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1 Introduction

When the players of a dynamic game can communicate before the game starts, they

are likely to exploit this opportunity to reach a possibly incomplete agreement1 about

how to play. In most cases, the context allows them to reach only a non-binding

agreement, which cannot be enforced by a court of law. The only way a non-binding

agreement can a¤ect the behavior of players is through the beliefs it is able to induce

in their minds. This paper sheds light on which agreements players can believe in and,

among them, which agreements players will comply with. Moreover, in an implemen-

tation perspective, the paper investigates which outcomes of the game can be secured

by some agreement. The paper will not deal with the pre-play bargaining phase. Yet,

the evaluation of their credibility has a clear feedback on which agreements are likely

to be reached.

I take the view that players will believe in the agreement only if this is compatible

with beliefs in rationality2 and their interaction with the beliefs in the agreement of

all orders. Ann will believe in the agreement only if Bob may comply with it in case he

is rational, he believes in the agreement, he believes that Ann is rational and believes

in the agreement (which may add non-agreed upon restrictions on what Bob expects

Ann to do), and so on. Moreover, I take the view that deviations, or more generally

past actions, are not interpreted as mistakes but as intentional choices. Suppose that

for Bob, in case he is rational and believes in the agreement, some move makes sense

only if he plans to play a certain action thereafter. Ann, upon observing such move,

will believe that Bob will play that action (and Bob may use the move to signal

this). This instance of forward induction reasoning is based not just on the belief in

Bob�s rationality, but also on its interaction with the belief that Bob believes in the

agreement. Example 3 in Section 2 is a case in point. Consider now a move that

Bob, if he is rational and believes in the agreement, cannot �nd pro�table whatever

he plays thereafter. Example 1 in Section 2 illustrates a situation of this kind. Then

Ann cannot keep believing that Bob is rational and, at the same time, that he believes

in the agreement. Which belief will she maintain? Given the cheap talk nature of the

agreement, I take the view that Ann will keep believing that Bob is rational (if this

1The representation of agreements in this paper can be given also di¤erent interpretations. For
instance, the agreement can represent public announcements (from a subset of players).

2The notion of rationality employed in this paper imposes expected utility maximization, but it
does not impose by itself any restriction on beliefs. See Section 3 for details.
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is per se compatible with Bob�s behavior). However, in Section 5 I argue that the

main insights of the paper go through under the opposite assumption. In addition,

if compatible with Bob�s rationality, Ann may maintain the belief that Bob believed

that she would have not violated the agreement before him. In Section 6 I show that

the main insights of the paper go through under this additional assumption.

For notational simplicity, the focus is restricted to the class of �nite games with

complete information, observable actions,3 and no chance moves. However, the

methodology can be applied to all dynamic games with perfect recall and countably

many information sets,4 hence possibly in�nite horizon. Which agreements will be be-

lieved and complied with? Which outcomes of the game can be achieved through some

agreement? To answer these questions, the concepts of credibility, self-enforceability

(of agreements) and implementability (of outcomes) are introduced. An agreement

is credible if believing in it is compatible with the strategic reasoning hypotheses.

A credible agreement is self-enforcing if it induces only paths of play which are al-

lowed by the agreement itself. An outcome is implementable if it is the only outcome

induced by some self-enforcing agreement.

In two-players games, an outcome is implementable if and only if it is induced

by a "strict"5 Nash equilibrium in extensive-form rationalizable strategies (Pearce

[26]; Battigalli and Siniscalchi [9]). Thus, standard elimination procedure and �xed

point condition provide to the analyst (or to a mediator) the set of outcomes that can

be achieved through pre-play coordination (and for each outcome, an agreement that

implements it). Subgame perfection is not a necessary condition for implementability.

This result may be surprising for two reasons. First, it is obtained under all the

possible orders of belief in rationality, also after deviations from the agreed upon

path. Second, the literature has always assigned to subgame perfection a dominating

role. At the end of Section 6 I will elaborate further on why I �nd this emphasis

misplaced.6

3Games where every player always knows the current history of the game, i.e. - allowing for truly
simultaneous moves - information sets are singletons. For instance, all repeated games with perfect
monitoring are games with observable actions.

4This limitation allows to use Conditional Probability Systems (see Section 3), which require a
countable set of conditioning events.

5 i.e. without best replies to the equilibrium conjecture which would induce a di¤erent outcome:
see Section 3.1 for a formal de�nition.

6The relationship between subgame perfection and strategic reasoning in absence of agreements
has already been extensively studied for perfect information games (i.e. without simultaneous moves)
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In games with more than two players, not all strict Nash equilibria in extensive-

form rationalizable strategies induce an implementable outcome: the threats of two

players towards a third player may be mutually incompatible. Thus, conditions on

the o¤-the-path subgames are required. To accomplish this task, I de�ne a new, set-

valued solution concept in reduced strategies: Self-Enforcing Set (SES). SES�s can

be seen as the counterpart of subgame perfect equilibrium (henceforth, SPE), where

the plans of deviators are not exogenously given, but are determined by forward

induction. To implement a SES outcome, players can agree on the SES itself. Thus,

they do not need to promise (and co-players trust) what they would do after an own

violation of the agreement. That SES�s are set-valued re�ects the incompleteness

of the agreement, which may be crucial for the implementation of an outcome: see

Example 2 in Section 2.

Sometimes, the implementation of an outcome is possible only if players declare

in advance what they would do after a deviation from the path. To fully characterize

implementable outcomes, SES�s are enriched through the notion of tight agreement.

Tight agreements only require to verify one-step conditions instead of many steps of

reasoning. Moreover, they implement exactly the outcomes they allow. In this sense,

tight agreements are truthful. Hence, the characterization of implementable outcomes

with tight agreements provides a revelation principle for agreements design: players

need not be vague about the outcome they want to achieve.

In many contexts, there are limitations to which agreements players can actually

reach. On the one hand, players may be unable (or unwilling) to coordinate on a

precise outcome.7 On the other hand, in some contexts it may be natural to agree

simply on an outcome to reach, without discussing what to do in case of a deviation.

The methodology developed in the paper allows to evaluate agreements with any kind

of incompleteness.

with no relevant ties. Reny [27] shows that backward and forward induction strategies do not
coincide. Nonetheless, Battigalli [4] proves that backward and forward induction yield the same
unique outcome. This result is proved also by Heifetz and Perea [19] and by Chen and Micali [13].
The latter show that in all games with perfect recall, forward induction re�nes backward induction
without equilibrium reasoning in terms of outcomes. In a previous work I �nd an overlapping
between forward induction and SPE outcomes in games with observable actions.

7For instance, Harrington [18] documents instances of "mutual partial understanding" among
�rms which leaves the exact path of price increase undetermined to escape antitrust sanctions. Such
mutual understanding can be modeled as an incomplete agreement, whose consequences can be
studied with the methodology developed in this paper.
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This work is greatly indebted to the literature on rationalizability in dynamic

games. In this literature, restrictions to �rst-order beliefs are usually accounted for

through Strong-�-Rationalizability (Battigalli, [6]; Battigalli and Siniscalchi, [10]).

Strong-�-Rationalizability is based on the hypothesis that players do not maintain

the belief in the rationality of the co-players when they display behavior which cannot

be optimal under their �rst-order belief restrictions. Battigalli and Prestipino [8] show

that Strong-�-Rationalizability actually captures transparency of the �rst-order belief

restrictions, i.e. the assumption that all orders of belief in the restrictions always hold

in the game. Battigalli and Friedenberg [7] interpret the restrictions as the context

in which the game takes place; for instance, a well-established convention.

To characterize the di¤erent hypotheses of this paper, another rationalizability

procedure with �rst-order belief restrictions, Selective Rationalizability, is constructed

and characterized epistemically in [12]. Selective rationalizability captures common

strong belief in rationality (Battigalli and Siniscalchi [9]), i.e. the assumption that

any order of belief in rationality holds as long as not contradicted by the observed

behavior. Thus, it combines unconstrained (i.e. based only on beliefs in rationality)

and constrained (i.e. based also on �rst-order belief restrictions) strategic reasoning.

In Section 5, I show how the assumptions and the notions adopted in this paper

explain the di¤erences in the results with respect to this literature.

Kohlberg and Mertens [20] were the �rst to introduce forward induction consider-

ations into equilibrium reasoning, through the set-valued notion of strategically stable

equilibria. Govindan and Wilson [16] re�ne sequential equilibrium with a notion of

forward induction. However, these two prominent works and the related literature

share the two same shortcomings. First, they never question subgame perfection as a

must-have for a "strategically stable" solution. Second, the strategic reasoning that

leads to play such equilibria is unclear or limited.8 The rationalizability approach

adopted in this paper, which is backed by epistemic foundations, allows to eliminate

both shortcomings. First, there is no constraint about how precisely and on which

kind of equilibrium behavior players agree. Second, there is transparency about which

particular agreements, beliefs, and epistemic assumptions induce di¤erent lines of

reasoning, with a clear demarcation between unconstrained and constrained forward

induction reasoning (missing in this literature).

8A similar critique to strategic stability has been put forward also by Van Damme [30].
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In this sense, this work can also be interpreted as the axiomatic realization of a

program akin to Kohlberg and Mertens�(see [20], p. 1020).9 Full-�edged forward in-

duction reasoning is captured and clari�ed. Agreements provide clear motivation and

intuitive implementation, whereas strategic stability requires to retrieve hard-to-guess

mixed strategies for the veri�cation of the most intuitive outcomes. Implementable

outcomes are proved and not assumed to be strict Nash, but not necessarily subgame

perfect. In Section 6, I take a class of strategically unstable equilibria and show pre-

cisely which kind of forward induction reasoning is able to rulethem out. It turns out

that the idea behind subgame perfection is at deep contradiction precisely with this

kind of forward induction reasoning.

To introduce intuitively these ideas, Section 2 discusses three simple examples.

Section 3 presents the theoretical framework and the analytic tools for the formal

treatment of Section 4. Sections 5 and 6 discuss the relationship with the literature

on rationalizability and on equilibrium in dynamic games, and the robustness of the

analysis to di¤erent kinds of forward induction reasoning. Section 7 illustrates an

applied example. The Appendix collects the proofs of theorems and propositions, the

formalization of Example 3 and of the applied example, and two additional examples

recalled in the paper. The proof of remarks is left to the reader.

2 Examples

Example 1 Consider the following game.

AnB W E AnB L R

N 3; 3 �� �! U 1; 1 2; 2

S 0; 0 2; 2 D 0; 6 3; 5

The subgame has only one equilibrium, where all actions are played with probability

1=2. Hence, the unique SPE of the game induces outcome (S;E), which is Pareto

dominated by (N;W ). Suppose, Ann and Bob agree to play (N;W ) and that Ann

9Kohlberg and Mertens [20] write: "We agree that an ideal way to discuss which equilibria are
stable, and to delineate this common feeling, would be to proceed axiomatically. However, we do not
yet feel ready for such an approach; we think the discussion in this section will abundantly illustrate
the di¢ culties involved." Nowadays, the achievements of epistemic game theory allow to overcome
many of these di¢ culties.
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should play U in case of deviation of Bob. Is the agreement credible? If Bob is

rational, he may deviate only if he does not believe in N , or does not believe in U ,

or both. Then, after the deviation, Ann cannot believe at the same time that Bob

is rational and believes in the agreement. If she drops the belief that Bob believes

in the agreement and maintains the belief that Bob is rational, she can believe that

Bob does not believe in U and that he will play L. Thus, she can react with U .

Anticipating this, Bob can expect N and U , and refrain from deviating. Further

steps of reasoning do not modify the conclusion: the agreement is credible and, once

believed, players will comply with it.

Note that U is played with positive probability also in the SPE. Example 4 (in the

Appendix) displays instead a credible threat which di¤ers from the unique equilibrium

action of the subgame.

Example 2. In this 3-players game, in the subgame, Cleo chooses the matrix,
Ann the row, and Bob the column.

Ann �!
# O I

4; 4; 4

M1 L C R M2 L C R

U 8; 5; 0 9; 0; 0 1; 4; 1 U 8; 5; 0 9; 5; 0 1; 4; 0

D 9; 5; 0 8; 5; 0 0; 4; 0 D 9; 0; 0 8; 5; 0 0; 4; 1

In any equilibrium of the subgame, R cannot be played with probability higher than

1=2, otherwise Ann would choose U and then Bob would switch to L. Hence, O is

not a SPE outcome. Suppose that Bob and Cleo want to induce Ann to choose O. If

they try to coordinate on a joint threat, they fail: if Bob knows the matrix, he prefers

L or C to R. So, suppose that Bob threatens Ann with R and Cleo remains silent. If

Ann plays I and is rational, she does not believe in R. Thus, she may play U or D,

and Cleo may react with M1 or M2. Then, it is credible that Bob will react with R.

Example 3. Consider now the twofold repetition of the following game.

AnB Work FreeRide

W 2; 2 1; 3

FR 3; 1 0; 0

Ann and Bob agree that only Ann will work in the �rst period and, if this happens,

only Bob will work in the second period. They do not agree on what to do if the
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agreement is violated in the �rst period. Suppose that Bob deviates to Work in the

�rst period. Ann can still believe that Bob is rational and believed in the agreement.

But then, she must believe that Bob will not work in the second period, otherwise

his deviation cannot be pro�table. So she reacts to the deviation by working also in

the second period. If Bob believes that Ann believes that he is rational and believes

in the agreement, he anticipates this reaction and chooses to deviate. Anticipating

this, Ann cannot believe in the agreement. The agreement is not credible.

So, Ann and Bob agree that only Bob will work in both periods. But then, Bob

can signal with a deviation his intention to free ride also in the second period, so Ann

works in the second period and Bob bene�ts from the deviation.

Two objections may be raised at this point. First, Ann could interpret the devi-

ation as follows: "Bob believed that I would have not complied with the agreement,

and best replied by not complying himself." But then, if the beliefs of Ann are Bayes-

consistent, she must believe that Bob does not trust her from the start: the deviation

of Bob is not at odds with the belief that Ann complies with the agreement. Second,

Ann and Bob could agree beforehand on what to do in case of deviation. For social

convenience, they may not be willing to do so. Or, when Bob displays disbelief in the

agreement, Ann may still believe that he believed that she would have not violated

the agreement before him. This belief gives rise to the rationalization of deviations

depicted above (and further discussed in Section 6).

3 Agreements, beliefs and strategic reasoning

3.1 Preliminaries

Primitives of the game.10 Let I be the �nite set of players. For any pro�le (Xi)i2I

and any ; 6= J � I, I write XJ := �j2JXj, X := XI , X�i := XInfig. Let (Ai)i2I be

the �nite sets of actions potentially available to each player. LetH � [t=1;:::;TA
t[f;g

be the set of histories, where h0 := f;g 2 H is the root of the game and T is the �nite

horizon. For any h = (a1; :::; at) 2 H and l < t, it holds h0 = (a1; :::; al) 2 H, and I
write h0 � h.11 Let Z := fz 2 H : 8h 2 H; z 6� hg be the set of terminal histories
10The basic notation for games is mostly taken from Osborne and Rubinstein [25].
11H endowed with the precedence relation � is a tree with root h0.
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(henceforth, outcomes or paths)12, and H := HnZ the set of non-terminal histories
(henceforth, just histories). For each i 2 I, let Ai : H � Ai be the correspondence

that assigns to each history h, always observed by player i, the set of actions Ai(h) 6=
;13 available at h. I impose on H the following property: For every h 2 H, (h; a) 2 H
if and only if a 2 A(h). For each i 2 I, let ui : Z ! R be the payo¤ function. The list
� =



I;H; (ui)i2I

�
is a �nite game with complete information and observable actions.

Derived objects. A strategy of player i is a function si : h 2 H 7! si(h) 2 Ai(h).
Let Si denote the set of all strategies of i. A strategy pro�le s 2 S naturally induces
a unique outcome z 2 Z. Let � : S ! Z be the function that associates each strategy

pro�le with the induced outcome. For any h 2 H, the set of strategies of i compatible
with h is:

Si(h) := fsi 2 Si : 9z � h;9s�i 2 S�i; �(si; s�i) = zg :

For any (Sj)j2I � S, let Si(h) := Si(h) \ Si. For any J � I, let H(SJ) :=�
h 2 H : SJ(h) 6= ;

	
denote the set of histories compatible with SJ . For any h =

(h0; a) 2 H, let p(h) denote the immediate predecessor h0 of h.
Throughout the paper, what a strategy prescribes at histories that are precluded

by the strategy itself will be completely immaterial. Thus, the domain of each strategy

si is restricted to H(si); however, the term strategy rather than reduced strategy or

plan of actions will be kept for brevity. At times, the domain of strategies will be

further restricted to the histories that follow a given one. The restriction of a strategy

si 2 Si(h) to the histories following h is denoted by sijh and is called continuation
plan. A continuation plan can also be seen as a strategy of the subgame with root h,

denoted by �(h). Let Shi be the set of continuation plans from h on (or, equivalently,

the strategies of �(h)) of player i. For any SJ � SJ , let

SJ jh :=
�
shJ 2 ShJ : 9sJ 2 SJ(h); sJ jh = shJ

	
.

Histories and outcomes of �(h) will be identi�ed by the histories and outcomes of the

whole game which follow h, and not rede�ned as shorter lists of action pro�les.

12In many papers, paths and outcomes are di¤erent mathematical objects and a map from paths to
outcomes is assumed. Since this distinction is immaterial for this paper, outcomes will be identi�ed
with paths, and the term "path" will be used with emphasis on the sequence of moves, and "outcome"
with emphasis on the conclusion of the game.
13When player i is not truly active at history h, Ai(h) consists of just one "wait" action.
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Equilibria. A strategy pro�le s = (si)i2I 2 S is a strict Nash equilibrium if, for

all i 2 I and s0i 62 Si(�(s)), ui(�(s)) > ui(�(s0i; s�i)). A SPE is a pro�le of non-reduced
strategies that, for each history h 2 H, prescribes a pro�le of continuation plans

sh = (shi )i2I 2 Sh which is a Nash equilibrium (not necessarily strict) of �(h).

3.2 Agreements

Players discuss publicly how to play before the game starts. I assume that:

� Players do not coordinate explicitly as the game unfolds: all the opportunities
for coordination are discussed beforehand.

� No subset of players can reach a private agreement, secret to co-players.

� Players do not agree on the use of randomization devices. Players would lack the
incentive to (set the agreed-upon odds and) stick to the output of a (arti�cial)

randomization device over the own actions.14 Players also lack the ability to

commit, otherwise it would not make sense to talk of non-binding agreements.

Agreeing on the use of joint randomization devices, instead, would expand the

set of outcomes players can achieve,15 and could be analyzed with the method-

ology developed here.

Players can leave two kinds of strategic uncertainty, i.e. agreement incompleteness.

First, and more importantly, players can be vague about which action they intend

to play at some history. Second, players can promise to play an action at only one

of two histories, without revealing at which one. This second kind of vagueness can

naturally arise from strategic reasoning (also in absence of an agreement) and can

be pro�tably exploited in agreements: see Example 5 (in the Appendix). A player

can also declare what she plans to do in case she fails to implement her primary

plans. And so on. Also the trust in a player who has already violated the agreement

can be strategically exploited:16 see again Example 5. Thus, agreements are formally

modeled as follows.
14For this reason, I will talk of outcome sets instead of outcome distributions. As Pearce [26] puts

it, "this indeterminacy is an accurate re�ection of the di¢ cult situation faced by players in a game."
In games like matching pennies, an agreement is hardly conceivable.
15Similarly to how correlated equilibrium expands the set of Nash equilibrium outcome distribu-

tions.
16However, di¤erently than in a SPE, this trust will be challenged with strategic reasoning.
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De�nition 1 An Agreement is a pro�le of correspondences e = (ei)i2I with ei : h 2
H 7! ehi � Shi such that for all i 2 I, e0i := eh

0

i 6= ;, and for all h 6= h0,

ehi 6= ; ) [h0�heh
0

i (h) = ; 6= [h0�heh
0

i (p(h)):

Starting from the root of the game, an agreement can assign to a player a non-

empty set of continuation plans only at histories that immediately follow a deviation

by the player from the plans already assigned.17 However, (i) the agreement may be

empty at all such histories. Moreover, (ii) it may be de facto silent about a player�s

behavior also at histories that follow a deviation by anyone else. Agreements are

particularly simple when (iii) players declare which actions they may play at each

history, independently of what they plan to do at other histories.

De�nition 2 An agreement e = (ei)i2I is:

i) reduced if for every i 2 I and h 6= h0, ehi = ;;

ii) a path agreement on z 2 Z if it is reduced and for every i 2 I, e0i = Si(z);18

iii) on actions if for all i 2 I and h 2 H, ehi = Shi n [z2V hi S
h
i (z) for some V

h
i � Z.

A reduced agreement corresponds to a pro�le of strategy sets.19 A path agreement

corresponds to just agreeing on an outcome to achieve. An agreement on actions

can be expressed not just through vetos V hi that players cast on outcomes, but also

through actions instead of continuation plans assigned by the agreement at each

history. Most agreements discussed in the paper are reduced and on action. Non-

reduced agreements can be found in Example 4 and 5. An agreement not on actions

is discussed in Example 5. Path agreements can be found in Example 3 and 4.

For any agreement e = (ei)i2I , I refer to �(e0) as the outcome set that the agree-

ment prescribes.

17This is reminiscent of the notion of basis of a CPS introduced by Siniscalchi [29]: new theories
are introduced only at histories that are not deemed as plausible as the previous ones under the
theories already introduced.
18The term path agreement was �rst used by Greenberg et al. [17]: see also footnote 30.
19Recall that all strategies are reduced.
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3.3 Belief in the agreement

Players�beliefs are modeled as Conditional Probability Systems (Renyi, [28]; hence-

forth, CPS). Here I de�ne CPS�s directly for the problem at hand.

De�nition 3 Fix i 2 I and let C :=
�
C 2 2S�i : 9h 2 H;C = S�i(h)

	
. A Condi-

tional Probability System on (S�i; C) is a mapping �(�j�) : 2S�i �C ! [0; 1] satisfying

the following axioms:

CPS-1 for every C 2 C, �(�jC) is a probability measure on S�i;

CPS-2 for every C 2 C, �(CjC) = 1;

CPS-3 for every E 2 2S�i and C;D 2 C, if E � D � C, �(EjC) = �(EjD)�(DjC).

The set of all CPS�s on (S�i; C) is denoted by �H(S�i).

A CPS is an array of probability measures, one for each history, which assign

probability 1 to co-players�strategies compatible with the history. The array satis�es

the chain rule (CPS-3). For brevity, the conditioning events will be indicated with

just the history.

For any player i and any set of co-players J � In fig, I say that a CPS �i strongly
believes SJ � SJ if for every h 2 H(SJ), �i(SJ �SIn(J[fig)jh) = 1.20 In formulae and
proofs I will use the acronym "t.s.b." for "that strongly believes".

Note that a player can have correlated beliefs about the strategies of di¤erent

co-players. This is not in contradiction with the absence of joint randomization

devices in the agreement: players can believe in spurious correlations among co-

players�strategies (see, for instance, Aumann [1]).21 However, strategic independence

(Battigalli, [3])22 could be assumed throughout the paper and the results would not

change.

I say that players believe in the agreement if, at each history, they believe in

strategies of co-players which comply with the agreement from each co-player�s last

violation of the agreement onwards.
20In the original meaning of Strong Belief, due to Battigalli and Siniscalchi [9], SJ�SIn(J[fig) and

not SJ is "strongly believed". The slight di¤erence in the use of the term is only for later notational
convenience.
21For instance, a player can believe that a sunny day will induce more optimistic beliefs in two

co-players.
22Roughly speaking, the assumption that a player has a separate CPS about the behavior of each

co-player.
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De�nition 4 Fix an agreement e = (ei)i2I and �i 2 �H(S�i). I say that player i

believes in the agreement when, for every h 2 H, s�i = (sj)j 6=i with �i(s�ijh) > 0,
j 6= i, and h � h,

ehj (h) 6= ; ) sjjh 2 ehj :

Let �e
i be the set of all �i 2 �H(S�i) where player i believes in the agreement.

Note that every �i 2 �e
i strongly believes (e

0
j)j 6=i.

3.4 Rationality and Rationalizability

I consider players who reply rationally to their conjectures. By rationality I mean

that players, at every history, choose an action that maximizes expected utility given

their belief about how co-players will play, and the expectation to reply rationally

again in the continuation of the game. This is equivalent (Battigalli, [5]) to playing

a sequential best reply to the CPS.

De�nition 5 Fix �i 2 �H(S�i). A strategy si 2 Si is a sequential best reply to �i if
for each h 2 H(si), si is a continuation best reply to �i(�jh), i.e. for each esi 2 Si(h),X

s�i2S�i(h)

ui(�(si; s�i))�i(s�ijh) �
X

s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
The set of sequential best replies to �i (resp., to some �i 2 �e

i ) is denoted by

�(�i) (resp., by �(�
e
i )). The set of normal-form best replies to a probability measure

�i on S�i is denoted by ri(�i).

I say that a strategy si is rational if it is a sequential best reply to some �i 2
�H(S�i). An important remark: Even when no rational strategy prescribes action

a at two unordered histories h and h0, there might be other two rational strategies,

both compatible with h and h0, which prescribe a only at, respectively, h and h0.

Here I take the view that players re�ne their �rst-order beliefs through strategic

reasoning based on beliefs in rationality and beliefs in the belief in the agreement.

In particular, I assume that every player, as long as not contradicted by observation,

believes that each co-player is rational and believes in the agreement; that each co-

player believes that each other player is rational and believes in the agreement; and
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so on. At histories where common belief in, jointly, rationality and the belief in the

agreement is contradicted by observation, I assume that players maintain all orders

of belief in rationality that are per se compatible with the observed behavior, and

drop the incompatible orders of belief in the agreement. I will call independent

rationalization the hypothesis that players maintain a order of belief in rationality or

in the agreement about a co-player when her individual behavior allows, as opposed

to the hypothesis that players maintain such order of belief about all co-players only

until none of them contradicts it.23 The adoption of independent rationalization shows

better the robustness of the main insights. After a deviation that displays the disbelief

of the deviator in the agreement, without independent rationalization co-players�

threats would not be demanded any degree of coordination, making departures from

subgame perfection more likely. In Example 5, independent rationalization makes it

much more challenging for players to �nd an e¤ective agreement.

As shown in [12], the behavioral consequences of this kind of strategic reason-

ing are captured by Selective Rationalizability. Selective Rationalizability re�nes the

following version of Extensive Form Rationalizability24 (henceforth just Rationaliz-
ability).

De�nition 6 Let S0 := S. Fix n > 0 and suppose to have de�ned ((Sqj )j 6=i)
n�1
q=0 . For

each i 2 I and si 2 Si, let si 2 Sni if and only if si 2 �(�i) for some �i 2 �H(S�i)

that strongly believes ((Sqj )j 6=i)
n�1
q=0 .

Finally, let S1i = \n�0Sni . The pro�les in S1 are called rationalizable.

It will be useful to introduce the following class of "realization equivalent" ra-

tionalizable continuation plans, under the hypothesis that the opponents play ratio-

nalizable plans. For any h 2 H(S1) and shi 2 S1i jh, let
�
shi
�1

be the set of all

shi 2 S1i jh such that �(shi ; sh�i) = �(shi ; sh�i) for all sh�i 2 S1�ijh. For any S
h

i � S1i jh,
let [S

h

i ]
1 := [

shi 2S
h
i

�
shi
�1
.

23This is not in contradiction with the absence of strategic independence: players can believe in
spurious correlations among co-players�strategies, although they are ready to believe that di¤erent
co-players have di¤erent orders of belief in rationality or in the agreement. For instance, the beliefs
of a more and a less sophisticated players can be a¤ected by weather in the same way.
24This notion of Extensive-Form-Rationalizability is the adaptation of Strong Rationalizability

(Battigalli and Siniscalchi, [9]) to independent rationalization. Independent rationalization is also
a feature of Independent Rationality Orderings (Battigalli [3]), where strategic independence is
adopted. The original notion of Extensive-Form-Rationalizability, due to Pearce [26], adopts instead
structural consistency (Kreps and Wilson [21]).
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Selective Rationalizability can now be de�ned as follows.

De�nition 7 Let (S0i;e)i2I := (S1i )i2I . Fix n > 0 and suppose to have de�ned

((Sqj;e)j 6=i)
n�1
q=0 . For each i 2 I and si 2 Si, let si 2 Sni;e if and only if there is �i 2 �e

i

that strongly believes ((Sqj;e)j 6=i)
n�1
q=0 such that si 2 �(�i) and:

S3: �i strongly believes ((S
q
j )j 6=i)

1
q=0.

Finally let S1i;e = \n�0Sni;e. The pro�les in S1e are called selectively-rationalizable.

S3 guarantees that a player always believes in co-players� strategies which are

compatible with the highest possible order of belief in rationality. On top of this,

at every step n and history h, a player believes in co-players�strategies which are

compatible with the agreement and with the highest possile order m � n�1 of belief
in the agreement. Note that the �rst-order belief in the agreement is mandatory.

Then, the empty set is obtained when at some step some co-player can reach a history

only with strategies that do not comply with the agreement from the history on. In

this way, the compatibility of the belief in the agreement with the strategic reasoning

hypotheses is tested.

S3 can be substituted by si 2 S1i for all the agreements e = (ei)i2I such that

ehi =
�
ehi
�1
for all i 2 I and h 2 H: see Lemma 3 in the Appendix. By De�nition 12

and by Theorem 1, this class of agreements su¢ ces to induce all the implementable

outcome sets (and also the agreements that correspond to a Self-Enforcing Set fall

in this class, see De�nition 13). However, for any agreement, Rationalizability and

Selective Rationalizability can be merged into one elimination procedure, where the

belief in the agreement kicks in once the rationalizable pro�les are obtained (see

footnote 50). Finally, strong belief in ((Sqj;e)j 6=i)
n�2
q=0 can be replaced by si 2 Sn�1i;e only

in 2-players games or dropping independent rationalization: see [12] for details.

Only in the Applied Example of Section 7, the game features non-rationalizable

strategies. To see Selective Rationalizability at work, check the formalization of Ex-

ample 3 in the Appendix. I will refer to �(S1e ) as the set of outcomes induced by

e.
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4 Self-enforceability and implementability

In order to evaluate a given agreement, two features have to be investigated. First,

whether the agreement is credible or not. Second, if the agreement is credible, whether

players will certainly comply with it or not. An agreement is credible if believing in

it is compatible with strategic reasoning.

De�nition 8 An agreement e = (ei)i2I is credible if S1e 6= ;.

Credibility does not imply that players will comply with the agreement, but only

that they may do so everywhere in the game. Strategic reasoning on a credible agree-

ment induces each player i to strongly believe in a subset of co-players�agreed-upon

plans, namely S1�i;e \ e0�i. I say that an agreement is self-enforcing if this belief will
not be contradicted by the actual play.

De�nition 9 A credible agreement is self-enforcing if �(S1e ) = �(S
1
e \ e0).

Self-enforceability implies that players will certainly comply with the agreement

on the agreed-upon paths, so that no violation of the agreement will actually occur.

That is, �(S1e ) � �(e0). This condition is also su¢ cient for self-enforceability of a

credible agreement on actions.

Proposition 1 An agreement on actions is self-enforcing if and only if

; 6= �(S1e ) � �(e0):

In Examples 1 and 2, the reduced agreements with, respectively, e0A = fN:Ug ; e0B =
fWg, and e0A = SA; e0B = fRg ; e0C = SC are self-enforcing. All strategies are rational-
izable. At the �rst step of Selective Rationalizability, Ann eliminates S in Example

1 and selects O in Example 2, while Bob selects W in Example 1 and, like Cleo, does

not eliminate any strategy in Example 2. In both cases, Selective Rationalizability

is over at step 1. Example 3, formalized in the Appendix, provides two non-credible

agreements.

A merely credible agreement fails to secure outcomes that players agreed upon

and believed in. Moreover, only self-enforcing agreements are able to secure a speci�c

outcome.
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Proposition 2 If �(S1e ) is a singleton, then e is self-enforcing.

For these reasons, in the remainder of the paper, the focus will be on self-enforcing

agreements.

Which outcomes of the game can be achieved through self-enforcing agreements?

De�nition 10 A set of outcomes P � Z is implementable if there exists a self-

enforcing agreement such that �(S1e ) = P (and I say the agreement implements P ).

With "implementable outcomes" I will refer speci�cally to implementable sin-

gletons. The set of outcomes prescribed by a self-enforcing agreement may be larger

than the outcome set it induces. So, a natural question arises: for each implementable

outcome set, is there an implementing agreement that prescribes precisely that set

of outcomes? The answer is not obvious because simply restricting the initial plans

of some self-enforcing agreement to those that induce the implemented outcome set

may not work: see Example 4. Thus, consider the following classes of agreements.

De�nition 11 A self-enforcing agreement is truthful if �(S1e ) = �(e
0).

De�nition 12 An agreement e = (ei)i2I is tight if for each i 2 I,

T1 For all h 2 H(S1), [h�hehi (h) 6= ; and ehi = [ehi ]1; else, ehi = ;;

T2 For each h 2 H(�(�e
i ) \ S1i )), ehi � (�(�e

i ) \ S1i )jh;

T3 For each �i that strongly believes e
0
�i, �(�(�i)� e0�i) � �(e0).

T3 says that players who believe in the agreement have no incentive to leave the

paths it prescribes. Thus, the following holds.

Remark 1 An agreement e = (ei)i2I where �(e0) is a singleton satis�es T3 if and

only if e0 is a set of strict Nash equilibria.

T1 says that a tight agreement reaches all the rationalizable histories with ra-

tionalizable continuation plans of all players; moreover, such plans do not restrict

behavior at other histories, and no further plans are made. By T2, the prescribed

plans must also be rational for a player who believes in the agreement and reaches

the history. This guarantees that the agreed-upon plans never fall below other plans

in the "likelihood order" of co-players who reason by forward induction about her.

Thus, the following holds.
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Proposition 3 A tight agreement is truthful.

On the other hand, for every implementable outcome set, there is always a tight

agreement that prescribes it.

Theorem 1 An outcome set is implementable if and only if there exists a tight agree-
ment that prescribes it.

Then, by Remark 1, the following holds.

Corollary 1 Every implementable outcome is induced by a strict Nash equilibrium
in rationalizable strategies.25

By Theorem 1 and Proposition 3, the answer to the original question is a¢ rmative.

Corollary 2 Every implementable outcome set is implemented by a truthful agree-
ment.

Corollary 2 constitutes a revelation principle for agreements design: players need

not be vague about the outcomes they want to achieve.

Corollary 1 restricts the search for implementable outcomes to the �xed points of

the normal-form, best response correspondence, in the reduced game of rationalizable

strategies.

Theorem 1 provides a full characterization of implementable outcome sets. Tight

agreements simplify the (already �nitely dimensional) search for implementable out-

come sets and implementing agreements. First, Rationalizability is performed, with-

out keeping memory of its steps afterwards. Once a candidate outcome (set) is �xed,

Corollary 2, allows to restrict the search to agreements that prescribe it. Moreover,

one can focus on initial plans that are rational under strong belief in the ones of

co-players (by T2), and directly provide the incentive not to deviate from the desired

paths (by T3). Then, the behavior of deviators must be speci�ed as to satisfy T1 and

T2 o¤-path. Note that T2 only requires to compute the sequential best replies to the

belief in the agreement itself, as opposed to the multiple steps required by Selective

Rationalizability, and without memory of the steps of Rationalizability.

25It is straightforward to prove this result directly by observing that if z is implemented by e,
then any s 2 S1e is a strict Nash equilibrium in rationalizable strategies.
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Example 5 illustrates an interesting tight agreement, which prescribes an outcome

that cannot be implemented by an agreement on actions or without o¤-the-path re-

strictions.26 However, tight agreements may be more complex than needed for the

implementation of an outcome set. For a single outcome, the simplest and more

natural agreement is the corresponding path agreement. Yet, very few path agree-

ments are self-enforcing. In Example 4, not even the path agreement on the unique

SPE outcome is self-enforcing. Thus, one may wonder which outcome sets can be

implemented with reduced agreements and agreements on actions.

First, let us consider reduced agreements. A reduced agreement corresponds to

a Cartesian set of strategy pro�les. Recall that, throughout the paper, only reduced

strategies are considered. This implies that, di¤erently than in a SPE or than in a

tight agreement, a reduced agreement remains silent about the behavior of deviators.

However, the behavior of deviators is better predicted by forward induction. Thus,

consider the following, set-valued solution concept.

De�nition 13 Fix S� = �i2IS�i � S. I say that S� is a Self-Enforcing Set if for

each i 2 I:
� Rationalizability: S�i = [S

�
i ]
1.

| Self-Justi�ability: S�i �
�
si : 9�i t.s.b. (S�j ; S1j )j 6=i, si 2 �(�i)

	
=: Si;

~ Forward Induction: Si �
�
si : 9�i t.s.b. (S�j ; Sj; S1j )j 6=i, si 2 �(�i)

	
;

} Self-Enforceability: For each �i t.s.b. S
�
�i, �(�(�i)� S��i) � �(S�).

Rationalizability says that the SES prescribes rationalizable plans without restrict-

ing behavior at the non-rationalizable histories. Consider now players who strongly

believe that each co-player will play as the SES prescribes and, alternatively, as ra-

tionalizability prescribes. Self-Justi�ability says that they may play any strategy

prescribed by the SES. This yields truthfulness when the SES induces multiple out-

comes. Forward Induction says that all the strategies such players may play, thus

including the SES strategies, are compatible with strong belief that co-players form

beliefs in the same way. At each history h o¤-path, beside set-valuedness, the logics

of Forward Induction di¤er from the logics of subgame perfection in two ways. On the

one hand, Forward Induction "completes" the SES by determining the continuation

plans of a deviator (j) from the SES with forward induction reasoning, based on her

26Implying by no reduced agreement under a discussed modi�cation of the game.
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belief in the SES if possible (Sj) or just the beliefs in rationality otherwise (S1j ), as

opposed to the exogenous prescriptions of a SPE. On the other hand, only the players

who do not display disbelief in the continuation plans of-co-players, determined by

the SES or by forward induction, are expected to keep best replying to them. This

best response condition, imposed after one step of reasoning instead of just at the

start, su¢ ces to guarantee credibility after all steps of reasoning, which players do

not actually need to perform when they agree on a SES.

On top of this, Self-Enforceability27 guarantees that players will not leave the paths

induced by the SES if they strongly believe that all co-players will play as the SES

prescribes. Deviations from the SES threats can still occur and are interpreted with

forward induction reasoning based on the belief in the SES. Still, Self-Enforceability

su¢ ces to yield self-enforceability of the corresponding agreement.

Theorem 2 Fix a SES S�. The reduced agreement e with e0 = S� is truthful.

For any self-enforcing agreement e, S1e \ e0 satis�es Self-Enforceability and Self-
Justi�ability, while restrictions to behavior at non-rationalizable histories can always

be eliminated as to satisfy Rationalizability. Thus, these three conditions per se do

not restrict the implementable outcome sets induced by a SES. Yet, S1e \ e0 may not
satisfy Forward Induction. The sequential best replies of player i under strong belief

in (S1j;e \ e0j)j 6=i may not be, at some history, what co-players expect after all steps of
reasoning under e. Such re�nement of beliefs may be crucial to sustain the threats.

For this reason, not every implementable outcome set, not even if implemented by a

reduced agreement e, is induced by some SES. Example 5 provides a case in point.

However, a SES always exists.

Remark 2 S1 is a SES.

The search for candidate SES�s conveniently coincides with the search of the initial

plans of a tight agreement. Then, Forward Induction must be checked. If no candidate

SES for the implementation of an outcome set satis�es Forward Induction (like in

Example 5), then one can try to transform a candidate SES into a tight agreement,

by prescribing the behavior of deviators as to satisfy T1 and T2 o¤-path.

27I will write Self-Enforceability with capital letters to distinguish it from the self-enforceability
of agreements.
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Let us look for SES�s in Example 2. All strategies are rationalizable, so Rationaliz-

ability is always satis�ed. If S�A = fOg, by Self-Enforceability of Ann S�B = fRg, and
by Self-Justi�ability of Bob S�C = fM1;M2g. Let S� = f(O;R;M1); (O;R;M2)g.
Forward Induction holds because for each i 2 I and �i t.s.b. (S�j ; S1j )j 6=i, by H(S�j ) =
H(Sj) for all j 6= i, �i strongly believes (S�j ; Sj; S1j )j 6=i. The construction of S� and
the veri�cation of Forward Induction correspond to the informal arguments of Section

2. Note that any SES inducing O needs to be set-valued, albeit inducing a unique

outcome.

If fI:U; I:Dg � S�A, by Self-Enforceability S
�
B = fL:C:Rg and S�C = fM1;M2g,

but then O 2 S�A, i.e. S� = S1 = S. If ; 6= fI:U; I:Dg \ S�A 6= fI:U; I:Dg, by Self-
Justi�ability R 62 S�B; then, by Self-Justi�ability O 62 S�A, and by Self-Enforceability
S�C = fM1;M2g. Let S� = fI:xg � fL;Cg � fM1;M2g for x = U;D: Forward

Induction is satis�ed because H(S�) = H.

Can the SES be implemented by a reduced agreement on actions? The answer is

yes if the SES can be expressed through vetos cast by each player on rationalizable

outcomes.

Proposition 4 Fix S� = �i2IS�i � S that satis�es |, ~, }, and, for each i 2 I:

� Rationalizable Vetos: S�i = S
1
i n [z2Wi

Si(z) for some Wi � �(S1).

Then, S� is SES and �(S�) is implemented by the reduced agreement on actions with

vetos V 0i := Zn�(S�i � S�i) for all i 2 I.

Casting unilateral vetos on outcomes is equivalent to exclude actions instead of

strategies. The candidate SES is then the set of rationalizable strategies that do not

prescribe the excluded actions. The implementing reduced agreement on actions is

the set of all strategies that allow the SES outcomes.28 Since the game in Example 2

has no pair of unordered histories, its SES�s all satisfy Rationalizable Vetos (and S1

always does).

Focus now on implementable outcomes. By Rationalizability and Self-Enforceability,

every SES that induces a unique outcome is a set of strict Nash equilibria in rationaliz-

able strategies. Does the opposite hold? The answer is no: the threats of two di¤erent

28With V h
0

i =Wi, the agreement may be not credible: at some h 2 H(S1i )\H(Sin[z2Wi Si(z)),
there may not be any si 2 S1i (h)n [z2Wi

Si(z), so strong belief in both S1i and Sin [z2Wi
Si(z) is

impossible.
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players may be incompatible with each other. However, this cannot happen in a two-

players game: each strict Nash in rationalizable strategies satis�es Self-Justi�ability

and Forward Induction.

Proposition 5 Fix a two-players game and z 2 Z. The set S� of all strict Nash
equilibria s 2 S1(z), if non-empty, is a SES that satis�es Rationalizable Vetos.
Moreover, for each s 2 S�, the reduced agreement e with e0 = fsg implements z.

Together with Corollary 1, the following holds.

Theorem 3 In a two-players game, an outcome is implementable if and only if there
exists a strict Nash equilibrium in rationalizable strategies that induces it.

Together with Proposition 5, the following holds.

Corollary 3 In a two-players game, every implementable outcome is implemented
by a truthful, reduced agreement on actions.

Thus, in two-players games, standard elimination procedure and �xed point con-

dition su¢ ce to �nd all implementable outcomes and, for each of them, a truthful,

reduced agreement on actions that implements it.

5 Comparison with the rationalizability literature

The literature on strategic reasoning with �rst-order belief restrictions is mostly

based on the use of Strong-�-Rationalizability ([6], [10]). The de�nition of Strong-�-

Rationalizability with independent rationalization coincides with De�nition 7 without

S3 and with S0 = S. The di¤erences between the results of this paper and the results

in this literature are due to (i) the adoption of Selective Rationalizability in place

of Strong-�-Rationalizability, (ii) the structure on the �rst-order belief restrictions

imposed by the notion of agreement, and (iii) the focus on self-enforceability rather

than just credibility.

Di¤erences and similarities between Selective Rationalizability and Strong-�-

Rationalizability are deeply analyzed in [12]. Here I only recall the main conceptual

di¤erence behind the two solution concepts. Fix a move that a player would not
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rationally pick were she to believe in the agreement. Contrary to Selective Ratio-

nalizability, Strong-�-Rationalizability captures the hypothesis that, upon observing

such move, co-players drop the belief that the player is rational. This hypothesis is

called "(epistemic) priority to the agreement" (as opposed to rationality). So, the

question is: how would the adoption of Strong-�-Rationalizability instead of Selective

Rationalizability a¤ect the results?

In every example except the Applied Example of Section 7, all strategies are ra-

tionalizable; thus, Selective Rationalizability and Strong-�-Rationalizability coincide.

Hence, the insights from the examples are robust to a shift of epistemic priority from

rationality to the agreement.

What happens in games where not all strategies are rationalizable? Let (Sq�e)
1
q=0

be Strong-�-Rationalizability with independent rationalization.

Remark 3 All the results of Section 4 hold through verbatim after substituting:

1. selectively-rationalizable strategies (S1e ) with strong-�-rationalizable strategies

(S1�e) everywhere;

2. rationalizable strategies (S1) with all strategies (S) in the de�nitions of [�]1,29

tight agreement and Self-Enforcing Set, and with rational strategies (S1) in the

statements of Corollary 1, Proposition 5, and Theorem 3.

Remark 3 can be veri�ed by operating the same substitutions in the proofs of the

results, and skipping some passages as highlighted in footnotes. A credible agree-

ment under priority to rationality needs not be credible under priority to the agree-

ment: as shown in [12], Selective Rationalizability is not a re�nement of Strong-�-

Rationalizability for the same �rst-order belief restrictions. Across all agreements,

instead, under priority to the agreement more outcome sets can be implemented.

Proposition 6 If an outcome set is implementable under priority to rationality, then
it is implementable under priority to the agreement.

However, since agreements originate from mere, pre-play cheap talk, epistemic

priority to rationality appears in my view as a more considerate hypothesis. Else,

for instance, any Nash equilibrium in rational strategies of a two-players game would

29This is just to adapt to the formalism of Section 4: the equivalence classes become singletons.

23



correspond to a self-enforcing agreement, also when incompatible with just strong

belief in rationality.

Battigalli and Friedenberg [7] capture the implications of Strong-�-Rationalizability

without independent rationalization across all �rst-order belief restrictions with the

notion of Extensive Form Best Response Set. An EFBRS is a Cartesian set of strategy

pro�les S = �i2ISi satsfying the following condition:

EFBRS: for all i 2 I and si 2 Si, si 2 �(�i) for some �i t.s.b. S�i with �(�i) � Si.

The EFBRS Condition is the analogue of Self-Justi�ability in absence of priority to

rationality and independent rationalization, but with an additional "maximality" re-

quirement: all the sequential best replies to some justifying beliefs must be in the

EFBRS. These beliefs are not expressed by the EFBRS itself, whereas a SES directly

provides the �rst-order belief restrictions that yield the SES outcomes. The restric-

tions that yield the EFBRS may impose the belief in speci�c randomizations, or, more

fundamentally, di¤er across two players regarding the moves of a third player.30 An

agreement, instead, aligns any two player�s beliefs about a third player�s moves. For

this reason, even with randomizations in agreements and without independent ratio-

nalization, EFBRS�s would still be insu¢ cient for implementability of the induced

outcomes under priority to the agreement, calling for Self-Enforceability in place of

maximality.

Battigalli and Siniscalchi [10] �nd out that, for �rst-order belief restrictions which

correspond to the belief in an outcome, Strong-�-Rationalizability yields a non-empty

set only if there exists a self-con�rming equilibrium (Fudenberg and Levine [15],

Battigalli [2]) inducing that outcome. Regardless of the epistemic priority choice,

implementable outcomes are instead all Nash by Corollary 1 and Remark 3. Why is

it the case? The reason lies in the di¤erence between credibility and self-enforceability.

Under a self-enforcing agreement, players have the incentive to stay on path for all

their re�ned beliefs. This allows to �nd independent strategies of co-players against

30Greenberg et al. [17] de�ne a (non-forward induction) solution concept, called "mutually ac-
ceptable courses of action". Their leading example represents an EFBRS outcome z. Strong-�-
Rationalizability yields z for �rst-order belief restrictions that could be derived from an agreement
for each player, but not from the same agreement for all players. Indeed, z is not implementable un-
der priority to the agreement. Also allowing subsets of players to reach private agreements, z would
still not be implementable, because the �rst-order belief restrictions of each player need instead to
be transparent to all players (as they are under Strong-�-Rationalizability).
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which there is no incentive to deviate. Credibility, instead, may be granted just by

correlated beliefs about the reactions of co-players to the deviation.

Conversely, in signaling games, Battigalli and Siniscalchi [10] show that when

an equilibrium outcome satis�es the Iterated Intuitive Criterion (Cho and Kreps

[14]), Strong-�-Rationalizability yields a non-empty set for the corresponding �rst-

order belief restrictions. Yet, even in the simplest examples of this paper, o¤-the-

path restrictions are usually needed for self-enforceability. So, what does credibility

under the path restrictions actually test when the agreement is reacher than the path

agreement? The next section sheds light on this point.

6 Comparison with equilibrium literature

Kohlberg and Mertens [20] motivate their equilibrium analysis in a similar way to this

paper: "A noncooperative game is played without any possibility of communication

between the players. However, we may think of the actual play as being preceded by

a more or less explicit process of preplay communication (the course of which has

to be common knowledge to all players), which gives rise to a particular choice of

strategies." ([20], page 1004) Then, they introduce forward induction as implicit com-

munication during the game, based on actual moves: "Essentially what is involved

here is an argument of "forward induction": a subgame should not be treated as a

separate game, because it was preceded by a very speci�c form of preplay communi-

cation � the play leading to the subgame. ([20], page 1013) Finally, they claim that

the "forward induction" property of their notion of strategic stability, "captures the

"forward-induction" logic of our basic example." ([20], page 1029) The two examples

of forward induction in the paper refer to a player who gives up an outside option.

The consequent reasoning is not based on pre-play communication: unconstrained for-

ward induction reasoning su¢ ces for players to coordinate on the strategically stable

solutions of two examples.

Govindan and Wilson [16], instead, use the Beer-Quiche game (Cho and Kreps,

[14]) to show a di¤erent kind of forward induction reasoning. In Beer-Quiche, one

of the two pure equilibria can be disregarded with a story of interactive beliefs in

its outcome distribution. That is, constrained forward induction reasoning. How-

ever, both kinds of reasoning are hard to detect in the formal de�nition of forward
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induction of [16], while depth of reasoning and scope of the analysis remain limited.

As acknowledged by the authors themselves, their notion of forward induction only

captures rationality and strong belief in rationality in two-players games ([16], page

11),31 and fails in games with more than two players ([16], page 21). Moreover, it

applies only to sequential equilibrium.

Osborne [24] identi�es a class of non strategically stable SPE in two-players, �-

nitely repeated, coordination games: those with an equilibrium path that can be upset

by a convincing deviation. Di¤erently than for the general de�nition of strategic sta-

bility, it is easy to match these equilibria with a precise line of forward induction

reasoning: the one triggered by a path agreement. Indeed, equilibrium paths that

can be upset by a convincing deviation can be characterized as non-credible path

agreements, although the agreement on the whole SPE may well be self-enforcing.

This con�rms that also strategic stability captures (at least to some extent) con-

strained forward induction reasoning about the beliefs in an outcome (distribution).

Thus, after the aforementioned characterization, I will analyze path-based forward

induction reasoning, yet in presence of a richer-than-path agreement, such as a whole

equilibrium pro�le. With this, I will show the robustness of the insights of the paper

to this kind of strategic reasoning, and provide a general and transparent approach

to the forward induction stories in the background of the equilibrium literature.

Fix a two-players (i and j) static game G with action sets Ai and Aj and payo¤

function vk : Ai � Aj ! R, k = i; j. Let bk and ck be the �rst- and second-ranked
stage-outcomes of G for player k = i; j. A path (a1; ::; aT ) of pure Nash equilibria of

the T-fold repetition of G can be upset by a convincing deviation ([24]) if there exist

� 2 f1; :::; T � 1g and bai 6= a�i such that, letting T := T � � ,
vi(bai; a�j ) + vi(ci) + (T � 1)vi(bi) <

TX
t=�

vi(a
t) < vi(bai; a�j ) + Tvi(bi); (I)

Tvj(b
i) > max

aj2Ajnfbijg
vj(b

i
i; aj) + (T � 1)vj(bj): (J)

Condition I says that player i bene�ts from a unilateral deviation at � only if

31I suggest that the two steps limitation (rationality and strong belief in rationality) on uncon-
trained reasoning extends to the constrained reasoning captured by forward induction. Moreover, I
suggest that, once forward induction is immerged in sequential equilibrium, a further step of reason-
ing is captured at the beginning of the game. Indeed, the equilibrium selection in Beer-Quiche also
requires a further step of reasoning at the beginning of the game.
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followed by her preferred subpath. Condition J says that player j cannot bene�t from

a unilateral deviation from that subpath even if followed by her preferred subpath

(which also shows that i�s preferred stage-outcome is Nash, hence the restriction to

coordination games).

Proposition 7 Let z = (a1; :::; aT ) be a path that can be upset by a convincing devi-
ation. The path agreement on z is not credible.

Example 3 provides two paths that can be upset by a convincing deviation,32

although the agreements on the SPE that induce them are self-enforcing.

What does the non-credibility of the path agreement suggest when o¤-the-path

threats are actually in place? It suggests that, under a particular way to interpret

deviations (transparent to players), there is no credible threat that prevents some de-

viation. This interpretation of deviations relies on the belief that the deviator believes

that no deviation by a co-player would have occured had she stayed on path. So, it

stems from the common belief that everyone trusts that no-one is not going to violate

the agreement unless someone else does �rst. The deviation proves that this trust

towards the deviator was misplaced, but does not contradict the common belief in it.

Thus, co-players, instead of dropping the belief that the deviator believes in the whole

agreement, drop the belief that the deviator believes in the post-deviation threats,

and save the belief that the deviator believed in the agreement on-path. In other

words, the beliefs in the compliance with the agreement on-path have higher epistemic

priority than the beliefs in the compliance with the agreement o¤-path. Assigning

the highest epistemic priority to the beliefs in rationality, I call this �ner epistemic

priority order "(epistemic) priority to the path". Its behavioral consequences are

captured by an extension of Selective Rationalizability, epistemically characterized in

[12].33 Fix z 2 Z. Let ((Sqj;z)j 6=i)1q=0 denote Selective Rationalizability under the path
agreement on z, and call (S1j;z)j 6=i z-rationalizable. Fix an agreement e = (ei)i2I with

�(e0) = fzg.
32Formally, the paths do not satisfy the �rst strict inequality in (I), but this is immaterial because

ci ((W;W )) and bi ((W;FR)) entail the same action for player i (Bob). This would not happen in
pure coordination games that are in the focus of [24].
33The epistemic characterization in [12] works for general restrictions and would require �ei � �zi ,

which is typically false. Yet, I show in [11] that in this speci�c case, the use of �ei or �
e
i \ �zi is

equivalent, and trivially �ei \�zi � �zi .
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De�nition 14 Let (S0i;ez)i2I = (S1i;z)i2I . Fix n > 0 and suppose to have already

de�ned ((Sqj;ez)j 6=i)
n�1
q=0 . For each i 2 I and si 2 Si, let si 2 Sni;ez if and only if there

is �i 2 �e
i that strongly believes ((S

q
j;ez)j 6=i)

n�1
q=0 such that si 2 �(�i) and:

E3: �i strongly believes ((S
q
j;z)j 6=i)

1
q=0 and ((S

q
j )j 6=i)

1
q=0.

Finally let S1i;ez = \n�0Sni;ez . The pro�les in S1ez are called z�selectively-rationalizable.

E3 captures the interpretation of deviations depicted above. On top of this, players

re�ne their beliefs according to the whole agreement. Thus, the credibility of the

path agreement constitute a preliminary test for the implementability of z under

the hypotheses of this section. This answers the question at the end of Section 5.

If the outcome passes the test, there exist o¤-the-path beliefs, compatible with the

interpretation of deviations depicted above, which induce players to stay on path.

However, no agreement may be able to narrow down players�beliefs to those, like

for the beliefs that sustain an EFBRS. An example of this is provided in [12], and it

motivates the adoption of di¤erent belief restrictions in an epistemic priority order,

instead of just turning to path restrictions and using credibility in place of self-

enforceability.

Analogously to Selective Rationalizability, E3 can be substituted by si 2 S1i;z for
all the agreements e = (ei)i2I such that ehi =

�
ehi
�1
for all i 2 I and h 2 H, where [�]1

is rede�ned with S1z in place of S1.34 And again, this class of agreements su¢ ces

to induce all the implementable outcome sets under priority to the path. Indeed,

restricting the focus for simplicity to agreements and strategy sets which prescribe a

unique outcome z, the analysis of Section 4 can be replicated under this �ner epistemic

priority order.

Remark 4 All the results of Section 4 hold through verbatim after substituting every-
where:

1. selectively-rationalizable strategies (Se) with z-selectively-rationalizable strate-

gies (Sez);35

2. rationalizable strategies (S1) with z-rationalizable strategies (S1z ).

34This is not proved formally in [12]. However, both S3 and E3 are maintained in the proofs.
35Self-Enforcing and truthful agreements which prescribe a unique outcome coincide. Then, re-

stricting the attention to these agreement, all implementable outcomes are trivially implemented by
a truthful agreement.
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Remark 4 can be veri�ed by operating the same substitutions in the proofs of the

results. Although z-Selective Rationalizability does not re�ne Selective Rationaliz-

ability under the same agreement, the following holds.

Proposition 8 If an outcome is implementable under priority to the path, then it is
implementable under priority to rationality.

In all the examples, the self-enforcing agreements remain self-enforcing under pri-

ority to the path. Thus, the insights are robust to the �ner epistemic priority order

adopted in this section. Strategic stability does not eliminate every non subgame per-

fect equilibrium;36 yet, in the attempt to do so, valuable equilibria are disregarded.37

The �nal question is: does subgame perfection perform a meaningful further re-

�nement under these strategic reasoning hypotheses? My answer is no. The idea

behind subgame perfection is at deep contradiction with the interpretation of devi-

ations behind this kind of forward induction reasoning. Fix a strict SPE. After any

deviation from the SPE path, co-players will believe that the deviator believed in the

path but does not believe in the threat. Then, they will not expect the deviator to

best reply to the threat. But then, that the threat is a best reply to a plan of the

deviator which is a best reply to the threat itself is of no additional value.38 This

breaks down the logics of subgame perfection. Example 4 illustrates this intuition.

Thus, the insistence on subgame perfection in the forward induction literature is, in

my view, particularly misplaced.39

36Kohlberg and Mertens [20] regard the inability to imply subgame perfection as a weakness of
stability, and "hope that in the future some appropriately modi�ed de�nition of stability will, in
addition, imply connectedness and backwards induction." This paper suggests the opposite direction.
37Consider the (non-SPE) outcome T in Figure 6 in [20]. Its instability is claimed at page 1030,

based on the substitutability of the zero-sum subgame with its equilibrium payo¤s. But this amounts
to assume that player 1 has the most pessimistic expectation for that subgame. Allowing for more
optimistic beliefs, player 2 can believe that player 1 will try to reach the subgame. Thus, player 2
can react with R, a threat which implements T under all epistemic priority hypotheses.
38Also under the more agnostic interpretation of deviations of Section 4, even for a rationalizable

SPE outcome, there may not be any threats that are compatible with both forward induction and
subgame perfection.
39Interestingly, Man [23] �nds out that also the "invariance" argument, used to motivate the

notions of forward induction of Kohlberg and Mertens [20] and Govindan and Wilson [16], does not
imply sequential equilibrium.
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7 An Applied Example

Consider a linear city model of monopolistic competition between two �rms, i = 1; 2.40

Each �rm i sets price pi and, up to some prices, faces demand function

Di(pi; p�i) =

8><>:
0 if pi > p�i + 16

16� pi + p�i if pi 2 [p�i � 16; p�i + 16]
32 if pi < p�i � 16.

At the same time, each �rm can choose between two production technologies, k = 1; 2.

Technology k = 1 entails �xed cost F1 = 160 and marginal cost c1 = 64. Technology

k = 2 entails �xed cost F2 = 800 and marginal cost c2 = 32. Conditional on using

technology k = 1; 2, the best response function of �rm i reads:

bpi(p�i) = 8 + 1
2
ck +

1

2
p�i:

Conditional on employing k = 1, the unique equilibrium price vector is (80; 80). Yet,

the best reply to p�i = 80 is pi = 64, with the use of k = 2. Conditional on employing

k = 2, the unique equilibrium price vector is (48; 48). Yet, the best reply to p�i = 48

is pi = 64, with the use of k = 1. Note that pro�t is much higher under (80; 80) and

k = 1 than under (48; 48) and k = 2.

Suppose now that �rms compete for two periods. The upgrade from k = 1 to

k = 2 between the two periods has a switching cost W > 128.41 Then, if �rms

employed k = 1 in the �rst period, (80; 80) is the unique rationalizable price vector

in the second period. Firms want to reach an agreement to employ k = 1 in both

periods. Consider a unilateral deviation by �rm i = 2 to k = 2 in the �rst period.

In the second period, �rm 2 is indi¤erent between the two technologies for p1 = 72.

Firm 1 would need to pay W to adopt k = 2. So, for p1 = 72 and some p2 > 80, for

each i = 1; 2 the best reply correspondence reads:

bpi(p�i) =
8><>:
40 + 1

2
p�i if p�i < p�i�

40 + 1
2
p�i; 24 +

1
2
p�i
	
if p�i = p�i

24 + 1
2
p�i if p�i > p�i

40The microfoundation of the demand functions in this model is presented in Green, et. al. [22],
pages 396-397.
41W can be thought of as a �ring cost, interpreting k = 1 as the labour intensive technology.

30



The set of rationalizable price vectors is [70; 78]�([60; 63][[75; 76]). Each p1 2 [70; 78]
is a best reply to a conjecture over 60 and 76. Each p2 2 [60; 63] is a best reply to some
p1 2 [72; 78] and each p2 2 [75; 76] is a best reply to some p1 2 [70; 72]. Each p1 > 78
can be best reply only to p2 > 76, which can be best reply only to p1 > 104, until

the �oor of price at which consumers buy is hit. Analogous arguments prove that

all other p1; p2 are not rationalizable. There is no pure equilibrium: conditional on

employing di¤erent technologies, the equilibrium price vector induces the �rm that

employs k = 2 to switch to k = 1. There is one equilibrium in which �rm 1 sets

p1 = 72 (so that �rm 2 can randomize) and �rm 2 sets p2 = 60 with probability 3=4

and p2 = 76 with probability 1=4. From now on, assume for simplicity that �rms can

pick only integer prices.

Fix the path z := (((1; 80); (1; 80)); ((1; 80); (1; 80))), which yields pro�t ui(z) =

2 � (162 � F1) = 192 to i = 1; 2. The best unilateral deviation of �rm �i (to p�i = 64
and k = 2) in the �rst period, followed by the equilibrium of the subgame, yields to �i
pro�t 322+282� 2F2 = 208 > 192. Thus, z is not a SPE path. Suppose instead that
�rm i reacts to the deviation with price pi = 70. Then, the deviation is not pro�table:

322 � F2 + 112 � F1 = 185 < 192. Can �rm i credibly threaten to �x pi = 70 after

such deviation? The answer is yes. First, note that at every rationalizable, non-initial

history, the rationalizable prices of the two �rms must constitute a best response set.

Then, after a rationalizable deviation of �rm�i to k = 2, some p�i 2 [60; 63] and some
p�i 2 [75; 76] must both be possible. But then, �rm i can react with pi = 72. Second,
if expecting pi = 72 makes the deviation pro�table, �rm �i can then �x p�i = 60, and
the best reply of �rm i to p�i = 60 is precisely pi = 70. In the Appendix I exploit this

intuition to show formally the existence of a strict Nash equilibrium in rationalizable

strategies that induces z. By Proposition 5, the corresponding agreement implements

z.

Is z implementable also under priority to the path? Yes: by displaying the inten-

tion to gain a higher pro�t than under the path, �rm �i is not able to re-coordinate
on a more pro�table subpath with �rm �i, who may always react with a lower price
than �rm �i hoped for. In particular, if the least optimistic belief of �i that justi�es
the deviation is epi > 72, the best reply to the best reply to pi is smaller than pi itself
(bpi(bp�i(pi)) < pi); if 70 < epi � 72, �i may �x p�i = 60, and i can react with pi = 70.
The construction of a Nash inducing z in the Appendix is valid also under priority to

the path. By Remark 4, the corresponding agreement implements z under priority to
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the path.

8 Appendix

8.1 Games

Construction of Nash for the Applied Example. For simplicity, I will omit the
technology choice in the description of strategies. Note preliminarly that a unilateral

deviation to (2; p�i) with p�i = 61; :::; 67 is pro�table for �rm�i if followed by pi = 72.
Fix n � 0 and suppose to have shown the existence of a strict Nash equi-

librium (s�i )i=1;2 2 Sn(z), and, for each i = 1; 2 and h = ((1; 80); (2; p�i)) with

p�i = 61; :::; 67, of s�i;h 2 Sni such that s
�
i;h(h) = 72 and s�i;h(h

0) = s�i (h
0) for all

h0 6= h. Then, there exist ��i that strongly believes (S
q
i )
n�1
q=0 such that ��i(s

�
i;hjh0) = 1,

and s0�i;h; s
00
�i;h 2 �(��i)(h) � Sn�i such that s

0
�i;h(h) = 60 and s00�i;h(h) = 76. Fix

i = 1; 2. For each h = ((1; 80); (k; p�i)) 2 H(Sn�i), �x s�i;h 2 argmins�i2Sn�i(h) s�i(h).
Fix ��i that strongly believes (S

q
�i)

n
q=0 such that �

�
i (s

�
�ijh0) = 1, and, for each h =

((1; 80); (k; p�i)) 2 H(Sn�i) with (k; p�i) 6= (1; 80), ��i (s�i;hjh0) = 1. Fix s�i 2 �(�i) �
ri(�

�
i (�jh0)) = Si(z) and ��i that strongly believes (S

q
i )
n+1
q=0 such that ��i(s

�
i jh0) = 1.

Fix h = ((1; 80); (k; p�i)) 2 H(Sn�i). If k = 2 and s�i (h) > 72, or k = 1 and s�i (h) > 80,
then bp�i(s�i (h)) = bp�i(bpi(s�i;h(h))) < s�i;h(h). But then, �(��i)(h) = ;, other-
wise s�i;h 6= argmins�i2Sn�i(h) s�i(h). If k = 2, p�i 6= 61; :::; 67, and s�i (h) � 72,

or k = 1 and s�i (h) � 80, then �(��i)(h) = ;, because ��i(Si(z)jh0) = 1 and

the deviation cannot be pro�table for �i. If k = 2 and p�i = 61; :::; 67, then

s�i (h) � bpi(s0�i;h(h)) = bpi(60) = 70, thus �(��i)(h) = ;. Since �(��i)(h) = ; for all
h 62 H(Sn�i), r�i((��ijh0)) � S�i(z). Hence, s� 2 Sn+1(z) is a strict Nash equilibrium.
For each h = ((1; 80); (2; p�i)) with p�i = 61; :::; 67, �x ��i;h that strongly believes

(Sq�i)
n
q=0 such that �

�
i;h(s

0
�i;hjh) � 60 + ��i;h(s00�i;hjh) � 78 = 64, and ��i;h(�jh0) = ��i (�jh)

for all h0 6= h. Thus, there exists s�i;h 2 �(��i;h) � Sn+1i such that s�i;h(h) = 72

and s�i;h(h
0) = s�i (h

0) for all h0 6= h. Inductively, I �nd a strict Nash equilibrium

s� 2 S1(z).
All employed �i strongly believe S�i(z). Thus, the procedure can be prolonged to

obtain a strict Nash equilibrium s� 2 S1z (z).

32



Formalization of Example 3.

2�
AnB W F

W 2; 2 1; 3

F 3; 1 0; 0

For i = A;B, I will write a strategy si as x:y:w, where x = si(h0), y = si((si(h0);W )),

and z = si((si(h0); F )). For any z 2 Z, consider the path agreement e0 = SA(z) �
SB(z) = S(z); then �e

i =
�
�i 2 �H(S�i) : �i(S�i(z)jh0) = 1

	
, for i = A;B. All

strategies are rational, hence rationalizable.

Let z = ((W;F ); (F;W )). Selective Rationalizability goes as follows.

S1A;e = SA(z); S
1
B;e = SB(z) [ fW:F:W;W:F:Fg ;

S2A;e = fW:W:Fg ; S2B;e = S1B;e;
S3A;e = S2A;e; S

3
B;e = fW:F:W;W:F:Fg ;

S4A;e = ;:

Let z := ((F;W ); (F;W )). Selective Rationalizability goes as follows.

S1A;e = SA(z); S
1
B;e = SB(z) [ fF:F:F; F:W:Fg ;

S2A;e = fF:F:Wg ; S2B;e = S1B;e;
S3A;e = S2A;e; S

3
B;e = fF:F:F; F:W:Fg ;

S4A;e = ;:

Example 4. Consider the following game.

AnB W E AnB L C R

N 6; 6 �� �! U 9; 0 0; 5 0; 3

S 0; 0 2; 2 M 0; 5 9; 0 0; 3

D 0; 7 0; 7 1; 8

All strategies are rational, hence rationalizable. The subgame has one pure equi-

librium, (D;R), and no mixed equilibrium: for Ann to be indi¤erent between U

and M , Bob must randomize over L;C, but when he is indi¤erent between them,
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he prefers R; for Ann to be indi¤erent between U and D or M and D, Bob must

randomize over, respectively, L;R and C;R, but R dominates L against U;D and C

against M;D. So, the game has only one SPE, inducing path (S;E).

Players want instead to implement (N;W ). Hence they reach the reduced agree-

ment with e0A = fN:U;N:Mg and e0B = fWg. The agreement is self-enforcing:

S1e = fN:U;N:M;N:Dg � fWg, thus S1e = S1e = S((N;W )). Also, the agreement is

self-enforcing under priority to the path: each action of Bob in the subgame is a best

reply to some belief over the actions of Ann which justi�es the deviation. Formally,

S1z = S1z = fN:U;N:M;N:Dg � SB, and (S
q
ez)

1
q=0 = (S

q
e)
1
q=0.

Note two things about the SPE. First, despite being unique, it requires o¤-the-

path restrictions for its implementation. Under the path agreement on (S;E), Ann

may deviate to N , hoping that Bob will reply with L or C, which are best replies

against the potentially pro�table deviations of Ann. Second, the SPE action D is

not a potentially pro�table deviation for Ann with respect to the path. Thus, if

the deviation is interpreted as an attempt to improve the payo¤ with respect to the

agreed-upon path, Bob cannot expect Ann to play D. Hence, the fact that R is best

reply to D which is best reply to R itself is of no value.

Finally, consider the following, non-reduced, agreement: e0A = fSg ; e(N;E)A =

fDg ; e0B = SB. It implements (S;E): S1e = SA � fE:Rg; S2e = fSg � fE:Rg; so
S1e = S2e � S((S;E)). Restrict now the plans of Bob to those compatible with

(S;E), i.e. e0B = fE:L;E:C;E:Rg. Then, S1A;e = fS;N:U;N:Mg. But then, S2B;e = ;.
Thus, a self-enforcing agreement cannot always be made truthful by excluding the

plans that are not compatible with the path it implements.

Example 5. Consider the following game.

4; 4; 4 AnB w e

" u n 3; 9; 0 0; 8; 9

Ann 5; 0; 1 s 0; 3; 0 1; 5; 9

# i o " "
Bob �! Cleo � �a �! Bob

# d #
CnB l c r AnB w e

t 5; 4; 1 5; 6; 0 5; 0; 0 n 3; 9; 0 0; 8; 9

b 5; 4; 0 5; 0; 1 5; 10; 1 s 0; 3; 0 1; 5; 9
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Consider the following tight agreement, prescribing outcome (u):

e0A = fug ; e0B = SBn fd:l; d:c; d:rg ; e0C = ft:ag ;
e
(i)
A = fn:n; n:s; s:ng ; e(i;d)B = fl; c; rg :

T3 holds, as �(�e
A) = e

0
A = fug. All strategies are rational, so S1 = S and H(S1) =

H. Thus, for T1 to hold it is su¢ cient that all histories are reached by some plan:

H(e0A) = fh0g and H(e
(i)
A ) = Hn fh0g; H(e0B) = Hn fi:dg and e

(i;d)
B 6= ;; H(e0C) = H.

Finally, T2 holds. For Ann, �(�e
A) = fug, so e0A � �(�e

A) and (i) 62 H(�(�e
A)). Bob

expects Ann to play n with probability of at least 1=2 in one of the two subgames,

where his expected payo¤ is then at least 6:5. Moreover, he believes that Cleo will

give him the opportunity to pick that subgame. After d, instead, he expects Cleo

to play t, with a payo¤ of 6. Thus, e0B = �(�
e
B), and (i:d) 62 H(�(�e

B)). For Cleo,

e0C � �(�e
C) = SC . Since the agreement is tight, by Proposition 3 it implements (u).

Note that the agreement is not on actions: Ann promises to play n in one of the

two subgames, but she does not say in which one. Is there an agreement on actions

that implements u? No. For Ann to select u, Bob and Cleo must exclude from

the agreement, or eliminate through strategic reasoning, d and o. If o is excluded

or eliminated, Bob expects a payo¤ of at least 5 by not playing d. Thus, Bob will

eliminate d:l. If Bob still considers d:c or d:r when d:l is eliminated, Cleo will best

reply with b. But then Bob will select d:r, and u cannot be implemented. So, the

agreement must make sure that Bob eliminates d:c and d:r no later than d:l. For the

elimination of d:r, it is necessary that Cleo excludes b from the agreement. Then Bob

is con�dent that by playing d:c he can get 6. So, for Bob to eliminate d:c, he must

be con�dent of getting a higher payo¤ without playing d. So, he must be con�dent

that in at least one of the two subgames, Ann will not play s. If this subgame was

pinned down by the agreement or strategic reasoning, then Bob would play w in the

subgame he moves to. Then, Cleo will select o, and u cannot be implemented. Hence,

Ann, through the agreement or strategic reasoning, does have to exclude planning s

in both subgames, but at the same time she must not reveal in which subgame she

is not planning s. In this game, she can do this only through the agreement: if she

rationally plays i, she hopes in d or o, and if d and o are not played, she could plan

s in both subgames.

Thus, agreements that are not on actions can be needed to implement an
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outcome. Then, the "only if" direction of Theorem 1 would fail if tight agreements

were required to be on actions. This is true even if the focus is restricted to outcome

sets implemented by agreements on actions: it is possible to complicate the game in

such a way that any tight agreement prescribing (u) still requires the exclusion of s:s

and not of n:s and s:n, but (u) is also implemented by an agreement on actions that

leads to the elimination of s:s.42

Furthermore, Ann needs to restrict her agreed-upon plans at histories that follow

her own deviation from the implemented path. Using Theorem 2 by contraposition,

this shows that there is no SES that induces u. Yet, the tight agreement above is

clearly equivalent to the following reduced agreement: e0A = fu; i:n:n; i:n:s; i:s:ng,
e0B = e

0
B, e

0
C = e

0
C . Thus, e is self-enforcing (but not truthful) and it implements (u).

This shows that the reverse of Theorem 2 does not hold: SES�s do not capture all the

outcomes that can be implemented by a reduced agreement.

So, a �nal question arises: is the entire class of reduced agreements su¢ cient

to implement all implementable outcomes? The answer is no. Imagine that at the

initial history, Ann plays simultaneously with Bob, and needs to exclude i from the

agreement to coordinate with Bob on an outcome equivalent to (u).43 Then, Ann

would need to exclude both i and the continuation plan s:s after (i). Thus, non-
reduced agreements can be needed to implement an outcome.

8.2 Proofs

Throughout, let H1 := H(S1) and H1 := fh 62 H1 : p(h) 2 H1g. For any �i 2
�H
i (S�i), let H

�i := fh0g [ fh 2 H1 : �i(S�i(h)jp(h)) = 0g.

Proof of Proposition 1. "Only if": trivial. "If": e is credible by �(S1e ) 6= ;,
and �(S1e ) � �(S1e \ e0) is obvious; for the opposite inclusion I show that for every
s = (si)i2I 2 S1e , there exists s� 2 S1e \ e0 such that �(s�) = �(s). Fix i 2 I and
�i 2 �e

i t.s.b. ((S
q
j;e)j 6=i)

1
q=0 and ((S

q
j )j 6=i)

1
q=0with si 2 �(�i). By �(S1e ) � �(e0), for

each h 2 H(si) \ H(S1e ), si(h) = si(h) for some si 2 e0i (h). Since the agreement is
on actions, there exists si 2 e0i such that si(h) = si(h) for all h 2 H(si) \ H(S1e ).
Fix h 2 H 0 := fh0 2 H(si)nH(S1e ) : p(h0) 2 H(S1e )g. Since p(h) 2 H(si) \ H(S1e ),
42The modi�ed game is available upon request.
43This also makes it plausible that Ann wants to contribute to the credibility of not playing i: in

the example above, she just destroys any hope to get a higher payo¤ than her outside option.
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h 2 H(si)\H(si). Then h 2 H(S1i;e)\H(e0i ). Thus, since e is credible, e0i \S1i;e(h) 6= ;.
Fix si;h 2 e0i (h) \ S1i;e(h) and �i;h 2 �e

i t.s.b. ((S
q
j;e)j 6=i)

1
q=0 and ((S

q
j )j 6=i)

1
q=0 with

si;h 2 �(�i;h). Since �i strongly believes S
1
�i;e, �i(S�i(h)jp(h)) = 0. Thus, there

exists ��i 2 �e
i t.s.b. ((S

q
j;e)j 6=i)

1
q=0 and ((S

q
j )j 6=i)

1
q=0 such that �

�
i (�jh) = �i(�jh) for

all h 2 H(S1e ), and �
�
i (�jh0) = �i;h(�jh0) for all h 2 H 0 and h0 � h. So, there is

s�i 2 �(��i ) � S1i;e such that s
�
i (h) = si(h) = si(h) for all h 2 H(si) \ H(S1e ), and

s�i jh = si;hjh for all h 2 H 0. Since the agreement is on actions, s�i 2 e0i , and by

H(s�) � H(S1e ), �(s�) = �(s). �

Proof of Proposition 2. Since e is credible, S1e \ e0 6= ;. Since �(S1e ) is a
singleton and �(S1e ) � �(S1e \ e0), �(S1e ) = �(S1e \ e0). �

Lemma 1 Fix an agreement e. If e0 satis�es T3 and e0 � S1e , e is truthful.

Proof. First, I show that �(S1e ) � �(e0). Fix s = (si)i2I 2 S1e and h 2
H(s)\H(e0). Since e0 is Cartesian, so is Ahe :=

�
a 2 A(h) : (h; a) 2 H(e0)

	
. For each

i 2 I, since si 2 �(�e
i )(h) and e

0
�i(h) 6= ;, by T3 si(h) 2 Ahi;e. Thus (h; s(h)) 2 H(e0).

By induction, �(s) 2 �(e0).
So, by e0 � S1e , �(S1e \ e0) = �(e0) = �(S1e ). �

Lemma 2 Fix i 2 I, h 2 H1, shi 2 S1i jh, and h 2 H(shi ) \ H1. Thus, [shi ]1jh =
S1i jh.44

Proof. Fix si; s0i 2 S1i (h) with sijh = shi . Fix �i; �
0
i t.s.b. ((S

q
j )j 6=i)

1
q=0 with

si 2 �(�i) and s0i 2 �(�0i). Since h 2 H(S1i )nH1, p(h) 2 H(S1�i), and �i strongly
believes S1�i, �i(S�i(h)jp(h)) = 0. Then, there exists ��i t.s.b. ((S

q
j )j 6=i)

1
q=0 such that

��i (�jh0) = �i(�jh0) for all h0 6� h, and ��i (�jh0) = �0i(�jh0) for all h0 � h. Thus, there

exists s�i 2 �(��i ) � S1i such that s�i jh = s0ijh and s�i (h0) = si(h0) for all h0 6� h with
h0 2 H(si). So s�i jh 2 [shi ]1. �

Lemma 3 Fix a rationalizable agreement e = (ei)i2I . For each i 2 I and �i 2 �e
i

t.s.b. (S1j )j 6=i, [�(�i)]
1 � S1i;e.45

44This lemma is not needed under priority to the agreement.
45This means that for agreements in this class, such as tight agreements and agreements that

correspond to a SES, S3 can be substituted by si 2 S1i at the �rst step. An easy induction
argument extends this fact to all steps.
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Proof. Fix si 2 [�(�i)]1 � S1i and si 2 �(�i) with si(h) = si(h) for all h 2 H1.

Fix �0i t.s.b. ((S
q
j )j 6=i)

1
q=0 with si 2 �(�0i). For each h 2 H1 \H(si) = H1 \H(si),

by �i(S
1
�ijh) = 1, si 2 S1i , and si(h) = si(h) for all h 2 H1, also si is a continuation

best reply to �i(�jh). Fix h 2 H(si) \ H1. Fix s�i = (sj)j 6=i 2 S�i(h). For each
j 6= i, if sj 62 S1j or [h�hehj (h) = ;, let s0j = sj. Else, �x h � h with ehj (h) 6= ;. By
ehj = [e

h
j ]
1, there exists s0j 2 S1j such that s0jjh 2 ehj and, by Lemma 2, s0jjh = sjjh.

Let �h(s�i) = (s0j)j 6=i. Since h 2 H(S1i )nH1, p(h) 2 H1, and �i strongly believes

S1�i, �i(S�i(h)jp(h)) = 0. Then, there exists ��i 2 �e
i t.s.b. ((S

q
j )j 6=i)

1
q=0 such that

��i (�jh0) = �i(�jh0) for all h0 2 H1, and ��i (s�ijh0) = �0i((�
h)�1(s�i)jh0) for all h 2

H(si) \H1, h0 � h, and s�i 2 S�i(h0). Thus, si 2 �(��i ) � S1i;e. �

Proof of Proposition 3.
For each i 2 I, let Si := �(�e

i )\S1i . I show that e0 � S1e ; then, by T3, the result
follows from Lemma 1. By T2, e0i � Si for all i 2 I. Now I show that Si � S1i;e.46 Fix
si 2 Si, �i 2 �e

i , and �
0
i t.s.b. ((S

q
j )j 6=i)

1
q=0 such that si 2 �(�i) \ �(�0i). Fix h 2 H�i

and s�i = (sj)j 6=i with �i(s�ijh) > 0. For each j 6= i, by T1, there is h � h such

that ; 6= ehj (h) � S1j jh and, if h 2 H(Sj), by T2, ehj � Sjjh. By �i 2 �e
i , sjjh 2 ehj .

Thus, there is s0j 2 S1j such that s0jjh = sjjh 2 ehj and, if h 2 H(Sj), s0j 2 Sj. Let
�h(s�i) := (s0j)j 6=i. Fix h 2 H(si) \ H1 and s�i = (sj)j 6=i 2 S�i(h). Fix j 6= i. If

sj 2 S1j and [h�hehj (h) 6= ;, by T1 there is h � h such that ; 6= ehj (h) = [ehj (h)]1 and,
if h 2 H(Sj), by T2, ehj � Sjjh. By Lemma 2, ehj jh = S1j jh. Thus, there is s0j 2 S1j
such that s0jjh 2 ehj , s0jjh = sjjh, and, if h 2 H(Sj), s0j 2 Sj. If sj 2 S1j , [h�hehj (h) =
;, and (F) sjjh 2 Sjjh, pick s0j 2 Sj such that s0jjh = sjjh. Else, let s0j := sj.

Let �h(s�i) := (s0j)j 6=i. Since h 2 H(S1i )nH1, p(h) 2 H1, and, by �i 2 �e
i and

T1, �i(
�
s�i : s�ijp(h) 2 S1�ijp(h)

	
jp(h)) = 1, �i(S�i(h)jp(h)) = 0. Thus, there exists

��i 2 �e
i that strongly believes ((S

q
j )j 6=i)

1
q=0 such that �

�
i (s�ijh) = �i((�h)�1(s�i)jh) for

all h 2 H�i and s�i with �i((�
h)�1(s�i)jh) > 0, and ��i (s�ijh0) = �0i((�h)�1(s�i)jh0) for

all h 2 H(si) \H1, h0 � h, and s�i 2 S�i(h0). Clearly, si 2 �(��i ) � S1i;e. Obviously,
Si � S1i;e. So, S = S1e .
For each j 6= i and h 2 H1 \ H(Sj), by Lemma 2, [Sj]1jh = S1j jh. By T1

and Lemma 3, [S1j;e]
1 = S1j;e. So, by S

1
j;e = Sj, Sjjh = S1j jh. Then, sj 2 S1j

implies (F). So, ��i strongly believes also (Sj)j 6=i = (S1j;e)j 6=i; hence si 2 S2i;e. Thus,
e0 � S = S1e = S2e = S1e . �
46Under priority to the agreement, the equality is obvious, but the construction that follows is

still needed for the second step.
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Proof of Theorem 2.
De�ne S like in De�nition 13. I show that e0 = S� � S1e ; then, since Self-

Enforceability implies T3, the result follows from Lemma 1. By Self-Justi�ability

S� � S. By Lemma 3, S � S1e .47 Obviously, S � S1e . So, S = S1e . Now I show that
S1e = S

1
e

Fix i 2 I and si 2 Si � S1i . Fix �0i t.s.b. ((S
q
j )j 6=i)

1
q=0 and �i t.s.b. (S

�
j ; Sj; S

1
j )j 6=i

such that si 2 �(�0i) \ �(�i) (�i exists by Forward Induction). Fix h 2 H(si) \ H1
and s�i = (sj)j 6=i 2 S�i(h). Fix j 6= i. If sj 62 S1j or h 62 H(Sj), let s0j := sj.

Else, by the argument in the proof of Proposition 3, sj 2 S1j implies sjjh 2 Sjjh. If
h 2 H(S�j ), by Rationalizability and Lemma 2, sjjh 2 S�j jh too. So, there is s0j 2 Sj
such that s0jjh = sjjh and, if h 2 H(S�j ), by S� � S, s0j 2 S�j . Let �h(s�i) := (s0j)j 6=i.
Since h 2 H(S1i )nH1, p(h) 2 H1, and �i strongly believes S

1
�i, �i(S�i(h)jp(h)) = 0.

Thus, there exists ��i t.s.b. (S
�
j ; Sj)j 6=i.and ((S

q
j )j 6=i)

1
q=0 such that �

�
i (�jh) = �i(�jh) for

all h 2 H1, and ��i (s�ijh0) = �0i((�h)�1(s�i)jh0) for all h 2 H(si) \H1, h0 � h, and
s�i 2 S�i(h0). Clearly, si 2 �(��i ) � S2i;e. Thus, S1e = S2e = S1e . �

Proof of Proposition 4.48 First, I show that S� is a SES, i.e. that Rationalizable
Vetos implies Rationalizability. Fix i 2 I, si 2 S�i , and s0i 2 [si]1. For each z 2 Wi,

by z 2 �(S1), si(h) = s0i(h) for all h � z. Thus, by si 62 Si(z), s0i 62 Si(z). So, s0i 2 S�i .
Consider now the reduced agreements e; e with, for all i 2 I, e0i = S1i n[z2Wi

Si(z)

and e0i = Sin[z2Vi Si(z) with Vi := Zn�(e0i �S�i). Fix si 2 e0i . Then, �(fsig�S�i)\
Vi = ;. Thus, si 2 e0i . So, e0i � e0i . Fix z 2 �(e0i � S�i). Then, z 62 Vi. Thus,
z 2 �(e0i � S�i). So, �(e0i � S�i) � �(e0i � S�i). Then, by e0i � e0i , H(e

0
i ) = H(e

0
i ),

and so �e
j � �e

j for all j 2 I. Fix si 2 e0i \ S1i . For every z 2 Z with si 2 Si(z),
z 62 Vi � Wi. Then, by si 2 S1i , si 2 e0i . Thus, by H(e0i ) = H(e0i ) � H(S1i ), for each
�j 2 �e

j t.s.b. (S
1
i )i6=j, �j 2 �e

j . So, e and e are equivalent under S3. By Theorem

2, e implements �(S�). So, e too. �

Proof of Proposition 5.49 Strict Nash obviously implies Self-Enforceability. Fix
i 2 I. For each si 2 S1i and s�i 2 r�i(si), �(si; s�i) 2 �(S1). Then, S�i is the set of
all si 2 S1i (z) such that for each bz 2 �(S1) with u�i(bz) � u�i(z), si 62 Si(bz). Thus,
47Under priority to the agreement, the equality is obvious.
48Under priority the agreement, just observe that (i) Rationalizability has no bite, so S� is a

SES, and (ii) the candidate implementing agreement on actions corresponds to the SES itself, so by
Theorem 2 it does implement �(S�).
49Under priority to the agreement, substitute S1 with S, and not with S1.
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Rationalizable Vetos holds. De�ne S like in De�nition 13. Fix s�i 2 S�i [Si and �i t.s.b.
S1�i such that s

�
i 2 �(�i). Fix any ��i t.s.b. S��i and S1�i such that ��i (�jh) = �i(�jh)

for all h 2 H(s�i )nH(S��i), and ��i (S�ijh) = 1 for all h 2 H(S�i)n(H(s�i ) [ H(S��i)).
Clearly, s�i 2 �(��i ). So, S� � S, i.e. Self-Justi�ability holds. Moreover, by Self-

Enforceability, H(S) = H(S(z)). Thus, (H(Si)nH(S��i)) \ H(S�i) = ;. Then, ��i
strongly believes also S�i. So, Forward Induction holds.

Fix s� 2 S� and let e; e be the reduced agreements with e0 = fs�g and e0 = fS�g.
Fix n 2 N and suppose to have shown that S� � Sn�1e = Sn�1e . Then, for each

i 2 I and �i t.s.b.
�
s��i
	
, (Sq�i)

1
q=0, and (S

q
�i;e)

n�1
q=0 , there is �

0
i t.s.b. S

�
�i, (S

q
�i)

1
q=0,

and (Sq�i;e)
n�1
q=0 with �i(�jh) = �0i(�jh) for all h 62 H(S�i(z)), and vice versa. For

all h � z, ri(�i(�jh)) = Si(z) = ri(�
0
i(�jh)), and for all h 2 H(Si(z)) with h 6� z,

h 62 H(S�i(z)). Thus, �(�i) = �(�0i). So, S
n
e = Sne , and by Lemma ??, S

� � Sne .

Hence, by Theorem 2, fzg = �(S1e ) = �(S1e ). Then, by Proposition 2, e is self-

enforcing, and by fzg = �(S1e ), truthful. �

Lemma 4 Fix an agreement e, a �nite chain of Cartesian sets of strategy pro�les
S = S

0 � ::: � SM 6= ; and L �M such that for all i 2 I and si 2 Si,

1. if L 6= 0, si 2 S
L

i if and only if si 2 �(�i) for some �i t.s.b. ((S
q

j)j 6=i)
L
q=0;

2. si 2 S
M

i if and only if si 2 �(�i) for some �i 2 �e
i t.s.b. ((S

q

j)j 6=i)
M
q=0.

De�ne [�]L as [�]1 with (SLi )i2I in place of (S1i )i2I . Suppose that �(S
M
) = �(S

M \
e0). Then there exists an agreement e with �(e0) = �(S

M
) which satis�es T1, T2,

and T3 with L in place of 1.

Proof. Let HL := H(S
L
) and HL :=

�
h 62 HL : p(h) 2 HL

	
. Construct an

agreement with the following inductive procedure. Let e0 be the reduced agreement

with e0;0i := S
M

i \ e0i 6= ; for all i 2 I. Fix n > 0 and suppose to have de�ned an

agreement en�1. Fix i 2 I and let

H 0 :=
n
h 2 HL : [h�he

h;n�1
i (p(h)) 6= ; = [h�he

h;n�1
i (h)

o
:

For each h 62 H 0, let en;hi := en�1;hi . Now �x h 2 H 0 and letm := max
�
q � L : h 2 H(Sqi )

	
.

If there is h � h with ehi (h) 6= ;, let e
n;h
i := ((S

m

i jh) \ ehi )jh (non-empty by S
M 6= ;
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and 2.); else, let en;hi := S
m

i jh. Since histories in H 0 are unordered, (enj )j2I is an agree-

ment. By �niteness of the game, the procedure stops at some eK . De�ne e as, for

each i 2 I and h 2 H, ehi = [e
h;K
i ]L if h 2 HL and ehi = ; else. Then, by construction,

eh satis�es T1.

Fix i 2 I and �i 2 �e
i t.s.b ((S

q

j)j 6=i)
M
q=0. Fix h 2 HL, s�i = (sj)j 6=i with

�i(s�ijh) > 0, and j 6= i. By T1, there is h00 with eh
00
j (h) 6= ;. If there is h0 � h with

eh
0
i (h) 6= ;, sjjh0 2 eh

0
j , and by construction of e, h

00 � h0. So, since sj 2 S
m

j for all

m with S
m

j (h) 6= ;, sjjh00 2 eh
00
j . Then, since by T1 e

h00
j = ; for all h00 62 HL, �i 2 �e

i

(F).
Fix i 2 I and �i 2 �e

i . Fix si 2 �(�i). Let

HL;�i :=
�
h0
	
[
�
h 2 HL : �i(S�i(h)jp(h)) = 0

	
:

For each h 2 HL;�i and s�i = (sj)j 6=i with �i(s�ijh) > 0, by construction of e,

there exists �h(s�i) = (s0j)j 6=i such that, for all j 6= i: (i) s0j(h
0) = sj(h

0) for all

h0 2 HL \H(sj) with h0 � h; (ii) s0j 2 S
m

j for all m � L with Smj (h) 6= ;; (iii) if there
is h � h with ehj (h) 6= ;, s0jjh 2 ehj . Construct any ��i 2 �e

i t.s.b. ((S
q

j)j 6=i)
M
q=0 such

that ��i (s�ijh) = �i((�h)�1(s�i)jh) for all h 2 HL;�i and s�i with �i((�
h)�1(s�i)jh) >

0. By 1., for any e�i t.s.b. SL�i and esi 2 �(e�i), �(fesig � SL�i) � �(S
L
). By (i),

�i(S�i(z)jh) = ��i (S�i(z)jh) for all h 2 HL and z 2 �(SL) with z � h. Thus, there
exists s�i 2 �(��i ) � S

M

i (by 2.) such that s�i (h) = si(h) for all h 2 HL \H(si) (N).
So, H(�(�e

i )) \HL � H(SMi ) \HL (H).
Fix �i t.s.b. e

0
�i and si 2 �(�i). Clearly, there exist �i 2 �e

i with �i(�jh) = �i(�jh)
for all h 2 H(e0�i), and si 2 �(�i) such that si(h) = si(h) for all h 2 H(e0�i). By (N),
there exists s�i 2 S

M

i such that s�i (h) = si(h) = si(h) for all h 2 HL � H(SMi � e0�i).
So,

�(fsig � e0�i) = �(fs�i g � e0�i) = �(fs�i g � e
0;K
�i ) � �(S

M
) = �(e0;K) = �(e0);

where the second equality holds by s�i 2 S
L

i and �(S
L

i � e0�i) = �(S
L

i � e
0;K
�i ), the

inclusion by s�i 2 S
M

i and e
0;K
�i � S

M

�i, the penultimate equality by �(S
M
) = �(S

M\e0)
and S

M \ e0 = e0;K , and the last equality by construction of e. So, e0 satis�es T3.
Fix h 2 H(�(�e

i ) \ S
L

i ) with e
h
i 6= ;. Then, by T1, h 2 HL. Thus, by (H),

h 2 H(S
M

i ). Fix s
h
i 2 ehi . By construction of e, there is si 2 S

M

i (h) such that

si(h) = s
h
i (h) for all h 2 HL \ H(si) with h � h. By 2., there exists �i 2 �e

i t.s.b
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((S
q

j)j 6=i)
M
q=0 such that si 2 �(�i). By (F), �i 2 �e

i . If L = 0, let �
�
i := �i. If L 6= 0,

by T1 there is s0i 2 S
L

i with s
0
ijh = shi . By 1., there is �

0
i t.s.b. ((S

q

j)j 6=i)
L
q=0 such

that s0i 2 �(�0i). Fix h 2 H 0 := H(shi ) \ HL and s�i = (sj)j 6=i 2 S�i(h). Fix j 6= i.

If sj 62 S
L

j or [h0�heh
0
j (h) = ;, let s0j := sj. Else, by T1 and Lemma 2 with L in

place of 1, there is h0 � h with eh0j jh = S
L

j jh. Thus, there exists s0j 2 S
L

j such that

s0jjh = sjjh and s0jjh0 2 eh
0
i . Let �

h(s�i) := (s0j)j 6=i. Since �i strongly believes S
L

�i,

�i(S�i(h)jp(h)) = 0 for all h 2 H 0. Hence, there exists ��i 2 �e
i t.s.b. ((S

q

j)j 6=i)
L
q=0

such that ��i (�jh) = �i(�jh) for all h 2 HL, and ��i (s�ijh0) = �0i((�h)�1(s�i)jh0) for all
h 2 H 0, h0 � h, and s�i 2 S�i(h0). Thus, there exists s�i 2 �(��i ) � �(�e

i ) \ S
L

i such

that s�i jh = shi . Hence, ehi � (�(�e
i ) \ S

L

i )jh. So, e satis�es T2. �

Proof of Theorem 1. The "if" part coincides with Proposition 3. For the

"only if" part, �x an implementable outcome set P � Z and an agreement e with

�(S1e ) = �(S
1
e \e0) = P . Apply Lemma 4 with50 (S

q
)Mq=0 = ((S

q)Lq=0; (S
q
e)
K
q=1), where

L and K are the smallest l and k such that Sl = Sl+1 and Ske = S
k+1
e .51 �

Proof of Proposition 6. Fix an implementable outcome set P � Z under

priority to rationality, and an implementing agreement e. Since e is self-enforcing

under priority to rationality, I can apply Lemma 4 with (S
q
)Mq=0 = ((S

q)Dq=0; (S
q
e)
K
q=1),

where D and K are the smallest d and k such that Sd = Sd+1 and Ske = S
k+1
e , and

L = 0. The obtained agreement e is tight under priority to the agreement. Thus, by

Proposition 3 and Remark 3, e implements P under priority to the agreement. �

Proof of Proposition 8. Fix an implementable outcome set P � Z under

priority to the path, and an implementing agreement e. Since e is self-enforcing under

priority to the path, I can apply Lemma 4 with (S
q
)Mq=0 = ((S

q)Lq=0(S
q
z)
D
q=1; (S

q
ez)

K
q=1),

where L, D and K are the smallest l, d, and k such that Sl = Sl+1, Sdz = S
d+1
z , and

Skez = S
k+1
ez . The obtained agreement e is tight under priority to rationality. Thus,

by Proposition 3, e implements P under priority to rationality. �

50Here Selective Rationalizability is merged with Rationalizability into a unique elimination pro-
cedure.
51Under priority to the agreement, let (S

q
)Mq=0 = (S

q
�e)Mq=0 and L = 0, where M is the smallest m

such that Sm�e = Sm+1�e . Under priority to the path, let (S
q
)Mq=0 = ((Sq)Bq=0(S

q
z )
D
q=1; (S

q
ez )

K
q=1) and

L = B +D, where B, D and K are the smallest b, d, and k such that Sb = Sb+1, Sdz = S
d+1
z , and

Skez = S
k+1
ez .
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