Темы из программы, выносимые на кр 20.03 и задачи по этим темам

Тема XVII

Мультиколлинеарность Идеальная данных. И практическая (квазимультиколлинеарность). мультиколлинеарность Теоретические последствия мультиколлинеарности для оценок параметров регрессионной модели. Нестабильность оценок параметров регрессии и их дисперсий при малых изменениях исходных данных в случае мультиколлинеарности. мультиколлинеарности. Показатели Признаки наличия мультиколлинеарности. Вспомогательные регрессии и показатель "вздутия" дисперсии (VIF). Индекс обусловленности информационной матрицы (bad conditioned index - BCI), как показатель степени мультиколлинеарности. Методы борьбы с мультиколлинеарностью. Переспецификация модели (функциональные преобразования переменных). Исключение объясняющей переменной, линейно связанной с остальными. Понятие о методе главных компонент как средстве борьбы с мультиколлинеарностью данных. Понятие о методе LASSO.

Задачи

- 1) Признаком мультиколлинеарности служит:
 - 1. маленькие t-статистики при R2, близком к 1
 - 2. близкое к 0 значение коэффициента множественной детерминации
 - 3. значительные изменения в оценках коэффициентов регрессии при небольших изменениях в данных
 - 4. близкие к 0 значения коэффициентов корреляции регрессоров
 - 5. все ответы верны
- 2) Оцененная с помощью МНК зависимость заработной платы индивида EARNINGS от его возраста AGE, опыта EXP, пола MALE, длительности обучения S, длительности обучения матери SM имеет вид (в скобках стандартные отклонения коэффициентов):

$$EA\hat{R}N = -24 - 0.099 AGE + 2.49 S + 0.26 SM + 0.46 EXP + 6.23 MALE, R^2 = 0.247$$

Были оценены также вспомогательные регрессии:

$$A\hat{G}E = -.007 + 0.53AGE - 0.6S + 0.23SM + 1.23MALE, R^{2} = 0.2,$$

$$\hat{S} = 8.47 + 0.095AGE + 0.4SM - 0.2EXP + 0.12MALE, R^{2} = 0.25,$$

$$S\hat{M} = 6.16 - 0.045AGE + 0.42S + 0.08EXP + 0.42MALE, R^{2} = 0.18,$$

$$E\hat{X}P = -.07 + 0.53AGE - 0.6S + 0.23SM + 1.23MALE, R^{2} = 0.2,$$

VIF для переменной EXP равен ____.

Ответ. 1.25

3) При применении к модели, результаты оценки которой приведены ниже,

EARNINGS	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval
S AGE Agesq EXP ETHHISP ETHBLACK MALE _cons	2.578227 -10.70493 .1300605 .4429137 -1.078255 -4.014172 6.364055 193.7202	.2288185 9.211662 .1125515 .1442633 2.268688 2.152185 1.111968 187.6859	11.27 -1.16 1.16 3.07 -0.48 -1.87 5.72 1.03	0.000 0.246 0.248 0.002 0.635 0.063 0.000 0.302	2.128729 -28.80062 0910395 .159518 -5.534941 -8.241996 4.179668 -174.9761	3.027726 7.390769 .3511605 .7263094 3.378432 .2136528 8.548442 562.4165

. vif

1/VIF	VIF	Variable
0.000708 0.000709 0.778114 0.875122 0.962602 0.966488 0.983851	1411.96 1411.13 1.29 1.14 1.04 1.03	AGE Agesq EXP S ETHBLACK MALE ETHHISP
	404.09	Mean VIF

метода последовательного исключения, на ближайшем шаге из уравнения регрессии будет удалена переменная

- 1) S 2) AGE 3) EXPSQ 4) EXP 5) ETHWHITE 6)ETHHISP 7) FEMALE 8) ни одна из перечисленных
- 4) Первой главной компонентой системы показателей $X_1,...,X_k$ называется такая линейная комбинация этих показателей
- 1. в которой коэффициент при X_1 равен 1 2. которая обладает наименьшей дисперсией 3. которая обладает наибольшей дисперсией 4. которая ортогональна всем X_j , j=1,...,k
- 5) (Д.А.Борзых, Б.Б.Демешев, часть задачи 7.4)

Пионеры, Крокодил Гена и Чебурашка собирали металлолом несколько дней подряд. В распоряжение иностранной шпионки, гражданки Шапокляк, попали ежедневные данные по количеству собранного металлолома: вектор g-для Крокодила Гены, вектор h-для Чебурашки и вектор x-для пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $c\hat{o}r(g,h)=-0.9$. Гена и Чебурашка собирали независимо от пионеров, поэтому $c\hat{o}r(g,x)=0$, $c\hat{o}r(h,x)=0$. Если регрессоры g,h,x центрировать т нормировать, то получится матрица \tilde{X} . Вычислите одну или две главные компоненты (выразите их через вектор-столбцы матрицы \tilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров.

Otbet. $(\widetilde{X}_1 - \widetilde{X}_2)/\sqrt{2}; \quad \widetilde{X}_3$

Тема XVIII

Типы ошибок спецификации модели. Пропущенные и излишние переменные. Неправильная функциональная форма модели. Смещение в оценках коэффициентов, вызываемое невключением существенных переменных.

Ухудшение точности оценок (увеличение оценок дисперсий) при включении в модель излишних переменных. Проверка гипотезы о группе излишних переменных. RESET тест Рамсея (Ramsey's RESET test) для проверки гипотезы о существовании упущенных переменных.

1) По 150 наблюдениям оценили зависимость почасовой заработной платы от пола (переменная MALE равно 1 для мужчин и 0 для женщин), длительности обучения S и возраста AGE.

$$\hat{Y} = 3.6 + 3.5 MALE + 3.24 S + 0.44 AGE$$
, $RSS = 7632$

Используя результаты двух вспомогательных регрессий, приведенных ниже, проведите RESET – тест и ответьте, правильная ли спецификация модели выбрана.

$$\hat{\hat{Y}} = 12.37 - 0.29 \, MALE - 0.49 \, S - 0.08 \, AGE + 0.0064 \, \hat{Y}^2 \, , RSS = 7154$$

$$\hat{\hat{Y}} = -18.1 + 9.2 \, MALE + 7.93 \, S + 1.1 \, AGE - 0.012 \, \hat{Y}^2 + 1.75 \cdot 10^{-10} \, \hat{Y}^3 \, , RSS = 6069$$

Ответ. Неправильная

Тема XIX

Метод правдоподобия. Свойства максимального оценок метода максимального правдоподобия. Соотношение между оценками коэффициентов линейной регрессии, полученными методом максимального правдоподобия и методом наименьших квадратов в случае нормально распределенной случайной составляющей. Свойства оценки дисперсии случайной составляющей, полученной методом максимального правдоподобия. Проверка гипотез с помощью теста Вальда, теста отношения правдоподобия, теста множителей Лагранжа

Задачи

1) Логарифмическая функция правдоподобия, используемая для оценивания классической линейной регрессионной модели, имеет вид:

1)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = \frac{n}{2} \ln \sqrt{2\pi} - \frac{n}{2} \ln \sigma_{\varepsilon}^2 - \frac{1}{2} \frac{(Y - X\beta)'(Y - X\beta)}{\sigma_{\varepsilon}^2};$$

2)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma_{\varepsilon}^2 - \frac{1}{2} \frac{\varepsilon' \varepsilon}{\sigma_{\varepsilon}^2}$$
;

3)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = -\frac{n}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma| - \frac{1}{2} (Y - X\beta)' \Sigma^{-1} (Y - X\beta);$$

4)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = \frac{n}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma| - \frac{1}{2} (Y - X\beta)' \Sigma (Y - X\beta);$$

- 5) ни один из вышеперечисленных.
- 2) Оценки метода максимального правдоподобия:

- 1) всегда состоятельные
- 2) всегда несмещенные
- 3) всегда имеют нормальное распределение
- 4) могут быть как смещенными, так и несмещенными
- 5) могут иметь произвольное асимптотическое распределение

6)

3) Число звонков по товару распределено по закону Пуассона Р(X=x) =

$$P(X=x)=\frac{\lambda^x}{x!}e^{\lambda}$$

Произведены замеры в течении рабочего дня, было установлено что количество звонков распределилось следующим образом:

Номер часа от начала распродаж	1	2	3	4	5
Число звонков	22	44	59	58	47

Найти параметр λ методом максимального правдоподобия.

Ответ. 46

Тема ХХ

Нарушение гипотезы о гомоскедастичности. Экономические причины гетероскедастичности. Последствия гетероскедастичности для оценок коэффициентов регрессии методом наименьших квадратов и проверки статистических гипотез. Поведение графика остатков регрессии, как признак гетероскедастичности. Тесты), Голдфелда-Квандта (Goldfeld-Quandt), Глейзера (Glejser Бройша-Пагана (Breusch-Pagan). Робастные стандартные ошибки в форме Уайта (White).

Задачи

- 1) При гетероскедастичности возмущений нарушается условие теоремы Гаусса – Маркова _____
- б) (2) Оценки МНК коэффициентов в этом случае останутся
- 1) BEST 2) LINEAR 3) UNBIASED 4) ESTIMATOR 5) ничего из перечисленного
- 2) По данным с 1946 г. по 1975 г. Hanushek и Jackson оценили коэффициенты уравнений регрессии (в скобках указаны оценки стандартных отклонений) $\hat{C}_t = 26.19 + 0.6248 \, GNP_t 0.4398 \, D_t$

$$\left(\frac{\hat{C}}{GNP}\right)_{t} = 25.92 \frac{1}{GNP_{t}} + 0.6246 - 0.4315 \left(\frac{D}{GNP}\right)_{t},$$

где С – агрегированные частные потребительские расходы, GNP - BHP,

D – национальные расходы на оборону.

С какой целью оценили второе уравнение? Какое при этом было сделано предположение о дисперсии ошибок?

OTBET.
$$\sigma_i^2 \sim GNP_i^2$$

3) По данным для 45 стран исследователь оценил зависимость инвестиций І от государственных расходов G и валового внутреннего продукта Y (все переменные измеряются в миллиардах долларов США):

$$\hat{I} = 18.1 - 1.07 G + 0.36 Y$$
, $R^2 = 0.98$

Исследователь упорядочил наблюдения по увеличению У и оценил регрессии снова для 15 стран с наименьшим У и 15 стран с наибольшим У. Величины RSS для этих регрессий равны 421 и 3219 соответственно. Тестируйте модель на наличие пропорциональной формы гетероскедастичности.

4) По данным для 20 стран были оценены коэффициенты уравнения регрессии

$$\hat{Y}_i = 111.78 - 0.0042 X_{2i} - 0.4898 X_{3i} \quad R^2 = 0.492$$

где Y – младенческая смертность (количество в расчете на тысячу рожденных живыми),

 X_2 – GNP в расчете на душу населения,

Х₃ процент имеющих начальное образование в определенной возрастной группе.

При проведении теста Уайта была оценена регрессия

$$e_i^2 = 4987 - 0.4718 X_{2i} - 0.8442 X_{3i} + 0.00001 X_{2i}^2 + 0.4435 X_{3i}^2 + 0.0026 X_{2i} X_{3i}$$
 $R^2 = 0.649$ Проведя тест Уайта, проверьте гипотезу об отсутствии гетероскедастичности.

Решение (верное!):

Рассчитаем тестовую статистику Уайта:

 $\chi^2 = n \cdot R^2 = 20 \cdot 0,649 = 12,98$, где R^2 используется из вспомогательной регрессии. Поскольку $\chi^2_{0,05,cr}(5) = 11,07$, $\chi^2 > \chi^2_{0,05,cr}$, (5 = 6-1, 6 -число оцениваемых коэффициентов во вспомогательной регрессии) то для модели существует проблема гетероскедастичности возмущений.

5) Предположим, что для модели парной регрессии $\sigma_{ui}^2 = \sigma^2 X_i^4$. Как избавиться от проблемы гетероскедастичности ошибок? Решение:

Дисперсия ошибок пропорциональна X_i^4 , а следовательно стандартная ошибка пропорциональна X_i^2 ($\sigma_{ui}^2 \sim X_i^4 \Rightarrow \sigma_{ui} \sim X_i^2$). Решением проблемы будет замена переменных:

$$Y^* = \begin{pmatrix} \frac{Y_1}{X_1^2} \\ \vdots \\ \frac{Y_n}{X_n^2} \end{pmatrix}; \ 1^* = \begin{pmatrix} \frac{1}{X_1^2} \\ \vdots \\ \frac{1}{X_n^2} \end{pmatrix}; \ X^* = \begin{pmatrix} \frac{1}{X_1} \\ \vdots \\ \frac{1}{X_n} \end{pmatrix},$$

т.е. необходимо оценить модель

$$Y_i^* = \beta_1^* 1^* + \beta_2^* X^* + u_i^*$$

ИЛИ

$$\frac{Y}{X^2} = \widetilde{\beta}_1 \frac{1}{X^2} + \widetilde{\beta}_2 \frac{1}{X} + \widetilde{u}_i.$$

- 6) Тестом, который не только позволяет выявить наличие гетероскедастичности, но и указать способ оценивания параметров σ_i^2 , является
- 1) тест Уайта 2) тест Глейзера 3) тест Рамсея 4) тест Хаусмана
- 7) Оценки метода наименьших квадратов коэффициентов регрессии : $Y = \beta_1 + \beta_2 X_2 + ... + \beta_k X_k + u$ останутся несмещенными при нарушении условий теоремы Гаусса Маркова
- 1) $var(u_i) = \sigma^2$ при всех і
- 2) $cov(u_i; u_j) = 0; i \neq j,$
- 3) состоящих во включении в модель лишнего объясняющего фактора Z,
- 4) состоящих в невключении в модель необходимого фактора

Тема XXI

Взвешенный метод наименьших квадратов. Обобщенный метод наименьших квадратов

Задачи

1) FGLS-оценка коэффициентов линейной регрессионной модели $Y = X\beta + \varepsilon$, $\hat{V}[\varepsilon] = \Sigma$

имеет вид:

- 1) $(X'X)^{-1}(X'Y)$
- 2) $(X'\hat{\Sigma}^{-1}X)^{-1}(X'Y)$
- 3) $(X'\Sigma^{-1}X)^{-1}(X'\Sigma^{-1}Y)$
- 4) $(X'\hat{\Sigma}^{-1}X)^{-1}(X'\hat{\Sigma}^{-1}Y)$
- 5) нет верного ответа

2) (Д.А.Борзых, Б.Б.Демешев, задача 8.26)

Пусть $Y_i = \beta X_i + \varepsilon_i$, где $E(\varepsilon_i) = 0$ и известно, что оценка для параметра

$$\widetilde{\beta} = \frac{\sum\limits_{i=1}^{n} Y_{i}}{\sum\limits_{i=1}^{n} X_{i}}$$
 является наилучшей (в смысле минимума дисперсии) среди всех

линейных несмещенных оценок параметра β . Чему равна в этом случае матрица ковариаций вектора ε с точностью до пропорциональности?

Ответ

$$V[\varepsilon] = \sigma^2 \begin{pmatrix} X_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & X_n \end{pmatrix}$$