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1 Introduction

Lexicographic Probability Systems (henceforth, LPS) have been used in recent papers to provide
epistemic foundations of solution concepts in games. An LPS is a �nite sequence (�1; :::; �n)
of probabilities (called also "theories") over a relevant space of uncertainty, and the decision
maker uses them lexicographically to determine her preferences. To clarify, the decision maker
starts by evaluating her optimal choice according to the �rst theory �1; if �1 leads to more
than one optimal choice, then the decision maker uses �2 to break ties, and so on. So, LPS�s
generalize usual probabilistic beliefs, as they are representations of Lexicographic Expected
Utility preferences, which include standard Subjective Expected Utility preferences as special
case (see [7] for an axiomatic derivation). The advantage of LPS�s is that they can be used to
formalize the idea that a decision maker deems an event "in�nitely more likely than" another,
without ruling out the possibility that the latter occurs.

Brandenburger, Friedenberg and Keisler ([15],henceforth, BFK) introduced the formalism
of lexicographic type structures as a device to model players� interactive beliefs in a strategic
setting: Formally, for each player there is a set of types; each type is associated with an LPS
over the product of the space of primitive uncertainty and the set of the opponents�types. Lex-
icographic type structures have been proven extremely useful for epistemic analyses of Iterated
Admissibility (i.e., iterated weak dominance) in �nite, static games with complete information,
e.g., BFK, Dekel, Friedenberg and Siniscalchi ([20]) and Keisler and Lee ([37]).

A lexicographic type structure provides only an implicit way to describe the belief hierar-
chies of the players: The above mentioned papers do not construct a canonical, universal type
structure into which any other type structure can be mapped in a unique belief-preserving way.
By contrast, in this paper we adopt an explicit perspective, in which hierarchies of LPS�s are de-
scribed and discussed in detail: Our aim is to provide an in-depth analysis on the hierarchiecal
approach, by �rst comparing two seemingly opposite contributions to this �eld of research,
namely the works of Lee ([38],[40]) and Catonini and De Vito ([17],[18]). Next, we show how
hierarchies of LPS�s are fundamental for an epistemic characterization of Iterated Admissibility
in �nite games.

Before describing our results in more detail we survey brie�y the background.

Hierarchies of LPS�s and type structures. In our related works ([17],[18]), we establish the
foundation of lexicographic type structures and hierarchies of LPS�s in the same way as papers
such as [42] and [14] do for standard (i.e., probabilistic) type structures. Speci�cally, it is shown
the set of all hierarchies of LPS�s satisfying coherence and common full belief of coherence can
be endowed with the internal structure of a lexicographic type structure. Such "canonical" type
structure turns out to be universal in the sense that each type structure can be uniquely mapped
into it by a map� called type morphism� which preserves the beliefs associated with types.

The notion of coherence for hierarchies of LPS�s is a simple generalization of the standard one
for hierarchies of probabilistic beliefs; it simply requires that the marginals of the higher-order
LPS�s coincide with the corresponding lower-order LPS�s. There, the marginalization operation
is taken pointwise: e.g., the marginal of a length-n LPS is simply de�ned as the length-n sequence
of the marginals of the component measures. Consequently, each coherent hierarchy of LPS�s
consists of an in�nite sequence of LPS�s of the same (�nite) length. The notion of full belief is
the LPS-based analogue of the notion of certainty for probabilistic beliefs.

In [17], we make use of the universality property of the canonical type structure to provide
an epistemic characterization of Iterated Admissibility in �nite games. We do this by weakening
BFK�s concept of Assumption, which is essentially an "in�nitely more likely than" relation
between uncertain events. The weakening is crucial for the result in [17] to hold, since, as a
consequence of BFK�s results (see also [20]), in any complete and continuous type structure (e.g.,
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the canonical one) the epistemic notion of Rationality and Common Assumption of Rationality
(RCAR) has no bite� that is, there is no state of the world consistent with RCAR.1

Preference redundancy and minimal LPS�s. The preference-based axiomatization of
LPS�s, given in [7], highlights the fact that multiple LPS�s can represent the same Lexicographic
Expected Utility preference relation. One source of redundant LPS-based representations of
lexicographic preferences is non-minimality : For instance, LPS�s (�1; �1; �2) and (�1; �2) clearly
represent the one and the same preference relation. Therefore, as pointed out by Lee [38], for
every hierarchy of lexicographic beliefs there are in�nitely many distinct hierarchies representing
the same hierarchy of lexicographic preferences. In other words, the costruction of the canon-
ical space of hierarchies in [18] results in a type structure containing redundant (in terms of
preferences) types.

By restricting attention to minimal LPS�s, i.e., minimal length representation of lexicographic
preferences, Lee ([40]) constructs a space of hierarchies of LPS�s satisfying a coherence require-
ment which is weaker than the one in [18]. Lee�s notion of coherence allows a (k + 1)-order belief
to be a longer LPS than k-order belief, but it preserves coherence of preferences represented by
the beliefs. Such approach is therefore closely related to the preference hierarchical approach of
Epstein and Wang [27] and Di Tillio [24].

Lee provides a "bottom-up" construction (à la Mertens and Zamir [42]) of the space of hier-
archies of minimal beliefs in which some hierarchies cannot be generated by any type structure.
The reason why this occurs is that, while the length of all k-order beliefs is �nite for all k 2 N,
this may not be the case for k !1. Consequently, there are hierarchies that cannot be summa-
rized by a single LPS, which must necessarily have a �nite length. Lee uses this fact to provide
an epistemic justi�cation of Iterated Admissibility under BFK�s notion of Assumption, and the
presence of hierarchies which cannot be generated by types is crucial to obtain a non-empty set
of states consistent with RCAR.2

Main questions and our contribution. Clearly, there are overlaps and similarities between
the approaches outlined above. At the same time, they o¤er distinct ways of analysis. This
raises some interesting questions.

The �rst question is as to whether the canonical type structure for lexicographic beliefs
constructed in [18] relate to the corresponding type structures with minimal beliefs in [40]. We
address this issue as follows. First, by selecting only the hierarchies with an upper bound on the
length of all �nite-order beliefs, we show that a construction of a "canonical" type structure for
hierarchies of minimal beliefs is possible, along the lines outlined in [18]. The canonical space of
hierarchies constructed in this way turns out to be behaviorally equivalent to the canonical space
of hierarchies of LPS�s in [18]. This is so because Lee�s notion of coherence preserves coherence
of preferences exactly in the same way as the notion of coherence in [18] does. This version of
the canonical type structure satis�es a terminality property analogous to that in [18]. Indeed,
under an appropriate notion of hierarchy morphism, every type structure can be mapped into
it in a way that preserves the hierarchies of minimal beliefs.

It is noteworthy that the canonical type structure of minimal LPS�s is proper subset of the
space of hierarchies constructed in [40]. As we will formally elaborate in Section 7, in order to
meaningfully de�ne the notion of full belief of coherence (in Lee�s sense), we need to restrict
attention only to those hierarchies with an upper bound on the length of all �nite-order beliefs.

1BFK�s notion of rationality is stronger than the one in [17] (and also in the current paper), as it includes a
full-support requirement. In [17], we refer to Rationality in BFK�s sense as Open-minded Rationality.

2The epistemic notion of RCAR in [40] is, in a sense, more general than that in BFK, as it is stated in the
space of hierarchies (cf. [40, Section 5]).
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The second question we address is whether the epistemic notion of Cautious Rationality and
Common Assumption of Cautious Rationality� as elaborated in our work ([17])� still character-
izes Iterated Admissibility in the new framework. We provide an a¢ rmative answer, by showing
that the results in [17] do not hinge on the presence of redundancies in the representation of
Lexicographic Expected Utility preferences. Speci�cally, we show that an analogue of main re-
sult in [17] also holds for this version of the canonical type structure. This highlights the fact
the epistemic notion of Cautious Rationality and Common Assumption of Cautious Rationality
depends only on hierarchies of preferences, not on their LPS-based representations.

Structure of the paper. The remainder of this paper is organized as follows. Section 2
contains some de�nitions and the basic notation that will be used throughout. LPS�s and
ther minimal representations of lexicographic preference relations are introduced in Section 3.
Section 4 shows how a canonical type structures for hierarchies of lexicographic minimal beliefs
can be constructed. We also provide a terminality result for this type structure. Section 6
shows how the analysis in [17] to the epistemic characterization of iterated admissibility can be
easily adapted in this new epistemic framework. Section 7 concludes with a discussion on some
conceptual and technical aspects of the paper. Proofs omitted from the main text are collected
in the Appendix.

2 Preliminaries and notation

We begin with some de�nitions and the basic notation that will be used throughout the paper.3

A measurable space is a pair (X;�X), where X is a set and �X is a �-�eld, the elements of
which are called events. When it is clear from the context which �-�eld on X we are considering,
we suppress reference to �X and simply write X to denote a measurable space. All the sets
considered in this paper are assumed to be metrizable topological spaces, and they are endowed
with the Borel �-�eld. A Polish space is a topological space which is homeomorphic to a com-
plete, separable metrizable space. A Lusin space is a topological space which is the continuous,
injective image of a complete, separable metrizable space.4 Clearly, a Polish space is also Lusin.
Every metrizable Lusin space is measure-theoretic isomorphic to a Borel subset of some Polish
space.

If (Xn)n2N is a countable collection of pairwise disjoint topological spaces, then the set
X = [n2NXn is endowed with the direct sum topology.5 The set X is metrizable Lusin (resp.
Polish) provided each Xn is metrizable Lusin (resp. Polish).

We consider any product, �nite or countable, of topological spaces as a topological space
with the product topology. As such, a countable product of metrizable Lusin (resp. Polish)
spaces is also metrizable Lusin (resp. Polish). Furthermore, given topological spaces X and Y ,
we denote by ProjX the canonical projection from X � Y onto X; in view of our assumption,
the map ProjX is continuous and open (i.e., the image of each open set in X � Y is an open set
in X under the map ProjX). Finally, for a measurable space X, we denote by IdX the identity
map on X, that is, IdX (x) = x for all x 2 X.

3A more detailed presentation of the following concepts, as well as related mathematical results, can be found
in [8], [26], [47], [50], [53]. In the remainder of the paper, we shall make use of the results mentioned in this
section, sometimes without referring to them explicitly.

4 If X is a Lusin topological space, and �X is the corresponding Borel �-�eld, then the measurable space
(X;�X) is Standard Borel (cf. [19]).

5The assumption that the spaces Xn are pairwise disjoint is without any loss of generality, since they can be
replaced by a homeomorphic copy, if needed (see [26, p.75]).
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3 Lexicographic beliefs and lexicographic preferences

3.1 Lexicographic probability systems

Given a topological space X, we denote by M (X) the set of Borel probability measures on
X. The setM (X) is endowed with the weak* -topology. Then, if X is metrizable Lusin (resp.
Polish), thenM (X) is also metrizable Lusin (resp. Polish).

We denote by N (X) (resp. Nn (X)) the set of all �nite (resp. length-n) sequences of Borel
probability measures on X, that is,

N (X) = [n2NNn (X)
= [n2N (M (X))n .

This means that if � 2 N (X), then there is some n 2 N such that � = (�1; :::; �n). Call each
� = (�1; :::; �n) 2 N (X) a lexicographic probability system (LPS). The length of the LPS
� 2 N (X) is denoted by ` (�) 2 N.

Each � = (�1; :::; �n) 2 N (X) is called lexicographic probability system (LPS). We say
that � is a mutually singular LPS or a lexicographic conditional probability system
(LCPS) if there are Borel sets E1; :::; En in X such that, for every l � n, �l (El) = 1 and
�l (Em) = 0 for m 6= l. Write L (X) (resp. Ln (X)) for the set of LCPS�s (resp. length-n
LCPS�s). Both topological spaces N (X) and L (X) metrizable Lusin provided X is metrizable
Lusin. In particular, if X is Polish, so are N (X) and L (X).6

For every Borel probability measure � on a topological space X, the support of �, denoted
by Supp�, is the smallest closed subset of X such that � (Supp�) = 1. The support of an LPS
� = (�1; :::; �n) 2 N (X) is thus de�ned as Supp� = [l�nSupp�l. So, an LPS � = (�1; :::; �n) 2
N (X) is of full-support if [l�nSupp�l = X. We write N+

n (X) for the set of all full-support,
length-n LPS�s and N+ (X) (resp. L+ (X)) for the set of full-support LPS�s (resp. full-support
LCPS�s).

Suppose we are given topological spaces X and Y , and a Borel map f : X ! Y . The mapef :M (X)!M (Y ), de�ned byef (�) (E) = �
�
f�1 (E)

�
, � 2M (X) , E 2 �Y ,

is called the image (or pushforward) measure map of f . For each n 2 N, the map bf(n) : Nn (X)!
Nn (Y ) is de�ned by

(�1; :::; �n) 7! bf(n) ((�1; :::; �n)) = � ef (�k)�
k�n

.

Thus the map bf : N (X)! N (Y ) de�ned bybf (�) = bf(n) (�) , � 2 Nn (X) ,
is called the image LPS map of f . In other words, the map bf is the combination of the
functions

� bf(n)�
n2N

, and it is Borel measurable.7 In particular, if X and Y are metrizable Lusin

spaces, then the marginal measure of � 2 M (X � Y ) on X is de�ned as margX� = gProjX (�).
Consequently, the marginal of � 2 N (X � Y ) on X is de�ned as margX� = dProjX (�), anddProjX : N (X � Y )! N (X) is a continuous and surjective map.

6We refer the reader to our companion paper [17] for a proof of those results.
7For details and proofs related to Borel measurability and continuity of the involved maps, we refer the reader

to [17].
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3.2 Lexicographic preferences

In what follows, we �x a metrizable Lusin space X.

De�nition 1 An act de�ned on X is a Borel measurable map f : X ! [0; 1]. The set of all
acts on X is denoted by ACT(X).

De�nition 2 Let � = (�1; :::; �n) 2 N (X). The preference relation %� on ACT(X) is de�ned
as follows. For all f; g 2 ACT(X),

f %� g ()
�Z

X
fd�1; :::;

Z
X
fd�n

�
�L

�Z
X
gd�1; :::;

Z
X
gd�n

�
,

where �L stands for the usual lexicographic order.
A preference relation % on ACT(X) is called a lexicographic expected utility (LEU)

preference relation if there exists � 2 N (X) such that %=%�. In such a case, we say that �
is a LEU preference representation.

We also introduce an equivalence relation on N (X).

De�nition 3 Let �; � 2 N (X). We say that � and � represent the same preferences, and
we write � �= �, if %�=%� . Furthermore, we say that � is a minimal length LEU preference
representation if it is the shortest LPS that represents %�, that is, for all � 2 N (X),

� �= � =) ` (�) � ` (�) .

The set of all minimal length LEU preference representations is denoted by N (X).

Remark 1 The set N (X) is open in N (X) ([40, Lemma 3.2]).

The following result shows that for LCPS�s each member of the partition induced by the
equivalence relation �= is a singleton (cf. [7, Theorem 5.3]).

Proposition 1 Let �; � 2 L (X). Thus � �= � if and only if � = �.

An immediate implication of this fact is given by the following

Corollary 1 L (X) � N (X).

6



We now formally de�ne the concept of pushforward LEU preference relation. Fix a Borel
measurable map ' : X ! Y between Lusin spaces X and Y . Given a preference relation % on
ACT(X), the pushforward preference relation %' on ACT(Y ) induced by ' is de�ned as follows:
For all f; g 2ACT(Y ),

f %' g () f � ' % g � '.
In particular, given a product space X � Y , the pushforward preference relation %ProjY on
ACT(Y ) induced by the canonical projection ProjY : X � Y ! Y , i.e.,

f %ProjY g () f � ProjY % g � ProjY , 8f; g 2 ACT(Y ) ,

is called the marginal preference relation.8

Clearly the LPS � = (�1; :::; �n) 2 N (Y ) represents the LEU preference relation %' on
ACT(Y ) induced by ' : X ! Y if and only if there exists � = (�1; :::; �n) 2 N (X) such thatb' (�) = � and �Z

X
(f � ') d�l

�n
l=1

�L
�Z

X
(g � ') d�l

�n
l=1

,

for all f; g 2 ACT(Y ).9 It turns out that

� �= � =) b' (�) �= b' (�) , 8�; � 2 N (X) .

However, we are interested in minimal length representations of pushforward LEU preference
relations. To this end, we need to de�ne a mapmX :N (X)! N (X) which minimizes the length
of an LPS while preserving the representation of preferences. Given an LPS � = (�1; :::; �n)
and l � n, let ��l = (�1; :::; �l) and ��l =

�
�1; :::; �l�1; �l+1; :::; �n

�
. The map mX is de�ned as

follows:

mX (�) =

�
�, if � 2 N (X) ,
mX

�
��l
�
, if 9l > 1 s.t. ��l�1 2 N (X) and ��l =2 N (X) .

To clarify, suppose that �l is the �rst probability measure in the LPS � = (�1; :::; �n) that can
be written as convex combination of the preceeding measures (so that it contains redundant
information about preferences). Then �l can be removed from � without changing preferences.
The minimization mX (�) of � is thus de�ned by a recursive procedure which deletes such
redundant measures from � in the order they appear until none remain. See [40] for examples.

As shown in [40, Lemma A.4], the map mX : N (X) ! N (X) is a Borel class 2 map (i.e.,
the inverse image of every open set is a G�-set). It is trivial to check that the map mX is onto.
We also note the following fact.

Lemma 1 Let X be a �nite space. For each � 2 N (X), it holds that

Supp� = SuppmX (�) .

Thus mX (N+ (X)) = N+ (X).

8Put di¤erently, %ProjY is the restriction of % to outcomes that are contingent on Y but they are constant
along the X-dimension; each act f 2 ACT(Y ) is identi�ed with the act f 2 ACT(X � Y ) de�ned as

f ((x; y)) = (f � ProjY ) ((x; y)) = f (y) , 8 (x; y) 2 X � Y .

9To see this, note that Z
Y

fd�l =

Z
Y

fde' (�l) = Z
X

(f � ') d�l,

where the second equality follows from the Change of Variable Theorem ([1, Theorem 13.46]).
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We now introduce the notion of minimal-LPS pushforward map.

De�nition 4 Fix a Borel measurable map ' : X ! Y between Lusin spaces X and Y . Let
� = (�1; :::; �n) 2 N (X). The map

mY � b' : N (X)! N (Y )

is called theminimal-LPS pushforward map under ', andmY (b' (�)) is called theminimal-
image LPS representing %' on ACT(Y ).

Given a product space X�Y , the minimal-marginal map margmY : N (X � Y )! N (Y )
is de�ned as

margmY =mY �margY ,

and margmY (�) is called the minimal-LPS marginal of � 2 N (X � Y ) on Y .

Note the following property of the minimal-LPS pushforward map under ' : X ! Y .

mY (b' (�)) =mY (b' (�)) =) b' (�) �= b' (�) , 8�; � 2 N (X) .

The reverse implication is not true, as the following simple example shows.

Example 1 Let �; � 2 M (X) such that � 6= �, and let ' : X ! X be the identity map.
Consider LPS�s �1 = (�; �) and �2 =

�
�; 12� +

1
2�
�
. It clearly holds that

b' (�1) = �1
�= �2 = b' (�2) ,

but
mX (b' (�1)) = �1 6= �2 =mX (b' (�2)) .

Clearly, the LPS pushforward map b' preserves preference-equivalence between LPS�s. Thus,
we point out:

Remark 2 Fix a Borel map ' : X ! Y between Lusin spaces X and Y . The following property
holds true:

mY � b' =mY � b' �mX .

Of course, an analogous property holds for the minimal-marginal map margmY : N (X � Y )!
N (Y ). In view of the following result, the map margmY is measurable and onto.

Lemma 2 Fix a Borel measurable map ' : X ! Y between Lusin spaces X and Y . Thus the
map mY � b' : N (X)! N (Y ) is Borel measurable. It is onto provided ' is onto.

Remark 3 Note that if ' : X ! Y is continuous, then the induced mapmY �b' is not necessarily
continuous.
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Lemma 3 Fix a Borel measurable map ' : X ! Y between Lusin spaces X and Y , and let
� 2 N (X). The following statements hold true.

(1) If b' (�) 2 N (Y ), then � 2 N (X).

(2) If b' (�) 2 L (Y ), then � 2 L (X).
We �nally record, for future reference, the following simple fact:

Lemma 4 Fix a Borel measurable map ' : X ! Y between Lusin spaces X and Y , and let
� 2 N (X). Thus

` (mY (b' (�))) � ` (b' (mX (�))) = ` (mX (�)) � ` (�) = ` (b' (�)) .

4 Higher order uncertainty in games

4.1 Hierarchies of lexicographic minimal beliefs

Fix a two-players set I;10 given a player i 2 I, we denote by �i the other player in I. For each
i 2 I, let S�i be a non-empty space� called space of primitive uncertainty� describing aspects
of the strategic interaction that player i is uncertain about. Throughout this paper, S�i will
represent player �i�s strategy set: Player i does not know which strategy player �i is going to
choose. Other interpretations are also possible; for instance, S�i may include player �i�s set of
payo¤ functions, among which the true one is not known to player i. We assume that each Si is
a metrizable Lusin space, with jSij � 2.

We now construct the space of hierarchies of minimal lexicographic beliefs for each player.
Formally, for each i 2 I de�ne inductively the sequence of spaces (Xk

i )k�0 as

X0
i = S�i, (4.1)

Xk+1
i = Xk

i �N
�
Xk
�i

�
; k � 0. (4.2)

An element hk+1i =
�
�1i ; �

2
i ; :::; �

k+1
i

�
is a (k + 1)-order lexicographic minimal belief hierarchy,

where �ki =
�
�k;1i ; :::; �k;ni

�
2 N

�
Xk�1
i

�
denotes i�s k-order minimum length LPS representing

the k-order preference relation. It is easily seen that, according to our notation,

Xk+1
i = X0

i �
kY
l=0

N
�
X l
�i

�
.

The set of all possible, in�nite hierarchies of lexicographic minimal beliefs for player i is H0
i =Q1

k=0N
�
Xk
i

�
. The space H0

i is a metrizable Lusin space� in particular, H
0
i is Polish provided

each primitive space of uncertainty Si is Polish.
As for the case of LPS�s, we introduce the concept of length for hierarchies of minimal beliefs,

which will turn out to be important for the construction of a canonical type structure.

10The analysis can be trivially extended to more than two players.
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De�nition 5 Fix a hierarchy hi =
�
�1i ; �

2
i ; :::

�
2 H0

i . The length of the hierarchy hi, denoted
by ` (hi), is de�ned as follows.

` (hi) = sup
n
`
�
�ki

�
jk � 1

o
.

The hierarchy hi 2 H0
i is `-bounded if ` (hi) <1.

As usual in the literature, we restrict attention to hierarchies of minimal beliefs which satisfy
a coherence requirement. This notion of coherence says that higher order minimal beliefs cannot
contradict lower order minimal beliefs. Formally:

De�nition 6 A hierarchy hi =
�
�1i ; �

2
i ; :::

�
2 H0

i is coherent if, for each k � 1,

margmXk�1
i

�k+1i = �ki .

Note that, for hierarchies of subjective expected utility (SEU) preferences, the notion of
coherence in De�nition 6 reduces to the standard one (cf. [42] or [14]); in such a case, a coherent
hierarchy hi is `-bounded, namely ` (hi) = 1.

We record the properties of coherent and `-bounded hierachies in the following Proposition:

Proposition 2 Fix a coherent hierarchy hi =
�
�1i ; �

2
i ; :::

�
2 H0

i . Thus

`
�
�ki

�
� `

�
�k+1i

�
, 8k � 1.

Additionally, if hi is `-bounded, then there exists k0 � 1 such that

`
�
�ki

�
= `

�
�k+1i

�
, 8k � k0.

(So ` (hi) = `
�
�ki
�
for all k � k0.)

For each player i 2 I, the set of all coherent and `-bounded hierarchies is denoted by H1
i .

Lemma 5 For each i 2 I, the set H1
i is Borel (so Lusin) in H

0
i . In particular, if each Si is

Polish, then H1
i is a Polish subspace of H

0
i .
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4.2 The canonical space of hierarchies

In this Section, we construct the canonical spaces of hierarchies of minimal beliefs, that is,
the spaces of all collectively coherent hierarchies of minimal LPS�s that can be endowed with
the structure of a lexicographic type structure (formally de�ned in the next Section). Our
construction follows quite closely the top-down construction of the canonical space given in [14].
An alternative, bottom-up construction (à la Mertens and Zamir [42]) is provided in [40].

The following result, which is the analog to [14, Proposition 1], is the building block of our
analysis.

Proposition 3 For each i 2 I, there exists a Borel isomorphism fi : H
1
i ! N

�
S�i �H0

�i
�

such that
margmXk�1

i
fi
��
�1i ; �

2
i ; :::;

��
= �ki , 8k � 1.

The Proof of Proposition 3 makes use of the following Lemma (proved in the Appendix),
which is essentially a version of the Kolmogorov Extension Theorem for LPS�s (cf. [14, Lemma
1]).

Lemma 6 Fix a countable collection of metrizable Lusin spaces (Wl)l�0, and, for each k � 0,
let Zk = �kl=0Wl and Z = �1l=0Wl.

1. Let (�k)k�1 be a collection of LPS�s on Zk�s satisfying the following consistency condition:

margZk�1�
k+1 = �k, 8k � 1. (4.3)

Thus there exists a unique LPS � on Z such that

margZk�1� = �k, 8k � 1.

We refer to � as the LPS extension of (�k)k�1.

2. Let (�k)k�1 be another collection of LPS�s on Zk�s satisfying the consistency condition as
in (4.3), and let � be its LPS extension. Thus

� �= � () �k �= �k, 8k � 1.

3. The LPS extension � of (�k)k�1 is of minimal-length if and only if there exists k0 � 1 such
that �k

0+1 2 N (Zk0).

Proof of Proposition 3: Note that, for each i 2 I, the set S�i �H0
�i can be written as

S�i �H0
�i = Xk�1

i �
1Y

l=k�1
N
�
X l
�i

�
.

For each i 2 I, let �i : N
�
S�i �H0

�i
�
! H1

i be the map de�ned by

�i 7�!
�
�ki (�i)

�
k�1

=
�
margmXk�1

i
�i

�
k�1

.

11



We show that �i is a Borel measurable bijection, which implies that �i is a Borel isomor-
phism from N

�
S�i �H0

�i
�
onto H1

i by virtue of Souslin Theorem (see, e.g., [19, Proposition
8.6.2]). By this, the result follows, since the function fi = ��1i satis�es the required properties.
Measurability of �i is obvious, in that each �ki is measurable by Lemma 2.

In order to show that �i is a surjection, �x an arbitrary hi =
�
�1i ; �

2
i ; :::

�
2 H1

i . Thus there
exists k0 � 1 such that ` (hi) = `

�
�ki
�
for all k � k0. Let

�ki = margXk
i
�k

0
i , 8k < k0.

It follows from the de�nition of margmXk�1
i

and the coherence condition that

mXk�1
i

�
�ki

�
= �ki , 8k < k0.

By Lemma 6.1, to the array of LPS�s
�
�1i ; :::; �

k0�1
i ; �k

0
i ; :::

�
there corresponds a unique �i 2

N
�
S�i �H0

�i
�
such that

margXk�1
i

�i = �ki , 8k � k0.

margXk�1
i

�i = �ki , 8k < k0.

By Lemma 6.3, it follows that �i 2 N
�
S�i �H0

�i
�
, speci�cally ` (�i) = ` (hi), and

margmXk�1
i

�i = �ki , 8k � 1.

Morever, uniqueness of �i implies that �i is an injection, as required. �

Note that the condition of `-boundedness for coherent hierarchies is essential for Proposition
3 to hold. Without this requirement, a coherent hierarchy could not be summarized by a single
LPS, which must necessarily have a �nite length. As matter of fact, Lee ([40, Theorem 4.2])
exhibits an example of a coherent hierarchy which fails to be represented by an LPS� such
hierarchy is not `-bounded. Note also that, di¤erently from the literature on hierarchies of
beliefs, the map fi is not necessarily a homeomorphism, in that, as already remarked, each map
mXk�1

i
is not continuous.

We now consider the case in which there is common full belief of coherence. As in [18],
we say that player i, endowed with a coherent and `-bounded hierarchy hi, fully believes an
event E � S�i �H0

�i if fi (hi) (E) = 1, where 1 denotes a �nite sequences of 1s; that is, every
probability measure of the LPS fi (hi) 2 N

�
S�i �H0

�i
�
assigns probability 1 to E. We thus

say that a hierarchy hi is consistent with full belief of coherence if

� hi 2 H1
i , and

� fi (hi)
�
S�i �H1

�i
�
= 1.

Common full belief of coherence is imposed by de�ning inductively, for each i 2 I, the
following sets:

H l+1
i =

n
hi 2 H1

i

���fi (hi)�S�i �H l
�i

�
= 1

o
, l � 1,

H i = \l�1H l
i.

The set �i2IH i is naturally interpreted as the maximal set of players� hierarchies that are
consistent with common full belief of coherence.

12



Proposition 4 The restriction of fi to H i induces a Borel isomorphism �mi from H i onto
N
�
S�i �H�i

�
.

The following simple result is needed in the proof of Proposition 4.

Lemma 7 Let E be a Borel subset of a metrizable Lusin space X. Thus the set
�
� 2 N (X)

��� (E) = 1	
is homeomorphic to N (E).

Proof of Proposition 4: It is easily seen that

H i =
�
hi 2 H1

i

��fi (hi) �S�i �H�i
�
= 1

	
.

Indeed, if hi 2 H1
i , and fi (hi)

�
S�i �H�i

�
= 1, then clearly hi 2 H i = \l�1H l

i. On the other
hand, if hi 2 H i, then, by �-additivity of LPS�s, it follows that

fi (hi)
�
S�i �H�i

�
= fi (hi)

�
S�i � \l�1H l

i

�
= lim

l!1
fi (hi)

�
S�i �H l

�i

�
= 1.

Note that each H l
i is Borel in H

1
i , and an analogous conclusion holds for H i. It follows from

Lemma 7 that fi (H i) is isomorphic to N
�
S�i �H�i

�
. This shows the existence of a Borel

isomorphism �mi from H i onto N
�
S�i �H�i

�
. �

Herafter, we shall refer to the set H = �i2IH i as the canonical space of hierarchies of
minimal beliefs.

5 Lexicographic type structures

The following de�nition is a natural generalization of the standard de�nition of epistemic type
structure with beliefs represented by probability measures, i.e., length-1 LPS (cf. [33]).

De�nition 7 An (Si)i2I-based lexicographic type structure is a structure T = hSi; Ti; �iii2I ,
where

1. for each i 2 I, Ti is a metrizable Lusin space;

2. for each i 2 I, the function �i : Ti ! N (S�i � T�i) is measurable.

We call each space Ti type space and we call each �i belief map. Members of type spaces,
viz. ti 2 Ti, are called types. Say ti 2 Ti is a minimal type if �i (ti) 2 N (S�i � T�i). Say
ti 2 Ti is a mutually singular type if �i (ti) 2 L (S�i � T�i). Say ti 2 Ti is a full-support
type if �i (ti) 2 N+ (S�i � T�i). Each element (si; ti)i2I 2 S�T is called state (of the world).

The canonical space oh hierarchies H = �i2IH i constructed in the previous section can be
endowed with the internal structure of an (Si)i2I -based type structure. In what follows, we
denote by T mc = hSi;H i; �

m
i ii2I the type structure associated with H, and we refer to it as the

minimal canonical type structure.
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De�nition 8 An (Si)i2I-based lexicographic type structure T = hSi; Ti; �iii2I is

� minimal if each type is minimal;

� LCPS type structure if each type is mutually singular;

� minimal belief-complete if, for each i 2 I, �i (Ti) � N (S�i � T�i);

� belief-complete if, for each i 2 I, �i (Ti) = N (S�i � T�i).

The idea of belief-completeness was introduced by Brandenburger ([13]) and adapted to the
present context. Note that each type space in a belief-complete type structure has the cardinality
of the continuum. It is also notewhorty that

(a) an LCPS type structure is minimal, and

(b) a belief-complete type structure is minimal belief-complete.

The reverse implication in (b) is clearly not true, as type structure T mc shows.

5.1 From types to hierarchies

Given a type structure T = hSi; Ti; �iii2I , we de�ne for each player i 2 I a m-hierarchy de-
scription map thi : Ti ! H0

i associating with each ti 2 Ti a corresponding hierarchy of minimal
beliefs. Such map is de�ned by an inductive procedure which is a slight variant of the one used
for belief-hierarchy description maps (cf. [4] and [18]):

� (base step: k = 1) For each i 2 I, let tx0�i : S�i � T�i ! X0
i be the natural projection.

Then, for each i 2 I, ti 2 Ti, the �rst-order m-hierarchy description map th1i : Ti ! N
�
X0
i

�
is de�ned as

th1i (ti) = mX0
i

�dtx0�i (�i (ti))�
= margmS�i (�i (ti)) .

For each i 2 I, de�ne the map tx1�i : S�i � T�i ! X1
i = S�i �N (Si) as

tx1�i =
�
IdS�i ; th

1
�i
�
.

� (inductive step: k+1, k � 1) Suppose we have already de�ned, for each i 2 I, the functions
thki : Ti ! N

�
Xk�1
i

�
and txk�i : S�i � T�i ! Xk

i = Xk�1
i � N

�
Xk�1
�i

�
. For each i 2 I,

ti 2 Ti, de�ne thk+1i : Ti ! N
�
Xk
i

�
as

thk+1i (ti) =mXk
i

�dtxk�i (�i (ti))� ;
consequently, the map txk+1�i : S�i � T�i ! Xk+1

i is de�ned as

txk+1�i =
�
txk�i; th

k+1
�i

�
,

so that txk+1�i =
�
IdS�i ; th

1
�i; :::; th

k
�i; th

k+1
�i

�
.
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Thus, for each i 2 I, the map thi : Ti ! H0
i is given by

thi (ti) =

�
mXk�1

i

�
\txk�1�i (�i (ti))

��
k�1

, ti 2 Ti,

and the map tx�i : S�i�T�i ! S�i�H0
�i is de�ned in a natural manner as tx�i =

�
IdS�i ; th�i

�
.

An easy induction argument shows that both thi and tx�i are Borel measurable.

5.2 Type morphisms and hierarchy morphisms

Having speci�ed how types induces hierarchies, we now introduce the relevant notions of belief-
preserving maps between type structures. In the de�nitions that follow, we let T = �i2ITi.

De�nition 9 Fix type structures T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I , and, for each i 2 I,
let 'i : Ti ! T 0i be a Borel measurable map.

1. The map ('i)i2I : T ! T 0 is called belief-type morphism (from T to T 0) if, for each
i 2 I,

�0i � 'i = \�
IdS�i ; '�i

�
� �i,

where \�
IdS�i ; '�i

�
: N (S�i � T�i) ! N

�
S�i � T 0�i

�
is the LPS pushforward map under�

IdS�i ; '�i
�
: S�i � T�i ! S�i � T 0�i. The map ('i)i2I is a belief-type isomophism if it is

a Borel isomorphim.

2. The map ('i)i2I : T ! T 0 is a minimal belief-hierarchy morphism (from T to T 0)
if

thi (ti) = th
0
i ('i (ti)) , 8ti 2 Ti, 8i 2 I.

The notion of belief-type morphism, which is a simple generalization of the related concept
for standard type structures (cf. [33]), asks for the belief maps to be preserved. That is, the
following diagram commutes:

Ti
�i����! N (S�i � T�i)??y'i ??y \(IdS�i ;'�i)

T 0i
�0i����! N (S�i � T 0�i)

. (5.1)

By constrast, the notion of minimal belief-hierarchy morphism captures the idea that a type
structure T is "contained in" another type structure T 0 if T can be mapped into T 0 in a way
which preserves the hierarchies of minimal beliefs induced by types.

As one should expect, the important property of belief-type morphisms is that they preserve
the explicit description of minimal belief hierarchies.

Proposition 5 Fix type structures T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I , and let ('i)i2I :
T ! T 0 be a measurable map. Thus if ('i)i2I is a belief-type morphism, then ('i)i2I is a minimal
belief-hierarchy morphism.

We illustrate the di¤erences between those two notions of belief-preserving maps by means
of the following simple example.
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Example 2 We �rst show an example on the existence of a minimal belief-hierarchy morphism
between two type structures, despite the fact that there is no belief-type morphism between them.
Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be type structures such that, for each i 2 I =
f1; 2g,

Ti = ftig , T 0i =
�
t0i
	
,

�i (ti) = (�; �) 2 N 2 (S�i � T�i) ,

�0i
�
t0i
�
= \�

IdS�i ; '�i
�
(�) 2M

�
S�i � T 0�i

�
,

where, for each i 2 I, 'i : Ti ! T 0i is the map de�ned as 'i (ti) = t0i. Thus ('1; '2) : T1 � T2 !
T 01� T 02 is a minimal belief-hierarchy morphism from T to T 0. There is no belief-type morphism
between T and T 0.

On the other hand, let T � = hSi; T �i ; ��i ii2I and T �� = hSi; T ��i ; ���i ii2I be type structures
such that, for each i 2 I = f1; 2g,

T �i = ft�i g , T ��i = ft��i ; z��i g ,
��i (t

�
i ) = (�) ,

���i (t
��
i ) = \�

IdS�i ;  �i
�
(�)

���i (z
��
i ) =

�
\�

IdS�i ; ��i
�
(�); \�

IdS�i ; ��i
�
(�)
�
;

where, for each i 2 I = f1; 2g,

 i (t
�
i ) = t��i ,

�i (t
�
i ) = z��i .

It is easily seen that both ( 1;  2) : T
�
1 � T �2 ! T ��1 � T ��2 and (�1; �2) : T

�
1 � T �2 ! T ��1 � T ��2

are minimal belief-hierarchy morphisms from T � to T ��. The map ( 1;  2) is also a belief-type
morphism.

All the type structures in Example 2 share the particular feature that the lexicographic
beliefs associated with types induce the one and the same minimal belief hierarchy. This leads
to the introduction of an important class of type structures, namely type structures satisfying a
non-redundancy condition. A type structure is minimal-belief-non-redundant if any two distinct
types induce distinct minimal belief hierarchies. Formally:

De�nition 10 Fix a type structure T = hSi; Ti; �iii2I .

1. Say T is minimal-belief-non-redundant (or simply non-redundant) if, for each i 2 I,
the m-hierarchy description map thi : Ti ! H0

i is injective.

2. We say that T is minimal-belief-redundant (or simply redundant) if it is not non-
redundant.

The structure T mc = hSi;H i; �
m
i ii2I is an instance of a non-redundant type structure. On

the other hand, type structure T �� in Example 2 is redundant. Speci�cally, Example 2 shows
that, if there is a minimal-belief hierarchy morphism ('i)i2I from type structure T to type
structure T 0, then ('i)i2I need not be unique. The reason why this can occur is that T 0 may
be redundant (as T �� in Example 2). The following result establishes this fact formally.
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Proposition 6 Let ('i)i2I : T ! T 0 be a minimal belief-hierarchy morphism from T = hSi; Ti; �iii2I
to T 0 = hSi; T 0i ; �0iii2I . If T 0 is non-redundant, then ('i)i2I is the unique minimal belief-hierarchy
morphism.

5.3 Terminality

The notion of minimal belief-hierarchy morphism is well-suited for analysing an important prop-
erty of type structures, namely terminality.

De�nition 11 An (Si)i2I-based type structure T 0 = hSi; T 0i ; �0iii2I is terminal if for every other
(Si)i2I-based type structure T = hSi; Ti; �iii2I there is a minimal belief-hierarchy morphism from
T 0 to T .

The main result of this section shows that T mc = hSi;H i; �
m
i ii2I is not only terminal, but

the minimal belief-hierarchy morphism from every type structure T 0 = hSi; T 0i ; �0iii2I to T mc is
also unique, and satis�es a property which is analogous to that of a belief-type morphism.

Theorem 1 Let T = hSi; Ti; �iii2I be an arbitrary (Si)i2I-based lexicographic type structure,
and, for each i 2 I, let thi : Ti ! H0

i be the m-hierarchy description map. Then, for each i 2 I,

1. thi(Ti) � H i,

2. (thi)i2I is the unique minimal belief-hierarchy morphism from T to T mc = hSi;H i; �
m
i ii2I .

Furthermore, it holds that

�mi � thi =mS�i�H�i �
\�

IdS�i ; th�i
�
� �i,

for each i 2 I.

6 Iterated Admissibility revisited: epistemic foundations

In what follows, we �x a �nite game G = hI; (Si; ui)i2Ii, where I is a two-player set and, for every
i 2 I, Si is the set of strategies with jSij � 2 and ui : Si � S�i ! R is the payo¤ function. Each
strategy set Si is given the obvious topology, i.e., the discrete topology. De�ne the expected
payo¤ function �i by extending ui onM(Si)�M(S�i) in the usual way:

�i(�i; ��i) =
X

(si;s�i)2Si�S�i

�i(si)��i(s�i)ui(si; s�i):
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6.1 Iterated admissibility

The notion of admissible strategy is standard.

De�nition 12 Fix a set Xi �X�i � Si � S�i. A strategy si 2 Si is admissible with respect
to Xi�X�i if and only if there exists ��i 2M(S�i) such that Supp��i = X�i and �i(si; ��i) �
�i(s

0
i; ��i) for every s

0
i 2 Xi. If strategy si 2 Si is admissible with respect to Si�S�i, we simply

say that si is admissible.

Remark 4 Fix a set Xi � X�i � Si � S�i. A strategy si 2 Si is weakly dominated with
respect to Xi�X�i if there exists �i 2M(Si) with �i (Xi) = 1 such that �i(�i; s�i) � �i(si; s�i)
for every s�i 2 X�i and �i(�i; s0�i) > �i(si; s

0
�i) for some s

0
�i 2 X�i. A standard result ([45,

Lemma 4]) states that a strategy si 2 Si is not weakly dominated with respect to Xi�X�i if and
only if it is admissible with respect to Xi �X�i.

The set of iteratively admissible strategies (henceforth IA set) is de�ned inductively.

De�nition 13 For each i 2 I, set S0i = Si and for every m 2 N, let Smi be the set of all
si 2 Sm�1i which are admissible w.r.to Sm�1i �Sm�1�i . A strategy si 2 Smi is called m-admissible.
A strategy si 2 S1i = \1m=0Smi is called iteratively admissible.

Note that Smi � Sm+1i 6= ; for all m 2 N. Moreover, since each strategy set Si is �nite, there
exists M 2 N such that

Q
i2I S

1
i =

Q
i2I S

M
i . Consequently, the IA set

Q
i2I S

1
i is non-empty.

6.2 Rationality and Cautiousness

For any two vectors x = (xl)
n
l=1 ; y = (yl)

n
l=1 2 Rn, we write x �L y if either (1) xl = yl for every

l � n, or (2) there exists m � n such that xm > ym and xl = yl for every l < m. Append to the
game G a type structure T = hSi; Ti; �iii2I .

De�nition 14 . A strategy si 2 Si is optimal under �i(ti) =
�
�1i ; :::; �

n
i

�
2 N (S�i � T�i) if�

�i(si;margS�i�
l
i)
�n
l=1

�L
�
�i(s

0
i;margS�i�

l
i)
�n
l=1
, 8s0i 2 Si.

We say si is a lexicographic best reply to margS�i�i(ti) on S�i if it is optimal under �i(ti).

De�nition 15 A type ti 2 Ti is cautious (in T ) if margS�i�i(ti) 2 N
+ (S�i). We denote by

Ci the set of all (si; ti) 2 Si � Ti where ti is cautious.
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Remark 5 Note that si is a lexicographic best reply to margS�i�i(ti) if and only if si is a
lexicographic best reply to margmS�i�i(ti) 2 N (S�i). Moreover, by Lemma 1, it follows that

margS�i�i(ti) 2 N
+ (S�i)() margmS�i�i(ti) 2 N

+(S�i).

Thus ti 2 Ti is cautious (in T ) if and only if margmS�i�i(ti) 2 N
+ (S�i). This entails that, if

�i(ti) 2 N+ (S�i � T�i), then margmS�i�i(ti) 2 N
+ (S�i).

Thus, for strategy-type pairs we de�ne the following notions.

De�nition 16 Fix a strategy-type pair (si; ti) 2 Si � Ti.

1. Say (si; ti) is rational (in T ) if si is optimal under �i (ti). Let Ri be the set of all rational
(si; ti) 2 Si � Ti.

2. Say (si; ti) is cautiously rational (in T ) if it is rational and (si; ti) 2 Ci.

The following result is stated and proved in [17].

Proposition 7 If strategy-type pair (si; ti) 2 Si�Ti is cautiously rational, then si is admissible.

In [17] it is shown that cautious rationality has an "invariance" property under belief-type
morphisms between type structures. A similar property also holds for the case of minimal
belef-hierarchy morphisms.

Lemma 8 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be lexicographic type structures, such
that there exists a minimal belief-hierarchy morphism ('i)i2I : T ! T � from T to T �. Fix a
strategy-type pair (si; ti) 2 Si � Ti. Thus

(i) (si; ti) 2 Ci if and only (si; 'i (ti)) 2 C�i .

(ii) (si; ti) 2 Ri if and only (si; 'i (ti)) 2 R�i .

Corollary 2 A strategy-type pair (si; ti) is cautiously rational in T if and only (si; 'i (ti)) is
cautiously rational in T �.
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6.3 Assumption

The following LPS-based de�nition of Assumption is taken from [17].

De�nition 17 Fix a type structure T = hSi; Ti; �iii2I and a non-empty event E � S�i � T�i.
Fix also ti 2 Ti with �i (ti) = (�1; :::; �n). We say that E is assumed under �i (ti) at level
m � n if the following conditions hold:

(i) �l (E) = 1 for all l � m;

(ii) for every elementary cylinder C = fs�ig� T�i, if E \C 6= ; then �k (E \ C) > 0 for some
k � m.

We say that E is assumed under �i (ti) if it is assumed under �i (ti) at some level m � n.
We say that ti 2 Ti assumes E if E is assumed under �i (ti).

The notion of Assumption captures the idea that event E and its payo¤-relevant components,
viz. E\C 6= ;, are "in�nitely more likely than" its complement. A preference-based foundation
of Assumption is given in [17], where a comparison with alternative formulations (e.g., [20] and
[15]) is provided. It turns out that the notion of Assumption does not depend on the speci�c
LPS � representing the preference relation %�; that is, if the LPS � is such that %�=%�, then
an event E is assumed in terms of %� if and only if it is assumed in terms of %�.11

Remark 6 Fix a type structure T = hSi; Ti; �iii2I and a non-empty event E � S�i � T�i. Fix
also ti 2 Ti with �i (ti) = � = (�1; :::; �n). Thus E is assumed under � if and only if it is
assumed under � 2 N (S�i � T�i) such that � �= �, e.g., � =mS�i�T�i (�).

For each player i 2 I, let Ai : �S�i�T�i ! �Si�Ti be the operator de�ned by

Ai (E�i) = f(si; ti) 2 Si � Ti jti assumes E�i g , E�i 2 �S�i�T�i .

It is shown in [17] that the set Ai (E�i) is Borel in Si � Ti for every event E�i � S�i � T�i; so
the operator Ai : �S�i�T�i ! �Si�Ti is well-de�ned.

The Assumption operator Ai has invariance properties under minimal belief hierarchy-
morphisms between type structures which are analogous to the ones of (cautious) rationality
(cf. Lemma 8 and Corollary 2).

Lemma 9 Fix type structures T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I . Let T � be minimal,
and suppose that there is a minimal belief-hierarchy morphism ('i)i2I : T ! T � from T to T �
such that, for each i 2 I,

��i � 'i =mS�i�T ��i �
\�

IdS�i ; '�i
�
� �i.

Let E�i � S�i�T�i and E��i � S�i�T ��i be non-empty events satisfying the following conditions:

1)
�
IdS�i ; '�i

�
(E�i) � E��i;

11 In fact, De�nition 17 can be viewed as a representation result of the notion of Assumption in terms of the
LPS�s representing the preference relation %.
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2) ProjS�i (E�i) = ProjS�i
�
E��i

�
.

Then (IdSi ; 'i) (Ai (E�i)) � Ai
�
E��i

�
.

Lemma 9 is the analogue of Lemma 6 in [17]. Speci�cally, [17, Lemma 6] covers the case in
which the map ('i)i2I is a belief-type morphism from T to T �, and T � is not required to be
minimal. We will make use of Lemma 9 for the proof of Theorem 3 below.

6.4 Common Assumption of Cautious Rationality and Iterated Admissibility

In what follows, �x a type structure T = hSi; Ti; �iii2I and, for each player i 2 I, let R1i be the
set of all cautiously rational strategy-type pairs (si; ti) 2 Si � Ti. For each m > 1, de�ne Rmi
inductively by

Rm+1i = Rmi \Ai
�
Rm�i

�
.

We write R0i = Si � Ti and R1i = \m2NRmi for each i 2 I. If (si; ti)i2I 2
Q
i2I R

m+1
i , we say

that there is cautious rationality and mth-order assumption of cautious rationality at
this state. If (si; ti)i2I 2

Q
i2I R

1
i , we say that there is cautious rationality and common

assumption of cautious rationality at this state.
Note that, for each m > 1,

Rm+1i = R1i \
�
\l�mAi

�
Rl�i

��
,

and each Rmi is Borel in Si � Ti (see [17]).
We now state the main results.

Theorem 2 Fix a minimal belief-complete type structure T = hSi; Ti; �iii2I . Thus, for each
m � 0, Y

i2I
ProjSi (R

m
i ) =

Y
i2I

Smi .

A version of Theorem 2 for (not necessarily minimal) belief-complete type structures is given
in [17, Theorem 2.(i)]. We do not provide a self-contained proof of Theorem 2. The structure
of the arguments follows the proof of [17, Theorem 2.(i)]. We discuss the required modi�cations
in the Appendix.

Theorem 3 Fix type structure T mc = hSi;H i; �
m
i ii2I . Thus

Q
i2I R

1
i 6= ; andY

i2I
ProjSi (R

1
i ) =

Y
i2I

S1i .

The proof of Theorem 3 makes use of the following result, which relies on Theorem 2.
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Lemma 10 Fix T mc = hSi;H i; �
m
i ii2I . There exists a �nite, minimal type structure T � =

hSi; T �i ; ��i ii2I such that, for each i 2 I and each m � 1,
(i) ProjSi

�
R�;mi

�
= Smi ,

(ii) (IdSi ; th
�
i )
�
R�;mi

�
� Rmi .

Proof : In [17], it is shown the existence of a �nite LCPS (so minimal) type structure T � =
hSi; T �i ; ��i ii2I such that, for each player i 2 I,

ProjSi

�
R�;ki

�
= Ski , 8k � 0, (6.1)

and ProjSi
�
R�;1i

�
= S1i . We show by induction on k that, for each i 2 I,

(IdSi ; th
�
i )
�
R�;ki

�
� Rki , 8k � 1.

(k = 1) If (si; ti) 2 R�;1i , then (si; th�i (ti)) 2 R1i by Lemma 8.
(k � 2) Suppose that the statement is true for k � 1. Let (si; ti) 2 R�;ki . So (si; ti) 2 R�;k�1i

and, by the induction hypothesis, (si; th�i (ti)) 2 Rk�1i . So we need to show that (si; thi (ti)) 2
Ai

�
Rk�1�i

�
; this will imply (si; thi (ti)) 2 Rki , as required.

Now note that
(a)

�
IdS�i ; th

�
�i
� �
R�;k�1�i

�
� Rk�1�i ,

(b) ProjS�i

�
R�;k�1�i

�
= ProjS�i

�
Rk�1�i

�
.

Part (a) is the induction hypothesis, while part (b) follows from (6.1) and Theorem 2. Since

(si; ti) 2 Ai
�
R�;k�1�i

�
, then Lemma 9 yields (si; th�i (ti)) 2 Ai

�
Rk�1�i

�
. �

Proof of Theorem 3: By Lemma 10, there exists a �nite, minimal type structure T � =
hSi; T �i ; ��i ii2I such that, for each i 2 I and each m � 1,

(a) ProjSi
�
R�;mi

�
= Smi ,

(b) (IdSi ; th
�
i )
�
R�;mi

�
� Rmi .

Since (R�;mi )m2N is a weakly decreasing sequence of �nite sets, there exists N 2 N such that
R�;Ni = R�;1i . So, it follows from (a) that ProjSi

�
R�;1i

�
= S1i . Then, for every si 2 S1i ,

there exists ti 2 T �i such that (si; ti) 2 R�;mi for all m 2 N. It thus follows from (b) that
(IdSi ; th

�
i ) ((si; ti)) 2 Rmi for all m 2 N. Hence (IdSi ; th�i ) ((si; ti)) 2 R1i . Consequently S

1
i �

ProjSi (R
1
i ) 6= ;. By Theorem 2, ProjSi (R

1
i ) � S1i . The conclusion follows. �

7 Discussion

This section discusses some conceptual and technical aspects of the paper.

7.1 Hierarchies of minimal beliefs: the bottom-up approach

The modelling strategy which was used in Section 4.2 to obtain the structure T mc = hSi;H i; �
m
i ii2I

follows the "top-down" approch of Brandenburger and Dekel [14] (see also [4]) in which hier-
archies are �rst unrestricted and then the coherence requirement is imposed a posteriori. An
alternative, "bottom-up" approach consists in imposing coherence directly at all levels of the hi-
erarchies. Such approach, �rst adopted by Mertens and Zamir ([42]; see also [32]) turns out to be
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equivalent to the "top-down" approach when players�preferences conform to the SEU criterion
and there is common belief of this� both approaches lead to two isomorphic type structures.
However, such equivalence breaks down in the lexicographic case. We show this by brie�y re-
viewing the "bottom-up" approach; we then argue that the failure of this equivalence rests on
the concept of full belief, whose formulation requires the use of an LPS of �nite length.

To make this precise, we are going to de�ne inductively the k-order coherent spaces eHk
i ,

which will consist of coherent k-tuples of minimal length LPS�s over �i0,�
i
1,...,�

i
n�1 (the lower-

order coherent spaces of the other player and the space of primitive uncertainty). Moreover,

each �ki will be a subset of eHk�1
i �N

�
�k�1i

�
.

Formally, for each player i 2 I, let �0i = S�i, eH1
i = N

�
�0i
�
, and for all k � 1,

�ki = �0i � eHk
�i;eHk+1

i =
n�
�1i ; :::; �

k
i ; �

k+1
i

�
2 eHk

i �N
�
�ki

�
: margm�k�1i

�k+1i = �ki

o
.

The space �ki is naturally interpreted as player i�s domain of uncertainty of order k + 1; it
consists of the space of primitive uncertainty S�i and the set of k-order minimal belief hierarchy
of player �i. The space eHk+1

i is the set of (k + 1)-tuples of coherent lexicographic preferences
over �0i ; :::;�

k
i . Note carefully that not only each player i�s hierarchies are coherent but she also

considers only coherent beliefs of �i.
In the limit, the set eHi, as de�ned below, is the set of all coherent hierarchies of minimal

beliefs about S�i, about S�i and player �i�s minimal beliefs about Si, and so on. Formally:

eHi =

(�
�1i ; �

2
i ; :::

�
2

1Y
l=0

N
�
�li

� �����1i ; :::; �ki � 2 eHk
i , 8k � 1

)
,

�i = S�i � eH�i.
If each �ki is a probability measure (that is, the SEU criterion holds for each player), then
standard results ([42], [32]) show the existence of an isomorphism (in fact, a homeomorphism)
fi : eHi ! M (�i), which is canonical in the sense already discussed. Yet, in the lexicographic
case, eHi and N (�i) are not isomorphic. There are two reasons for the occurrence of this failure.
First, a hierarchy hi =

�
�1i ; �

2
i ; :::

�
2 eHi may fail to be summarized by a minimal length LPS

�i 2 N (�i) if ` (hi) =1. An instance of such a hierarchy is provided in [38].
Second, even though a hierarchy hi 2 eHi is `-bounded (so that it admits a limit extension

over �i), it may fail to have a type representation. To understand how this issue arises, letbH1
i � eHi be the set of `-bounded hierarchies (which can be shown to be measurable in eHi by

using arguments analogous to those in Lemma 5). By using a version of Lemma 6 for projective
systems of LPS�s (see [18]), it is possible to show the existence of a canonical Borel isomorphism

�i : bH1
i ! N

�
S�i � eH�i�. However, the map �i does not close the model: Even if player i�s

hierarchy hi 2 eHi is coherent and `-bounded, �i (hi) may deem possible sets of coherent, but not
`-bounded hierarchies of the other player �i. That is, hi may not induce a preference over �i�s
preferences over eHi. Thus, to close the model, one needs to proceed exactly as is the "top-down"
construction (Section 4.2), by de�ning inductively, for each i 2 I, the following sets:

bH l+1
i =

n
hi 2 bH1

i

����i (hi)�S�i � bH l
�i

�
= 1

o
, l � 1,bHi = \l�1 bH l

i .

This leads to a space of hierarchies bH = �i2I bHi which is isomorphic to the canonical hierarchic
space H� and so to a type structure isomorphic to T mc.
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7.2 Hierarchies of lexicographic preferences

Besides non-minimality, there is another way in which di¤erent LPS�s could represent the same
preference relation. This further source of redundat representation is called A¢ ne Transforma-
tion in [39]. Consider for instance, LPS�s (�; �) ;

�
�; 12� +

1
2�
�
2 N (X); clearly, if � 6= �, then

(�; �) �=
�
�; 12� +

1
2�
�
, and they are both of minimal length. In other words, the set N (X)

contains multiple copies of LEU preference representations.
An immediate consequence of this fact is that the canonical type structure T mc is not the

most parsimonious representation of hierarchies of LEU preferences. A costruction of a non-
redundant, canonical space of hierarchies of LEU preferences is still possible (see [38]), and
analogues of Theorem 2 and Theorem 3 also hold for this version of the canonical type struc-
ture.12

7.3 Assumption(s) and unbounded hierarchies

BFK and Dekel et al. [20] show that their version of RCAR cannot be satis�ed in any belief-
complete and continuous type structure. The basic idea is that a type in such type structures
that mth-order assumes (in BFK�s sense) rationality must be mapped to an LPS of length
greater than m + 1. Since every LPS in a type structure has �nite length, no type can mth-
order assume rationality for all m. The idea in [40] of using hierarchies that cannot be types
is inspired by this intuition. By contrast, under the notion of Assumption as in De�nition 17,
Theorem 3 shows that a similar issue does not arise.

8 Appendix

8.1 Proof for Section 3

Proof of Proposition 1: Clearly if � = � then � �= �. On the other hand, suppose that � 6= �.
We need to show that � � �. Without loss of generality, suppose that `(�) � `(�) = n. Let
k � n+ 1 be the least natural number such that �l = �l for each l < k, and either (i) �k 6= �k
or (ii) k = n + 1. By mutual singularity, there exists a Borel set Ek such that �k (Ek) = 1
and �l (Ek) = 0 for all l < k. In case (i), there also exist a Borel set Fk such that �k (Fk) = 1
and �l (Fk) = 0 for all l < k, and a Borel set Bk � Ek such that �k (Bk) > q > �k (Bk) with
q 2 (0; 1). Let f; g 2ACT(X) be de�ned as follows:

f = 1Bk ,

g = q � 1Ek[Fk .

Since �l = �l and �l(Bk) � �l(Ek) = 0 for each l < k, thenZ
X
fd�l =

Z
X
fd�l = �l(Bk) = 0; 8l < k.

Since �l = �l and �l(Ek [ Fk) � �l(Ek) + �l(Fk) = �l(Ek) + �l(Fk) = 0 for each l < k, thenZ
X
gd�l =

Z
X
gd�l = q � �l(Ek [ Fk) = 0; 8l < k.

12The construction of this "preference non-redundant" version of the canonical type structure requires minimal
changes to the construction of T mc. Details are available on request.
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Moreover, Z
X
fd�k = �k(Bk) > q = q � �k(Ek [ Fk) =

Z
X
gd�k.

Thus, in case (ii), f �� g but f �� g, hence � � �. In case (i),Z
X
fd�k = �k(Bk) < q = q � �k(Ek [ Fk) =

Z
X
gd�k.

Thus, f �� g but g �� f , hence � � �. �

Proof of Lemma 1: The set containment SuppmX (�) � Supp� is obvious. On the other hand,
suppose there is x 2 X such that x =2 SuppmX (�). (Recall that X is a �nite discrete space.)
Rede�ne mX (�) = (v1; :::; vk). Thus vl (fxg) = 0 for every l � k. It follows that � (fxg) = 0 for
every � 2 M (X) such that � =

Pk
l=1 �lvl with

Pk
l=1 �l = 1 and �l � 0. Therefore x =2 Supp�.

�

Proof of Lemma 2: Measurability follows from [40, Lemma A.4] and the fact that b' : N (X)!
N (Y ) is a Borel map (see [18, Lemma 4.(1)]). Furthermore, if ' is onto, so is b' by [18, Lemma
4.(2)]. So mY � b' is a composition of onto maps, hence onto. �
Proof of Lemma 3: (1) Suppose that � is not of minimal length, that is, � =2 N (X). Thus
there exists � 2 N (X) such that � �= � and ` (�) > ` (�). It follows that ` (b' (�)) > ` (b' (�))
but b' (�) �= b' (�). Hence b' (�) =2 N (Y ).

(2) If b' (�) = (e' (�1) ; :::; e' (�n)) 2 L (Y ), then for each l = 1; :::; n, there are Borel sets
El in Y such that �l

�
'�1 (El)

�
= 1 and �l

�
'�1 (Em)

�
= 0 for l 6= m. Clearly, the sets

'�1 (E1) ; :::; '�1 (En) 2 �X satisfy the required properties of mutual singularity for �. �

Proof of Lemma 4: Since b' preserves preference-equivalence between LPS�s, we have b' (mX (�)) �=b' (�) �=mY (b' (�)), so mY (b' (�)) �= b' (mX (�)). Then clearly ` (mY (b' (�))) � ` (b' (mX (�))).
The other equalities and inequalities are obvious. �

8.2 Proofs for Section 4

Proof of Lemma 5: Fix some k � 1. We show that the set

H1;k
i =

n�
�1i ; �

2
i ; :::

�
2 H0

i

���margmXk�1
i

�k+1i = �ki

o
is G� in H0

i . By this, it will follow that an analogous conclusion holds for H
1
i , since this set can

be written as H1
i = \k�1H

1;k
i , i.e., a countable intersection of G�-subsets of H

0
i , so G� in H

0
i .

To this end, �rst note that the set

T 1;ki =
�
margmXk�1

i

��1 �
N
�
Xk�1
i

��
=

�
mXk�1

i
�margXk�1

i

��1 �
N
�
Xk�1
i

��
is G� in N

�
Xk
i

�
, as it is the inverse image of the open (hence G�) set N

�
Xk�1
i

�
under a Borel

class 2 map (see Remark 3). Next, since

H1;k
i =

k�1Y
l=0

N
�
X l
i

�
� T 1;ki �

1Y
l=k+1

N
�
X l
i

�
= Proj�1N(Xk

i )

�
T 1;ki

�
,
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and ProjN(Xk
i )
: H0

i ! N
�
Xk
i

�
is continuous, it readily follows that H1;k

i is G� in H0
i .

To conclude the proof, note that if each Si is Polish, so is H0
i , and H

1
i is a Polish subspace

of H0
i , since it is a G�-subset. �

Proof of Lemma 6: Part 1: Let n be the length of each �k, i.e., �k =
�
�k1; :::; �

k
n

�
. By the

consistency condition (4.3), we have that, for each l � n,

margZk�1�
k+1
l = �kl , 8k � 1.

By The Kolmogorov estension theorem, there exists, for each l � n, a unique probability measure
�l on Z such that

margZk�1�l = �kl , 8k � 1.

The LPS � = (�1; :::; �n) is thus the unique LPS extension of (�k)k�1.
Part 2: If � �= �, then margZk�1�

�= margZk�1� for all k � 1. By the consistency condition,
�k �= �k for all k � 1. On the other hand, let �k �= �k for all k � 1. We thus have mZk�1

�
�k
� �=

mZk�1

�
�k
�
for each k � 1. There exists K � 1 such that `

�
mZk�1

�
�k
��
= `

�
mZk�1

�
�k
��
for

each k � K. We now construct two sequences of LPS�s, viz. (��k)k�1 and (��k)k�1, as follows:
For each k � K, let

��k = mZk�1

�
�k
�
,

��k = mZk�1

�
�k
�
,

while, for each k < K, let

��k = margZk�1�
�K ,

��k = margZk�1�
�K .

It follows that �k �= ��k �= ��k �= �k for all k � 1. We let each ��k (or equivalently ��k) have
length `

�
��k
�
= n, viz. ��k =

�
��k1 ; :::; �

�k
n

�
and ��k =

�
��k1 ; :::; �

�k
n

�
. Fix some k � 1. Now,

for each m � n, there exists an m-tuple of non-negative scalars �m1 ; :::; �
m
m 2 [0; 1] such thatPm

l=1 �
m
l = 1 and �

�k
m =

Pm
l=1 �

m
l �

�k
l . It turns out that, for each m � n,

Pm
l=1 �

m
l �

�
l is the limit

extension of the collection of probabilities (��km )k�1. Indeed,

margZk�1

mX
l=1

�ml �
�
l =

mX
l=1

�ml margZk�1�
�
l

=
mX
l=1

�ml �
�k
l = ��km .

By the Kolmogorov theorem, such extension ��m =
Pm
l=1 �

m
l �

�
l is unique. Thus �

� = (��1; :::; �
�
n)

is such that �� �= ��. The limit extensions � and � satisfy � �= �, because �� = mZ (�) and
�� =mZ (�).

Part 3: The su¢ ciency part is immediate: Since margZk0� = �k
0+1 and �k

0+1 2 N (Zk0),
then � 2 N (Z) by Lemma 3. We prove the necessity part by contraposition. Suppose that
�k =2 N (Zk�1) for all k � 1. Let �k 2 N (Zk�1) be a minimal-length LPS equivalent to each �k,
that is, �k �= �k for all k � 1. Using the consistency condition (4.3) we get that, for all k � 1,

�k �= �k = margZk�1�
k+1 �= margZk�1�

k+1,
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so that
margZk�1�

k+1 �= �k, 8k � 1.

It follows that, for all k � 1,

`
�
�k
�

� `
�
margZk�1�

k+1
�

= `
�
�k+1

�
< `

�
�k+1

�
= ` (�) ,

where the last equality follows from Part 1. Let `� = sup
�
`
�
�k
�
jk � 1

	
. Since `� < ` (�) and

the sequence (`
�
�k
�
)k�1 is non-decreasing, then there exists k0 � 1 such that `

�
�k
�
= `� for all

k � k0. Let (�k)k�1 be another collection of LPS�s on Zk�s satisfying

�k = �k, 8k � k0,

margZk�2�
k = �k�1, 8k < k0.

It readily follows that, for all k � 1, �k �= �k and `
�
�k
�
< ` (�). By Part 2, the LPS extension

� of (�k)k�1 satis�es � �= � and ` (�) < ` (�). Hence � =2 N (Z), as required. �

Proof of Lemma 7: By [18, Lemma 9], there exists a homeomorphism, viz.  , between�
� 2 N (X)

��� (E) = 1	 and N (E). Thus, we have

mE

�
 
��
� 2 N (X)

��� (E) = 1	�� =mE (N (E)) = N (E) :

Using the fact that ( (�))l (B) = �l(B) for each � = (�1; :::; �n) 2 N (X), l � n, and Borel
B � E, it is immediate to show that ( �mX) (�) = (mE �  ) (�). Then

mE

�
 
��
� 2 N (X)

��� (E) = 1	�� =  
�
mX

��
� 2 N (X)

��� (E) = 1	��
=  

��
� 2 N (X)

��� (E) = 1	� :
Thus, we can conclude

 
��
� 2 N (X)

��� (E) = 1	� = N (E) :

This implies that the restriction of the homeomorphism  to
�
� 2 N (X)

��� (E) = 1	 is a home-
omorphism onto N (E). �

8.3 Proofs for Section 5

Proof of Proposition 5: We will show that for each i 2 I and ti 2 Ti,

thki (ti) = th
0k
i ('i (ti)) , 8k � 1;

this will imply the thesis. The proof is by induction on k.
(k = 1) Fix i 2 I and ti 2 Ti. By de�nition

th1i (ti) = margmS�i (�i (ti)) ,

th01i ('i (ti)) = margmS�i
�
�0i ('i (ti))

�
;

27



so, it is enough to show that

�0i ('i (ti))
�
E � T 0�i

�
= �0i (ti) (E � T�i) ,

for every Borel E � S�i. But this follows from the fact that ('i)i2I is a belief-type morphism;
indeed,

�0i ('i (ti))
�
E � T 0�i

�
= �i (ti)

��
IdS�i ; '�i

��1 �
E � T 0�i

��
= �i (ti)

��
(s; t�i) :

�
s; '�i (t�i)

�
2 E � T 0�i

	�
= �i (ti) (E � T�i) ,

as required.
(k � 2) Suppose that the statement is true up to k; this implies that txk�i = tx0k�i�

�
IdS�i ; '�i

�
for each i 2 I.

Fix i 2 I and ti 2 Ti, and pick any Ek 2 �Xk
i
. We get

thk+1i (ti) (Ek) = mXk
i

�dtxk�i (�i (ti))� (Ek)
= mXk

i

�
\�

IdS�i ; '�i
�
(�i (ti))

��
tx0k�i

��1
(Ek)

= mXk
i

�
�0i ('i (ti))

� �
tx0k�i

��1
(Ek)

= mXk
i

�dtx0k�i ��0i ('i (ti))�� (Ek)
= th0k+1i ('i (ti)) (Ek)

where the �rst equality is by de�nition of thk+1i , the second equality follows from the implication
of the induction hypothesis, the third and the fourth equalities follow from the property that
('i)i2I is a belief-type morphism, and the last equality is again by de�nition of th

0k+1
i . This

proves that the statement is true for k + 1, concluding the proof. �

Proof of Proposition 6: Since T 0 is non-redundant, then the map th0i : T 0i �! H0
i is injective.

Thus, there exists a unique map 'i : Ti �! T 0i such that th
0
i�'i = thi, namely 'i = (th0i)�1�thi.

�

Proof of Theorem 1: The proof is divided into two main steps. In the �rst step, we show
that for each ti 2 Ti, the corresponding m-hierarchy description thi (ti) belongs to H i. In the
second step, we show that the map (thi)i2I is the unique preference-type morphism. In both
cases, the proof is by induction.

First step: thi (Ti) � H i. By de�nition of m-hierarchy description, thi (Ti) � H0
i . We use

induction to prove thi (Ti) � H i.
(Base step): We show that thi (Ti) � H1

i , so we need to verify that for all ti 2 Ti and all
k � 1,

margmXk�1
i

�
thk+1i (ti)

�
= thki (ti) ;

to this end, we �rst show that

margXk�1
i

� btxk�i (�i (ti))� = btxk�1�i (�i (ti)) . (8.1)
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To see this, pick any event Ek�1 2 �Xk�1
i
. Thus

margXk�1
i

� btxk�i (�i (ti))� (Ek�1) = btxk�i (�i (ti))�Ek�1 �N �Xk�1
�i

��
=

�
\�

txk�1�i ; th
k
�i

�
(�i (ti))

��
Ek�1 �N

�
Xk�1
�i

��
= �i (ti)

�n
(s�i; t�i)

����txk�1�i ; th
k
�i

�
((s�i; t�i)) 2 Ek�1 �N

�
Xk�1
�i

�o�
= �i (ti)

 (
(s�i; t�i)

����� txk�1�i ((s�i; t�i)) 2 Ek�1,
thk�i ((s�i; t�i)) 2 N

�
Xk�1
�i

� )!
= �i (ti)

�n
(s�i; t�i)

���txk�1�i ((s�i; t�i)) 2 Ek�1
o�

= �i (ti)

��
txk�1�i

��1
(Ek�1)

�
= btxk�1�i (�i (ti)) (Ek�1) ,

which shows that Eq. (8.1) holds. So (8.1) implies

margmXk�1
i

� btxk�i (�i (ti))� = mXk�1
i

�
margXk�1

i

� btxk�i (�i (ti))��
= mXk�1

i

� btxk�1�i (�i (ti))
�

= thki (ti) .

By this, we get

margmXk�1
i

�
thk+1i (ti)

�
= margmXk�1

i

�
mXk

i

� btxk�i (�i (ti))��
= mXk�1

i

�
margXk�1

i

�
mXk

i

� btxk�i (�i (ti))���
= mXk�1

i

�
margXk�1

i

� btxk�i (�i (ti))��
= margmXk�1

i

� btxk�i (�i (ti))�
= thki (ti) ,

where the third equality follows from Remark 2. This concludes the proof of the base step.
To go on, we need the following

Claim 1 For each i 2 I, let fi be the isomorphism of Proposition 3. Thus, the following diagram
commutes:

. (8.2)
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Proof of Claim: We will show that for each k � 0,

margmXk
i

�
mS�i�H0

�i

�
\�

IdS�i ; th�i
�
(�i (ti))

��
= thk+1i (ti) :

Then, by uniqueness of fi, it must hold that

fi (thi (ti)) =mS�i�H0
�i

�
\�

IdS�i ; th�i
�
(�i (ti))

�
:

We have

margmXk
i

�
mS�i�H0

�i

�
\�

IdS�i ; th�i
�
(�i (ti))

��
= margmXk

i

�
mS�i�H0

�i

� btx�i (�i (ti))��
= margmXk

i

� btx�i (�i (ti))�
= mXk

i

�
margXk

i

� btx�i (�i (ti))�� ;
where the second equality follows from Remark 2. On the other hand,

thk+1i (ti) = mXk
i

�
thk+1i (ti)

�
= mXk

i

� btxk�i (�i (ti))� :
Therefore, we need to check that

margXk
i

� btx�i (�i (ti))� = btxk�i (�i (ti)) .
Fix Ek 2 �Xk

i
. We have

btxk�i (�i (ti)) (Fk) = �i (ti)

��
txk�i

��1
(Ek)

�
= �i (ti)

�n
(s�i; t�i)

����s�i; th1�i (t�i) ; :::; thk�i (t�i)� 2 Eko�
= �i (ti)

�n
(s�i; t�i)

���(s�i; th�i (t�i)) 2 Proj�1Xk
i

(Ek)
o�

= �i (ti)
��
IdS�i ; th�i

��1 �
Proj�1

Xk
i

(Ek)
��

= \�
IdS�i ; th�i

�
(�i (ti))

�
Proj�1

Xk
i

(Ek)
�

= btx�i (�i (ti))�Proj�1Xk
i

(Ek)
�

= margXk
i

�dtx�i (�i (ti))� (Ek) .
�

(Inductive step): Recall that thi (ti) 2 H l
i, l � 2, if and only if fi (thi (ti))

�
S�i �H l�1

�i

�
= 1,

for each ti 2 Ti. Suppose that, for each player i 2 I, thi (Ti) � H l�1
i . Thus, by the commutativity

of Diagram (8.2), it holds that, for all ti 2 Ti,

fi (thi (ti))
�
S�i �H l�1

�i

�
=mS�i�H0

�i

�
\�

IdS�i ; th�i
�
(�i (ti))

��
S�i �H l�1

�i

�
.

We show that fi (thi (ti))
�
S�i �H l�1

�i

�
= 1, which implies thi (ti) � H l

i. To this end, note that

\�
IdS�i ; th�i

�
(�i (ti))

�
S�i �H l�1

�i

�
= �i (ti)

��
IdS�i ; th�i

��1 �
S�i �H l�1

�i

��
= �i (ti)

�n
(s�i; t�i) : th�i (t�i) 2 H l�1

�i

o�
= �i (ti) (S�i � T�i)
= 1;
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it follows that
mS�i�H0

�i

�
\�

IdS�i ; th�i
�
(�i (ti))

��
S�i �H l�1

�i

�
= 1.

Thus fi (thi (ti))
�
S�i �H l�1

�i

�
= 1, as required.

Second step: (thi)i2I is the unique minimal belief-hierarchy morphism from T to T mc =
hSi;H i; �

m
i ii2I . Measurability of (thi)i2I follows from an easy induction argument. Clearly,

(thi)i2I is a minimal belief-hierarchy morphism from T to T mc and note that, since thi (Ti) � H i

for each i 2 I (as proved in the �rst step), and each map �mi is a Borel isomorphism, it follows
from Diagram (8.2) that

�mi � thi =mS�i�H�i �
\�

IdS�i ; th�i
�
� �i.

Finally, uniqueness of (thi)i2I follows from Proposition 6, since T mc is non-redundant. �

8.4 Proofs for Section 6

Proof of Lemma 8: Part (i): Fix an arbitrary (si; ti) 2 Si � Ti. By de�nition of minimal
belief-hierarchy morphism,

margmS�i�i (ti) = margmS�i�
�
i ('i (ti)) .

Therefore margmS�i�i (ti) 2 N
+ (S�i) if and only if margmS�i�

�
i ('i (ti)) 2 N+ (S�i). It follows

from Remark 5 that (si; ti) 2 Ci if and only (si; 'i (ti)) 2 C�i .
Part (ii): Using the same argument as for Part (i), the result follows from Remark 5. �

Proof of Lemma 9: Let (si; ti) 2 Ai (E�i), and set 'i (ti) = t�i . We have to show that event
E��i is assumed under �

�
i (t

�
i ), that is, conditions (i) and (ii) of De�nition 17 are satis�ed. To

this end, we �rst show that E��i is assumed under
\�

IdS�i ; '�i
�
(�i (ti)) 2 N

�
S�i � T ��i

�
.

Since event E�i is assumed under �i (ti) =
�
�1i (ti) ; :::; �

n
i (ti)

�
, then there exists m � n such

that �li (ti) (E�i) = 1 for all l � m. Next note that

E�i �
�
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

�
�
�
IdS�i ; '�i

��1 �
E��i

�
,

where the �rst set containment is obvious, while the second one follows from condition 1). Hence,
for all l � n,

�li (ti) (E�i) � �li (ti)
��
IdS�i ; '�i

��1 �
E��i

��
,

which implies �li (ti)
��
IdS�i ; '�i

��1 �
E��i

��
= 1 for all l � m, so that condition (i) of De�nition

17 is satis�ed.
To show that Condition (ii) of De�nition 17 is also satis�ed, we proceed as follows. Consider

an elementary cylinder C = fs�ig � T ��i satisfying E��i \ C 6= ;. It turns out that�
IdS�i ; '�i

��1 �
C \ E��i

�
=

��
IdS�i ; '�i

��1
(C)
�
\
��
IdS�i ; '�i

��1 �
E��i

��
=

�
fs�ig � '�1�i

�
T ��i
��
\
��
IdS�i ; '�i

��1 �
E��i

��
= (fs�ig � T�i) \

��
IdS�i ; '�i

��1 �
E��i

��
� (fs�ig � T�i) \

��
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

��
� (fs�ig � T�i) \ E�i,
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where the fourth line follows from condition 1) of the Lemma. Since (fs�ig � T�i) \ E�i 6= ;
(by condition 2) of the Lemma) and E�i is assumed under �i (ti) at level m � n, then there
exists l � m such that �li (ti) ((fs�ig � T�i) \ E�i) > 0. But

�li (ti) ((fs�ig � T�i) \ E�i) � �li (ti)
��
IdS�i ; '�i

��1 �
C \ E��i

��
,

and since C is an arbitrary elementary cilynder, this shows that Condition (ii) of De�nition 17

is satis�ed; hence E��i is assumed under
\�

IdS�i ; '�i
�
(�i (ti)) 2 N

�
S�i � T ��i

�
.

Now note that \�
IdS�i ; '�i

�
(�i (ti))

�= ��i (t
�
i ), because, under our hypothesis, �

�
i (t

�
i ) =

mS�i�T ��i

�
\�

IdS�i ; '�i
�
(�i (ti))

�
. Hence E��i is also assumed under �

�
i (t

�
i ) by Remark 6. �

Proof of Theorem 2: The proof requires just one minor modi�cation to the proof [17, Theorem
2.(i)]. Speci�cally, the modi�cation involves the inductive step of the proof of [17, Theorem 2.(i)],
in particular the inclusion Smi � ProjSi (R

m
i ). So, let si 2 Smi . The proof in [17, Theorem 2.(i)]

establishes the existence of �i =
�
�1i ; :::; �

m
i

�
2 N (S�i � T�i) such that

(a) si is optimal under �i;
(b) margS�i�i 2 N

+ (S�i); and
(c) Rl�i is assumed under �i for each l = 1; :::;m� 1, while Rm�i is not assumed.

By Remark 5, it follows that
(a�) si is optimal under mS�i�T�i (�i).

Remark 2 and Remark 5 yield
(b�) margmS�i�i = margmS�i

�
mS�i�T�i (�i)

�
2 N+ (S�i).

It follows from Remark 6 that
(c�) Rl�i is assumed under mS�i�T�i (�i) for each l = 1; :::;m� 1, while Rm�i is not assumed.

By minimal belief-completeness, there is ti 2 Ti such that �i (ti) = mS�i�T�i (�i). It follows
from (a�) and (b�) that (si; ti) 2 R1i , while (c�) entails (si; ti) 2 Ai

�
Rl�i

�
for each l = 1; :::;m�1.

Hence
(si; ti) 2 R1i \ \m�1l=1 Ai

�
Rl�i

�
= Rmi ,

and this shows that si 2 ProjSi (R
m
i ), as required. The remainder of the proof is the same as

in [17, Theorem 2.(i)]. �
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