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Battigalli (1997) �rst proved that in dynamic games with perfect information

and no relevant ties, the unique backward induction outcome is extensive-form

rationalizable (Pearce, 1984). Other authors use the outcome inclusion between

extensive-form rationalizability and backward induction to obtain the same result.

Allowing for simultaneous moves, subgame perfect equilibrium outcomes are only

a subset of the backward induction ones. Thus, showing that at least one subgame

perfect equilibrium outcome distribution is extensive-form rationalizable requires

a di¤erent strategy. Here I prove that in all �nite dynamic games with observable

actions there always exists an outcome distribution which is induced by both

a subgame perfect equilibrium in behavioral strategies and a Nash equilibrium

in strongly rationalizable strategies. Moreover, I show that only for a subgame

perfect equilibrium path, strategic reasoning under belief in this path may yield

as unique prediction the path itself.

Keywords: Extensive-form rationalizability, Strong Rationalizabil-
ity, Subgame Perfect Equilibrium, Path agreements.

1 Introduction

Battigalli [1] was the �rst to prove that in dynamic games with perfect information and no

relevant ties, the unique backward induction outcome is extensive-form rationalizable (Pearce,

[16], Battigalli, [1]). Chen and Micali [9] come to the same conclusion as a corollary of the

following result: extensive-form rationalizability re�nes backward induction. Heifetz and
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Perea [11] also prove Battigalli�s theorem by showing the outcome equivalence of extensive-

form-rationalizability and backward induction in the same class of games.

Unfortunately, dynamic games with perfect information are a very small class of games.

In applications, players are very frequently allowed to move simultaneously � or equivalently,

before observing each other�s move. Repeated games with perfect monitoring are a promi-

nent example of games with observable actions. In this class of games, the set of backward

induction outcomes can expand dramatically. Therefore, games are usually solved with some

notion of equilibrium. In absence of payo¤ uncertainty, subgame perfect equilibrium is by far

the most widespread and accepted equilibrium concept.1 However, the possible multiplicity

calls for further re�nements. A vast literature, stemming from the seminal contribution of

Kohlberg and Mertens [12], re�nes subgame perfect equilibrium with forward induction ar-

guments.2 However, the forward induction arguments employed in this literature have two

main shortcomings. First, they are quite opaque: it is very hard to understand what kind of

strategic reasoning they actually capture beyond the simple examples analyzed in the papers.

Second, they do not seem to capture all possible steps of forward induction reasoning that

players may apply.3

Another stream of literature, stemming from the seminal contribution of Pearce [16],

tackles forward induction reasoning from a completely di¤erent perspective. Abstracting

away from any equilibrium concept, extensive-form rationalizability aims to capture in a

transparent way all possible steps of reasoning that players may perform by forward induction.

In absence of �rst-order-belief restrictions (which may throw equilibrium reasoning in the

mix), this literature probably culminates in the notion of Strong Rationalizability [4], which

is given an epistemic characterization.

The orthogonality of the two approaches, makes it very di¢ cult to establish any connec-

tion between Strong Rationalizability and subgame perfect equilibrium However, the exis-

tence of a common prediction between the two solution concepts would be extremely valuable

in terms of robustness and would, so to say, pacify the advocates of the two approaches. Such

prediction would be even more valuable if obtainable under a uni�ed approach to strategic

reasoning and equilibrium reasoning, as the one o¤ered by Selective Rationalizability [7].4

The main result of this paper a¢ rms that in all �nite dynamic games with observable ac-

tions, there always exists a Nash equilibrium in strongly rationalizable strategies that induces

a subgame perfect equilibrium outcome distribution. Extending the results of Catonini [8] to

1Sequential equilibrium (Kreps and Wilson [13]) coincides with subgame perfect equilibrium in this class
of games.

2See, for instance, Govindan and Wilson [10] and Man [14].
3See Catonini (2017) for a critical survey.
4Under Strong-�-Rationalizability (Battigalli [3], Battigalli and Siniscalchi, [5]), the �rst solution concept

to introduce �rst-order belief restrictions into the structure of Strong Rationalizability, it is easy to prove that,
in games with observable actions, all subgame perfect equilibria can be obtained, hence also those that Strong
Rationalizability excludes.
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mixed strategies in the obvious way, it turns out that the support of the distribution can be

induced by Selective Rationalizability under �rst-order belief restrictions on such Nash equi-

librium.5 Using the same arguments, I also show that only a subgame perfect equilibrium

path can be delivered by Strong-�-Rationalizability/Selective Rationalizability6 as unique

prediction in absence of o¤-the-path �rst-order belief restrictions.

Section 2 provides the preliminary de�nitions. Section 3 states the main results and

provides an intuition of their proof. Section 4 proves the key lemma.

2 Preliminaries

Primitives of the game.7 Let I be the �nite set of players. For any pro�le (Xi)i2I and
any ; 6= J � I, I write XJ := �j2JXj , X := XI , X�i := XInfig. Let (Ai)i2I be the �nite

sets of actions potentially available to each player. Let H � [t=1;:::;TA
t [ f;g be the set

of histories, where h0 := f;g 2 H is the root of the game and T is the �nite horizon. For

any h = (a1; :::; at) 2 H and l < t, it holds h0 = (a1; :::; al) 2 H, and I write h0 � h.8 Let
Z := fz 2 H : 8h 2 H; z 6� hg be the set of terminal histories (henceforth, outcomes or
paths)9, and H := HnZ the set of non-terminal histories (henceforth, just histories). For

each i 2 I, let Ai : H � Ai be the correspondence that assigns to each history h, always

observed by player i, the set of actions Ai(h) 6= ;10 available at h. Thus, H has the following

property: For every h 2 H, (h; a) 2 H if and only if a 2 A(h). Note that to simplify notation
every player is required to play an action at every history: when a player is not truly active

at a history, her set of feasible actions consists of just one "wait" action. For each i 2 I, let
ui : Z ! R be the payo¤ function. The list � =



I;H; (ui)i2I

�
is a �nite game with complete

information and observable actions.

Derived objects. A strategy of player i is a function si : h 2 H 7�! si(h) 2 Ai(h).
Let Si denote the set of all strategies of i. The set of mixed strategies of player i is denoted

by �(Si). Abusing notation, for a pro�le of mixed strategies � = (�j)j2I 2 �j2I�(Sj), �
will be used also to denote the induced probability distribution over S, and ui(�) will denote

the expected payo¤ of player i under �. A strategy pro�le s 2 S naturally induces a unique
5With a caveat: if the equilibrium does not provide strict incentive to remain on path, Selective Rational-

izability will yield a superset of the equilibrium outcomes.
6The two are equivalent under path restrictions: see Catonini (2017).
7The main notation is almost entirely taken from Osborne and Rubinstein [15].
8H endowed with the precedence relation � is a tree with root h0.
9"Path" will be used with emphasis on the moves, and "outcome" with emphasis on the end-point of the

game.
10When player i is not truly active at history h, Ai(h) consists of just one "wait" action.
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outcome z 2 Z. Let � : S ! Z be the function that associates each strategy pro�le with the

induced outcome. For any h 2 H, the set of strategies of i compatible with h is:

Si(h) := fsi 2 Si : 9z � h;9s�i 2 S�i; �(si; s�i) = zg :

For any (Sj)j2I � S, let Si(h) := Si(h) \ Si. Moreover, let:

Si[h] =
�
ai 2 Ai(h) : 9si 2 Si(h); si(h) = ai

	
:

For any J � I, let H(SJ) :=
�
h 2 H : SJ(h) 6= ;

	
denote the set of histories compatible with

SJ . For any h = (h0; a) 2 H, let p(h) denote the immediate predecessor h0 of h.
Since the game has observable actions, each history h 2 H is the root of a subgame �(h).

In �(h), all the objects de�ned above will be denoted with h as superscript, except for single

histories and outcomes, which will be identi�ed with the corresponding history or outcome of

the whole game, and not rede�ned as shorter lists of action pro�les. For any h 2 H, shi 2 Shi ,
and bh � h, shi jbh will denote the strategy sbhi 2 Sbhi such that sbhi (eh) = shi (eh) for all eh � bh. For
any S

h
i � Shi , S

h
i jbh will denote the set of all strategies sbhi 2 Sbhi such that sbhi = shi jbh for some

shi 2 S
h
i .

Equilibria. A mixed strategy pro�le � = (�i)i2I 2 �i2I�(Si) is an equilibrium if, for

all i 2 I and si with �i(si) = 0, ui(�) � ui(si; ��i). Moreover, � is SPE if it induces an
equilibrium in every subgame. See Section 4 for a formal de�nition.

Beliefs. In this dynamic framework, beliefs are modeled as Conditional Probability

Systems (Renyi, [17]; henceforth, CPS).

De�nition 1 A Conditional Probability System on (S�i; (S�i(h))h2H) is a mapping �(�j�) :
2S�i � fS�i(h)gh2H ! [0; 1] satisfying the following axioms:

CPS-1 for every C 2 (S�i(h))h2H , �(�jC) is a probability measure on S�i;

CPS-2 for every C 2 (S�i(h))h2H , �(CjC) = 1;

CPS-3 for every E 2 2S�i and C;D 2 (S�i(h))h2H , if E � D � C, then �(EjC)=�(EjD)�(DjC).

The set of all CPS�s on (S�i; (S�i(h))h2H) is denoted by �H(S�i).

For brevity, the conditioning events will be indicated with just the information set, which

represents all the information acquired by players through observation. For each set J �
In fig of opponents of player i, and for each set of strategy sub-pro�les SJ � SJ , I say that
a CPS �i 2 �H(S�i) strongly believes SJ if, for all h 2 H(SJ), �i(SJ � SIn(J[fig)jh) = 1.
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Rationality. I consider players who reply rationally to their conjectures. By rationality I
mean that players, at every information set, choose an action that maximizes expected utility

given the conjecture about how co-players will play and the expectation to reply rationally

again in the continuation of the game. This is equivalent (see Battigalli [2]) to playing a

sequential best reply to the CPS.

De�nition 2 Fix �i 2 �H(S�i). A strategy si 2 Si is a sequential best reply to �i if for
every h 2 H(si),11 si is a continuation best reply to �i(�jh), i.e. for every esi 2 Si(h),X

s�i2S�i(h)
ui(�(si; s�i))�i(s�ijh) �

X
s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
I say that a strategy si is rational if it is a sequential best reply to some �i 2 �H(S�i). The

set of sequential best replies to �i is denoted by �(�i). For each h 2 H, the set of continuation
best replies to �i(�jh) is denoted by br(�i; h). The set of best replies to a conjecture �i 2 �(S�i)
in the normal form of the game is denoted by r(�i).

Elimination procedures.I provide a very general notion of elimination procedure for
a subgame �(h), which encompasses all the procedure I am ultimately interested in, or that

will be needed for the proofs.

De�nition 3 Fix h 2 H. An elimination procedure in �(h) is a sequence ((Shi;q)i2I)
1
q=0

where, for every i 2 I,

RP1 Shi;0 = S
h
i ;

RP2 Shi;n�1 � Shi;n for all n 2 N;

RP3 for every shi 2 Shi;1 = \n2NShi;n, there exists �hi that strongly believes (Sh�i;q)1q=0 such
that shi 2 �(�hi ) � Shi;1.

Lemma 1 For every elimination procedure ((Shi;q)i2I)
1
q=0 and every bh � h, ((Shi;q(bh)jbh)i2I)1q=0

is an elimination procedure.

Proof. See Catonini [6].

Indeed, elimination procedures have been de�ned purposedly to encompass the implica-

tions in the subgames of traditional elimination procedures for the whole game. In a subgame,

substrategies can be eliminated "exogenously" and not because they are not sequential best

replies to any valid conjecture in the subgame. On the other hand, substrategies can survive

11 It would be totally immaterial to require si to be optimal also at the histories precluded by itself.
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even if the opponents do not reach the subgame anymore. Note that the elimination can stop

for some steps and then resume: for this reason, RP2 allows a weak inclusion at all steps

Now I can de�ne Strong Rationalizability.

De�nition 4 Strong Rationalizability (Battigalli and Siniscalchi, [4]) is an elimination pro-
cedure ((Sqi )i2I)

1
q=0 where for every n 2 N and i 2 I, si 2 Sni if and only if there exists �i

that strongly believes (Sq�i)
n�1
q=0 such that si 2 �(�i).

I will talk formally of �rst-order-belief restrictions on a path of play. To do so, I need the

de�nition of Strong-�-Rationalizability.

De�nition 5 For each i 2 I, �x �i � �H(Sh�i). Strong-�-Rationalizability (Battigalli [3],
Battigalli and Siniscalchi [4]) is the elimination procedure ((Sqi;�)i2I)

1
q=0 such that, for every

n 2 N, i 2 I, and si 2 Si, si 2 Si;n if and only if si 2 �(�i) for some �i 2 �i that strongly
believes (Sq�i;�)

n�1
q=0 .

3 Main results

Consider an elimination procedure where no SPE is ever eliminated "exogenously". That is,

for any belief that guarantees at least the expected payo¤ of a SPE of the game, its sequential

best replies always survive the elimination step. Then, a Nash equilibrium that yields the

same outcome distribution as a SPE survives the procedure.

Lemma 2 Fix h 2 H and an elimination procedure ((Shi;q)i2I)
1
q=0 such that for each n 2 N,

i 2 I, SPE (�hj )j2I 2 �j2I�(Shj ), and �hi that strongly believes (Sh�i)n�1q=0 , ifP
s�i2S�i ui(�(si; s�i))�

h
i (s�ijh0) � ui(�h),

then �(�i) � Shi;n. Thus, there exist a SPE �h and an equilibrium e�h 2 �(Sh1) such thate�h(S(z)) = �h(S(z)) for all z 2 Z.
The (very rough) intuition for this result is the following. Since a SPE can only be

eliminated "endogeneously", if a SPE is eliminated at some step of the procedure, there

must be a unilateral deviation from the SPE path(s) that is pro�table whatever the deviator

can expect thereafter. The key is to show that one of the possible post-deviation beliefs

corresponds to an outcome distribution of a SPE of the subgame, which can be used to create

a SPE of the whole game that substitutes the eliminated one. Note that the opponents may

be surprised by the deviation and thus play any continuation best reply thereafter too. This
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creates a set of continuation plan pro�les where all plans are best replies to some conjecture

over the continuation plans of the others. In turn, this guarantees that any equilibrium in this

reduced subgame is actually an equilibrium of the subgame. If an equilibrium is not a SPE,

there exists a unilateral deviation from its path(s) that the deviator would take whatever

SPE of the post-deviation subgame she expects thereafter. Thus, in this subgame, a SPE

can only be eliminated "endogeneously", and we can iterate until subgames of depth 1 are

reached. There, any equilibrium is a SPE. This intuition is re�ned here through an example,

directly in the context of Theorem 1: the entire game �, and Strong Rationalizability as

elimination procedure.

AnB H I  � C � Ann � D �! AnB S T U

E 1; 1 0; 0 Q 2; 2 0; 0 0; 0

F 0; 0 3; 1 AnB N O P R 0; 0 4; 4 0; 0

G 0; 0 � �! L 6; 3 5; 0 1; 2

M 5; 0 6; 3 2; 2

Strong Rationalizability goes as follows. First, Bob eliminates all strategies that prescribe U .

Second, Ann eliminates C:E. Third, Bob eliminates all strategies that prescribe H. Fourth,

Ann eliminates D:Q. Fifth, Bob eliminates all strategies that prescribe S.

Note that at step 4, Ann eliminates a SPE path: (D; (Q;S)), which is sustained by the o¤-

path equilibrium (E;H). In the proof of Lemma 9, which is more general than Lemma 2, the

external recursive procedure (the one indexed by k) proceeds as follows for every elimination

of a SPE path.

At step 3, Bob, while planning to play S after D, may play any surviving continuation

plan s(C)B 2 S3Bj(C) after C. Then, the elimination of D:Q by Ann at step 4 implies that

for each belief over S3Bj(C), Ann expects a higher payo¤ than under (D; (Q;S)), thus she
may play any sequential best reply to such belief (Lemma 7). The two things together imply

that the "reduced subgame" S3j(C) features all the sequential best replies of both players
i = Ann;Bob to all �i�s that strongly believe S

3
�ij(C); S2�ij(C); S1�ij(C). Then, every Nash

equilibrium of the reduced subgame S3j(C) is a Nash equilibrium of the whole subgame. As

in the internal recursive procedure in the proof of Lemma 9 (the one indexed by t), pick one of

these Nash, say (F; I:P ). It does not induce a SPE path of �((C)). But then, there must exist

a unilateral deviation from (F; I) which is pro�table for any SPE of the subsequent subgame.

Consider a deviation of Ann to G. Indeed, Ann prefers all the equilibria of �((C; (G; I)))

to (F; I) (for P cannot be played with probability higher than 1=2 in equilibrium). Then,

Ann may play any best reply to an equilibrium conjecture of �((C; (G; I))) (Lemma 8). Bob,

while planning to play I, may play any surviving continuation plan s(C;(G;I))B 2 S3Bj(C; (G; I))
after (C; (G; I)) (Lemma 3). So, since �((C; (G; I))) has depth 1, all its equilibria will survive
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until step 3. This is the basis step in the proof of Lemma 9; if the subgame had higher depth,

the survival of one SPE path of the subgame would have been guaranteed by the Induction

Hypothesis. Going back to the example, pick the surviving equilibrium (L;N) and look for a

new Nash equilibrium of �(C) that prescribes L and N : (G:L; I:N). This time, it induces a

SPE path of �(C). So we found a Nash s 2 S3j(C) inducing a SPE path of �(C), which Ann
prefers to (D; (Q;S)). So, if by backward induction we select (G:L; I:N) after C and (Q;S)

after D, we �nd a new SPE of �, which induces a di¤erent path than (D; (Q;S)).

The proof of Lemma 9 assumes by contradiction that all SPE paths are eliminated, and

for each of them, the external recursive procedure �nds as above a SPE subpath that is

able to generate, by backward induction, a new SPE path. The external recursive procedure

starts from (one of) the last SPE path(s) to be eliminated along the elimination procedure.

So, the newly generated SPE path must have been eliminated no later than the one under

consideration. Thus, the SPE subpath generated after the deviation that "killed" the old

path survives until the step of elimination of the new path. This guarantees two things.

First, if the deviation that kills the new path preceeds the deviation that killed the old path,

the internal recursive procedure is then able to generate a Nash inducing a SPE subpath that

is compatible with the SPE subpath already �xed after the old deviation. So, when the new

SPE subpath will be imposed by backward induction, the resulting SPE paths are a subset of

those generated by imposing the old SPE subpath, hence they are eliminated no later than

the SPE path under consideration. Second, the new deviation cannot follow the old one, for

after the old deviation, the �xed SPE subpath is induced by a surviving Nash. Then, the new

deviations occur higher and higher in the tree, until the candidate deviations are actually

exhausted and a contradiction arises.

By Lemma 2, the overlap between Strong Rationalizability and Subgame Perfect Equi-

librium is immediate.

Theorem 1 There exists a SPE (�i)i2I 2 �i2I�(Si) and an equilibrium in strongly ratio-

nalizable strategies (e�i)i2I 2 �i2I�(S1i ) such that for every z 2 Z, �(S(z)) = e�(S(z)).
Proof. Lemma 2 can be applied with strong rationalizability as elimination procedure

and h := h0. �

Fix now a path z 2 Z and, for each i 2 I, let �i be set of all CPS�s �i such that
�i(S�i(z)jh) = 1 for all h � z.12 Suppose that Strong-�-Rationalizability yields z as unique
prediction under (�i)i2I .13 Then, no unilateral deviation from z has survived. This means

that in each of the corresponding subgames, no SPE has survived. But then, by Lemma 2,

12 I show in [6] that these restrictions are equivalent to strong belief in S�i(z).
13Or equivalently, by the results in [6], Selective Rationalizability.

8



there must be at least one SPE against which the deviator would not deviate. With this,

I can construct a SPE with path z. Thus in absence of other belief restrictions, subgame

perfection is a necessary (but not su¢ cient)14 condition for players to certainly comply with

the path they believe all opponents will comply with.

Theorem 2 Fix z 2 Z. If �(S1� ) = fzg, then there exists a SPE15 (�i)i2I 2 �i2I�(Si) such
that for every i 2 I, �i(Si(z)) = 1.

Proof. Fix a history h that immediately follows a unilateral deviation by player j 2 I
from z, i.e. h 6� z, p(h) � z, and h 2 (S�j(z)). Let (Shn)1n=0 = (Sn�(h)jh)1n=0. Fix m 2 N,
i 6= j, and �hi t.s.b. (S

h
�i;n)

m�1
n=0 . By �(S

1
� ) = fzg there exists �i t.s.b. (Sn�i;�)

m�1
n=0 such

that �i(S�i(h)jp(h)) = 0 and �(�i)(h) 6= ;. Hence, there exists e�i t.s.b. (Sn�i;�)m�1n=0 with

�hi (s
h
�ijeh) = e�i(�s�i 2 S�i(h) : s�ijh = sh�i	 jeh) for all eh 2 Hh such that ; 6= �(e�i)(h) � Shi;m.

So the hypothesis of Lemma 2 holds for every i 6= j. By �(S1� ) = fzg there ism 2 N such that
Shm = ;, so Lemma 2 cannot hold. Thus the hypothesis of Lemma 2 must be violated for j and
some v � m, SPE �h, and �hj t.s.b (Sh�j;v)vq=0. Fix s�j 2 S1�j;� � S�j(z). By �(S1� ) = fzg,
r(s�j) � Sj(z). For every sh�j with �hj (sh�j jh) > 0, by constructing beliefs as above, I obtain16es(sh�j) 2 Sv�j;�(z) such that es(sh�j)(eh) = sh�j(eh) for all eh 2 Hh and es(sh�j)(eh) = s�j(eh) for alleh 62 Hh. Fix �j t.s.b. (S

h
�j;v)

v
q=0 such that �j(es(sh�j)jh0) = �j(es(sh�j)jh) = �hj (sh�j jh). Then,

�j 2 �j . Hence, by the violation of the hypothesis of Lemma 2, �(�j)(h) = ;. Thus, by
r(s�j) � Sj(z), �(�j)(z) 6= ;. So, uj(z) is higher than j�s expected payo¤ against �hj , hence,
by the violation of the hypothesis of Lemma 2, also than uj(�h). Repeating for all j and

post-deviation h, z is a SPE path. �

4 Proof of the main lemma.

Additional notation is needed. Fix h 2 H, (shj )j2I ; (eshj )j2I 2 Sh, bH � Hh, i 2 J � I,

�hi 2 �H
h
(Sh�i), bh � h, (e�hj )j2I 2 �j2I�(Shj ), and (�bhj )j2I 2 �j2I�(Sbhj ).

� shJ =
bH sbhJ if for each eh 2 bH, shJ(eh) = sbhJ(eh);

� e�hJ(�) 2 �(ShJ ) is the product of the marginal distributions (e�hj )j2J ;17
14 In [8] I show that not even when the SPE is unique, its path is necessarily delivered as unique predicition

under the corresponding path restrictions.
15SPE in mixed strategies are formally de�ned in the next section, using additional notation. For every

SPE in mixed strategy there is a SPE in behavioral strategies that induces the same outcome distribution,
thus the theorem holds also with SPE in behavioral strategies.
16Formally, this is shown by Lemma 3.
17This is an exception to the rule of subscripts: e�hJ is not a (sub-)pro�le of individual distributions but an

uncorrelated joint distribution. Equilibria (e�hj )j2I will be represented as the joint uncorrelated distributione�h they induce.
9



� H(e�hJ) := H(Suppe�hJ), e�hJ [bh] := (Suppe�hJ)[bh];
� Di(e�h) := feh 2 H(e�h�i)nH(e�h) : p(eh) 2 H(e�h)g;18
� D�i(e�h) := feh 2 HnH(e�h) : p(eh) 2 H(e�h) ^ eh 2 H(e�hi )g;
� e�hJ jbh is the product of (e�hj jbh)j2J and e�hi jbh 2 �(Sbhi ) is def. for every sbhi 2 Sbhi as:

� (e�hi jbh)(sbhi ) = e�hi (fshi 2 Shi (bh) : shi jbh = sbhi g)=e�hi (Shi (bh)) if bh 2 H(e�hi ),
� (e�hi jbh)(sbhi ) = e�hi (fshi 2 Shi : shi jbh = sbhi g) else;

� e�hJ =� �bhJ if for every z 2 �(�bh) and j 2 J , (e�hj jbh)(Sbhj (z)) = �bhj (Sbhj (z));19
� e�hJ =bh �bhJ if for every z � bh and j 2 J , (e�hj jbh)(Sbhj (z)) = �bhj (Sbhj (z));
� �hi =� �

bh
�i if �

h
i (�jbh) =� �bh�i; �hi =bh �bh�i if �hi (�jbh) =bh �bh�i;

� �i(e�h) is i�s exp. payo¤under e�h; �(e�h�i) := maxeshi 2Shi Psh�i2Suppe�h�i ui(�(eshi ; sh�i))e�h�i(sh�i);
� e�h�ijbh � �bh�i if �(e�h�ijbh) � �(�bh�i); �hi � e�h�i if �hi (�jh) � e�h�i;
� e�h is a SPE of �(h) if for every eh 2 Hh, e�hjeh is an equilibrium of �(eh);
� for any set of unordered20 non-terminal histories eH � H and any set of SPE � eH =

(�
eh)eh2 eH of the corresponding subgames, Eh(� eH) is the set of SPE of �(h) �h such that

for every eh 2 eH \Hh, �hjeh = �eh.
I will use the fact that =� and =bh are transitive and that =bh implies =�. Moreover, whene�hi =� �bhi :
~ for every eh � bh with p(eh) 2 H(�bh) and bh � h � eh, (e�hi jh)(Shi (eh)) = (�bhi jh)(Shi (eh));
� if e�hi jeh = �bhi jeh for all eh 2 D�i(�bh), then e�hi =bh �bhi .21
When �bh is an equilibrium and e�h =bh �bh, I will often use the fact that e�hjeh is an

equilibrium for all eh 2 H(�bh). Moreover:
� if e�bh�i =� �bh�i, �(e�bh�i) � �(�bh�i) = �i(�bh) and if e�bh is an equil., �(e�bh�i) = �(�bh�i);

18Unilateral deviations by player i from the paths induced by e�h.
19Notie that only the outcomes induced with positive probability by �

bh and not all those compatible with
�
bh
J matter.
20For every two histories h; h0 in the set, h 6� h0 and h0 6� h.
21By e�hi =� �bhi and ~, (e�hi jbh)(Sbhi (eh)) = �

bh
i (S

bh
i (eh)). For every z � eh, by e�hi jeh = �

bh
i jeh, (e�hi jeh)(Sehi (z)) =

(�
bh
i jeh)(Sehi (z)). Together, (e�hi jbh)(Sbhi (z)) = �bhi (Sbhi (z)).
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| if �bhi =bh �bh�i, for every sbhi 2 Supp�bhi , there is esbhi 2 �(�bhi ) such that esbhi =H(�bh) sbhi .
I start with a lemma about the combination of substrategies. Consider a player who may

be surprised by history bh, in the sense that she may play a strategy that allows bh while
believing that the co-players do not until bh is actually reached. This player can keep the
same beliefs and the same strategy out of �(bh), whatever she believes the co-players would
do and hence however she may play after bh. The proof is immediate and is here omitted.
However, a formal proof can be found in [6].

Lemma 3 Fix an elimination procedure ((Shi;q)i2I)q�0, i 2 I, n 2 N, bh 2 Hh, and �hi t.s.b.

(Sh�i;q)
n�1
q=0 such that �

h
i (S

h
�i(
bh)jp(bh)) = 0. Fix shi 2 �(�hi ), �

bh
i t.s.b. (S

h
�i;q(

bh)jbh)n�1q=0 and

s
bh
i 2 �(�

bh
i ).

Consider the unique eshi =bh sbhi such that for every eh 62 Hbh, eshi (eh) = shi (eh).
There exists e�hi =bh �bhi t.s.b. (Sh�i;q)n�1q=0 such that for every eh 62 Hbh, e�hi (�jeh) = �hi (�jeh),

and eshi 2 �(e�hi ) (so that �(�hi )(bh) 6= ; implies �(e�hi )(bh) 6= ;).
For the next �ve lemmata, �x n 2 N, h 2 H, an elimination procedure (Shq )q�0 ande�h 2 �(Shn�1). Let H� := H(e�h). For every i 2 I, let Di := Di(e�h) and D�i := D�i(e�h).
This Lemma exploits Lemma 3 to combine di¤erent reactions of player i to unexpected

deviations from H�.

Lemma 4 Fix v � n and i 2 I such that e�hi 2 �(r(e�h�i)) and for every �hi =� e�h�i t.s.b.
(Sh�i;q)

v�1
q=0, �(�

h
i ) � Shi;v. For every eh 2 D�i, �x b�ehi 2 �(Shi;v(eh)jeh). There exists b�hi 2 �(Shi;v)

such that b�hi =� e�hi and for every eh 2 D�i, b�hi jeh = b�ehi .
Proof.
I show that for every i 2 I, shi 2 Suppe�hi , and & : eh 2 D�i 7! s

eh
i 2 Suppb�ehi , there existsbshi 2 Shi;v such that bshi =H�

shi and bshi =eh &(eh) for all eh 2 D�i. Using all such bshi �s, it is easy
to construct the desired b�hi .

Fix �hi =
h e�h�i t.s.b. (Sh�i;q)v�1q=0. Since s

h
i 2 r(e�h�i), by | there exists shi 2 �(�hi ) such that

for every eh 2 H�, shi (eh) = shi (
eh). For every eh 2 D�i, &(eh) 2 Suppb�ehi � Shi;v(eh)jeh, so there

exists �ehi t.s.b. (Sh�i;q(eh)jeh)v�1q=0 such that &(eh) 2 �(�ehi ). Thus, by repeatedly applying Lemma
3, I can �nd e�hi =h e�h�i t.s.b. (Sh�i;q)v�1q=0 and bshi 2 �(e�hi ) such that bshi =H�

shi and bshi =eh &(eh)
for all eh 2 D�i. By hypothesis of the Lemma, �(e�hi ) � Shi;v. �

For the next four lemmata suppose that e�h is an equilibrium and:

A0 for every v � n, i 2 I and �hi =� e�h�i t.s.b. (Sh�i;q)v�1q=0, �(�
h
i ) � Shi;v,

11



so that every i 2 I satis�es the hypotheses of Lemma 4.

Lemma 5 is a characterization of equilibrium which will turn out to be useful. Since the

arguments for it are standard, the proof is omitted.

Lemma 5 Fix (b�hi )i2I 2 �i2I�(Shi ): b�h is an equilibrium if and only if for every h 2 H(b�h),
i 2 I and ai 2 Ai(h)nb�hi [h], calling Hh

ai := (h; (ai; a�i))a�i2b�h�i[h],P
eh2Hh

ai
nZ
�(b�h�ijeh) � (b�h�ijh)(Sh�i(eh)) + P

z2Hh
ai
\Z
ui(z) � (b�h�ijh)(Sh�i(z)) � �i(b�hjh): (F)

Lemma 6 converts a condition on CPS�s into F for some related conjectures.

Lemma 6 Fix b�h =� e�h, h 2 H�, i 2 I, ai 2 Ai(h)nb�hi [h], bh 2 Hh
ainZ, v � n, and e�bhi t.s.b.

(Sh�i;q(
bh)jbh)vq=0 such that (i) b�h�ijbh � e�bhi , (ii) for every eh 2 Hh

ain(Z [ fbhg), b�h�ijeh � �eh�i for
some �eh�i 2 �(Sh�i;v(eh)jeh), and (iii) for every �hi =� e�h�i t.s.b. (Sh�i;q)v�1q=0, if �

h
i =

bh e�bhi , then
�(�hi )(

bh) = ;. Then F holds.

Proof. Let �bh�i := e�bhi (�jbh). By Lemma 4 there exists �h�i 2 �(Shv ) such that �h�i =� e�h�i,
�h�ijeh = �eh�i for all eh 2 Hh

ainZ, and �
h
�ijeh = e�h�ijeh for all eh 2 DinHh

ai . Fix �
h
i =

h �h�i t.s.b.

(Sh�i;q)
v
q=0 such that �

h
i =

bh e�bhi (one exists because �hi (�jh) = �h�i implies �hi (�jbh)jbh = �h�ijbh =e�bhi (�jbh)).
For every eh 2 DinHh

ai and z � eh,
�h�i(S

h
�i(z)) = �

h
�i(S

h
�i(eh)) � (�h�ijeh)(Seh�i(z)) = e�h�i(Sh�i(eh)) � (e�h�ijeh)(Seh�i(z)) = e�h�i(Sh�i(z));

where the �rst and the last equalities are by the chain rule of probability, and the central

equality is by ~ and by construction. For every z 2 �(Suppe�h), by �h =� e�h, �h�i(Sh�i(z)) =e�h�i(Sh�i(z)). Hence every shi 62 Shi (bh) = [eh2Hh
ai

Shi (
eh) induces with �h�i and e�h�i (1) and with

�h�ijh and e�h�ijh (2) the same distribution over outcomes. By equilibrium, r(e�h�i)(h) 6= ;; by
1, r(�h�i)(h) [ r(�h�i)(bh) 6= ;; by h � bh, r(�h�i)(h) 6= ;; by h 2 H(�h�i), �(�hi )(h) 6= ;; by
�(�hi )(

bh) = ;, br(�hi ; h)(bh) = ;; by �hi (�jh)jh = �h�ijh, r(�h�ijh)(bh) = ;; thus,P
eh2Hh

ai
nZ
�(�

eh
�i) � (�h�ijh)(Sh�i(eh)) + P

z2Hh
ai
\Z
ui(z) � (�h�ijh)(Sh�i(z)) � �i(�hjh): (H)

By equilibrium, r(e�h�ijh)nSi(bh) 6= ;; by r(�h�ijh)(bh) = ; and 2, �(�h�ijh) = �(e�h�ijh); by
equilibrium �(e�h�ijh) = �i(e�hjh) = �i(b�hjh) (by e�hjh =� b�hjh) By �h�i =� e�h�i =� b�h�i and
~, for every eh 2 Hh

ai , (�
h
�ijh)(Sh�i(eh)) = (b�h�ijh)(Sh�i(eh)). For each eh 2 Hh

ainZ, �
eh
�i � b�h�ijeh.

So H implies F. �
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For the next two Lemmata, �x a set of unordered histories bH � Hh and a set of SPE

�
bH = (�eh)eh2 bH such that:
A1 for every eh 2 bH, there exists an equilibrium e�eh =� �eh such that e�eh 2 �(Shn(eh)jeh).
Lemma 7 claims that if only until step n � 1 an equilibrium that mimics a given SPE

survives, at step n one deviation is always strictly preferred to continuing as the equilibrium

prescribes.

Lemma 7 Suppose that there exists �h 2 Eh(� bH) such that e�h =� �h but there is no equi-
librium b�h 2 �(Shn) such that b�h =� �h. Then there exist l 2 I and bh 2 Dln([eh2 bHHeh)
such that for every (b�bhj )j 6=l 2 �j 6=l�(Shj;n(bh)jbh),22 v � n and e�bhl � b�bh�l t.s.b. (Sh�l;q(bh)jbh)vq=0,
there exists e�hl =� e�h�l t.s.b. (Sh�l;q)v�1q=0 such that e�hl =bh e�bhl and �(e�hl )(bh) 6= ; (so by A0
�(e�hl ) � Shl;v).

Proof. Suppose not. For every i 2 I and bh 2 Din([eh2 bHHeh) =: Di, �x b�bh�i, v(bh), and e�bhi
that violate the statement, and let e�bh�i := b�bh�i. By Lemma 4 there exists b�h 2 �(Shn) such
that b�h =� e�h =� �h and for every i 2 I, eh 2 bH [ ([j 6=iDj), and bh 2 D�i \Heh, b�hi jbh = e�ehi jbh.
I show that b�h is an equilibrium.

Fix h 2 H�, i 2 I, and ai 2 Ai(h)ne�hi [h]. If there exists eh � h such that eh 2 bH,b�h =� �h =eh �eh =� e�eh, so, by�, b�h =eh e�eh; then b�hjh is an equilibrium, so by Lemma 5 ("only
if") F holds. If Hh

ainZ � bH, for every bh 2 Hh
ainZ, b�h�ijbh = e�bh�i and by �, �(e�bh�i) = �(�h�ijbh);

by b�h =� �h, �i(b�hjh) = �i(�hjh) and by ~, (b�h�ijh)(Sh�i(bh)) = (�h�ijh)(Sh�i(bh)); so since �hjh
is an equilibrium by Lemma 5 ("only if") F holds. If Hh

ai \Di 6= ;, �x v := mineh2Hh
ai
\Di

v(eh)
and bh := argmineh2Hh

ai
\Di

v(eh): for every eh 2 Hh
ai\Di, b�h�ijeh � e�ehi (�jeh) 2 �(Sh�i;v(eh)jeh) 6= ;23

and for every eh 2 Hh
ain(Z[Di), b�h�ijeh 2 �(Sh�i;v(eh)jeh); therefore by Lemma 6F holds. Thus

by Lemma 5 ("if"), b�h is an equilibrium. �
Lemma 8 is the "dual" of Lemma 7: if an equilibrium has survived n steps but it does not

mimic a SPE (within a subset), then there is a deviation from one of the equilibrium paths

that the deviator could take whenever thereafter she expects at least the payo¤ of a SPE of

the subgame (within a subset).

Lemma 8 Suppose that e�h 2 �(Shn) and for every eh 2 bH, e�h =eh e�eh, but there is no
�h 2 Eh(� bH) with e�h =� �h. Then there exist p 2 I and h 2 Dp(e�h)n([eh2 bHHeh) such that
22Note that the statement needs not hold for all b�bh�l 2 �(Sh�j;n(bh)jbh): this is due to the fact that equilibria

are not correlated.
23For every j 6= i, there is �hj =h e�h�j t.s.b. (Sh�l;q)n�1q=0 ; by |, �(�hj )(eh) 6= ;; by A0 �(�hj ) � Shj;n.
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for every �h 2 Eh(� bH), v � n and e�hp � �h�p t.s.b. (Sh�p;q(h)jh)vq=0, there exists e�hp =� e�h�p
t.s.b. (Sh�p;q)

v�1
q=0 such that e�hp =h e�hp and �(e�hp)(h) 6= ; (so by A0 �(e�hp) � Shp;v).

Proof. Suppose not. For every i 2 I and bh 2 Din([eh2 bHHeh) =: Di, �x �bh, v(bh), and e�bhi
that violate the statement. Construct b�h =� e�h such that for every eh 62 H� with p(eh) 2 H�,b�hjeh 2 Eeh(� bH), and in particular, for every i 2 I, eh 2 bH [ ([j2IDj), and bh 2 D�i \ Heh,b�hi jbh = �ehi jbh. I show that b�h is an equilibrium with b� =eh �eh 2 Eeh(� bH) for all eh 2 bH \H�.

Then, by Lemma 5 ("only if") for every eh 2 H�, b�hjeh is an equilibrium, and so b�h 2 Eh(� bH).
Fix h 2 H�, i 2 I, and ai 2 Ai(h)ne�hi [h]. If there exists eh � h such that eh 2 bH,b�h =� e�h =eh e�eh =� �eh, so by � b� =eh �eh; then b�hjh is an equilibrium, so by Lemma 5 ("only

if") F holds. If Hh
ainZ � bH, for every bh 2 Hh

ainZ, b�h�ijbh = �bh�i and by �, �(�bh�i) = �(e�h�ijbh);
by b�h =� e�h, �i(b�hjh) = �i(e�hjh) and by ~, (b�h�ijh)(Sh�i(bh)) = (e�h�ijh)(Sh�i(bh)); so since e�hjh
is an equilibrium by Lemma 5 ("only if") F holds. If Hh

ai \Di 6= ;, �x v := mineh2Hh
ai
\Di

v(eh)
and bh := argmineh2Hh

ai
\Di

v(eh): for every eh 2 Hh
ai\Di, b�h�ijeh � e�ehi (�jeh) 2 �(Sh�i;v(eh)jeh) 6= ;24

and for every eh 2 Hh
ain(Z [Di), b�h�ijeh � e�eh 2 �(Sh�i;v(eh)jeh); hence by Lemma 6 F holds.

Thus by Lemma 5 ("if") b�h is an equilibrium. �
Now I can prove the fundamental Lemma.

Lemma 9 Fix h 2 H, m 2 N, an elimination procedure (Shq )q�0, a set of unordered historiesbH = fh1; :::; hwg � Hhn fhg and a set of SPE � bH = (�eh)eh2 bH s.t. A1 holds for n = m and:

A2 for every v � w, there exists an equilibrium b�h;v 2 �(Shm�1) such that hv 2 [i2IDi(b�h;v)
and for every q < v, if hq 2 H(b�h;v), b�h;v =� e�hq ;

A3 for each i 2 I, n � m, �h 2 Eh(� bH) and �hi � �h�i t.s.b. (Sh�i)n�1q=0 , �(�
h
i ) � Shi;n.

Then there exist �h 2 Eh(� bH) and an equilibrium e�h 2 �(Shm) such that e�h =� �h.
Proof. The proof is by induction on the depth of �(h).
Inductive hypothesis (d)
The Lemma holds for every h 2 H such that �(h) has depth not bigger than d.

Basis step (1) For every i 2 I, n � m and equilibrium of �(h) �h such that Supp�h �
Shn�1, by A3 r(�

h
�i) � Shi;n. Inductively, Supp�h � Shm.

INDUCTIVE STEP (d+1) Suppose not. I will �nd a contradiction through a recursive
procedure. Set k = 0 and H

0
:= bH.

Recursive step (k)

24See the previous footnote.
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If k > 0, H
k
and �H

k

are de�ned in step k � 1. Let n � m be the greatest q 2 N such
that there exist �h;k 2 Eh(�H

k

) and an equilibrium e�h;k 2 �(Shq�1) with e�h;k =� �h;k. If
k > 0, by the last remark of the previous steps, Eh(�H

k

) � ::: � Eh(�H
0

). Then by � A3
implies A0. Moreover, n weakly decreases with k. Then �H

k

satis�es A1 and A2 with n in

place of m.25 Lemma 7 yields l 2 I and bh 2 Dl(e�h;k)n [h2Hk Hh.

De�ne ((Sbhi;q)i2I)1q=0 as ((Shi;q(bh)jbh))i2I)1q=0. By 1, it is an elimination procedure. Fix
i 6= l and v � n. For every e�bhi t.s.b. (Sbh�i;q)v�1q=0, since bh 2 Dl(e�h;k), by Lemma 3 there existse�hi =h e�h;k�i t.s.b. (Sh�i;q)v�1q=0 such that e�hi =bh e�bhi . By A0, �(e�hi ) � Shi;v; by |, �(e�hi )(bh) 6= ;.
Hence, together with Lemma 7, for every i 2 I, v � n, (b�bhj )j 6=i 2 �j 6=i�(Sbhi;n) and e�bhi � b�bh�i
t.s.b. (Sbh�i;q)vq=0, �(e�bhi ) � Sbhi;v 6= ; (F).

Let eH0 := H
k \Hbh 63 bh: I show that there exist �bh 2 Ebh(� eH0

) and an equilibrium e�bh =�
�
bh such that Suppe�bh � Sbhn. Suppose not (G). I will �nd a contradiction through a recursive
procedure. For every q � w + k such that hq 2 eH0, let h

q
:= hq and b�bh;q := b�h;qjbh, which is

an equilibrium because by bh 62 [
h2HkHh, bh � hq, so by hq 2 [i2IDi(b�h;q), bh 2 H(b�h;q). Set

t = 0.

Recursive step (t) If t > 0, eHt, and � eHt
are de�ned in step t� 1, and satisfy A1 and

A2 with n in place of m and bh in place of h.26 Let � := w + k + t. For every i 2 I, let
�
bh;t
i be the set of b�bhi 2 �(Sbhi;n) such that for every eh 2 eHt \H(b�bhi ), b�bhi =eh e�ehi . Note that for
every i 2 I,

�
bh;t
i = \eh2 eHt \z2Zeh[Heh fb�bhi 2 �(Sbhi ) : b�bhi (Sbhi (z)) = b�bhi (Sbhi (eh)) � e�ehi (Sehi (z))g \�(Sbhi;n),

an intersection of convex and compact sets.27 Hence �
bh;t
i is convex and compact. Then, since

expected utility is linear, the reduced game with strategy sets (�
bh;t
i )i2I , if non-empty, features

an equilibrium e�bh;t. For later reference, for each i 2 I, �x �bhi =bh e�bh;t�i t.s.b. (Sbh�i;q)nq=0
and b�bh;�+1i 2 �(�(�bhi )) � �(r(e�bh;t�i )) such that, by e�bh;t�i =eh e�eh�i and |, b�bh;�+1i =� e�ehi for alleh 2 eHt \H(e�bh;t�i ); by F, b�bh;�+1i 2 �(Sbhi;n). I show that �bh;ti is non-empty and that e�bh;t is an
equilibrium of the whole �(bh).

If t = 0 and eH0 = ;, �bh;0i = �(S
bh
i;n) 6= ; (by F) and b�bh;�+1i 2 �bh;0i , so e�bh;ti 2 �(r(e�bh;t�i ))

too. Else, for notational convenience let b�bh;�+1�i := e�bh;t�i and proceed as follows.
25For every hq 2 Hk

, e�hq 2 �(Shn(hq)jhq) and b�h;q 2 �(Shn�1) come from A1 and A2 if hq 2 bH, from some
previous step if hq 62 bH.
26For every h

q 2 eHt, e�hq 2 �(Shn(hq)jhq) and b�bh;q 2 �(Sbhn�1) come from the outer recursive step if hq 2 Hk
,

from some previous step if h
q 62 Hk

.
27Clearly, �(S

bh
i;n) is convex and compact. Each set of the kind fb�bhi 2 �(Sbhi ) : (b�bhi )(Sbhi (z)) = (b�bhi )(Sbhi (eh))�cg,

where c is a constant, is clearly convex and compact too. Notice that if eh 62 H(b�bhi ), b�bhi satis�es (b�bhi )(Sbhi (z)) =
(b�bhi )(Sbhi (eh)) � c as 0 = 0.
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For every eh 2 Hbh and q � � , let Qehq := fg � q : hg 2 eHt \ Hehg and Qeh�+1 := Q
eh
� . I

show that for every q 2 Qbh� [ f� + 1g, there exists �bh;qi 2 �(Sbhi;n) such that �bh;qi =� b�bh;qi and

for every g 2 Qbhq , �bh;qi =h
g e�hgi . Fix q 2 Qbh� [ f� + 1g and suppose to have shown it already

for every g 2 Qbhqnfqg. Since b�bh;qi 2 �(r(b�bh;q�i )), by b�bh;q 2 �(Sbhn) and F, Lemma 4 yields
�
bh;q
i 2 �(S

bh
i;n) such that �

bh;q
i =� b�bh;qi and for every eh 2 D�i(b�h;q):

- if eh 2 eHt, �
bh;q
i jeh = e�ehi ;

- if eh 62 eHt but Qehq 6= ;, �bh;qi jeh = �bh;maxQehqi jeh (where maxQehq < q because hq 2 [j2IDj(b�h;q)\eHt and [j2IDj(b�h;q) \Heh = fehg 6� eHt);

- if eh � h for some h 2 eHt, �
bh;q
i jeh = e�hi jeh, so that by �bh;qi =� b�bh;qi =� e�hi and �, �bh;qi =h e�hi .

Then �
bh;�
i 2 �bh;ti 6= ;.28 So,e�bh;t and b�bh;�+1 exist and �bh;�+1i 2 �bh;ti . Since �bh;�+1i =�b�bh;�+1i , �

bh;�+1
i 2 �(r(e�bh;t�i )). Then e�bh;ti 2 �(r(e�bh;t�i )) too.

By �, F implies A0 with bh in place of h; eHt sati�es A1 with n in place of m. By the

last remark of the previous steps Eh(� eHt
) � Eh(� eH0

), so, by G, e�bh;t satis�es the hypotheses
of Lemma 8.29 Lemma 8 yields p 2 I and h 2 Dp(e�bh;t)n [eh2 eHt H

eh.
De�ne the elimination procedure ((Shi;q)i2I)

1
q=0 := ((S

bh
i;q(h)jh))i2I)1q=0. Fix i 6= p and

v � n. For every e�hi t.s.b. (Sh�i;q)vq=0, since h 2 Dp(e�bh;t), by Lemma 3 there exists e�bhi =bh e�bh;t�i
t.s.b. (Sbh�i;q)v�1q=0 such that e�bhi =h e�hi . By A0, �(e�bhi ) � S

bh
i;v; by |, �(e�bhi )(h) 6= ;. Hence,

together with Lemma 8, for every i 2 I, v � n, �h 2 Eh(� eHt
) and e�hi � �h�i t.s.b. (Sh�i;q)vq=0,

�(�hi ) � Shi;v. For every q 2 Qh� , let b�h;q := b�bh;qjh, which is an equilibrium because by

h 62 [eh2 eHtH
eh, h � h

q
, so by h

q 2 [i2IDi(b�bh;q), h 2 H(b�bh;q). Then A3, A2, and A1 are
satis�ed with eHt \ Hh in place of bH, n in place of m, and h in place of h. So, by the
Induction Hypothesis, there exist �h 2 Eh(� eHt

) and an equilibrium e�h =� �h such that
Suppe�h � Shn = Sbhn(h)jh.

Since h 62 [eh2 eHtH
eh and Hbh is �nite, eHt+1 := feh 2 eHt : eh 6� hg [ fhg is a set of

unordered histories that keep shortening with t, until a contradiction is obtained. Before, let

�
eHt+1

:= �
eHt [ f�hgnf�ehgeh2 eHtn eHt+1, h

�+1
:= h, b�bh;�+1 := e�bh;t.30 Then, increase t by 1

and run again noting what follows: for every eh 2 eHt such that eh � h, �hjeh = �
eh, so that

Eh(�
eHt+1

) � Eh(� eHt
).

Since bh 62 [
h2HkHh and Hh is �nite, H

k+1
:= feh 2 Hk

: eh 6� bhg [ fbhg is a set of
unordered histories that keep shortening with k, until a contradiction is obtained. Before,

28By recursive step t� 1, maxQbh
� = � .

29Without loss of generality assume that for every i 2 I and eh 2 eHtnH(e�bh;ti ), e�bh;ti =
eh e�ehi .

30Overwrite the previous, temporary choice.
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let �H
k+1

:= �H
k

[ f�bhgnf�hg
h2HknHk+1 , hw+k+1 := bh, b�h;w+k+1 := e�h;k.31 Increase k by 1

and run again noting what follows: for every h 2 Hk
such that h � bh, �bhjh = �h, so that

Eh(�H
k+1

) � Eh(�H
k

). �

Proof of Lemma 2. Apply Lemma 9 with empty bH and � bH , and m =1. �
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