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Strong Rationalizability (Battigalli and Siniscalchi, 2002) is a prominent and

well understood solution concept for dynamic games, based on the notion of

strong belief. Yet, the non-monotonicity of strong belief induces interpretative

di¢ culties when strategic reasoning departs from Strong Rationalizability in two

ways. In one direction, the introduction of exogenous belief restrictions (in the

fashion of Strong-�.Rationalizability; Battigalli 2003, Battigalli and Siniscalchi

2003) can drive the predictions surprisingly far from the strongly rationalizable

outcomes. In the other direction, a slower pace of elimination of strategies typ-

ically modi�es the output of the procedure. In this paper, I shed light and

partially neutralize these two di¢ culties. In the �rst direction, I show that,

reassuringly, belief restrictions that never end up o¤-path cannot induce non

strongly rationalizable outcomes. Moreover, for belief restrictions on a speci�c

path of play, the epistemic priority choice (Catonini, 2017) between the restric-

tions and rationality is immaterial for the predicted outcomes. In the second

direction, I show that Strong Rationalizability is order independent with respect

to the predicted outcomes. Since a truncated order of elimination corresponds

to Backward Induction, I obtain that Strong Rationalizability re�nes Backward

Induction. The outcome equivalence of Strong Rationalizability and Backward

Induction in perfect information games with no relevant ties (Battigalli, 1997)

follows.

Keywords: Strong Rationalizability, Belief Restrictions, Epistemic
Priority, Order Independence, Backward Induction.

�A special thanks goes to Pierpaolo Battigalli, this paper would not exist without his mentoring. Thank
you also to Adam Brandenburger, Shurojit Chatterji, Yi-Chun Chen, Alfredo Di Tillio, Amanda Friedenberg,
Amanda Jakobsson, Atsushi Kajii, Mattia Landoni, Xiao Luo, Elena Manzoni, Andres Perea, Burkhard
Schipper, Madhav Shrihari Aney, Satoru Takahashi, Elias Tsakas, and Dimitrios Tsomocos for precious
suggestions.

yHigher School of Economics, ICEF, emiliano.catonini@gmail.com

1



1 Introduction

Strong Rationalizability (Battigalli and Siniscalchi, 2002) is the iterated deletion of never

sequential best replies under strong belief 1 in opponents�strategies that survive the previous

step(s).2 Thus, the �rst step of Strong Rationalizability captures sequential rationality; the

second step adds strong belief in the opponents�rationality; and so forth, towards common

strong belief in rationality. These lines of strategic reasoning can be modi�ed in two opposite

directions, while seemingly maintaining the same spirit.

In one direction, the elimination procedure can be made more restrictive. A way to do so

is by introducing, beside strong belief in the previous step(s), exogenous belief restrictions.

Strong-�-Rationalizability (Battigalli [3], Battigalli and Siniscalchi [6]) introduces the belief

restrictions in the most intuitive way; that is, from the �rst step. However, doing so, the

predictions can depart dramatically from Strong Rationalizability: even an outcome that is

not compatible with the mere strong belief in rationality can be strongly-�-rationalizable.

Why is this the case? Are there relevant conditions under which belief restrictions do bring

to a restriction of the predicted outcomes?

In the other direction, Strong Rationalizability can be made, at least temporarily, more

permissive. At some step, some strategies may not be eliminated. If some strategy is

anyway eliminated until only strategies that cannot be eliminated remain, I will simply

talk of a di¤erent elimination order for Strong Rationalizability itself. Di¤erent elimination

orders have an algorthimic interest, as players, for instance, may be tempted to compute the

impact on the own choices of the elimination of an opponent�s strategy, before considering

which other strategies of the opponents can be eliminated at the same stage of reasoning.

However, di¤erent elimination orders do in general modify the output of the procedure.

Can this have an impact on the predicted outcomes?

The main goal of this paper is to shed light on these phenomena and answer the questions

above in all �nite dynamic games with observable actions.3 It is well known that, in

abstract terms, non-monotonicity with respect to belief restrictions and order dependence

are e¤ects of the non-monotonicity of strong belief. In both cases, a reduction/expansion of

the strategy sets at one step does not necessarily lead to their reduction/expansion at the

following step. Reasoning on the material implications of the non-monotonicity of strong

belief provides indeed satisfactory insight on order dependence. "Forgetting" to eliminate a

1 i.e. belief as long as compatible with the observed behavior.
2The epistemic justi�cation of Strong Rationalizability requires, at each step n, strong belief in all the

previous steps of the procedure. For the iterated elimination of strategies, strong belief in step n�1 su¢ ces.
3Games where every player always knows the current history of the game, i.e. - allowing for truly simul-

taneous moves - information sets are singletons. For instance, all repeated games with perfect monitoring
are games with observable actions.
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strategy may expand the set of reached history of a player and induce an opponent to re�ne

further her strategies at that history at the next step. In my view, the non-monotonicity

of strong belief does not provide as good intuition of the non-monotonicity with respect to

belief restrictions. By contrast, a better and more useful understanding of the matter could

be obtained by identifying conditions under which belief restrictions do restrict predictions.

Thus, the �rst result of the paper identi�es a su¢ cient condition under which Strong-

�-Rationalizability delivers a subset of strongly rationalizable outcomes. Such condition is

the absence of o¤-the-path belief restrictions with respect to the strongly-�-rationalizable

paths. Hence, predictions depart from Strong Rationalizability when the belief restrictions

end up having bite o¤-path. This provides the following intuition: when a player abandons a

history where belief restrictions have a bite, they stop being processed by the the opponents,

who will not increase the level of strategic sophistication of the player upon reaching that

history. This may induce a departure from the spirit of Strong Rationalizability, i.e. from

common strong belief in rationality. Put down in this way, the su¢ cient condition seems

to have little practical use, since Strong-�-Rationalizability has to be performed anyway,

thus revealing any possible non-monotonicity, in order to verify it. However, there are very

interesting restrictions that always verify the condition: the belief in a speci�c path of play.

Under such restrictions, Strong-�-Rationalizability delivers either an empty set, or a set of

paths that include the path itself, thus leaving no bite to belief restrictions o¤-path.

Selective Rationalizability ([7]), instead, introduces the restrictions after that Strong Ra-

tionalizability has been performed. In this way, the beliefs in rationality are given epistemic

priority with respect to the beliefs in the restrictions and the spirit of Strong Rationalizabil-

ity is preserved. Then, one could expect that for path restrictions, which preserve common

strong belief in rationality also under Strong-�-Rationalizability, the two procedures pre-

dict the same outcomes. I prove that this is actually the case: players do not have to bother

about the epistemic priority issue when they agree on a path of play.

As for order dependence, I �nd that it is actually innocuous in terms of predicted

outcomes. In light of the results of Chen and Micali [9], this comes as no surprise. Chen and

Micali characterize Strong Rationalizability with the iterated elimination of distinguishably

dominated strategies,4 and show that the latter is order independent in terms of predicted

outcomes. However, this does not imply order independence of Strong Rationalizability

itself. Here I prove the order independence of Strong Rationalizability is terms of predicted

outcomes, working directly with the iterated deletion of never sequential best replies, thus

with strong belief and without dominance characterizations.
4By showing the equivalence of the iterated elimination of distinguishable and conditionally dominated

strategies, where the latter was already proved by Shimoji and Watson [15] to be equivalent to Extensive
Form Rationalizability (Pearce [13]), which is in turn equivalent to Strong Rationalizability.
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A way to start eliminating iteratively never sequential best replies is actually Backward

Induction. First, one can iteratively eliminate only strategies that are not optimal against

any valid belief at pre-terminal histories of the game. Then, one can move to histories

of depth 2, and so on. Once Backward Induction is completed, the elimination procedure

can continue until all strategies are sequential best replies to valid beliefs, and the strongly

rationalizable outcomes are obtained. But then, Backward Induction yields a superset of

those outcomes. This result was already proved by Chen and Micali, but again via their

dominance characterization. Since in perfect information games without relevant ties the

backward induction outcome is unique, the outcome equivalence of backward and forward

induction in this class of games due to Battigalli [1] obtains.5

Technically, all the result of the paper rely on one key outcome inclusion result. First,

I de�ne a vast class of elimination procedures where, at the end of the procedure, each

surviving strategy is optimal under strong belief in all the steps of the procedure. Consider

the output of an elimination procedure and a set of beliefs that justify it. Fix another

elimination procedure. Suppose that, in both procedures, a strategy survives a step of

elimination if (but not necessarily only if) it is optimal against a belief that mimicks a

belief in the set along the paths induced by the �rst procedure and strongly believes in the

previous steps of the procedure. Then, the second elimination procedure delivers a superset

of the outcomes predicted by the �rst procedure.

Section 2 introduces the formal framework for the analysis. Section 3 de�nes elimination

procedures and provides the key lemma and the �nal results. Section 4 is dedicated to the

proof of the technical lemma.

2 Preliminaries

Primitives of the game.6 Let I be the �nite set of players. For any pro�le (Xi)i2I and
any ; 6= J � I, I write XJ := �j2JXj , X := XI , X�i := XInfig. Let (Ai)i2I be the �nite

sets of actions potentially available to each player. Let H � [t=1;:::;TA
t [ f;g be the set

of histories, where h0 := f;g 2 H is the root of the game and T is the �nite horizon. For

any h = (a1; :::; at) 2 H and l < t, it holds h0 = (a1; :::; al) 2 H, and I write h0 � h.7 Let
Z := fz 2 H : 8h 2 H; z 6� hg be the set of terminal histories (henceforth, outcomes or

5The corollary was also noticed by Chen and Micali, and the result was also proved algorithmically by
Heifetz and Perea [10] (whereas Battigalli relied on stability arguments a la Kohlberg and Mertens [11]).

6The main notation is almost entirely taken from Osborne and Rubinstein [12].
7H endowed with the precedence relation � is a tree with root h0.

4



paths)8, and H := HnZ the set of non-terminal histories (henceforth, just histories). For

each i 2 I, let Ai : H � Ai be the correspondence that assigns to each history h, always

observed by player i, the set of actions Ai(h) 6= ;9 available at h. Thus, H has the following

property: For every h 2 H, (h; a) 2 H if and only if a 2 A(h). Note that to simplify
notation every player is required to play an action at every history: when a player is not

truly active at a history, her set of feasible actions consists of just one "wait" action. For

each i 2 I, let ui : Z ! R be the payo¤ function. The list � =


I;H; (ui)i2I

�
is a �nite

game with complete information and observable actions.

Derived objects. A strategy of player i is a function si : h 2 H 7�! si(h) 2 Ai(h).
Let Si denote the set of all strategies of i. A strategy pro�le s 2 S naturally induces a
unique outcome z 2 Z. Let � : S ! Z be the function that associates each strategy pro�le

with the induced outcome. For any h 2 H, the set of strategies of i compatible with h is:

Si(h) := fsi 2 Si : 9z � h;9s�i 2 S�i; �(si; s�i) = zg :

For any (Sj)j2I � S, let Si(h) := Si(h)\Si. For any J � I, letH(SJ) :=
�
h 2 H : SJ(h) 6= ;

	
denote the set of histories compatible with SJ . For any h = (h0; a) 2 H, let p(h) denote the
immediate predecessor h0 of h.

Since the game has observable actions, each history h 2 H is the root of a subgame

�(h). In �(h), all the objects de�ned above will be denoted with h as superscript, except

for single histories and outcomes, which will be identi�ed with the corresponding history

or outcome of the whole game, and not rede�ned as shorter lists of action pro�les. For any

h 2 H, shi 2 Shi , and bh � h, shi jbh will denote the strategy sbhi 2 Sbhi such that sbhi (eh) = shi (eh)
for all eh � bh. For any Shi � Shi , Shi jbh will denote the set of all strategies sbhi 2 Sbhi such that
s
bh
i = s

h
i jbh for some shi 2 Shi .

Beliefs. In this dynamic framework, beliefs are modeled as Conditional Probability
Systems (Renyi, [14]; henceforth, CPS).

De�nition 1 A Conditional Probability System on (S�i; (S�i(h))h2H) is a mapping �(�j�) :
2S�i � fS�i(h)gh2H ! [0; 1] satisfying the following axioms:

CPS-1 for every C 2 (S�i(h))h2H , �(�jC) is a probability measure on S�i;

CPS-2 for every C 2 (S�i(h))h2H , �(CjC) = 1;

CPS-3 for every E 2 2S�i and C;D 2 (S�i(h))h2H , if E � D � C, then �(EjC)=�(EjD)�(DjC).
8"Path" will be used with emphasis on the moves, and "outcome" with emphasis on the end-point of the

game.
9When player i is not truly active at history h, Ai(h) consists of just one "wait" action.
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The set of all CPS�s on (S�i; (S�i(h))h2H) is denoted by �H(S�i).

For brevity, the conditioning events will be indicated with just the information set,

which represents all the information acquired by players through observation. For each set

J � In fig of opponents of player i, and for each set of strategy sub-pro�les SJ � SJ , I say
that a CPS �i 2 �H(S�i) strongly believes SJ if, for all h 2 H(SJ), �i(SJ�SIn(J[fig)jh) = 1.

Rationality. I consider players who reply rationally to their conjectures. By rationality
I mean that players, at every information set, choose an action that maximizes expected

utility given the conjecture about how deviators will play and the expectation to reply

rationally again in the continuation of the game. This is equivalent (see Battigalli [2]) to

playing a sequential best reply to the CPS.

De�nition 2 Fix �i 2 �H(S�i). A strategy si 2 Si is a sequential best reply to �i if for
every h 2 H(si),10 si is a continuation best reply to �i(�jh), i.e. for every esi 2 Si(h),X

s�i2S�i(h)
ui(�(si; s�i))�i(s�ijh) �

X
s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
I say that a strategy si is rational if it is a sequential best reply to some �i 2 �H(S�i).

The set of sequential best replies to �i is denoted by �(�i). For each h 2 H, the set of
continuation best replies to �i(�jh) is denoted by br(�i; h). The set of best replies to a

conjecture �i 2 �(S�i) in the normal form of the game is denoted by r(�i).

3 Main results

I provide a very general notion of elimination procedure for a subgame �(h), which en-

compasses all the procedure I am ultimately interested in, or that will be needed for the

proofs.

De�nition 3 Fix h 2 H. An elimination procedure in �(h) is a sequence ((Shi;q)i2I)1q=0
where, for every i 2 I,

EP1 Shi;0 = S
h
i ;

EP2 Shi;n�1 � Shi;n for all n 2 N;

EP3 for every shi 2 Shi;1 = \n2NShi;n, there exists �hi that strongly believes (Sh�i;q)1q=0 such
that shi 2 �(�hi ) � Shi;1.

10 It would be totally immaterial to require si to be optimal also at the histories precluded by itself.
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Lemma 1 For every elimination procedure ((Shi;q)i2I)
1
q=0 and every bh � h, ((Shi;q(bh)jbh)i2I)1q=0

is an elimination procedure.

Proof. EP1 and EP2 are obvious. To prove EP3, note the following. For every i 2 I and
s
bh
i 2 Shi;1(bh)jbh, there exists shi 2 Shi;1 such that shi jbh = sbhi . By EP3 for ((Shi;q)i2I)1q=0, there
exists �hi that strongly believes (S

h
�i;q)

1
q=0 such that s

h
i 2 �(�hi ) � Shi;1. Thus, the pushfor-

ward �bhi of (�hi (�jeh))eh2Hbh through the map sh�i 7�! sh�ijbh strongly believes (Sh�i;q(bh)jbh)1q=0.
Clearly sbhi 2 �(�bhi ). Finally, �x sbhi 2 �(�bhi ). De�ne shi as shi (eh) = shi (

eh) for all eh 6� bh and
shi jbh = sbhi for all eh � bh. Clearly shi 2 �(�hi ). Thus, sbhi 2 Shi;1(bh)jbh. �

Indeed, elimination procedures have been de�ned purposedly to encompass the impli-

cations in the subgames of traditional elimination procedures for the whole game. In a

subgame, substrategies can be eliminated "exogenously" and not because they are not

sequential best replies to any valid conjecture in the subgame. On the other hand, sub-

strategies can survive even if the opponents do not reach the subgame anymore. Note that

the elimination can stop for some steps and then resume: for this reason, EP2 allows a weak

inclusion at all steps

Now I specialize De�nition [14] for the procedures in the whole game I am ultimately

interested in.

De�nition 4 An elimination procedure ((Si;q)i2I)1q=0 is "unconstrained" when for every
n 2 N, i 2 I, and �i that strongly believes (S�i;q)n�1q=0 , �(�i) � Si;n.

De�nition 5 An elimination procedure ((Shi;q)i2I)
1
q=0 is "maximal" when for every n 2 N,

i 2 I, and si 2 Si;n, si 2 �(�i) for some �i that strongly believes (S�i;q)n�1q=0 .

De�nition 6 Strong Rationalizability (Battigalli and Siniscalchi, [5]) is the unique uncon-
strained and maximal elimination procedure. Let ((Sqi )i2I)

1
q=0 denote it, and let M be the

n 2 N such that Sn�1 6= Sn = Sn+1.

De�nition 7 For each i 2 I, �x �i � �H(Sh�i). Strong-�-Rationalizability (Battigalli

[3], Battigalli and Siniscalchi [6]) is the elimination procedure ((Sqi;�)i2I)
1
q=0 such that, for

every n 2 N, i 2 I, and si 2 Si, si 2 Si;n if and only if si 2 �(�i) for some �i 2 �i that
strongly believes (Sq�i;�)

n�1
q=0 .

De�nition 8 For each i 2 I, �x �i � �H(Sh�i). Selective Rationalizability (Catonini [7])
is the elimination procedure ((Sqi;R�)i2I)

1
q=0 such that (S

q
R�)

M
q=0 = (Sq)Mq=0 and for every
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n > M , i 2 I, and si 2 Si, si 2 Sni;R� if and only if si 2 �(�i) for some �i 2 �i that
strongly believes (Sq�i;R�)

n�1
q=0 .

11

The main technical result of the paper is the outcome inclusion between two elimination

procedures with the following feature. Take the �nal output of the �rst procedure and �x

beliefs that justify the surviving strategies. Consider all the beliefs that, along the paths

predicted by the �rst procedure, assign the same probability distribution over such paths

as one of the �xed beliefs. Suppose that, in both procedures, the sequential best replies

to these beliefs always survive. Then, the �nal output of the second procedure predicts all

such paths.

Lemma 2 Fix h 2 H, two elimination procedures ((Shi;q)i2I)1q=0, ((Shi;q)i2I)1q=0, and, for
every i 2 I, a map �hi : S

h
i;1 �! �H

h

i (Sh�i) such that �
h
i (s

h
i ) strongly believes (S

h
�i;q)

1
q=0

and shi 2 �(�
h
i (s

h
i )) � S

h
i;1 for all shi 2 S

h
i;1. Suppose that for every i 2 I, shi 2 S

h
i;1,

m 2 N, and �hi that strongly believes (Sh�i;q)m�1q=0 (resp., (S
h
�i;q)

m�1
q=0 ) with �

h
i (S�i(z)jeh) =

�
h
i (s

h
i )(S�i(z)jeh) for all eh 2 H(Sh1) and z 2 Zeh \ �(Sh1), �(�hi ) � Shi;m (resp., �(�hi ) �

S
h
i;m). Then �(S

h
1) � �(Sh1).

While Lemma 2 may seem rather intuitive, it is not immediate to prove it for the

following reason. O¤ the paths predicted by the �rst procedure (henceforth, just "paths"),

the two procedures can depart in terms of predicted sub-paths. This might create the

incentive for deviations from the paths along the second procedure. Yet, this does not

happen. Suppose that, at some step of the second procedure, for some belief over the

paths �hi (s
h
i ), no mimicking belief �

h
i as above was able anymore to discourage a deviation

from the paths. This means that there exists a unilateral deviation from the paths that

the deviator �nds pro�table for any belief over the continuation plans of the opponents

thereafter (Lemma 7). The opponents may be surprised by the deviation, hence they may

reach the post-deviation history for any post-deviation belief too (Lemma 5). Keep re�ning

separately the continuation plans after the deviation, as in an unconstrained elimination

procedure. The �nal output provides a set of subpaths that all justify the deviation. Thus,

all these subpaths survive under the �rst procedure, a contradiction. This is given by Lemma

2 in the subgame that follows the deviation, inverting the roles of the �rst procedure (taking

just its implications after the deviation) and the second procedure (taking just the surviving

continuation plans at the step of the deviation and re�ning them separately). The iterative

11Selective Rationalizability is de�ned in [7] under the more restrictive assumption of independent ra-
tionalization. That is, a valid �i is required to strongly believe (S

q
j;R�)

n�1
q=0 for all j 6= i, in place of just

(Sq�i;R�)
n�1
q=0 . However, this assumption is immaterial for the result on Selective Rationalizability of this

paper (Theorem 3).
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procedure continues until the deviation is followed by a subgame of depth 1. There, no

further deviation is available, so Lemma 2 holds trivially. Section 4 is dedicated to prove

Lemma 2. Now I focus on the implications of Lemma 2 for the elimination procedures of

interest.

Consider �rst-order belief restrictions (�i)i2I with the following characteristic: for each

player i and CPS �i, only the beliefs at the strongly-�-rationalizable histories about the

strongly-�-rationalizable paths matter to determine whether �i belongs to �i or not. Then,

Strong-�-Rationalizability sati�es the hypotheses of Lemma 2 as �rst elimination procedure,

whereas Strong Rationalizability, being an unconstrained procedure, satis�es the hypotheses

of Lemma 2 as second elimination procedure. The desired outcome inclusion result with

respect to belief restrictions that "do not end up o¤-path" obtains.

Theorem 1 Fix (�i)i2I � �i2I�H(S�i). Suppose that for each i 2 I and �i; �
0
i 2

�H(S�i), if �i 2 �i and �0i(S�i(z)jeh) = �0i(S�i(z)jeh) for all eh 2 H(S1� ) and z 2 �(S1� ),
then �0i 2 �i. Then, �(S1� ) � �(S1).

Proof. For each i 2 I and si 2 S1i;�, �x any �
h
i (s

h
i ) 2 �i that strongly believes

(Sq�i;�)
1
q=0 such that si 2 �(�i). By hypothesis of this theorem, the hypothesis of Lemma

2 obtains. For every m 2 N and �i that strongly believes (S
q
�i)

m�1
q=0 , �(�i) 2 Smi . Thus, by

Lemma 2, �(S1� ) � �(S1). �

As discussed in the Introduction, Theorem 1 provides insight on what can determine

the non monotonicity of predictions with respect to belief restrictions: the presence of

o¤-the-path belief restrictions. Yet, it is of little help in determining ex-ante which belief

restrictions preserve common strong belief in rationality and which do not. This is because

whether restrictions are o¤-path or not has to be assessed with respect of the �nal output

of Strong-�-Rationalizability itself.

Consider now �rst-order belief restrictions that correspond to the belief in a speci�c path

z 2 Z. That is, at the beginning of the game, players believe that the opponents will play
compatibly with the path. By CPS-3, this belief is maintained as long as no deviation from

the path occurs. Moreover, assume that if a player deviates from the path, the opponents

keep believing that the other players were not planning to deviate. This is coherent with

the notion of belief in the (path) agreement adopted in [7]. All this coincides with assuming

that every player i strongly believes in Sj(z) for all j 6= i. Preliminarly, I show that this is
equivalent to the belief in S�i(z) on path only.

Lemma 3 Fix z 2 Z. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1
for all h � z, and let ��i be the set of all �i�s that strongly believe Sj(z) for all j 6= i. Then,
S1� = S1�� and S

1
R� = S

1
R��.
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Proof. Fix n � 0 and suppose to have shown that for each m � n, Sm� = Sm�� (S
0
� =

S0�� .trivially holds). If S
n
� = ;, Sn+1� = Sn+1�� = ;. Else, for each i 2 I, there exists

�i 2 �i that strongly believes (S
q
�i;�)

n�1
q=0 such that �(�i) \ Si(z) 6= ;. Fix i 2 I and

si 2 SinSi(z). Let m := max
n
q � n : si 2 Sqi;�

o
. If m > 0, there exists �i 2 �i that

strongly believes (Sq�i;�)
m�1
q=0 such that si 2 �(�i). Fix ��i 2 �i that strongly believes

(Sq�i;�)
m�1
q=0 such that ��i (�jh) = �i(�jh) for all h � z and ��i (�jeh) = �i(�jeh) for all eh 2

H(Si(z))nH(S�i(z)) (it is compatible with CPS-3 because �i(S�i(eh)jh) = 0 for all h � z

and eh 2 H(Si(z))nH(S�i(z))). Then, there exists s�i 2 �(��i )(z) � Smi;� such that for alleh 2 H(si) \H(Si(z))nH(S�i(z)), s�i (eh) = si(eh). If m = 0, �x the unique s�i 2 Si(z) such
that for all eh 6� z, s�i (eh) = si(eh). For each h 2 H(Si(z)), let �h(si) := s�i . For each

h 62 H(Si(z)), let �h(si) := si. For all si 2 Si(z) and h 2 H, let �h(si) := si.
Fix now i 2 I and �i 2 �i that strongly believes (S

q
�i;�)

n
q=0. Note that for each si 2 Si

and h 2 H, if si 2 Si(h), �h(si) 2 Si(h), and if h 2 H(Si(z)), �h(si) 2 Si(z). Thus, I
can construct ��i 2 ��i that strongly believes (S

q
�i;�)

n
q=0 = (Sq�i;��)

n
q=0 as, for all h 2 H,

��i ((sj)j 6=ijh) = �i(((�
h)�1(sj))j 6=ijh). For each h � z, since �i(S�i(z)jh) = 1, ��i (�jh) =

�i(�jh), and for each h 6� z and ez � h, by construction, ��i (S�i(ez)jh) = �i(S�i(ez)jh). Hence,
�(�i) = �(�

�
i ). So, S

n+1
� � Sn+1�� . By �

�
i � �i and (S

q
�i;�)

n
q=0 = (S

q
�i;��)

n
q=0, S

n+1
�� � Sn+1� .

The proof can be repeated for Selective Rationalizability with n �M in place of n � 0,
where (SqR�)

M
q=0 = (S

0
R��)

M
q=0 holds by de�nition. �

If the belief restrictions on S�i(z) only along z end up o¤ the paths predicted at some

intermediate step of Strong-�-Rationalizability, the procedure yields an empty set at the

following step. Otherwise, Theorem 1 can be easily applied and monotonocity of strategic

reasoning with respect to path restrictions obtains.

Theorem 2 Fix z 2 Z. Let ��i be the set of all �i�s that strongly believe Sj(z) for all j 6= i.
Then �(S1��) � �(S1).

Proof. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1 for

all h � z. If S1� = ;, �(S1� ) � �(S1) is trivially true, so suppose S1� 6= ;. For each
i 2 I, and si 2 S1i;�, si 2 �(�i) for some �i 2 �i. For each �i 2 �i and �i with

�i(S�i(z)jh) = �i(S�i(z)jh) for all h � z, �i 2 �i. Thus, the hypotheses of Theorem

1 hold, and �(S1� ) � �(S1). Then, by Lemma 3, �(S1��) � �(S1). �

Also Selective Rationalizability eventually saves only strategies that are sequential best

replies to beliefs in the restricted sets. Therefore, for path restrictions, Lemma 2 holds with

Selective Rationalizability and Strong-�-Rationalizability regardless of the roles assigned

to the two procedures. Then, the outcome equivalence of the two procedures under path

restrictions obtains.

10



Theorem 3 Fix z 2 Z. Let ��i be the set of all �i�s that strongly believe Sj(z) for all j 6= i.
Then �(S1��) = �(S

1
R��).

Proof. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1 for all

h � z. First I show that �(S1� ) � �(S1R�). If S
1
� = ; it is trivially true, so suppose

S1� 6= ;. For each i 2 I, and si 2 S1i;�, si 2 �(�i) for some �i 2 �i. For each �i 2 �i and
�i with �i(S�i(z)jh) = �i(S�i(z)jh) for all h � z, �i 2 �i. Thus, the hypotheses of Lemma
2 hold. So, �(S1� ) � �(S1R�). The same proof can be repeated for �(S1� ) � �(S1R�). Hence
�(S1� ) = �(S

1
R�). Then, by Lemma 3, �(S

1
��) = �(S

1
R��). �

The last two theorems clearly hold with strong belief in S�i(z) instead of (Sj(z))j 6=i.

In absence of belief restrictions, that is with unconstrained elimination procedures, the

hypotheses of Theorem 2 clearly hold. An unconstrained elimination procedure is what I

refered to in the Introduction as an order of Strong Rationalizability. Thus, using Theorem

2 in both directions with the maximal unconstrained elimination procedure and any non

maximal one, the order independence of Strong Rationalizability in terms of predicted

outcomes obtains.

Theorem 4 For any unconstrained elimination procedure ((Si;q)i2I)1q=0, �(S1) = �(S
1).

Proof. Any two uncontrained elimination procedures, taken in both orders, obviously
satisfy the hypotheses of Lemma 2. �

Backward Induction is an elimination procedure of actions where an action of a player

at a history is eliminated when it is not optimal against any belief about the surviving

current and future actions of the opponents. An outcome equivalent elimination procedure

of strategies deletes all the strategies that reach the history and prescribe such action.

These strategies are clearly not optimal under strong belief in the surviving strategies of

the opponents. A strategy, instead, may be never sequential best reply as a whole, but still

survive Backward Induction because, at each history, it prescribes an action which is part

of some optimal continuation plan.

De�nition 9 Backward Induction is a sequence ((Sqi;B)i2I)
1
q=0 where, for every i 2 I,

BI1 S0i;B = Si;

BI2 for each n 2 N and si 2 Si, si 2 Sni;B if and only if si 2 S
n�1
i;B and for each h 2 H(si),

there exist �i that strongly believes S
n�1
�i;B and esi 2 Si(h) such that esi 2 br(�i; h) andesi(h) = si(h).12

12Note that for any h; h0 2 H with h 6� h0 6� h and Sni;B(h) \ Sni;B(h0) 6= ;, and for any si 2 Sni;B(h) and
s0i 2 Sni;B(h0), there exists s00i 2 Sni;B(h)\Sni;B(h0) such that s00i jh = si and s00i jh0 = s0i. Thus, all combinations
of backward induction moves survive and the use of strategies in only for coherence with the framework of
this paper.
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Backward induction can be seen as part of non-maximal, unconstrained elimination

procedure.

Lemma 4 Let N be the smallest n such that SnB = S
n+1
B . Let ((eSqi )i2I)Nq=0 := ((Sqi;B)i2I)Nq=0

and, for every n > N , i 2 I, and si 2 Si, let si 2 eSni if and only if there exists �i that
strongly believes (eSq�i)n�1q=0 such that si 2 �(�i). Thus, ((eSqi )i2I)1q=0 is an unconstrained
elimination procedure.

Proof. EP1 is satis�ed by BI1. EP3 is satis�ed by �niteness of the game. EP2 is

satis�ed for all n > N by construction. It remains to show that EP2 is satis�ed for n � N .
Fix i 2 I, �i that strongly believes (eSq�i)n�1q=0 , and si 2 �(�i). Then, for all h 2 H(si),
si 2 br(�i; h). Thus, by BI2, si 2 eSni . �

Being an un�nished, unconstrained elimination procedure, the backward induction pro-

cedure predicts a superset of the outcomes predicted by Strong Rationalizability.

Theorem 5 Every strongly rationalizable outcome is a backward induction outcome.

Proof. Immediate from Lemma 4 and Theorem 4. �

Since in perfect information games without relevant ties the backward induction outcome

is unique, the following obtains.

Corollary 6 (Battigalli, [1]) In every perfect information game without relevant ties,
Strong Rationalizability and Backward Induction yield the same unique outcome.

4 Proof of the main lemma.

Additional notation is needed. For any h 2 H, bh � h, (shj )j2I 2 Sh, (sbhj )j2I 2 S
bh,

�hi 2 �H
h
(Sh�i), e�bhi 2 �Hbh

(S
bh
�i), bZ � Zbh, and J � I, let:

� shJ =
bZ sbhJ if for each z 2 bZ and bh � eh � z, shJ(eh) = sbhJ(eh);

� �hi =
bZ e�bhi if for each z 2 bZ and bh � eh � z, �hi (Sh�i(z)jeh) = e�bhi (Sbh�i(z)jeh);

� shJ =
bh sbhJ and �hi =bh e�bhi if, respectively, shJ =Zbh sbhJ and �hi =Zbh e�bhi .

Moreover, for any S
h
= �i2IS

h
i � Sh, de�ne the set of histories that follow a unilateral

deviation by player i from the paths induced by S
h
as:

12



� Di(S
h
) := feh 2 HnH(Sh) : p(eh) 2 H(Sh) ^ eh 2 H(Sh�i)g.13

The next two lemmata claim the survival of strategies, or conjectures over such strate-

gies, which combine substrategies that have survived by assumption. The reason why such

lemmata are needed is merely the following. Fix bshi ; shi 2 Shi;n and bh; h 2 H(bshi ) \ H(shi )
such that h 6� bh 6� h: there needs not exist shi 2 Shi;n(bh) \ Shi;n(h) such that shi jbh = shi jbh
and shi jh = bshi jh. The intuitive reason is the following: player i may allow bh and h either
because she is con�dent that bh will be reached and she has certain expectations after bh,
or because she is con�dent that h will be reached and she has certain expectations after

h. If bshi is best reply to the �rst conjecture and shi is best reply to the second conjecture,bshi jh and shi jbh may be "emergency plans" for an unpredicted contingency, after which the
expectations would not have justi�ed the choice to allow h and bh in the �rst place.

Consider a player who may be surprised by history bh, in the sense that she may play a
strategy that allows bh while believing that the deviators do not until bh is actually reached.
This player can keep the same beliefs and the same strategy out of �(bh), whatever she
believes the deviators would do and hence however she may play after bh.
Lemma 5 Fix an elimination procedure ((Shi;q)i2I)q�0, i 2 I, n 2 N, bh 2 Hh, and �hi t.s.b.

(Sh�i;q)
n�1
q=0 such that �

h
i (S

h
�i(
bh)jp(bh)) = 0. Fix shi 2 �(�hi )\Shi (bh), �bhi t.s.b. (Sh�i;q(bh)jbh)n�1q=0

and sbhi 2 �(�bhi ).
Consider the unique eshi =bh sbhi such that for every eh 62 Hbh, eshi (eh) = shi (eh).
There exists e�hi =bh �bhi t.s.b. (Sh�i;q)n�1q=0 such that for every eh 62 Hbh, e�hi (�jeh) = �hi (�jeh),

and eshi 2 �(e�hi ) (so, �(�hi )(bh) 6= ; implies �(e�hi )(bh) 6= ;).
Proof.
Fix a map & : Sbh�i ! Sh�i such that for each s

bh
�i 2 S

bh
�i, &(s

bh
�i) =

bh sbh�i and &(sbh�i) 2
Sh�i;m(

bh) for all m � 0 with sbh�i 2 Sh�i;m(bh)jbh. Since & is injective, I can construct an array
of probability measures e�hi = (e�hi (�jeh))eh2Hh on Sh�i as e�hi (�jeh) = �hi (�jeh) for all eh 62 Hbh
and e�hi (&(sbh�i)jeh) = �

bh
i (s

bh
�ijeh) for all eh 2 Hbh and sbh�i 2 Sbh�i. Thus, e�hi satis�es CPS-1.

It is immediate to verify that e�hi =bh �bhi , satis�es CPS-2, and strongly believes (Sh�i;q)n�1q=0 .

Finally, since e�hi (S�i(bh)jp(bh)) = 0, e�hi satis�es CPS-3.
Fix eh 2 H(eshi )nHbh = H(shi )nH

bh. If eh � bh, by �hi (Sh�i(bh)jp(bh)) = 0 and CPS-3,

�hi (S
h
�i(
bh)jeh) = 0, and for every sh�i 62 Sh�i(bh), �(shi ; sh�i) = �(eshi ; sh�i). If eh 6� bh, for every

sh�i 2 Sh�i(
eh), bh 62 H(shi ; s

h
�i), so �(s

h
i ; s

h
�i) = �(eshi ; sh�i). Hence shi 2 br(�hi ;eh) implieseshi 2 br(�hi ;eh) = br(e�hi ;eh). Fix eh 2 H(eshi )\Hbh = H(sbhi ). For every sbh�i 2 Sbh�i, e�hi (&(sbh�i)jeh) =

13Set of histories that follow a unilateral deviation by player i from the histories induced by S
h
.
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�
bh
i (s

bh
�ijeh). For every bshi 2 Shi (bh), �(bshi jbh; sbh�i) = �(bshi ; &(sbh�i)). So, eshi jbh = s

bh
i 2 br(�bhi ;eh)

implies eshi 2 br(e�hi ;eh). �
Lemma 6 exploits Lemma 5 from the perspective of a deviator. If the opponents may be

surprised by di¤erent deviations from the same predicted behavior, the deviator can expect

any combination of reactions. The lemma is less general to target the particular setting in

which it will be used.

Lemma 6 Fix an elimination procedure ((eShi;q)i2I)q�0, subsets of strategies (Shi )i2I , m 2 N
and l 2 I. Let ZS := �(S

h
). For every i 2 I, suppose that there exists a map �hi : S

h
i !

�H
h
(Sh�i) such that for every s

h
i 2 S

h
i , �

h
i (s

h
i ) strongly believes S

h
�i, and:

A1 there exist maps �hi : S
h
i ! �H

h
(Sh�i) and s

h
i : S

h
i ! Shi such that for every s

h
i 2 S

h
i ,

�hi (s
h
i ) =

ZS �
h
i (s

h
i ) strongly believes (eSh�i;q)m�1q=0 and �(�hi (s

h
i )) 3 shi (shi ) =Z

S
shi ;

A2 for every shi 2 S
h
i and �

h
i =

ZS �
h
i (s

h
i ) t.s.b. (eSh�i;q)m�1q=0 , �(�

h
i ) � eShi;m.

Fix l 2 I and shl 2 S
h
l . Let D

S := Dl(S
h
). For every bh 2 DS, �x e�bhl t.s.b. (eSh�l;q(bh)jbh)mq=0.

There exists e�hl =ZS �hl (shl ) t.s.b. (eSh�l;q)mq=0 such that e�hl =bh e�bhl for all bh 2 DS.
Proof.
I show that for every i 6= l, shi 2 S

h
i , and & : bh 2 DS 7! s

bh
i 2 eShi;m(bh)jbh, there existseshi 2 eShi;m such that eshi =ZS shi (shi ) and eshi =bh &(bh) for all bh 2 DS . The map & is well de�ned

because by A1 and A2, HS � H(eSh�l;m), thus DS � H(eSh�l;m) as well. Using all such eshi �s,
it is easy to construct the desired e�hl .

By A1, there exists �hi (s
h
i ) =

ZS �
h
i (s

h
i ) that strongly believes (eSh�i;q)m�1q=0 such that

shi (s
h
i ) 2 �(�hi (shi )). Fix bh 2 DS \ H(shi ). Since �hi (shi ) =ZS �hi (shi ) and �hi (shi ) strongly

believes S
h
�i, �

h
i (s

h
i )(S

h
�i(
bh)jp(bh)) = 0. Since &(bh) 2 eShi;m(bh)jbh, there exists �bhi t.s.b.

(eSh�i;q(bh)jbh)m�1q=0 such that &(bh) 2 �(�bhi ). Thus, by Lemma 5, there exist e�hi =bh �bhi t.s.b.
(Sh�i;q)

m�1
q=0 such that e�hi (�jeh) = �hi (s

h
i )(�jeh) for all eh 62 H

bh, and eshi 2 �(e�hi ) such thateshi =bh &(bh) and eshi (eh) = shi (s
h
i )(
eh).for all eh 62 Hbh. Iterating for each bh 2 DS , I obtaine�hi =ZS �hi (shi ) such that e�hi =bh �bhi for all bh 2 DS , and eshi 2 �(e�hi ) such that eshi =ZS shi andeshi =bh &(bh).for all bh 2 DS . By A2, eshi 2 eShi;m. �

Fix a set of strategy pro�les S
h
delivered by an elimination procedure. Suppose that

until step n, each player i is willing to play strategies that mimic those in S
h
i along the

paths induced by S
h
while expecting the deviators to do the same. At step n+ 1, instead,

some player l stops playing any strategy of hers that mimics a strategy bshl in Shl . Since
at n the deviators may be surprised by any deviation, player l might expect them to play

14



any combination of substrategies that survive n steps after the potential deviations. Hence,

there must exist one particular deviation that player l prefers to mimicking bshl whatever she
may conjecture thereafter.

Lemma 7 Fix two elimination procedures ((Shi;q)i2I)q�0 and ((S
h
i;q)i2I)q�0. For every i 2 I

call S
h
i := S

h
i;1 and let �hi : S

h
i ! �H

h
(Sh�i) be a map such that for every s

h
i 2 S

h
i , �

h
i (s

h
i )

strongly believes (S
h
�i;q)

1
q=0 and s

h
i 2 �(�

h
i (s

h
i )). Let Z

S := �(S
h
). Fix n 2 N, l 2 I, andbshl 2 Shl such that:14

A3 for every i 2 I and m � n, (Shq )q�0 satis�es A1;

A4 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A5 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A6 for every shl =
ZS bshl and �hl =ZS �hl (bshl ) t.s.b. (Sh�l;q)nq=0, shl 62 �(�hl ).

Let DS := Dl(S
h
). For every bh 2 DS and m 2 N, call Mbh

m (resp. M
bh
m) the set of

�
bh
l t.s.b. (S

h
�l;q(

bh)jbh)mq=0 (resp. (Sh�l;q(bh)jbh)mq=0) such that �bhl (S�i(z)jbh) = b�bhl (S�i(z)jbh) for
some b�bhl t.s.b. (Sh�l;q(bh)jbh)nq=0 and all z 2 �(br(b�bhl ;bh)�Suppb�bhl (�jbh)).15 There exists bh 2 DS
such that:

1. for every m � n and �bhl 2Mbh
m, there exists �

h
l =

ZS �
h
l (bshl ) t.s.b. (Sh�l;q)mq=0 such that

�hl =
bh �bhl and �(�hl )(bh) 6= ;;

2. for every p 2 N and e�bhl 2 Mbh
p , there exists e�hl =ZS �hl (bshl ) t.s.b. (Sh�l;q)pq=0 such thate�hl =bh e�bhl and �(e�hl )(bh) 6= ;.16

Proof.
Suppose by contraposition that there is a partition (D;D) of DS such that for everybh 2 D there exist m(bh) � n and �bhl 2 Mbh

m(bh) that violate 1, and for every bh 2 D there

exist m(bh) 2 N and �bhl 2 Mbh
m(bh) that violate 2. For each bh 2 DS , �x corresponding b�bhl .

Let �hl := �
h
l (bshl ). By Lemma 6 there exists e�hl =ZS �hl t.s.b. (Sh�l;q)nq=0 such that for everybh 2 DS , e�hl =bh b�bhl . I want to show that there exists shl 2 �(e�hl ) such that shl =ZS bshl ,

violating A6.

14A3, A4 and A5 need not hold for i = l to recall Lemma 6 and prove this Lemma. However, l has been
included to reuse A3, A4 and A5 in the �nal proof of the theorems.
15Note: b�bhl refers to the second procedure even when �bhl refers to the �rst.
16Since bh 62 HS , the statement must hold vacously for some p 2 N (i.e. M

bh
p = ;).
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Fix bh 2 D. Substitute b�bhl with �bhl in the construction of e�hl and obtain a new �hl =bh �bhl
t.s.b. (Sh�l;q)

m(bh)
q=0 with �

h
l (S�l(z)jeh) = e�hl (S�l(z)jeh) for all eh 62 Hbh and z 62 Zbh. By de�nition

ofMbh
m, player l expects a non higher payo¤ against b�bhl than against �bhl . Thus, �(�hl )(bh) 6= ;

implies �(e�hl )(bh) 6= ;. So, H(�(e�hl )) \D = ;.
Write D = fh1; :::; hkg where m(h1) � ::: � m(hk). Note that (Shq )q�0 satis�es A1 with

�hi (�) = �
h
i (�) and the identity function for shi (�). Then, by Lemma 6,17 for each j = 1; :::; k,

there exists �hl;j =
Zhn[jt=1Zh

t

�
h
l t.s.b. (S

h
�l;q)

m(hj)
q=0 such that �hl;j =

ht �h
t

l for all 1 � t � j.
Let �hl;0 := �

h
l . Fix j = 1; :::; k and suppose to have shown that �(�hl;j�1) = �(�

h
l ). Then

obviously �(�hl;j�1) \ Shl (hj) = ;. By the contrapositive hypothesis, �(�hl;j) \ Shl (hj) = ;.
For all eh 62 Hhj and z 62 Zhj , �hl;j(S�l(z)jeh) = �hl;j�1(S�l(z)jeh). Then, �(�hl;j) = �(�hl;j�1).
Inductively, �(�hl;k) = �(�

h
l ) 3 bshl .

Fix eh 2 H(bshl )\HS \H(�(e�hl )). By e�hl =ZS �hl =ZS �hl;k, e�hl (S�l(z)jeh) = �hl;k(S�l(z)jeh)
for all z 2 Zeh \ ZS . Then, since �hl strongly believes Sh�l, bshl , as well as any other eshl 2 Shl
with H(eshl ) \DS = ;, induces the same outcome distribution against e�hl (�jeh) and �hl;k(�jeh).
Moreover, H(�(e�hl )) \D = ;. Finally, for all bh 2 D, by de�nition of Mbh

m, player l expects

a non higher payo¤ against b�bhl than against �bhl . Then, bshl 2 br(�hl;k;eh) implies bshl 2 br(e�hl ;eh).
Proceeding from the root of the game, this implies H(bshl ) \HS � H(�(e�hl )) \HS . Thus,

there exists shl 2 �(e�hl ) such that shl (eh) = bshl (eh) for all eh 2 H(bshl ) \HS . �

Proof of Lemma 2.

Recall that the depth of a game is the length of the longest terminal history of the

game. The lemma trivially holds for games of depth 1, i.e. simultaneous moves games.

Thus, suppose that the lemma holds for games of depth 1; :::; k� 1. I show that the lemma
holds for games of depth k. Let S

h
1 6= ;, otherwise the inclusion is trivially veri�ed.

I prove by induction that �(S
h
1) � �(Sh1). Note �rst that A4 and A5 hold by hypothesis

of the lemma.

Induction Hypothesis (n): (Shq )
1
q=0 satis�es A3 at n (so by A4 �(S

h
n) � �(S

h
1)).

Basis step (1): for every i 2 I, the I.H. holds with �hi (�) = �
h
i (�).

Inductive step (n+1).
Suppose by contradiction that the Inductive Hypothesis does not hold at n + 1. Then

A6 holds for some l 2 I and bshl 2 Shl;1. Lemma 7 yields bh 2 Dl(Sh1). De�ne ((Sbhi;q)i2I)q�0
as follows: for every i 2 I and m � n, S

bh
i;m = S

h
i;m(

bh)jbh; for every m > n, sbhi 2 Sbhi;m if and

only if there exists �bhi t.s.b. (Sbh�i;q)m�1q=0 such that sbhi 2 �(�bhi ).
17Using the identity function for shi (�) in the proof of the lemma and without iterating at histories bh 2

DSn
�
h1; :::; hj

	
, the constructed �hl;j clearly has the desired features.
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For every i 6= l, since bh 2 Dl(S
h
1), ; 6= S

h
i;1(bh). So, �x bshi 2 S

h
i;1(bh). For every

m � n, the Induction Hypothesis provides shi (bshi ) 2 Shi;m(bh) 6= ; and �hi (bshi ) =�(Sh1) �hi (bshi )
t.s.b. (Sh�i;q)

m�1
q=0 such that �hi (bshi )(Sh�i(bh)jp(bh)) = 0. Hence, by Lemma 5, for every �bhi

t.s.b. (S
bh
�i;q)

m�1
q=0 , there exists �

h
i =

bh �bhi t.s.b. (Sh�i;q)m�1q=0 such that �hi =
�(S

h
1) �

h
i (bshi ) and

�(�hi )(
bh) 6= ;. By A4 �(�hi ) � Shi;m. So �(�bhi ) � Sbhi;m.

Fix �bhl t.s.b. (S
bh
�l;q)

n
q=0: trivially �

bh
l 2 M

bh
n . Hence by Lemma 7.(1) there existse�hl =�(S

h
1) �

h
l (bshl ) t.s.b. (Sh�l;n)

n
q=0 such that e�hl =

bh �
bh
l and �(e�hl )(bh) 6= ;. By A4,

�(e�hl ) � Shl;n. So �(�bhl ) � Sbhl;n 6= ;.
Hence, for every i 2 I and �bhi t.s.b. (Sbh�i;q)nq=0, �(�bhi ) � Sbhi;n 6= ;. So, Sbhi;n � Sbhi;n+1 and

((S
bh
i;q)i2I)q�0 is an elimination procedure with S

bh
1 6= ;.

For every m � n, b�bhl t.s.b. (Sbh�l;q)1q=0, and �bhl =�(Sbh1) b�bhl t.s.b. (Sbh�l;q)m�1q=0 , �
bh
l 2M

bh
m;
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thus by Lemma 7.(1) there exists e�hl =�(Sh1) �hl (bshl ) t.s.b. (Sh�l;q)m�1q=0 such that e�hl =bh �bhl
and �(e�hl )(bh) 6= ;. By A4, �(e�hl ) � Shl;m. So �(�bhl ) � Sbhl;m.

Then, for every m 2 N, i 2 I, b�bhi t.s.b. (Sbh�i;q)1q=0 and �bhi =�(Sbh1) b�bhi t.s.b. (Sbh�i;q)m�1q=0 ,

�(�
bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es the hypothesis of Lemma 2.

De�ne now ((Sbhi;q)i2I)q�0 as ((Shi;q(bh)jbh)i2I)q�0. By Lemma 1 it is an elimination pro-
cedure.

For every i 6= l, m 2 N, and �bhi t.s.b. (Sbh�i;q)m�1q=0 , by Lemma 5 there exists e�hi =bh �bhi
t.s.b. (S

h
�i;q)

m�1
q=0 such that for every eh 62 Hbh, e�hi (�jeh) = �hi (bshi )(�jeh) and �(e�hi )(bh) 6= ;. By

A5, �(e�hi ) � Shi;m.
For every m 2 N, b�bhl t.s.b. (Sbh�l;q)1q=0, and �bhl =�(Sbh1) b�bhl t.s.b. (Sbh�l;q)m�1q=0 , �

bh
l 2M

bh
m;
19

thus by Lemma 7.(2) there exists e�hl =�(Sh1) �hl (bshl ) t.s.b. (Sh�l;q)m�1q=0 such that e�hl =bh �bhl
and �(e�hl )(bh) 6= ;. By A5 �(e�hl ) � Shl;m.

Then, for every m 2 N, i 2 I, b�bhi t.s.b. (Sbh�i;q)1q=0 and �bhi =�(Sbh1) b�bhi t.s.b. (Sbh�i;q)m�1q=0 ,

�(�
bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es the hypothesis of Lemma 2

Since �(bh) has strictly lower depth than �(h), Lemma 2 holds. Hence, �(Sbh1) � �(Sbh1) 6=
;. But this contradicts bh 2 Dl(Sh1). �
18Note that b�bhl strongly believes (Sbh�l;q)nq=0 = (Sh�l;q(bh)jbh)nq=0, and that �(b�bhl )�Sbh�l;1 � S

bh
1, so �

bh
l =

�(S
bh
1)

b�bhl veri�es the de�nition of Mbh
m in the statement of Lemma 7.

19See the previous footnote with M
bh
m in place of M

bh
m.
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