 for each l = 1; :::; n. �

Lemma 7 Let X and Y be metrizable Lusin spaces, and �x a Borel measurable map f : X ! Y .

(1) If � 2 N (X) is of full-support and f is a continuous surjection, then bf (�) is of full-support.
(2) If X is �nite (resp. countable), then for every � 2 N (X), the set Supp bf (�) � Y is of �nite

(resp. countable) cardinality.

(3) Let � 2 N (X). If bf (�) is of full-support and X is endowed with the coarsest topology such
that f is continuous, then � is of full-support.

Proof: (1) Suppose that � is of full-support, i.e., X = [nl=1Supp�l. For each l = 1; :::; n, it
holds that

�l

�
f�1

�
Supp ef (�l)�� = 1;

so since the set f�1
�
Supp ef (�l)� is closed (by continuity of f)

Supp�l � f�1
�
Supp ef (�l)� .

It follows that

X = [nl=1Supp�l
� [nl=1f�1

�
Supp ef (�l)�

= f�1
�
[nl=1Supp ef (�l)�

� f�1 (Y )

= X,

hence
f�1

�
[nl=1Supp ef (�l)� = f�1 (Y ) .

By the surjectivity of f we obtain

Y = [nl=1Supp ef (�l) ,
i.e., bf (�) is of full-support, as required.

(2) If X is �nite (resp. countable), so is f (X). Pick an arbitrary LPS � = (�1; :::; �n) 2
N (X). Then, for any l = 1; :::; n, the set Supp�l has �nite (resp. countable) cardinality, hence
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f (Supp�l) is a �nite (resp. countable), closed subset of Y . Since f
�1 (f (Supp�l)) � Supp�l, it

holds that

ef (�l) (f (Supp�l)) = �l
�
f�1 (f (Supp�l))

�
� �l (Supp�l)

= 1,

thus f (Supp�l) � Supp ef (�l), which implies that Supp ef (�l) is a set of �nite (resp. countable)
cardinality, for each l = 1; :::; n. It follows that Supp bf (�) = [nl=1Supp ef (�l) has �nite (resp.
countable) cardinality.

(3) Let � = (�1; :::; �n) 2 N (X). Every open set O � X is such that O = f�1 (U) for some
open set U � X. Since bf (�) is of full-support, then there exists l � n such that

�l (O) = �l
�
f�1 (U)

�
= ef (�l) (O)
> 0,

and this shows that � is of full-support. �

5.1.2 Structure of the spaces of LPS�s

Recall that a set U in a topological space X is a G�-set if it is a countable intersection of open
subsets of X. It is easy to check that the family of G�-sets in a topological space is closed under
countable intersections and �nite unions. A set F is an F�-set if its complement X�F is a
G�-set. A set G � X is ambivalent if it is both a G�-set and F�-set in X (see, e.g., [43]). If X
is a metrizable topological space, then both closed and open subsets of X are ambivalent.

Lemma 8 Fix a topological space X.

(i) If X is metrizable Lusin (resp. Polish), then N (X) is metrizable Lusin (resp. Polish).

(ii) If X is metrizable Lusin (resp. Polish), then L (X) is a G�-subset (so Borel) of N (X), so
metrizable Lusin (resp. Polish) in the relative topology.

To prove Lemma 8, we need the following result on mutually singular probability measures:

Claim 1 Let X be a metrizable Lusin space. Two Borel probability measures �; � 2M (X) are
mutually singular if and only if for each k 2 N, there exists a compact set K � X such that
� (K) < 1

2k
and � (K) > 1� 1

2k
.23

Proof: (Necessity) Let B 2 �X such that � (B) = 0 and � (B) = 1. Every Borel probability
measure on a Lusin space is Radon ([49, Theorem 10, pp.122-124]), so for each k 2 N, there
exists a compact set K � B such that � (K) = 0 and � (B�K) < 1

2k
, which implies � (K) =

� (B)� � (B�K) > 1� 1
2k
.

23Note that this result is not true if the requirement that X be Lusin is dropped. In such a case, a weaker
result is true, namely, that the set K in the statement of Lemma 1 is simply Borel (see [32, Footnote 2] and [6,
Footnote 2]).
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(Su¢ ciency) For each n 2 N, let Kn be a compact set such that � (Kn) <
1
2n and � (Kn) >

1� 1
2n . For each n 2 N, �([m�nKn) = 1. Thus, the set B = \n2N [m�n Kn is non-empty and

Borel and satis�es � (B) = 0 and � (B) = 1. �

We also make use of the following properties of subsets ofM (X) on a separable and metriz-
able space X.

Claim 2 Let K be a compact subset of a metrizable Lusin space X. Thus, for each p 2 Q\ [0; 1],
sets of the form

f� 2M (X) j� (K) < pg ,
f� 2M (X) j� (K) > pg ,

are open and ambivalent subsets ofM (X), respectively.

To prove Claim 2, we recall that a real-valued function f on a metrizable space X is upper
(resp. lower) semicontinuous if the set f�1 ([c;+1)) (resp. f�1 ((�1; c])) is closed in X for
every c 2 R. A function f : X ! R is a Baire Class 1 function if f�1 (O) is an F�-set (resp.
G�-set) in X provided O is open (resp. closed) in R. A semicontinuous function is also a Baire
Class 1 function.

Proof of Claim 2: The weak* -topology onM (X) is the coarsest topology such that each
function � 7�!

R
fd� is lower (resp. upper) semicontinuous whenever f : X ! R is lower (resp.

upper) semicontinuous (cf. [52, Theorem 8.1] or [49, Appendix]; see also [1, Theorem 15.5]).
Since indicator functions on open (resp. closed) sets are lower (resp. upper) semicontinuous
functions, it follows that the evaluation map eA :M (X)! [0; 1] de�ned as

eA (�) =

Z
1Ad� = � (A) , � 2M (X) , A 2 �X ,

is lower (resp. upper) semicontinuous if A is open (resp. closed) in X. Fix p 2 Q\ [0; 1] and a
compact (so closed) set K � X. The set f� 2M (X) j� (K) < pg can be written as

f� 2M (X) j� (K) < p g = e�1K ([0; p)) ,

i.e., e�1K ([0; p)) is the inverse image of the set [0; p), open in [0; 1], under an upper semicontinuous
map, hence it is open inM (X). Note that

f� 2M (X) j� (K) > p g = [1k=1
�
� 2M (X)

����� (K) � p+
1

k

�
,

so f� 2M (X) j� (K) > p g is a countable union of closed sets, hence an F�-set. We show that
it is also a G�-set. To this end, note that we can write

f� 2M (X) j� (K) > p g = f� 2M (X) j� (X�K) � 1� p g
= e�1X�K ([0; 1� p]) ,

and since X�K is open in X, the map eX�K : M (X) ! [0; 1] is lower semicontinuous. In
particular, the map eX�K is of Baire Class 1, hence e�1X�K ([0; 1� p]) is a G�-subset ofM (X)

in that the set [0; 1� p] is closed in [0; 1]. This shows that f� 2M (X) j� (K) > p g is an
ambivalent set, as required. �
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Finally, we recall that, given a countable collection of pairwise disjoint topological spaces
fXngn2N, a set A is open (resp. closed) in X = [n2NXn if and only if, for all n 2 N, A \Xn is
an open (resp. closed) subset of Xn. The following Claim states an analogous result concerning
ambivalent sets.

Claim 3 Let fXngn2N be a countable collection of pairwise disjoint topological spaces. The set
G is a G�-subset (resp. F�-subset) of X = [n2NXn if and only if, for all n 2 N, G \Xn is a
G�-subset (resp. F�-subset) of Xn.24

Proof: We prove the statement for the case in which G is a G�-set. When G is a F�-set,
the statement follows simply from the fact that a set is F� if and only if the complement is G�.

(Necessity) Let G = \k2NOk with each Ok open in X. So, for all n 2 N, Ok \Xn is an open
subset of Xn. It follows that, for all n 2 N,

G \Xn = (\k2NOk) \Xn
= \k2N (Ok \Xn) ,

i.e., G \Xn is G� in Xn.
(Su¢ ciency) If G \Xn is G� in Xn, then G \Xn = \l2NOnl , where each Onl is open in Xn.

As such, the set Ol = [n2NOnl is open in X, for all l 2 N. The set G can be written as countable
intersection of open subsets of X as follows:

G = [n2N(\l2NOnl )
= \l2N ([n2NOnl )
= \l2NOl,

where the second equality comes from disjointness of fXngn2N. �

Proof of Lemma 8: Part (i): If X is Lusin (resp. Polish), then M (X) is Lusin (resp.
Polish). Consequently, the product topology on each (M (X))n is Lusin (resp. Polish), so the
topological sum [n2N (M (X))n is Lusin (resp. Polish).

Part (ii): For l;m 2 N, l 6= m, let

Ll;mn (X) = f(�1; :::; �n) 2 Nn (X) j�l?�m g .

(The symbol "?" denotes the mutual singularity of probability measures.) Thus Ln (X) =
\nm=1 \l 6=m L

l;m
n (X), so that L (X) = [n2NLn (X). We show that each Ll;mn (X) is a G�-subset

(so Borel) of N (X). Using Claim 3, it will follow that L (X) is a G�-set in N (X), as required.
By Claim 1 we can write Ll;mn (X) as

Ll;mn (X) =

�
(�1; :::; �n) 2 Nn (X)

����8k 2 N; �l (Kk) <
1

2k
; �m (Kk) > 1�

1

2k

�
,

where fKkgk2N is a collection of compact subsets of X. If X is Lusin, so isM (X), and sets of
the form �

� 2M (X)

����� (Kk) <
1

2k

�
,�

� 2M (X)

����� (Kk) > 1�
1

2k

�
,

24The result in Claim 3 should be known, but we did not �nd any reference about them, so a (simple) proof is
provided.
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are, respectively, open andG� inM (X) by Claim 2. By continuity of projection maps (�1; :::; �n) 7!
�l, the sets

Vl (Kk) =

�
(�1; :::; �n) 2 Nn (X)

�����l (Kk) <
1

2k

�
,

Vm (Kk) =

�
(�1; :::; �n) 2 Nn (X)

�����m (Kk) > 1�
1

2k

�
,

are ambivalent subsets of Nn (X) - speci�cally, Vl (Kk) is an open cylinder (hence G�), while
Vm (Kk) is a cylinder with a G� base which is both a G�-set and an F�-set, so an ambivalent set
(see [25, Exercise 2.3.B.(b)]). It follows that Ll;mn (X) = \k2N (Vl (Kk) \ Vm (Kk)) is a countable
intersection of G�-sets, hence a G�-subset of N (X).

Finally, if X is Polish, part (i) gives that N (X) is also Polish. The conclusion that L (X) is
Polish in the relative topology follows from the fact that L (X) is a G�-subset of N (X). �

Two remarks on the results stated in Lemma 8 are in order. First, Burgess and Mauldin
([16, Theorem 2]) show that if X is a compact metrizable space, then L2 (X) is a G�-subset of
N2 (X).25 As the Authors point out ([16, p.904]), such result remains true if X is only assumed
to be Polish. Thus Lemma 8,(ii) provides a generalization of the result in [16] with a proof which
is, in our view, simpler than the original one.

Second, the result in Lemma 8 concerning the topological structure of L (X) appears to
be tight. We note that, in general, the set L (X) is neither closed nor open in N (X), as the
following example shows.

Example 3 Let X = R, and consider a sequence of LPS�s f�n = (�n; �n)gn2N where �n = �0
(i.e., Dirac point mass at 0) for all n 2 N, and each �n is described by a uniform pdf on

�
� 1
n ;

1
n

�
.

Clearly, each �n 2 L (X), but �n �! (�0; �0) =2 L (X). So L (X) is not closed in N (X).
To see that L (X) is not open in N (X), we show that N (X)�L (X) is not closed. As

before, let X = R, and consider the sequence of LPS�s f�n = (�n; �n)gn2N where, for all n 2 N,
�n = � is the Lebesgue measure on [0; 1], and each �n is a Gaussian measure with mean 0 and
standard deviation 1

n . Each �n is absolutely continuous with respect to �, so �n =2 L (X) for all
n 2 N, but �n �! (�0; �) 2 L (X).

However, L (X) turns out to be closed in N (X) provided X is countable.

Corollary 2 If X is a countable Lusin space, then L (X) is a closed subset of N (X).

Proof : If X is countable (so Polish), then, for all A � X, the evaluation map eA :M (X)!
[0; 1] de�ned as eA (�) = � (A) is continuous. As such, for each p 2 Q\ [0; 1], sets of the form

e�1A (fpg) = f� 2M (X) j� (A) = p g , A � X,

are closed. Proceeding as in the proof of Lemma 8.(ii), it is easily seen that the set

Ll;mn (X) =
\
A�X

f(�1; :::; �n) 2 Nn (X) j�l (A) = 0; �m (A) = 1g

25 In fact, Theorem 2 in [16] shows that L2 (X) is a G�-subset of N2 (X)��2 (X), where �2 (X) stands for
the "diagonal" of N2 (X), formally �2 (X) = f(�1; �2) 2 N2 (X) j�1 = �2 g. It is straighforward to check that
�2 (X) is closed in N2 (X).
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is closed, which in turn implies that Ln (X) = \nm=1 \l 6=m L
l;m
n (X) is also closed in N (X), for

all n 2 N. It turns out L (X) = [n2NLn (X) is a closed subset of N (X), by the property of the
direct sum topology listed above. �

Lemma 9 Fix a metrizable Lusin space X. If F � X is non-empty and Borel, then N (F )
is homeomorphic to f(�1; :::; �n) 2 N (X) j�l (F ) = 1;8l � ng. Analogously, the space L (F ) is
homeomorphic to f(�1; :::; �n) 2 L (X) j�l (F ) = 1;8l � ng.

Proof : If F is a non-empty Borel subset of a metrizable space X, then M (F ) is homeo-
morphic to f� 2M (X) j� (F ) = 1g ([34, p.114, Exercise 17.28]). So, for n 2 N, it turns out
that the set Nn (F ) = (M (X))n is homeomorphic to Fn = f� 2 Nn (X) j�l (F ) = 1;8l � ng.
By de�nition of topological sum, it turns out that N (F ) = [n2NNn (F ) is homeomorphic to
[n2NFn. By this, it follows that L (X)\ ([n2NFn) is homeomorphic to L (X)\N (F ) = L (F ).
�

We �nally list some properties of the Borel �-�eld of the spaces N (X) and L (X).
Given a measurable space (X;AX), where X is not necessarily given a topological structure

(hence AX is an arbitrary �-�eld), let AM(X) denote the �-�eld onM (X) generated by all sets
of the form

bp (E) = f� 2M (X) : � (E) � pg

where E 2 A and p 2 Q\ [0; 1]. Alternatively put, the �-�eld AM(X) is the restriction toM (X)

of the �-�eld generated by the Borel cylinders in [0; 1]�X (i.e., the �-�eld generated by maps
� 7! � (E), for all E 2 �X).

Given a countable family of pairwise disjoint measurable spaces f(Xn;AXn)gn2N, let X =
[n2NXn. Write en : Xn ! X for the canonical injection. For a set E � X, e�1n (E) = E \Xn.
Thus, the direct sum of the measurable spaces f(Xn;AXn)gn2N is de�ned as the the �nest
�-�eld AX on X for which each canonical injection is measurable (that is, AX is the �nal �-�eld
on X for the family of mappings en), formally:

AX =
�
E � X

��e�1n (E) 2 AXn ;8n 2 N
	

= \n2N fE � X jE \Xn 2 AXn g .

Evidently AXn = fE 2 AX jE � Xn g, and (Xn;AXn) is a measurable subspace of (X;AX). So
a set E � X belongs to AX if and only if it can be written as E = [n2NEn, where En =
E \Xn 2 AXn for all n 2 N. Note that, if X is endowed with the direct sum �-�eld AX , then
each canonical injection em : Xm ! X is a measure-theoretic embedding.

The following result is easy to prove:

Lemma 10 Let fXngn2N be a countable family of topological spaces, and let X = [n2NXn be
endowed with the topological sum. For all n 2 N, let �Xn be the Borel �-�eld of the space Xn.
Then the direct sum �-�eld AX of the measurable spaces f(Xn;�Xn)gn2N equals the Borel �-�eld
on X generated by the topological sum.

We also provide a result for generators of the direct sum �-�eld.
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Lemma 11 26Let f(Xn;AXn)gn2N be a countable family of pairwise disjoint measurable spaces.
Suppose that, for all n 2 N, FXn is a �eld of subsets of Xn generating AXn. Thus

AX = � ([n2NFXn) .

If G is a family of subsets of X and E � X, we write G \ E = fF \ E jF 2 Gg. We write
� (G \ E) for the �-�eld of subsets of E generated by the family G \ E of subsets of E. The
proof of Lemma 11 makes use of the following well-known result ([54, Theorem 1.15]), namely

� (G \ E) = � (G) \ E. (5.1)

Proof: The set containment � ([n2NFXn) � AX is obvious, in view of the fact that FXn �
AXn for all n 2 N. To show that AX � � ([n2NFXn), pick any F 2 AX . Thus, by de�nition
of direct sum �-�eld, F = [n2NFn where Fn = F \ Xn 2 � (FXn) = AXn for all n 2 N. It is
immediate to check that

FXm = ([n2NFXn) \Xm, 8m 2 N.

It follows from (5.1) that

AXm = � (FXm)
= � (([n2NFXn) \Xm)
= � ([n2NFXn) \Xm,

for all m 2 N. Thus, if Fm 2 AXm , then Fm = Em \ Xm for some Em 2 � ([n2NFXn). Since
each FXn is a �eld, then Xm 2 FXm , so Xm 2 [n2NFXn � � ([n2NFXn). This in turn implies
that Fm 2 � ([n2NFXn) for all m 2 N. Hence F = [n2NFn 2 � ([n2NFXn), and this concludes
the proof. �

The measurable space
�
Nn (X) ;ANn(X)

�
of length-n LPS�s on (X;AX) is de�ned as follows:

Nn (X) = (M (X))n and ANn(X) is the product �-�eld. So the space
�
N (X) ;AN (X)

�
of length-

n LPS�s on (X;AX) is such that N (X) = [n2NNn (X) and AN (X) is the direct sum �-�eld.

Lemma 12 Fix a measurable space (X;AX). The �-�eld AN (X) on N (X) is generated by sets
of the form

f(�1; :::; �n) 2 N (X) j�l (A) � pl;8l � ng ,

where A 2 AX and pl 2 Q\ [0; 1] for all l � n. Additionally, if X is a separable and metrizable
space, AX is its Borel �-�eld and the space M (X) is endowed with the weak*-topology, then
AN (X) equals the Borel �-�eld �N (X) of the topological space N (X).

Proof: The �-�eld AM(X) is generated by sets of the form f� 2M (X) : � (A) � pg, where
A 2 AX and p 2 Q\ [0; 1]. So, for each n 2 N, sets of the form

f(�1; :::; �n) 2 Nn (X) j�l (A) � pl;8l � ng
26We did not �nd any reference to this result, which should be known. We point out that a similar result can be

found in [36, Proposition 2.8] with di¤erent (i.e., weaker) assumptions concerning the generators of the �-�elds.
However, the result in [36] is stated and proved with just two factor spaces.

29



where A 2 AX and pl 2 Q\ [0; 1] for all l � n, generate the product �-�eld ANn(X). Let FNn(X)
denote the collection of such sets. By Lemma 11, AN (X) is generated by the family [n2NFNn(X).
A set belonging to [n2NFNn(X) can be written as

f(�1; :::; �n) 2 N (X) j�l (A) � pl;8l � ng .

where A 2 AX and pl 2 Q\ [0; 1] for all l � n.
If X is a separable and metrizable space, so is the space M (X) endowed with the weak*

topology ([1, Theorem 15.12]). As such, the Borel �-�eld �M(X) on M (X) generated by the
weak* -topology equals AM(X) by [34, Theorem 17.24]. Since M (X) is also second countable,
then, for all n 2 N, the Borel �-�eld �Nn(X) generated by the product topology on Nn (X) =
(M (X))n coincides with the product of the �-�elds �M(X) ([1, Theorem 4.44]). Hence �Nn(X) =
ANn(X), and the conclusion �N (X) = AN (X) follows from Lemma 10. �

Given a measurable space (X;AX), let FX be a non-empty system of generators of AX .
Heifetz and Samet ([29, Lemma 4.5]) show that, if FX is a �eld, then AM(X) is generated by
sets of the form

bp (E) = f� 2M (X) : � (E) � pg

where A 2 FX and p 2 Q\ [0; 1].27 As such, the following result is immediate.

Corollary 3 Given a measurable space (X;AX), let FX be a �eld of subsets of X generating
the �-�eld AX . Thus AN (X) is generated by sets of the form

f(�1; :::; �n) 2 N (X) j�l (A) � pl;8l � ng ,

where A 2 FX and pl 2 Q\ [0; 1] for all l � n.

5.1.3 Projective systems of LPS�s

We provide here some terminology and results for the theory of projective limits, especially as
they relate to LPS�s, and prove results which are needed in the proof of Lemma 2 in Section 3.
For a more thorough treatment see [25] or [46].

De�nition 17 Let fXpgp�1 be a countable family of metrizable Lusin spaces, and for each p let
�p = (�p1; :::; �

p
n) be a LPS over (the Borel �-�eld �Xp of) Xp. Suppose that, for each p � q,

there exists a continuous function �p;q : Xq ! Xp such that

(i) �p;r = �p;q � �q;r whenever p � q � r, and �p;p is the identity;

(ii) �p;q is continuous and onto;

(iii) b�p;q (�q) = �p, i.e., e�p;q ��ql � = �pl for all l = 1; :::; n.

Then we say that the collection P = (Xp; �p;q)p�1; q�p is a projective system of metrizable
Lusin spaces, and PLPS = (Xp; �p;q; �p)p�1; q�p is a projective system of LPS�s. If each �q is a
length-1 LPS, then we call PLPS a projective system of probability measures.

27Actually, [29, Lemma 4.5] states the result for p 2 [0; 1]. This di¤erence is, however, immaterial.
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De�nition 18 Fix a projective system of metrizable Lusin spaces P = (Xp; �p;q)p�1; q�p. The
set

X =

8<:(xp)p�1 2
1Y
p=1

Xp j�p;q (xq) = xp;8q � p

9=;
is called the projective limit set of P. The map �q : X ! Xq given by �q (x) = xq, q � 1, is
called canonical projection, and is the restriction of the projection map PrXq : �p�1Xp ! Xq to
X. Thus (X;�p)p�1 is called the projective limit of P.

The following result is standard.

Proposition 11 Let P = (Xp; �p;q)p�1; q�p be a projective system of metrizable Lusin spaces.
Then the projective limit (X;�p)p�1 of P exists (i.e., X is non-empty). The projective limit set
X is a metrizable Lusin space, and the collection of all subsets of X of the form ��1p (Op) with
Op open in Xp is a basis for the topology of X.

Proof: Since each function �p;q : Xq ! Xp is onto, it follows from [12, Proposition 5], that
the projective limit setX is non-empty. Moreover, X is a closed subset of the product topological
space �p�1Xp, so X is metrizable Lusin in the relative topology. For the last statement of the
Proposition, apply [31, Theorem 158]. �

Corollary 4 Let P = (Xp; �p;q)p�1; q�p be a projective system of metrizable Lusin spaces. Thus
the Borel �-�eld of projective limit set X is �X = � (FX), where FX = [p�1��1p

�
�Xp

�
is the

�eld generated by the measurable cylinders (i.e., FX is the cylindrical �eld).

Next:

De�nition 19 Let PLPS = (Xp; �p;q; �p)p�1; q�p be a projective system of LPS�s. Say (X;�p; �)p�1
is the projective limit of PLPS if

(i) (X;�p)p�1 is the projective limit of the projective system P = (Xp; �p;q)p�1; q�p.

(ii) � is a LPS (called limit LPS) de�ned on (X;�X) such that

b�p (�) = �p,

for each p � 1.

Having de�ned the notion of projective limit of projective sequences of LPS�s, we can state
and prove the main result.

Theorem 4 Let PLPS = (Xp; �p;q; �p)p�1; q�p be a projective system of LPS�s. Thus, the pro-
jective limit (X;�p; �)p�1 of PLPS exists and is unique. Furthermore

(i) If there exists p� � 1 such that �p� is mutually singular, then � is mutually singular.
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(ii) � is of full-support if and only if �p is of full-support, for each p � 1.

Finally, we mention the following generalized version of Kolmogorov Existence Theorem,
whose proof can be found in [11, pp.53-54] or [49, Theorem 21 and Corollary]. Recall that a
Borel probability measure � on a topological space X is Radon if for every Borel set A and
every � > 0, there exists a compact set K � A such that � (AnK) < �.

Theorem 5 Let P = (Xp; �p;q; �
q)p�1; q�p be a projective system of probability measures such

that each Xp is a Hausdor¤ topological space and each �q is Radon. Then the projective limit
(X;�p; �)p�1 exists and � is a unique Radon probability measure.

Proof of Theorem 4: Every Borel probability measure on a Lusin space is Radon ([49,
Theorem 10, pp.122-124]), so by Kolmogorov Existence Theorem (Theorem 5) it follows that
there exists a unique LPS � = (�1; :::; �n) where each �l is a probability measure on (X;�X)
such that e�p (�l) = �pl ,

for each p � 1. By Corollary 4, �X = � (FX), where FX = [p�1��1p
�
�Xp

�
is the cylindrical

�eld.
(i) Suppose there exists p� � 1 such that �p

�
is mutually singular. Since the limit LPS �

sati�es b�p� (�) = �p
�
, the result is an immediate consequence of Lemma 5.(1).

(ii) Let � be of full-support. Since each �p;q is a continuous surjection, so is each �p. It
follows from Lemma 7.(1) that b�p (�) = �p is of full-support, for each p � 1.

Conversely, assume that each �p is of full-support. Let B � X be a non-empty basic open
set such that, by Proposition 11, B = ��1q (Oq) where Oq is open in Xq, for some q � 1. Since
�q is of full-support, by Lemma 6 there exists l � n, such that �ql (Oq) > 0; consequently, it
follows that

�l (B) = �l
�
��1q (Oq)

�
= �ql (Oq)

> 0.

Using again Lemma 6, we conclude that � is of full-support, as required. �

5.1.4 Proof of Lemma 1.

(i): Let f(hi)ngn2N =
��
�1i
�
n
;
�
�2i
�
n
; :::
	
n2N be a sequence in H

1
i converging in the product

topology to h�i =
��
�1i
��
;
�
�2i
��
; :::
�
, that is,

�
�ki
�
n
!
�
�ki
��
for each k � 1. We have to show

that h�i 2 H1
i , i.e., margXk�1

i

�
�k+1i

��
=
�
�ki
��
for all k � 1. By Lemma 4, it holds that, for

all k � 1, dProjXk�1
i

: N
�
Xk
i

�
! N

�
Xk�1
i

�
is a continuous function. Hence, for all k � 1,�

�ki
�
n
!
�
�ki
��
implies margXk�1

i

�
�k+1i

�
n
! margXk�1

i

�
�k+1i

��
, which proves the claim.

(ii): Since e�1i = e�0i \H1
i and, by the above, H

1
i is closed in H

0
i , it su¢ ces to show that e�0i

is Borel. If each space Si is Polish, we will show that e�0i is a G�-subset of H0
i . By de�nition, e�0i

can be written as a countable union of cylinder sets, namely

e�0i = [
k�1

n
hi =

�
�1i ; �

2
i ; :::;

�
2 H0

i

����ki 2 L�Xk�1
i

�o
.
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It follows from Lemma 8.(2) that each set
n
hi 2 H0

i

����k0i 2 L�Xk0�1
i

�o
is a Borel cylinder in

H0
i with a G� base, hence a G�-subset of H

0
i ([25, Exercise 2.3.B.(b)]). If each space of primitive

uncertainty Si is Polish, so is each H0
i , and, by part (i), H

1
i is also Polish. Each cylinder setn

hi 2 H0
i

����k0i 2 L�Xk0�1
i

�o
is Polish subspace of H0

i , since, by the above, it is a G�-set in H
0
i .

Thus e�0i is a countable union of Polish subspaces of H0
i , hence Polish (and so a G�-set) in H

0
i .

5.1.5 Proof of Lemma 2.

The family P = (Zk; �k;k+1)k�0 is a projective system of Polish (so metrizable Lusin) spaces, and
each bonding map �k;k+1 : Zk+1 ! Zk is a coordinate projection. By standard arguments (see
[45, pp. 116-117] or [46, p. 416]) it follows that the projective limit set is non-empty and it can
be identi�ed homeomorphically with the Cartesian product Z =

Q1
l=0Wl. Thus the conclusion

is immediate from Theorem 4.

5.2 Proofs for Section 3.4

5.2.1 Lexicographic type structures and self-evident events.

Here, we formalize the idea (mentioned in the main text) that a lexicographic type structure
represents a set of restrictions on players�hierarchies of beliefs that are "transparent". This
requires an epistemic apparatus, so we need to introduce further notations and terminology.
The exposition follows mainly [3, Appendix A].

In what follows, let T = hSi; Ti; �iii2I an arbitrary lexicographic type structure. We say
that a type ti 2 Ti believes an event E � S�i � T�i if �i (ti) (E) =

�!
1 . (The same de�nition of

belief was used in Section 3.3 with reference to hierarchies of lexicographic beliefs.) Given an
event E�i � S�i � T�i, let

Bi (E�i) = Si �
n
ti 2 Ti

����i (ti) (E�i) = �!1 o .
Given events Ei � Si � Ti for each i 2 I, we write

B

 Y
i2I

Ei

!
=
Y
i2I
Bi (E�i) .

Using �-additivity of probability measures, the following properties of the belief operator B :S�
T � S � T are easily veri�ed.

B1 Monotonicity property: For each i 2 I, �x events Ei; Fi � Si � Ti. If Ei � Fi for each
i 2 I, then B (�i2IEi) � �i2IBi (F�i).

B2 Conjunction property: For each i 2 I, let fEni gn2N be a sequence of events in Si � Ti.
Thus

\n2NB (�i2IEni ) = B (\n2N (�i2IEni )) .

De�nition 20 The event �i2IEi � S � T is self-evident (in T ) if �i2IEi � B (�i2IEi).
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We de�ne also common belief operator CB :S�T � S�T as follows. For each player i 2 I,
�x events Ei � Si � Ti. We iterate the belief operator B as follows:

B0 (�i2IEi) = �i2IEi,

Bk+1 (�i2IEi) = B
�
Bk (�i2IEi)

�
, 8k � 0.

So, let
CB (�i2IEi) = \k�0Bk (�i2IEi) .

Lemma 13 For each i 2 I, �x events Ei � Si � Ti. Thus �i2IEi is self-evident (in T ) if and
only if �i2IEi = CB (�i2IEi).

The following result establishes the connection between the notion of self-evident event and
that of type morphism.

Proposition 12 Fix a lexicographic type structure T 0 = hSi; T 0i ; �0iii2I .

(i) If ('i)i2I : T ! T 0 is a bimeasurable type morphism from T = hSi; Ti; �iii2I to T 0, then
S ��i2I'i (Ti) is a self-evident event in T 0.

(ii) Let S � �i2IE0i � S � T 0 be self-evident in T 0. For each i 2 I, let 'i : E
0
i ! T 0i be the

identity map. Thus there exists a lexicographic type structure T = hSi; E0i; �iii2I such that
('i)i2I : �i2IE

0
i ! T 0 is a bimeasurable type morphism from T to T 0.

Proof: Part (i): By bimeasurability, each set 'i (Ti) is Lusin subspace of T
0
i , so S �

�i2I'i (Ti) is Borel in S � T 0. We need to show that S � �i2I'i (Ti) � B (S ��i2I'i (Ti)).
This will be accomplished by showing that, for each 'i (ti) 2 'i (Ti),

�0i ('i (ti))
�
S�i � '�i (T�i)

�
=
�!
1 .

But this follows immediately from the de�nition of type morphism, indeed

�0i ('i (ti))
�
S�i � '�i (T�i)

�
= �i (ti) (S�i � T�i)
=

�!
1 .

Part (ii): We construct a type structure T = hSi; Ti; �iii2I as follows. For each i 2 I, set
Ti = E0i. Since each E

0
i is Borel in T

0
i , then E

0
i is Lusin metrizable in the relative topology,

hence Ti is Lusin metrizable space in its own right. Furthermore, the Borel �-�eld on S�i � T�i
is the one inherited from the Borel �-�eld on S�i � T 0�i. Thus we can de�ne each belief map
�i as �i (ti) (F�i) = �0i (ti) (F�i), for any event F�i � S�i � T�i. For each ti 2 Ti, �i (ti) is a
well-de�ned LPS over S�i � T�i, in that

�i (ti) (S�i � T�i) = �0i (ti)
�
S�i � E0�i

�
=

�!
1 ,

where the �rst equality is by de�nition and the fact that E0�i = T�i, while the second equality
follows from the fact that S � �i2IE0i is self-evident in T 0. We now show that each belief map
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�i is measurable; by this, it will follow that T = hSi; Ti; �iii2I is a well-de�ned type structure.
Since E0�i = T�i is an event in T 0�i, then by Lemma 9 there exists a homeomorphism

# : N (S�i � T�i)!
n
�i 2 N

�
S�i � T 0�i

� ����i (S�i � T�i) = �!1 o .
Hence, for each Borel G�i � N (S�i � T�i) the set�

�0i
��1

(# (G�i)) =
�
t0i 2 T 0i

���0i �t0i� 2 # (G�i)	
is Borel in T 0�i. By the property of #, it follows that�

�0i
��1

(# (G�i)) \ E0i = fti 2 Ti j�i (ti) 2 G�i g
= ��1i (G�i) .

I.e., ��1i (G�i) is measurable in Ti, as it is the intersection of two measurable sets.
Finally, it remains to show that ('i)i2I : �i2IE

0
i ! T 0 is a bimeasurable type morphism

from T to T 0. Since each 'i : E0i ! T 0i is the identity map, ('i)i2I is bimeasurable (in fact,
a measure-theoretic isomorphism). Clearly, it is immediate to check that each identity map
'i : E

0
i ! T 0i is such that

�0i � 'i = \�
IdS�i ; '�i

�
� �i.

Thus, ('i)i2I is a bimeasurable type morphism from T to T 0, as required. �

5.2.2 Proof of Theorem 1

The proof is divided in two main steps. In the �rst step, we show that for each ti 2 Ti, the
corresponding i-description di (ti) belongs to Hi, the collection of in�nite hierarchies of LPS�s
satisfying collective coherence. In the second step, we show that the map (di)i2I is a type
morphism. We do not show the uniqueness of type morphism (di)i2I since this follows from
routine arguments (cf. [4] or [29]). In both cases, the proof is by induction.

First step: di (Ti) � Hi. By de�nition of i-description, di (Ti) � H0
i . We use induction to

prove di (Ti) � Hi.
(Base step): We �rst show that di (Ti) � H1

i , so we need to verify that for all ti 2 Ti and all
k � 1,

margXk�1
i

�
dk+1i (ti)

�
= dki (ti) ,

that is, dProjXk�1
i

�
dk+1i (ti)

�
= dki (ti) . (5.2)

(recall that ProjXk�1
i

stands for the coordinate projection from Xk
i = Xk�1

i � N
�
Xk�1
�i

�
onto

Xk�1
i and dk+1i is a map from Ti into N

�
Xk
i

�
= N

�
Xk�1
i �N

�
Xk�1
�i

��
). To this end, pick
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any event Ek�1 2 �Xk�1
i
. Thus

dProjXk�1
i

�
dk+1i (ti)

�
(Ek�1) = dk+1i (ti)

�
Proj�1

Xk�1
i

(Ek�1)

�
= b k�i (�i (ti))�Ek�1 �N �Xk�1

�i

��
= �i (ti)

�n
(s�i; t�i)

��� k�i (s�i; t�i) 2 Ek�1 �N �Xk�1
�i

�o�
= �i (ti)

 (
(s�i; t�i)

�����  
k�1
�i (s�i; t�i) 2 Ek�1,
dk�i (t�i) 2 N

�
Xk�1
�i

� )!
= �i (ti)

�n
(s; t�i)

��� k�1�i (s�i; t�i) 2 Ek�1
o�

= b k�1�i (�i (ti)) (Ek�1)

= dki (ti) (Ek�1) ,

where the fourth equality follows from the de�nition of  k�i, and the �fth equality follows from

dk�i(T�i) � N
�
Xk�1
�i

�
. So, Eq. (5.2) is proved.

To continue the proof, we need the following

Claim 4 For each i 2 I, let fi be the homeomorphism of Proposition 2. Thus, the following
diagram commutes:

Ti
�i����! N (S�i � T�i)??ydi ??y \(IdS�i ;d�i)

H1
i

fi����! N (S�i � H0
�i)

. (5.3)

Proof of Claim: We will show that for each k � 0,

margXk
i

\�
IdS�i ; d�i

�
(�i (ti)) = dk+1i (ti) :

By property of fi, margXk
i
fi(di(ti)) = dk+1i (ti) (cf. Lemma 2). By Lemma 2, for each hi =

(�1i ; �
2
i ; :::) 2 H1

i , there exists a unique �i 2 N (S�i�H0
�i) such that, for each k � 0, margXk

i
�i =

�ki . Thus, it must hold that

fi(di(ti)) =
\�

IdS�i ; d�i
�
(�i (ti)) :

Fix Ek 2 �Xk
i
. We have

margXk
i

\�
IdS�i ; d�i

�
(�i (ti)) (Ek) = \�

IdS�i ; d�i
�
(�i (ti))

�
Proj�1

Xk
i

(Ek)
�

= �i (ti)
��
IdS�i ; d�i

��1 �
Proj�1

Xk
i

(Ek)
��

= �i (ti)
�n
(s�i; t�i)

���(s�i; d�i (t�i)) 2 Proj�1Xk
i

(Ek)
o�

= �i (ti)
�n
(s�i; t�i)

����s�i; d1�i (t�i) ; :::; dk�i (t�i)� 2 Eko�
= �i (ti)

��
 k�i

��1
(Ek)

�
= b k�i (�i (ti)) (Ek)
= dk+1i (ti) (Ek) .
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�
(Inductive step): Recall that di (ti) 2 H l

i , l � 2, if and only if fi (di (ti))
�
S�i �H l�1

�i

�
=
�!
1 ,

for each ti 2 Ti. Suppose that, for each player i 2 I, di (Ti) � H l�1
i . Hence, for all ti 2 Ti:

fi (di (ti))
�
S�i �H l�1

�i

�
= \�

IdS�i ; d�i
�
(�i (ti))

�
S�i �H l�1

�i

�
= �i (ti)

��
IdS�i ; d�i

��1 �
S�i �H l�1

�i

��
= �i (ti)

�n
(s�i; t�i) : d�i (t�i) 2 H l�1

�i

o�
= �i (ti) (S�i � T�i)
=

�!
1 ,

where the �rst equality follows from Claim 4 and the fourth from the induction hypothesis. Thus

fi (di (ti))
�
S�i �H l�1

�i

�
=
�!
1 , as required.

Second step: (di)i2I is a type morphism from T to Tu. First, we show that (di)i2I is
measurable. Since IdS�i is continuous (hence measurable), we need to show - by induction -

that di =
�
d1i ; d

2
i ; :::

�
is measurable, for each i 2 I. By de�nition, d1i = dProjS�i � �i, where �i is

measurable by assumption, and dProjS�i is measurable (in fact, continuous) by Lemma 4. Hence
d1i is measurable, for each i 2 I. Now assume, by way of induction, that for i 2 I, k = 1; :::l,
dki is measurable. This implies that  

l
�i =

�
IdS�i ; d

1
�i; :::; d

l
�i
�
is also measurable. Then, by

Lemma 4, the map b l�i is measurable and thus dl+1i = b l�i � �i is also measurable. Finally, note
that, since di (Ti) � Hi for each i 2 I (as proved in the �rst step), it follows from Proposition 3
and Diagram (5.3) that

fi � di = b �i � �i,
which implies that the conditions of De�nition 9 are met. Hence (di)i2I is a type morphism, as
required. �

5.2.3 Proof of Proposition 6

If each type space Ti is countable (e.g. �nite), then so is di (Ti), hence Borel in Hi. If instead
T is non-redundant, then the map (di)i2I : T ! H turns out to be a measure-theoretic isomor-
phism onto its image by Souslin Theorem. Thus, in both cases, the type morphism (di)i2I is
bimeasurable, and the conclusion follows from Proposition 12.(i).

On the other hand, let S ��i2IEi be self-evident in Tu. By Proposition 12.(ii), there exists
a lexicographic type structure T = hSi; Ei; �0iii2I such that the identity map ('i)i2I : �i2IEi !
T .is a bimeasurable type morphism from T to Tu. Thus, it is easily veri�ed that ('i)i2I = (di)i2I
is a type isomorphism and since Tu is non-redundant, T is also non-redundant. �

5.3 Proofs for Section 3.7

5.3.1 Additional details of Example 1

Here, we provide a complete proof that the hierarchy induced by Player 1�s type t01 in the
type structure described in Example 1 is not a mutually singular hierarchy, formally d1(t01) =�
d11 (t

0
1) ; d

2
1 (t

0
1) ; :::

�
=2 e�1. The proof, which is by induction, makes use of the following Claim:
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Claim 5 For all k � 1, �
�
 k2
�
= 2S2 � f;; T2g.

In the proof of Claim 5 we use the following well-known mathematical fact: Fix measurable
spaces X1, X2, Y1 and Y2. Let f1 : X1 ! Y1 and f2 : X2 ! Y2 be measurable maps such that
�X1 = � (f1) and �X2 = � (f2). Thus �X1 � �X2 = � ((f1; f2)).

Proof of Claim 5: First note that, since �2 (t02) = �2 (t
00
2), types t

0
2 and t002 obviously

induce the same hierarchy for Player 2. Hence d2(t02) = d2(t
0
2), so that d

k
2(t

0
2) = dk2(t

0
2) for

all k � 1. Each dk2 is a constant map, so �
�
dk2
�
= f;; T2g for all k � 1. By de�nition,

 k2 =
�
IdS2 ; d

1
2; :::; d

k�1
2 ; dk2

�
for all k � 1. Since � (IdS2) = 2S2 , we obtain from the above

mentioned fact that �
�
 k2
�
= 2S2 � f;; T2g for all k � 1, as required. �

The base step, i.e., d11 (t
0
1) = margS2 (�1 (t

0
1)) is not a mutually singular LPS, was already

shown in Example 1. Suppose that dk1 (ti) = b k�12 (�1 (t
0
1)) is not mutually singular for k � 1.

Using (the contrapositive of) Lemma 5.(2) we deduce that there are no Borel sets E1;E2 2
�
�
 k�12

�
satisfying the requirement of mutual singularity for �1 (t

0
1). But �

�
 k2
�
= 2S2�f;; T2g

by Claim 5, hence, using again Lemma 5.(2), we conclude that dk+11 (ti) = b k2 (�1 (t01)) is not
mutually singular.

5.3.2 Proof of Proposition 7.

The proof follows the lines of the proof of Lemma 6.2 in [28], and we shall only indicate the
additional needed arguments.

To this end, we need to recast our analysis in a purely measurable framework. We �rst provide
a de�nition of lexicographic type structure which relies only on measure-theoretic concepts,
without any reference to the topology on each type space. Recall that, given a measurable space
(X;�X), the set N (X) is endowed with the �-�eld AN (X) generated by sets of the form

f(�1; :::; �n) 2 N (X) j�l (E) � pl;8l � ng ,

where E 2 �X and pl 2 Q\ [0; 1] for all l � n. If FX is a �eld generating �X , then AN (X) is
generated by sets of the form

f(�1; :::; �n) 2 N (X) j�l (F ) � pl;8l � ng ,

where F 2 FX and pl 2 Q\ [0; 1] for all l � n. (Corollary 3 in Appendix 5.1.2.)

De�nition 21 A measurable (Si)i2I-based lexicographic type structure is a structure T =
hSi; (Ti;�Ti) ; �iii2I , where

1. for each i 2 I, (Ti;�Ti) is a measurable space;

2. for each i 2 I, the function �i : Ti ! N (S�i � T�i) is measurable.

De�nition 6 in the main text is a special case of a measurable type structure.
Next note that, under our topological assumptions, it turns out that for each player i, the

product �-�eld over the hierarchy space H0
i =

Q1
k=0N

�
Xk
i

�
coincides with the Borel �-�eld
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generated by the product topology� this follows from the fact that each N
�
Xk
i

�
is metrizable

Lusin, so second countable, and from [1, Theorem 4.44]. The family of Borel cylinders in H0
i is

a �eld which generates the Borel �-�eld �H0
i
. Thus, by Corollary 3 in Appendix 5.1.2, the Borel

�-�eld over the space N
�
S�i �H0

�i
�
is generated by sets of the form(�

�1i ; :::; �
n
i

�
2 N

�
S�i �H0

�i
� ������li

 
Fm�i �

1Y
k=m

N
�
Xk
�i

�!
� pl;8l � n

)
,

where Fm�i is a Borel subset of S�i�
Qm�1
k=0 N

�
Xk
�i
�
and (p1; p2; :::; pn) 2 (Q\ [0; 1])n. So, it makes

sense to abstract from the topological aspects of the construction by relying only to the "natural"
�-�eld �H0

i
on each H0

i . With this, for any measurable type structure T = hSi; (Ti;�Ti) ; �iii2I ,
the notion of each hierarchy desciption map di : Ti ! H0

i (as stated in the main text) is
well-de�ned in a topology-free framework, i.e., di is measurable with respect to �Ti .

Having done these preparations, we �rst show that �i2I� (di) � �i2IGTi . Fix a measurable
type structure T = hSi; (Ti;�Ti) ; �iii2I ; we now construct a measurable type structure T 0 =
hSi; (Ti;GTi) ; �0iii2I such that

�0i (ti) (E) = �i (ti) (E) , 8ti 2 Ti, 8E 2 �S�i � GT�i .

Since �i2IGTi is closed under T , this implies that each �0i is GTi-measurable, and so T 0 is a
well-de�ned measurable type structure. We show that T and T 0 induce the same hierachies of
lexicographic beliefs. That is, we show that di (ti) = d0i (ti) for each ti 2 T and i 2 I. (Here,
d0i denotes the hierarchy map associated with T 0.) This will entail �i2I� (di) = �i2I� (d0i), and
since each d0i is measurable, then �i2I� (d

0
i) � �i2IGTi , as required.

Since margS�i�
0
i (ti) = margS�i�i (ti) for all ti 2 Ti, this immediately yields d

1
i =

�
d1i
�0, i.e.,

the �rst-order hierarchy description maps coincide. Next, suppose that the statement holds true
for k � 1, i.e., dki =

�
dki
�0
for each i 2 I; this in turn implies that  k�i =

�
s�i; d1�i; :::; d

k
�i;
�
=�

s�i;
�
d1i
�0
; :::;

�
dki
�0�

=
�
 k�i

�0
holds true. Then, for each Eki 2 �Xk

i
,

dk+1i (ti)
�
Eki

�
= b k�i (�i (ti))�Eki � = \�

 k�i
�0 �

�0i (ti)
� �
Eki

�
=
�
dk+1i

�0
(ti)

�
Eki

�
,

as required.
To prove that �i2IGTi � �i2I� (di), we need to show that �i2I� (di) is closed under T . Fix

(p1; p2; :::; pn) 2 (Q\ [0; 1])n, and let Fm�i be a measurable subset of S�i�
Qm�1
k=0 N

�
Xk
�i
�
= Xm

i .
De�ne the following set:

B = (�i)
�1
 (�

�1i ; :::; �
n
i

�
2 N (S�i � T�i)

�����e �i ��li�
 
Fm�i �

1Y
k=m

N
�
Xk
�i

�!
� pl;8l � n

)!
;

we need to show that B 2 � (di). To accomplish this task, we prove that

B = (dmi )
�1
�n�

�m;1i ; :::; �m;ni

�
2 N

�
Xm�1
i

� ����m;li

�
Fm�i
�
� pl;8l � n

o�
(5.4)

Indeed, if Eq. (5.4) holds, we can conclude: By de�nition of � (di), the map di : Ti ! H0
i is

measurable, and this implies that dmi is measurable for all m � 1. So, if Eq. (5.4) holds, then
the LHS of Eq. (5.4) is contained in � (di), establishing the claim.

Let ti 2 Ti belong to the LHS of Eq. (5.4). Thus ti 2 Ti is associated with length-
n LPS, namely �i (ti) =

�
�1i ; :::; �

n
i

�
2 N (S�i � T�i), and the induced (m+ 1)-order LPS
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�
�m+1;1i ; :::; �m+1;ni

�
=
�e m�i ��1i � ; :::; e m�i (�ni )� is such that, for all l � n,

�m+1;li

�
Fm�i
�
= �li

��
 m�i

��1 �
Fm�i
��

= �li

��
 �i

��1 �
Proj�1Xm

i

�
Fm�i
���

= �li

 �
 �i

��1 
Fm�i �

1Y
k=m

N
�
Xk
i

�!!
� pl,

where the second equality follows from the fact that ProjXm
i
�  �i =  m�i, for all m 2 N. This

shows that ti 2 Ti belongs to the RHS of Eq. (5.4). Conversely, suppose that ti 2 Ti belongs to
the RHS of Eq. (5.4). Note that

dmi (ti)
�
Fm�i
�
= margXm

i

b �i (�i (ti)) �Fm�i�
= b �i (�i (ti))

 
Fm�i �

1Y
k=m

N
�
Xk
�i

�!

=

0@ �1i

��
 �i

��1 �
Fm�i �

Q1
k=mN

�
Xk
�i
���

; :::;

�ni

��
 �i

��1 �
Fm�i �

Q1
k=mN

�
Xk
�i
���

1A
=

�
�m;1i

�
Fm�i
�
; :::; �m;ni

�
Fm�i
��
,

hence the conclusion that ti 2 Ti also belongs to the LHS of Eq. (5.4) is immediate.

5.3.3 Proof of Proposition 8.

Given a mutually singular type structure T = hSi; Ti; �iii2I , we show that a type ti 2 Ti induces
a hierarchy with a mutually singular representation, i.e., di (ti) 2 �1i , if and only if �i (ti) is
mutually singular w.r.to �

�
 �i

�
= �S�i � � (d�i). The conclusion will follow from Proposition

7, according to which �S�i � � (d�i) = �S�i � GT�i .
If di (ti) 2 �1i for each ti 2 Ti, then by Theorem 1 and the de�nition of the map gi : �1i !

L (S�i �H�i) (which is a homeomorphism) the following diagram commutes:

Ti
�i����! L(S�i � T�i)??ydi ??y \(IdS�i ;d�i)

�1i
gi����! L(S�i � H�i)

.

So there are measurable sets fElgnl=1 � �S�i � �H�i , n 2 N, which satisfy the requirement of
mutual singularity for LPS gi (di (ti)). The collection

n�
 �i

��1
(El)

on
l=1

belongs to the �-�eld

�
�
 �i

�
= �S�i � � (d�i), and such sets satisfy the desired properties of mutual singularity of

�i (ti).
On the other hand, suppose that each �i (ti) is mutually singular w.r.to �

�
 �i

�
. It follows

from the de�nition of �
�
 �i

�
that there are pairwise disjoint, measurable sets fElgnl=1 � �S�i�

�H�i , n 2 N, such that (�i (ti))l
��
 �i

��1
(El)

�
= 1 and (�i (ti))l

��
 �i

��1
(Em)

�
= 0, for

l 6= m. This means that b �i (�i (ti)) 2 L
�
S�i �H0

�i
�
, and since b �i (�i (ti)) = f i (di (ti))

(Theorem 1), it follows from de�nition of �1i that di (ti) 2 �1i .
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5.3.4 Proof of Theorem 2.

The proof follows the lines of the proof of Theorem 1. For the reader�s convenience, we provide
only the necessary changes to be made.

The �rst step is to show by induction that, for each player i 2 I, di (ti) 2 �i. By Theorem 1
and Proposition 8, it follows that di (ti) 2 �1i . This in turn implies that the following diagram
commutes:

Ti
�i����! L(S�i � T�i)??ydi ??y \(IdS�i ;d�i)

�1i
fi����! L(S�i � H�i)

. (5.5)

To show that di (ti) 2 �li, l � 2, one proceeds exactly as in the proof of Theorem 1, with the
symbol H replaced by �, but making use this time of the commutativity of Diagram (5.5).

Having proved that di (Ti) � �i for each i 2 I, by virtue of Proposition 4 and Diagram (5.5)
we get

gi � di = b �i � �i,
which shows that (di)i2I is a type morphism.
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