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1 Introduction

Permissibility (Brandenburger, [3]) is a solution concept for games in strategic form, based on a
iterative procedure. A strategy survives a step of the iterative procedure if it is a lexicographic
best reply to a Lexicographic Probability System (henceforth, LPS) over opponent�s strategies
with two features: (i) each strategy of the opponent is assigned positive probability by some
component measure of the LPS; (ii) the �rst component measure of the LPS assigns positive
probability only to strategies of the opponent which have survived the previous steps of the
procedure. Brandenburger [3] proved that Permissibility coincides with the Dekel-Fudenberg
procedure, i.e. the elimination of weakly dominated strategies, followed by the iterated elimina-
tion of strictly dominated strategies.

The aim of this paper is to provide an epistemic foundation of Permissibility. We base our
analysis on two key notions: Cautious Rationality and Weak Belief. Cautious Rationality is the
combination of lexicographic expected utility maximization and a cautious attitude of the player
towards the primitive, payo¤-relevant uncertainty. That is, each payo¤-relevant event is assigned
positive probability under some theory of the world that the player entertains, represented by
some component measure of the player�s LPS. Weak Belief of an event means that the player
considers the event "in�nitely more likely" than its complement. That is, the event is assigned
probability one by the player�s primary theory of the world, represented by the �rst component
measure of the LPS. Weak Belief is based on the notion of "in�nitely more likely than" between
uncertain events due to Lo [11]. Roughly speaking, a player deems an event in�nitely more
likely than another one when she strictly prefers to bet on the �rst rather than on the second
regardless of the size of the winning prizes for the two bets (given the same losing outcome).
This notion of "in�nitely more likely than" is weaker than the one due to Blume et al. [2]. In
particular, the �rst is monotone, whereas the second one is not. Thus, the �rst one is suitable
for the preference-based foundation of the monotone notion of Weak Belief, whereas the second
one is not. Indeed, Brandenburger et al. [5], who adopt the notion of "in�nitely more likely
than" of [2] for their epistemic analysis of Iterated Admissibility, leave the epistemic foundations
of Permissibility as an open question (see [5], page 333).

With this, we show that Permissibility characterizes the behavioral implications of Cautious
Rationality and Common Weak Belief of Cautious Rationality in the canonical, universal type
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structure for LPS�s. The canonical type structure represents all hierarchies of lexicographic
beliefs on strategies, without imposing extraneous restrictions on players�beliefs.

The paper is structured as follows. Section 2 intoduces some preliminary technical concepts
and the formal de�nitions of LPS�s, type structures and type morphism. The main result in
this section �the existence of a canonical, universal type structure for LPS�s �is proved in our
companion paper ([6]). Section 3 introduces the underlying game-theoretic framework, and the
notions of Cautious Rationality and Weak Belief. In Section 4, we state and prove the main
result. Appendix A illustrates the notion of "in�nitely more likely than" and the preference-
based foundation of Weak Belief. Appendix B provides the results about measurability of
relevant sets.

2 Hierarchies of lexicographic beliefs and lexicographic type
structures

2.1 Lexicographic probability systems

Given a topological space X, we denote byM (X) the set of Borel probability measures on X.
We denote by N (X) (resp. Nn (X)) the set of all �nite (resp. length-n) sequences of Borel
probability measures on X, that is,

N (X) = [n2NNn (X)
= [n2N (M (X))n .

Each � = (�1; :::; �n) 2 N (X) is called lexicographic probability system (LPS).
Suppose we are given topological spaces X and Y , and a Borel map f : X ! Y . The mapef :M (X)!M (Y ), de�ned by

ef (�) (E) = �
�
f�1 (E)

�
, � 2M (X) , E 2 �Y ,

is called the image (or pushforward) measure map of f . For each n 2 N, the map bf(n) : Nn (X)!
Nn (Y ) is de�ned by

(�1; :::; �n) 7! bf(n) ((�1; :::; �n)) = � ef (�k)�
k�n

.

Thus the map bf : N (X)! N (Y ) de�ned by

bf (�) = bf(n) (�) , � 2 Nn (X) ,
is called the image LPS map of f . In other words, the map bf is the combination of the functions� bf(n)�

n2N
, and it is Borel measurable.1

Furthermore, given topological spaces X and Y , we denote by ProjX the canonical pro-
jection from X � Y onto X. De�ne the marginal measure of � 2 M (X � Y ) on X as
margX� = gProjX (�). Consequently, the marginal of � 2 N (X � Y ) on X is de�ned by
margX� = dProjX (�). Finally, we denote by IdX the identity map on X, that is, IdX (x) = x
for all x 2 X.

1For details and proofs related to Borel measurability and continuity of the involved maps, the reader can
consult [6].
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2.2 Lexicographic type structures

The following de�nition is a natural generalization of the standard de�nition of epistemic type
structures with beliefs represented by probability measures, i.e., length-1 LPS (cf. [10]). The
formalism of lexicographic type strucures was �rst introduced by BFK ([5, Section 7]).2

De�nition 1 An (Si)i2I-based lexicographic type structure is a structure T = hSi; Ti; �iii2I ,
where

1. for each i 2 I, Ti is a metrizable space;

2. for each i 2 I, the function �i : Ti ! N (S�i � T�i) is measurable.

We call each space Ti type space and we call each �i belief map.3 Members of type spaces,
viz. ti 2 Ti, are called types.

De�nition 2 An (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I is

� �nite if the cardinality of each type space Ti is �nite;

� compact if each type space Ti is compact;

� belief-complete if each belief map �i is onto;

� continuous if each belief map �i is continuous.

Analogous de�nitions hold if T = hSi; Ti; �iii2I is an LCPS type structure.

The idea of belief-completeness was introduced by Brandenburger [4] and adapted to the
present context. Note that each type space in a belief-complete type structure has the cardi-
nality of the continuum. While �nite type structures are trivially compact and continuous (but
not belief-complete), the absence of an upper bound of the lenght of an LPS implies that a lex-
icographic type structure cannot be at the same time belief-complete, compact and continuous
(for details, see [6]).

2.3 Type morphisms and universality

In what follows, given a type structure T = hSi; Ti; �iii2I , we denote by T the Cartesian product
of type spaces, that is, T = �i2ITi.

De�nition 3 Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be two (Si)i2I-based lexicographic
type structures. For each i 2 I, let 'i : Ti ! T 0i be a measurable map such that

�0i � 'i = \�
IdS�i ; '�i

�
� �i.

Then the function ('i)i2I : T ! T 0 is called type morphism (from T to T 0).
2Brandenburger et al. [5] de�ned lexicograpic types structures under the additional requirement that each

belief is represented by LPS satisfying a, roughly speaking, disjoint supports condition, called mutual singularity.
3Observe that some authors ([1], [10]) use the terminology "type space" for what is called "type structure"

here.
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The notion of type morphism captures the idea that a type structure T is "contained in"
another type structure T 0 if T can be mapped into T 0 in a way that preserves the beliefs
associated with types. Condition (2) in the de�nition of type morphism expresses consistency

between the function 'i : Ti ! T 0i and the induced function
\�

IdS�i ; '�i
�
: N (S�i � T�i) !

N
�
S�i � T 0�i

�
. That is, the following diagram commutes:

Ti
�i����! N (S�i � T�i)??y'i ??y \(IdS�i ;'�i)

T 0i
�0i����! N (S�i � T 0�i)

. (2.1)

The notion of type morphism does not make any reference to hierarchies of LPS�s. But, as
one should expect, the important property of type morphisms is that they preserve the explicit
description of lexicographic belief hierarchies (for details, see [6])

We now ask: Is there a type structure into which any other type structure can be mapped?
Alternatively put, since a type structure generates hierarchies of LPS�s, does there exist a type
structure that generates all hierarchies of beliefs? A type structure satisfying this requirement
is called universal.

De�nition 4 An (Si)i2I-based type structure T 0 = hSi; T 0i ; �0iii2I is universal if for every other
(Si)i2I-based type structure T = hSi; Ti; �iii2I there is a unique type morphism from T 0 to T .

In [6] we constructed the canonical type structure for LPS�s, that is, a type structure in which
types induce all possible hierarchies of lexicographic beliefs about the primitive uncertainty.
Then, we showed that Tu is universal. This is in line with standard results on hierarchies of
beliefs (cf., [12], [1]).

Theorem 1 (Catonini and De Vito, [6]) Let T = hSi; Ti; �iii2I be an arbitrary (Si)i2I-
based lexicographic type structure. Then, there exists a unique type morphism from T to Tu.
Thus Tu is a universal lexicographic type structure.

The canonical type structure Tu is a particular instance of a belief-complete and continuous
type structure. However, there exists other belief-complete type-structure, and they are not
necessarily universal.

3 Permissibility, Cautiousness, and Weak Belief

3.1 Permissibility and the Dekel-Fudenberg Procedure

Consider a �nite game G = hI; (Si; ui)i2Ii, where I is a two-player set and, for every i 2 I, Si
is the set of strategies with jSij � 2 and ui : S ! R is the payo¤ function. De�ne the expected
payo¤ function �i by extending ui onM(Si)�M(S�i) in the usual way:

�i(�i; ��i) =
X

(si;s�i)2Si�S�i

�i(si)��i(s�i)ui(si; s�i):

For any two vectors x = (xl)
n
l=1 ; y = (yl)

n
l=1 2 Rn, we write x �L y if either (1) xl = yl for every

l � n, or (2) there exists m � n such that xm > ym and xl = yl for every l < m.
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De�nition 5 A strategy si 2 Si is optimal under �i =
�
�1i ; :::; �

n
i

�
2 N (S�i) if�

�i(si; �
l
i)
�n
l=1

�L
�
�i(s

0
i; �

l
i)
�n
l=1
, 8s0i 2 Si.

We say si is a lexicographic best reply to �i on S�i if it is optimal under �i. We denote by
ri(�i) the set of player i�s strategies which are optimal under �i.

A strategy si 2 Si is justi�able if

si 2 [�i2N (S�i)ri(�i);

and cautiously justi�able if
si 2 [�i2N+(S�i)ri(�i):

LetQ denote the collection of all �Cartesian�subsets of S, i.e., subsets with the cross-product
form Q = Qi �Q�i, where Qi � Si for every i.

De�nition 6 Fix a set Q 2 Q. A strategy si 2 Si is admissible with respect to Q if and
only if there exists ��i 2 M(S�i) such that Supp��i = Q�i and �i(si; ��i) � �i(s

0
i; ��i) for

every s0i 2 Qi. If strategy si 2 Si is admissible with respect to Si � S�i, we simply say that si is
admissible.

Remark 1 Fix Q 2 Q. A strategy si 2 Si is weakly dominated with respect to Q if there
exists �i 2 M(Si) with �i (Qi) = 1 such that �i(�i; s�i) � �i(si; s�i) for every s�i 2 Q�i and
�i(�i; s

0
�i) > �i(si; s

0
�i) for some s

0
�i 2 Q�i. A standard result ([?, Lemma 4]) states that a

strategy si 2 Si is not weakly dominated with respect to Q if and only if it is admissible with
respect to Q.

De�nition 7 Fix a set Q 2 Q. A strategy si 2 Si is strictly dominated with respect to Q
if there exists �i 2 M(Si) such that �i(�i; s0�i) > �i(si; s

0
�i) for some s

0
�i 2 Q�i. If strategy

si 2 Si is strictly dominated with respect to Si�S�i, we simply say that si is strictly dominated.

Remark 2 Fix a set Q 2 Q. By [?, Lemma 2], a strategy si 2 Si is strictly dominated
with respect to Q if and only if there exists ��i 2 M(S�i) such that ��i (Q�i) = 1 and
�i(si; ��i) � �i(s

0
i; ��i) for every s

0
i 2 Qi.

Fix Q 2 Q. We write WDi(Q) (resp., NDi(Q)) for the set of not weakly (resp., strictly)
dominated strategies of player i with respect to Q. Let WD(Q) =

Q
i2IWDi(Q), ND(Q) =Q

i2I NDi(Q), ND
1(Q) = ND(Q). For each k > 1, let NDk(Q) = ND(NDk�1(Q)).

The sets

WD(S);

NDk(WD(S)); 8k = 1; 2; :::.

constitute the Dekel-Fudenberg procedure ([8])
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We de�ne the following sets:

�Wi (Q�i) =
�
si 2 Si : 9�i 2 N+(S�i); �

1
i (Q�i) = 1 ^ si 2 ri(�i)

	
;

�W (Q) =
Y
i2I

�Wi (Q�i).

The interpretation is as follows: �W (Q) is the set of cautiously justi�able strategy pro�les that
could be chosen by the players if every i weakly believes that the co-player chooses in Q�i.
Therefore, we call the mapping �W : Q ! Q �weak rationalization operator.�4 Note that
�W (;) = ;.

Remark 3 The operator �W is monotone: for every pair of subsets E;F 2 Q, if E � F then
�W (E) � �W (F ).

We de�ne the k-th iteration of �W (the k-fold composition of � with itself) recursively as
follows. For each Q 2 Q, de�ne �W;0(Q) = Q for convenience; then for each k � 1,

�W;k(Q) = �W (�W;k�1(Q)):

Note that, by the monotonicity of �W , the sequence of subsets (�W;k(S))1k=1 is weakly decreasing,
i.e., �W;k+1(S) � �W;k(S) (k 2 N). Therefore de�ne:

�W;1(S) =
\
k�1

�W;k(S):

Since each strategy set Si is �nite, there exists M 2 N such that �W;1(S) = �W;M (S) 6= ;.
For notational convenience, for each m = 0; :::;1, let Sm = �W;m(S) and, for each i 2 I,
Smi = ProjSi�

W;m(S).

De�nition 8 (Brandenburger, [3]) A strategy pro�le s 2 S is permissible if s 2 S1 =
�W;1(S).

Theorem 2 (Brandenburger, [3]) Fix a �nite G = hI; (Si; ui)i2Ii. Thus

�W;1(S) = S1 = WD(S),

�W;k(S) = Sk = NDk�1(WD(S)), 8k = 2; 3; :::.

Therefore, a strategy pro�le is permissible if and only if it survives the Dekel-Fudenberg procedure.

4The weak rationalization operator represents an example of justi�cation operator, a concept which was
�rst explicitly presented by Milgrom and Roberts [?].
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3.2 Rationality, Cautiousness and Weak Belief

Append to the game G a type structure T = hSi; Ti; �iii2I .

De�nition 9 A type ti 2 Ti is cautious (in T ) if margS�i�i(ti) 2 N
+ (S�i).

Thus, for strategy-type pairs we de�ne the following notions.

De�nition 10 Fix a strategy-type pair (si; ti) 2 Si � Ti.

1. Say (si; ti) is rational (in T ) if si is optimal under margS�i�i(ti). Let Ri be the set of
all rational (si; ti) 2 Si � Ti.

2. Say (si; ti) is cautiously rational (in T ) if it is rational and (si; ti) 2 Ci.

Cautious rationality has a convenient invariance property under type morphisms between
type structures. The following results state this formally.

Lemma 1 (Catonini and De Vito, [7]) Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be
lexicographic type structures, so that there exists a type morphism ('i)i2I : T ! T � from T to
T �. Fix a type ti 2 Ti. Thus

(i) ti is cautious if and only if 'i (ti) is cautious.

(ii) A strategy-type pair (si; ti) is rational in T if and only (si; 'i (ti)) is rational in T �.

Next, the notion of LPS-based notion of Weak Belief.

De�nition 11 Fix a type structure T = hSi; Ti; �iii2I and a non-empty event E � S�i � T�i.
Fix also ti 2 Ti with �i (ti) = (�1; :::; �n). We say that E is weakly believed under �i (ti) if
�1 (E) = 1. We say that ti 2 Ti weakly believes E if E is weakly believed under �i (ti).

The notion of Weak Belief captures the idea that event E is "in�nitely more likely than"
its complement: see Appendix A for its preference-based treatment. Weak Belief satis�es the
following properties.

Property 1: (Marginalization) If E is a non-empty event in S�i�T�i which is weakly believed
under �i, then ProjS�i (E) is weakly believed under margS�i�i.

Property 2: (Conjunction and Disjunction) Fix non-empty events E1; E2; ::: in S�i � T�i.
Suppose that, for each k, Ek is weakly believed under �i. Thus \kEk and [kEk are weakly
believed under �i.

Property 3: (Monotonicity) Fix a non-empty event E � S�i � T�i which is weakly believed
under �i. If event F � S�i � T�i is such that E � F , then F is weakly believed under �i.
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For each player i 2 I, letWBi : �S�i�T�i ! �Si�Ti be the operator de�ned by

WBi (E�i) = f(si; ti) 2 Si � Ti jti weakly believes E�i g , E�i 2 �S�i�T�i .

Corollary D.1 in Appendix B shows that the setWBi (E�i) is Borel in Si � Ti for every event
E�i � S�i � T�i; so the operatorWBi : �S�i�T�i ! �Si�Ti is well-de�ned.

The Weak Belief operator WBi has invariance properties under type morphisms between
type structures which are analogous to the ones of (cautious) rationality

Lemma 2 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be lexicographic type structures
such that there exists a type morphism ('i)i2I : T ! T � from T to T �. Let E�i � S�i �
T�i and E��i � S�i � T ��i be non-empty events such that

�
IdS�i ; '�i

�
(E�i) � E��i. Then

(IdSi ; 'i) (WBi (E�i)) �WBi
�
E��i

�
.

Proof. Fix (si; ti) 2WBi (E�i). Write �i(ti) = (�1; :::; �n) and (�
�
i � 'i)(ti) = (b�1; :::; b�n).

Since ��i �'i = \�
IdS�i ; '�i

�
��i, it is easy to observe that �1(E�i) = 1 implies b�i(�IdS�i ; '�i� (E�i)) =

1. That is, ��i ('i(ti)) weakly believes
�
IdS�i ; '�i

�
(E�i). Thus, by monotonicity of weak belief,

��i ('i(ti)) weakly believes also E
�
�i �

�
IdS�i ; '�i

�
(E�i). �

4 Common Weak Belief of Cautious Rationality and the main
result

We now provide an epistemic foundation of permissibility in "su¢ ciently rich" (i.e., belief-
complete) type structures. In what follows, �x a type structure T = hSi; Ti; �iii2I and, for each
player i 2 I, let R1i be the set of all cautiously rational strategy-type pairs (si; ti) 2 Si�Ti. For
each m > 1, de�ne Rmi inductively by

Rm+1i = Rmi \WBi
�
Rm�i

�
.

We write R0i = Si � Ti and R1i = \m2NRmi for each i 2 I. If (si; ti)i2I 2
Q
i2I R

m+1
i , we say

that there is cautious rationality and mth-order weak belief of cautious rationality
(RcmWBRc) at this state. If (si; ti)i2I 2

Q
i2I R

1
i , we say that there is cautious rationality

and common weak belief of cautious rationality (RcCWBRc) at this state.
Note that, for each m > 1,

Rm+1i = R1i \
�
\l�mWBi

�
Rl�i

��
,

and each Rmi is Borel in Si � Ti (see Appendix B).

We now state the main results of this paper.

Theorem 3 Fix a game G = hI; (Si; ui)i2Ii and an associated belief-complete type structure
T = hSi; Ti; �iii2I . The following statements hold:

(i) for each m � 0,
Q
i2I ProjSi (R

m
i ) =

Q
i2I S

m
i ;

(ii) if T is universal, then
Q
i2I R

1
i 6= ; and

Q
i2I ProjSi (R

1
i ) =

Q
i2I S

1
i .
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The proof of Theorem 3 will make use of the following results.

Lemma 3 Fix a game G = hI; (Si; ui)i2Ii and an associated type structure T = hSi; Ti; �iii2I .
The following statements hold:

(i) for each m � 1,
Q
i2I ProjSi (R

m
i ) �

Q
i2I S

m
i ;

(ii)
Q
i2I ProjSi (R

1
i ) �

Q
i2I S

1
i .

Proof : The proof of part (i) is by induction on m.
(m = 1) Fix i 2 I. Let si 2 ProjSi

�
R1i
�
, so that (si; ti) 2 R1i for some ti 2 Ti. Then si is

optimal against margS�i�i(ti) 2 N
+(S�i), that is, si 2 S1i . So ProjSi

�
R1i
�
� S1i for each i 2 I.

(m � 2) Suppose that the statement has been shown to hold for all l = 1; :::;m � 1. We
show that the statement is true for l = m.

Fix a player i 2 I, and let si 2 ProjSi (R
m
i ), so that (si; ti) 2 Rmi for some ti 2 Ti. It follows

from the de�nition of Rmi that (si; ti) 2 Rm�1i , so, by the induction hypothesis, si 2 Smi . Also,
Rm�1�i is weakly believed under �i (ti) =

�
�1i ; :::; �

n
i

�
, hence

margS�i�
1
i

�
Sm�1�i

�
� margS�i�

1
i

�
ProjS�i

�
Rm�1�i

��
� �1i

�
Rm�1�i

�
= 1,

where the �rst inequality follows from the induction hypothesis. Hence si is optimal against
margS�i�i(ti) = (�

1
i ; :::; �

n
i ) 2 N+(S�i) with �1i (S

m�1
�i ) = 1, that is, si 2 Smi . So ProjSi (R

m
i ) �

Smi for each i 2 I.
This concludes the proof of part (i). Part (ii) follows from part (i). �

Lemma 4 Fix a game G = hI; (Si; ui)i2Ii. There exists a �nite type structure T � = hSi; T �i ; ��i ii2I
such that:

(i) for each m � 1,
Q
i2I ProjSi

�
R�;mi

�
=
Q
i2I S

m
i ;

(ii)
Q
i2I ProjSi

�
R�;1i

�
=
Q
i2I S

1
i .

Proof : Let M be the smallest natural number such that
Q
i2I S

1
i =

Q
i2I S

M
i . By de�nition of

Permissibility, for each i 2 I, k = 1; :::;M�1, and si 2 Ski nSk+1i , we can pick �si = (�
1
si ; :::; �

n
si) 2

N+(S�i) such that �1(Sk�1�i ) = 1 and si is optimal under �si . For each si 2 SMi , we can pick
�si = (�

1
si ; :::; �

n
si) 2 N

+(S�i) such that �1si(S
M
�i) = 1 and si is optimal under �si .

Now we construct a �nite type structure T � = hSi; T �i ; ��i ii2I .
For each i 2 I, let T �i be a copy of Si. For each si 2 Si, we will denote the corresponding

type as tsi . Let  i : Si ! (Si � T �i ) be a map that associates each strategy si 2 Si with the
strategy-type pair (si; tsi).

For each i 2 I, we de�ne the belief map ��i : T
�
i ! N (S�i � T ��i) as follows. For each

si 2 S0i nS1i , let ��i (tsi) be arbitrary. For each si 2 S1i , let ��i (tsi) = b �i(�si).
Note that for every i 2 I and si 2 S1i , tsi is cautious.
Lemma 3.(i) entails that, for each i 2 I and m � 1, if (si; ti) 2 R�;mi then si 2 Smi . Con-

versely, if si 2 S1i , (si; tsi) 2 R
�;1
i because tsi is cautious and si is optimal undermargS�i�

�
i (tsi) =

�si . Fix m > 1 and assume by induction that for every j 2 I and sj 2 Sm�1j ,
�
sj ; tsj

�
2 R�;m�1j .

Fix si 2 Smi . Write �
�
i (tsi) = (�

1
i ; :::; �

n
i ). By the inductive hypothesis, (si; tsi) 2 R�;m�1i , and

for every s�i 2 Sm�1�i ,
�
s�i; ts�i

�
2 R�;m�1�i . Then we have

�1i (R
�;m�1
�i ) � �1i

���
s�i; ts�i

�
2 S�i � T ��i

��s�i 2 Sm�1�i
	�
= �1si(S

m�1
�i ) = 1,

9



where for m =M the last equality comes from �1si(S
M
�i) = 1 and S

M�1
�i � SM�i. Thus, tsi weakly

believes R�;m�1�i . This establishes part (i).
Fix si 2 S1i . We have just shown that (si; tsi) 2 R

�;m
i for all m � 1. Then, (si; tsi) 2 R

�;1
i .

This establishes part (ii). �

Proof of Theorem 3: Part (i): The statement is trivially true for m = 0.
Fix m � 1. Suppose that the statement has been shown to hold for all l = 1; :::;m� 1. We

show that the statement is true for l = m.
Fix a player i 2 I. Lemma 3.(i) gives that ProjSi (R

m
i ) � Smi . Conversely, let si 2 Smi . So

there is �i =
�
�1i ; :::; �

n
i

�
2 N+ (S�i) such that �1i

�
Sm�1�i

�
= 1, and si is a lexicographic best

reply to �i. We now show the existence of an LPS �i =
�
�1i ; :::; �

n
i

�
2 N (S�i � T�i) such that

(a) margS�i�i = �i; and
(b) (Rk�i)

m�1
k=0 are weakly believed under �i.

To this end, note that, by the induction hypothesis, for each s�i 2 Sm�1�i there exists ts�i 2
T�i such that

�
s�i; ts�i

�
2 Rm�1�i . Fix some t0�i 2 T�i, and de�ne the map  m�1�i : S�i !

S�i � T�i as

 m�1�i (s�i) =

�
(s�i; ts�i), if s�i 2 Sm�1�i ,
(s�i; t0�i), if si 2 S�i n Sm�1�i ,

(Of course, the map  m�1�i is continuous, since strategy sets are endowed with the discrete

topology.) De�ne �i 2 N (S�i � T�i) by �i = b m�1�i (�i). It readily follows that �i satis�es
property (a), since ProjS�i �  

m�1
�i = IdS�i . Property (b) also holds, in that

�1i
�
Rm�1�i

�
= �1i

�
( m�1�i )�1

�
Rm�1�i

��
= �1i

�
Sm�1�i

�
= 1, (4.1)

where the second equality comes from the the induction hypothesis. So, Rm�1�i is weakly believed
under �i. By monotonicty of weak beliefs, then for each k < m�1, Rk�i is weakly believed under
�i too. It now follows from belief-completeness that there is ti 2 Ti such that �i (ti) = �i; this
implies (si; ti) 2 Rmi , hence si 2 ProjSi (R

m
i ).

Part (ii): Fix a player i 2 I. Lemma 3.(ii) gives that ProjSi (R
1
i ) � S1i . Conversely,

suppose that T is universal (for instance, Tu). Then, by Lemma 4, there exists a �nite type
structure T � = hSi; T �i ; ��i ii2I such that, for each i 2 I and each m � 1,

(a) ProjSi
�
R�;mi

�
= Smi ,

(b) ProjSi
�
R�;1i

�
= S1i .

Then, for every si 2 S1i , there exists ti 2 T �i such that (si; ti) 2 R
�;m
i for all m 2 N. It thus

follows from Lemma 2 that (IdSi ; di) ((si; ti)) 2 Rmi for allm 2 N. Hence (IdSi ; di) ((si; ti)) 2 R1i .
Consequently S1i � ProjSi (R

1
i ) 6= ;. The conclusion follows. �

Appendix A: Preference-based representation of Weak-Belief

Fix a lexicographic type structure T = hSi; Ti; �iii2I , where each strategy set Si is �nite. To
shorten notation, it will be convenient to set 
 = S�i�T�i and to drop i�s subscript from LPS�s
�i on 
.

An act on 
 is a Borel measurable function f : 
 ! [0; 1]. We denote by ACT(
) the set
of all acts on 
. A decision maker has preferences over elements of ACT(
). For x 2 [0; 1],
write �!x for the constant act associated with x, i.e., �!x (!) = x for all ! 2 
. Each constant
act is identi�ed with the associated outcome in a natural way. In what follows, we assume
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that the outcome space [0; 1] is in utils. Given a Borel set E � 
 and acts f; g 2ACT(
), let
(fE ; z
nE) 2ACT(
) be de�ned as follows:

(fE ; z
nE)(!) =

�
f(!), ! 2 E,
z(!), ! 2 
�E.

Let % be a preference relation on ACT(
) and write � (resp. �) for strict preference (resp.
indi¤erence). The preference relation % sastis�es the following axioms:

Axiom 1 Order: % is a complete, transitive, re�exive binary relation on ACT(
).

Axiom 2 Independence: For all f; g; z 2ACT(
) and � 2 (0; 1],

f � g implies �f + (1� �) z � �g + (1� �) z, and
f � g implies �f + (1� �) z � �g + (1� �) z.

Moreover, let %E denote the conditional preference given E, that is, f %E g if and only if
(fE ; z
nE) % (gE ; z
nE) for some z 2ACT(
). Standard results (see [2, p. 64] for a proof) state
that, under Axioms 1 and 2, (fE ; z
nE) % (gE ; z
nE) holds for all z 2ACT(
) if it holds for
some z.

Throughout, we mantain the assumption that � is a LEU representation of %, i.e., %=%�.
(This makes sense, since each LEU representation satis�es Axioms 1 and 2.)

Recall that an event E � 
 is Savage-null under % if f �E g for all f; g 2ACT(
). Say that
E is non-null under % if it is not Savage-null under %. Say that event E � 
 is fully-believed
under % if f �
nE g for all f; g 2ACT(
). We thus have:

Proposition A.1 Fix an LPS � = (�1; :::; �n) 2 N (
). An event E � 
 is Savage-null under
%� if and only if �l (E) = 0 for all l � n.

Proof : If �l (E) = 0 for all l � n, then obviously f ��E g for all f; g 2ACT(
). On the other
hand, if E � 
 is Savage-null under %�, then �!1 ��E

�!
0 . That is, Z

E
d�l +

Z

nE

zd�l

!n
l=1

=

 
0 +

Z

nE

zd�l

!n
l=1

, 8z 2 ACT(
) ,

which implies �l (E) = 0 for all l � n. �

Corollary A.1 Fix an LPS � = (�1; :::; �n) 2 N (
). A non-empty event E � 
 is fully-believed
under %� if and only if �l (E) = 1 for all l � n.

De�nition A.1 Fix events E;F � 
 with E 6= ;. Say that E is more likely than F if for all
x; y 2 [0; 1] with x > y,

(�!x E ;�!y 
�E) %� (�!x F ;�!y 
�F ).
Say that E is deemed in�nitely more likely than F (Lo, [11]), and write E � F , if for

all x; y; z 2 [0; 1] with x > y,

(�!x E ;�!y 
�E) �� (�!z F ;�!y 
�F ).

In words, E is more likely than F if the Decision Maker prefers to bet on E rather than on
F given the same prizes for the two bets; this choice theoretic notion is due to Savage [13]. On
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the other hand, E is in�nitely more likely than F if the Decision Maker strictly prefers to bet on
E rather than on F , and increasing the prize by any extent for the second bet does not induce
his strict preference to change.

Note that, according to De�nition A.1, event F may, but need not, be Savage-null under %�
if E � F . When %� is represented by the Subjective Expected Utility model, E � F implies
that F is Savage-null. It is also noteworthy that this de�nition of "in�nitely more likely than"
involves only binary acts, and the events in the de�nition need not be pairwise disjoint.

Given an LPS � = (�1; :::; �n) 2 N (
) and non-empty event E � 
, let

IE = inf
n
l 2 f1; :::ng

����l (E) > 0o .
Proposition A.2 Fix disjoint events E;F � 
 with E 6= ;.

1. E is more likely than F if and only if�
�l (E)

�n
l=1

�L
�
�l (F )

�n
l=1
.

2. E � F if and only if IE < IF .

Proof : Part 1: Let x; y 2 [0; 1] with x > y. The statement follows from the following chain of
logically equivalent relations.

(�!x E ;�!y 
�E) % �(�!x F ;�!y 
�F )()
�Z

E
xd�l +

Z

�E

yd�l
�n
l=1

�L
�Z

F
xd�l +

Z

�F

yd�l
�n
l=1

()
�
x�l (E) + y�l (
�E)

�n
l=1

�L
�
x�l (F ) + y�l (
�F )

�n
l=1

()
�
x�l (E) + y � y�l (E)

�n
l=1

�L
�
x�l (F ) + y � y�l (F )

�n
l=1

()
�
(x� y)�l (E)

�n
l=1

�L
�
(x� y)�l (F )

�n
l=1

()
�
�l (E)

�n
l=1

�L
�
�l (F )

�n
l=1
.

Part 2: See Proposition A.4 in [7] �

The likelihood relation� possesses a "monotonicity" property, as the following result shows.

Proposition A.3 (Catonini and De Vito, [7]) Fix � = (�1; :::; �n) 2 N (
) and disjoint
events E;F � 
 with E 6= ;. Let E1 � 
 be a non-empty event such that E1 � E. Thus, if
E1 � F then E � F .

Corollary A.2 Fix � = (�1; :::; �n) 2 N (
) and pairwise disjoint, non-empty events E;F;G �

. If E � G, then E [ F � G.

The notion of Weak Belief for an event E � 
 simply requires that E be "in�nitely more
likely than" not-E.

De�nition A.2 Fix a non-empty event E � 
. Say that E is weakly believed under %� if
E � 
�E.
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Theorem A.1 Fix an LPS � = (�1; :::; �n) 2 N (
) and a non-empty event E � 
. Thus E is
weakly believed under %� if and only if �1 (E) = 1.

Proof : Fix x; y; z 2 [0; 1] with x > y. We have:

(�!x E ;�!y 
�E) � �(�!z 
�E ;�!y E)()
�Z

E
xd�l +

Z

�E

yd�l
�n
l=1

>L

�Z

�E

zd�l +

Z
E
yd�l

�n
l=1

()
�
x�l (E) + y�l (
�E)

�n
l=1

>L

�
z�l (
�E) + y�l (E)

�n
l=1

()
�
x�l (E) + y � y�l (E)

�n
l=1

>L

�
z�l (
�E) + y � y�l (
�E)

�n
l=1

()
�
(x� y)�l (E)

�n
l=1

>L

�
(z � y)�l (
�E)

�n
l=1

:

Since x > y, �1 (E) = 1 implies

(x� y)�1 (E) > (z � y)�1 (
�E) = 0:

Suppose now that �1 (E) 6= 1. Then, for y = 0, x = 1
2�

1 (
�E) > 0 and z = �1 (E), we have:

(x� y)�1 (E) = 1

2
�1 (
�E)�1 (E) < �1 (E)�1 (
�E) = (z � y)�1 (
�E) :

�

5 Appendix B: Proof of measurability of the relevant sets

The aim of this Section is to show that, for a given type structure T = hSi; Ti; �iii2I , the sets
Rmi , m > 1, as de�ned in the main text, are Borel subsets of Si�Ti. We do this by �rst showing
thatWBi(E) � Si � Ti is Borel for every event E � S�i � T�i.

Lemma D.1 Fix a type structure T = hSi; Ti; �iii2I and non-empty event E � S�i�T�i. Thus,
the set of all � 2 N (S�i � T�i) under which E is weakly believed is Borel in N (S�i � T�i).

Proof : By [?, Theorem 17.24] it follows that, for a given event E � S�i � T�i, the set of
probability measures � satisfying � (E) = p for p 2 Q \ [0; 1] is measurable in M(S�i � T�i).
So the sets of all � 2 M(S�i � T�i) satisfying � (E) = 1 are Borel inM(S�i � T�i). Now, �x
n. By the above argument and by de�nition of Nn(S�i � T�i), it turns out that the set

W1
n =

�
� 2 Nn(S�i � T�i)

���1 (E) = 1	
=

n
� 2M(S�i � T�i)

����l (E) = 1o� (M(S�i � T�i))n�1

is Borel in Nn(S�i � T�i). The set of all � 2 N (S�i � T�i) under which E is weakly believed is
given by [n2NW1

n, so Borel in N (S�i � T�i). �

By the measurability of each belief map in a lexicographic type structures, it follows that

Corollary D.1 Fix a type structure T = hSi; Ti; �iii2I . Thus, for every i 2 I, if E � S�i�T�i
is a non-empty event, then WBi(E) is a Borel subset of Si � Ti.
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The measurability of Cautious Rationality has already been established in [7].

Lemma D.2 (Catonini and De Vito, [7]) Fix a type structure T = hSi; Ti; �iii2I . Thus, for
every i 2 I, R1i is Borel in Si � Ti.

We can now state and prove the desired result:

Lemma D.5 Fix a type structure T = hSi; Ti; �iii2I . Thus, for each i 2 I and m � 1, Rmi is
Borel in Si � Ti.

Proof: By Lemma D.1, for each i 2 I, the set R1i is Borel in Si � Ti. Note that Rm+1i =
Rmi \WBi

�
Rm�i

�
. By Corollary D.1, the setWBi

�
Rm�i

�
is Borel in Si � Ti provided that Rm�i

is Borel. The conclusion follows from an easy induction on m. �
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