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Strong-�.Rationalizability (Battigalli 2003, Battigalli and Siniscalchi 2003)

is a prominent and widely applied solution concept that introduces �rst-order

belief restrictions in forward induction reasoning. In absence of restrictions, it

coincides with Strong Rationalizability (Battigalli and Siniscalchi, 2002). These

solution concepts are based on the notion of Strong Belief (Battigalli and Sinis-

calchi, 2002). The non-monotonicity of Strong Belief implies that the predic-

tions of Strong-�-Rationalizability under given restrictions can have empty in-

tersection with the predictions of Strong Rationalizability. Here we show that

the set of outcomes predicted by Strong-�-Rationalizability actually shrinks as

long as (stricter and stricter) restrictions have no bite o¤-path. So, Strong-�-

Rationalizability yields a subset of strongly rationalizable outcomes when the

restrictions correspond to the belief in a particular path of play. Moreover, un-

der such restrictions, the epistemic priority between belief in rationality and

beliefs in the restrictions (Catonini, 2017) is irrelevant for the predicted out-

comes: the predictions of Strong-�-Rationalizability and Selective Rationaliz-

ability (Catonini, 2017) coincide. The workhorse lemma behind these results

allows to show also the order independence of the "iterated elimination of never

sequential best replies" (of which Strong Rationalizability is the maximal elim-

ination order), and that Strong Rationalizability re�nes Backward Induction.

The outcome equivalence of Strong Rationalizability and Backward Induction

in perfect information games with no relevant ties (Battigalli, 1997) follows.
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1 Introduction

Strong Rationalizability (Battigalli and Siniscalchi, [5]) is a form of extensive-form ratio-

nalizability (Pearce, 1984) based on the notion of Strong Belief.1 More precisely, it is the

maximal iterated deletion of never sequential best replies under strong belief in opponents�

strategies that survive the previous steps.2 Strong-�-Rationalizability (Battigalli [3], Bat-

tigalli and Siniscalchi [6]) introduces �rst-order belief restrictions in the same reasoning

scheme: only beliefs in an exogenously given set are allowed at all steps.

It is well-known that the introduction of �rst-order belief restrictions can let the elim-

ination procedure depart completely from Strong Rationalizability. This is due to the

non-monotonicity of strong belief: the set of beliefs that display strongly belief in a smaller

event is not a subset of the set of beliefs that display strong belief in a larger event. So,

for instance, even in a perfect information game without relevant ties, the introduction

of �rst-order belief restrictions can induce completely di¤erent outcomes with respect to

the only strongly rationalizable one. Are there interesting conditions under which the in-

troduction of �rst-order belief restrictions simply re�nes the set of strongly rationalizable

outcomes? When such conditions are satis�ed, the predictions are reassuringly robust to

constrained and unconstrained forward induction reasoning, as captured, respectively, by

Strong-�-Rationalizability and Strong Rationalizability.

It turns out that in all games with observable actions (i.e. games where, allowing

for simultaneous moves, every player knows the current history of the game) Strong-�-

Rationalizability is monotone in the predicted outcomes with respect to restrictions that

"never bite o¤-path". With this, we refer to restrictions that, at every step of the pro-

cedure, exclude beliefs only based on how they look like at histories that all players may

allow according to the previous step. So, o¤-the-path restrictions are responsible for the

general non-monotonicity of Strong-�-Rationalizability. The intuitive explanation of this

phenomenon is that o¤-the-path restrictions are not "processed" by players for all steps of

reasoning, because they bite at histories that should not be reached if players reason for

a su¢ cient number of steps. Beside the theoretical insight, though, this broad condition

for monotonicity is of little practical use: one cannot verify it without actually performing

Strong-�-Rationalizability. Yet, a very important class of restrictions always satis�es this

condition: the belief in a path of play.3

Then, not surprisingly, under such conditions Strong-�-Rationalizability is actually

1 i.e. belief as long as compatible with the observed behavior.
2The epistemic justi�cation of Strong Rationalizability requires, at each step n, strong belief in all the

previous steps of the procedure. For the iterated elimination of strategies, strong belief in step n�1 su¢ ces.
3 i.e. belief in opponents�strategies that comply with a particular path as long as no-one deviates from

the path. This is di¤erent than strong belief in such strategies, which must be maintained also after own
deviations from the path. However, the two restrictions are equivalent: see Section 3.
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outcome-equivalent to Selective Rationalizability (Catonini [7]), a re�nement of Strong Ra-

tionalizability with �rst-order belief restrictions. The conceptual di¤erence between the two

procedure is whether the beliefs in rationality are assigned epistemic priority with respect

to the beliefs in the restrictions or not, at all orders. When, for instance, the observed

behavior of the opponents is not compatible with them being rational and best replying to

beliefs in their restricted sets, Selective Rationalizability keeps the belief in rationality (if

per se possible) and drops the belief in the restrictions, while Strong-�-Rationalizability

does not keep the belief in rationality.4

The same "workhorse lemma" that delivers the two results above can be provide new

insight on existing results. First, the "iterated elimination of never sequential best replies"

(of which Strong Rationalizability is the maximal elimination order) is order independent in

terms of predicted outcomes. Chen and Micali [9] characterize Strong Rationalizability with

the iterated elimination of distinguishably dominated strategies,5 and show that the latter

is order independent in terms of predicted outcomes. Here, like in the recent work of Perea

[14], we work directly with the iterated deletion of never sequential best replies, thus with

strong belief and without dominance characterizations. With this, Strong Rationalizability

is shown to re�ne backward induction, which can be seen as a particular, truncated order of

elimination of never sequential best replies. As in Chen and Micali [9] and Perea [15], the

outcome equivalence of backward induction and forward induction in perfect information

games without relevant ties (originally proved by Battigalli [1] and then also by Heifetz and

Perea [10]) follows.

Section 2 introduces the formal framework for the analysis. Section 3 de�nes the elimi-

nation procedures of interest and presents the main results. Section 4 provides the results

on order-independence. Section 5 provides a sketch of the proof of the central "workhorse

lemma", along with an example. The formal proof of the lemma is in the Appendix.

2 Preliminaries

Primitives of the game.6 Let I be the �nite set of players. For any pro�le (Xi)i2I and
any ; 6= J � I, I write XJ := �j2JXj , X := XI , X�i := XInfig. Let (Ai)i2I be the �nite

4Whether the belief in the restrictions is kept or not is immaterial for the procedure, thus Strong-�-
Rationalizability can be characterized epistemically with or without transparency of the restrictions: see
Battigalli and Prestipino [4] for details.

5By showing the equivalence of the iterated elimination of distinguishable and conditionally dominated
strategies, where the latter was already proved by Shimoji and Watson [17] to be equivalent to Extensive
Form Rationalizability (Pearce [13]), which is in turn equivalent to Strong Rationalizability.

6The main notation is almost entirely taken from Osborne and Rubinstein [12].
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sets of actions potentially available to each player. Let H � [t=1;:::;TA
t [ f;g be the set

of histories, where h0 := f;g 2 H is the root of the game and T is the �nite horizon. For

any h = (a1; :::; at) 2 H and l < t, it holds h0 = (a1; :::; al) 2 H, and I write h0 � h.7 Let
Z := fz 2 H : 8h 2 H; z 6� hg be the set of terminal histories (henceforth, outcomes or
paths)8, and H := HnZ the set of non-terminal histories (henceforth, just histories). For

each i 2 I, let Ai : H � Ai be the correspondence that assigns to each history h, always

observed by player i, the set of actions Ai(h) 6= ;9 available at h. Thus, H has the following

property: For every h 2 H, (h; a) 2 H if and only if a 2 A(h). Note that to simplify
notation every player is required to play an action at every history: when a player is not

truly active at a history, her set of feasible actions consists of just one "wait" action. For

each i 2 I, let ui : Z ! R be the payo¤ function. The list � =


I;H; (ui)i2I

�
is a �nite

game with complete information and observable actions.

Derived objects. A strategy of player i is a function si : h 2 H 7�! si(h) 2 Ai(h).
Let Si denote the set of all strategies of i. A strategy pro�le s 2 S naturally induces a
unique outcome z 2 Z. Let � : S ! Z be the function that associates each strategy pro�le

with the induced outcome. For any h 2 H, the set of strategies of i compatible with h is:

Si(h) := fsi 2 Si : 9z � h;9s�i 2 S�i; �(si; s�i) = zg :

For any (Sj)j2I � S, let Si(h) := Si(h)\Si. For any J � I, letH(SJ) :=
�
h 2 H : SJ(h) 6= ;

	
denote the set of histories compatible with SJ . For any h = (h0; a) 2 H, let p(h) denote the
immediate predecessor h0 of h.

Since the game has observable actions, each history h 2 H is the root of a subgame

�(h). In �(h), all the objects de�ned above will be denoted with h as superscript, except

for single histories and outcomes, which will be identi�ed with the corresponding history

or outcome of the whole game, and not rede�ned as shorter lists of action pro�les. For any

h 2 H, shi 2 Shi , and bh � h, shi jbh will denote the strategy sbhi 2 Sbhi such that sbhi (eh) = shi (eh)
for all eh � bh. For any Shi � Shi , Shi jbh will denote the set of all strategies sbhi 2 Sbhi such that
s
bh
i = s

h
i jbh for some shi 2 Shi .

Beliefs. In this dynamic framework, beliefs are modeled as Conditional Probability
Systems (Renyi, [16]; henceforth, CPS).

De�nition 1 A Conditional Probability System on (S�i; (S�i(h))h2H) is a mapping �(�j�) :
2S�i � fS�i(h)gh2H ! [0; 1] satisfying the following axioms:

7H endowed with the precedence relation � is a tree with root h0.
8"Path" will be used with emphasis on the moves, and "outcome" with emphasis on the end-point of the

game.
9When player i is not truly active at history h, Ai(h) consists of just one "wait" action.
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CPS-1 for every C 2 (S�i(h))h2H , �(�jC) is a probability measure on S�i;

CPS-2 for every C 2 (S�i(h))h2H , �(CjC) = 1;

CPS-3 for every E 2 2S�i and C;D 2 (S�i(h))h2H , if E � D � C, then �(EjC)=�(EjD)�(DjC).

The set of all CPS�s on (S�i; (S�i(h))h2H) is denoted by �H(S�i).

For brevity, the conditioning events will be indicated with just the information set,

which represents all the information acquired by players through observation. For each set

J � In fig of opponents of player i, and for each set of strategy sub-pro�les SJ � SJ , I say
that a CPS �i 2 �H(S�i) strongly believes SJ if, for all h 2 H(SJ), �i(SJ�SIn(J[fig)jh) = 1.

Rationality. I consider players who reply rationally to their conjectures. By rationality
I mean that players, at every information set, choose an action that maximizes expected

utility given the conjecture about how deviators will play and the expectation to reply

rationally again in the continuation of the game. This is equivalent (see Battigalli [2]) to

playing a sequential best reply to the CPS.

De�nition 2 Fix �i 2 �H(S�i). A strategy si 2 Si is a sequential best reply to �i if for
every h 2 H(si),10 si is a continuation best reply to �i(�jh), i.e. for every esi 2 Si(h),X

s�i2S�i(h)
ui(�(si; s�i))�i(s�ijh) �

X
s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
I say that a strategy si is rational if it is a sequential best reply to some �i 2 �H(S�i).

The set of sequential best replies to �i is denoted by �(�i). For each h 2 H, the set of
continuation best replies to �i(�jh) is denoted by br(�i; h). The set of best replies to a

conjecture �i 2 �(S�i) in the normal form of the game is denoted by r(�i).

3 Outcome monotonicity

I provide a very general notion of elimination procedure for a subgame �(h), which en-

compasses all the procedure I am ultimately interested in, or that will be needed for the

proofs.

De�nition 3 Fix h 2 H. An elimination procedure in �(h) is a sequence ((Shi;q)i2I)1q=0
where, for every i 2 I,
10 It would be totally immaterial to require si to be optimal also at the histories precluded by itself.
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EP1 Shi;0 = S
h
i ;

EP2 Shi;n�1 � Shi;n for all n 2 N;

EP3 for every shi 2 Shi;1 = \n2NShi;n, there exists �hi that strongly believes (Sh�i;q)1q=0 such
that shi 2 �(�hi ) � Shi;1.

Lemma 1 For every elimination procedure ((Shi;q)i2I)
1
q=0 and every bh � h, ((Shi;q(bh)jbh)i2I)1q=0

is an elimination procedure.

Proof. EP1 and EP2 are obvious. To prove EP3, note the following. For every i 2 I and
s
bh
i 2 Shi;1(bh)jbh, there exists shi 2 Shi;1 such that shi jbh = sbhi . By EP3 for ((Shi;q)i2I)1q=0, there
exists �hi that strongly believes (S

h
�i;q)

1
q=0 such that s

h
i 2 �(�hi ) � Shi;1. Thus, the pushfor-

ward �bhi of (�hi (�jeh))eh2Hbh through the map sh�i 7�! sh�ijbh strongly believes (Sh�i;q(bh)jbh)1q=0.
Clearly sbhi 2 �(�bhi ). Finally, �x sbhi 2 �(�bhi ). De�ne shi as shi (eh) = shi (

eh) for all eh 6� bh and
shi jbh = sbhi for all eh � bh. Clearly shi 2 �(�hi ). Thus, sbhi 2 Shi;1(bh)jbh. �

Indeed, elimination procedures have been de�ned purposedly to encompass the impli-

cations in the subgames of traditional elimination procedures for the whole game. In a

subgame, substrategies can be eliminated "exogenously" and not because they are not

sequential best replies to any valid conjecture in the subgame. On the other hand, sub-

strategies can survive even if the opponents do not reach the subgame anymore. Note that

the elimination can stop for some steps and then resume: for this reason, EP2 allows a weak

inclusion at all steps

Now I specialize De�nition [16] for the procedures in the whole game I am ultimately

interested in.

De�nition 4 An elimination procedure ((Si;q)i2I)1q=0 is "unconstrained" when for every
n 2 N, i 2 I, and �i that strongly believes (S�i;q)n�1q=0 , �(�i) � Si;n.

De�nition 5 An elimination procedure ((Shi;q)i2I)
1
q=0 is "maximal" when for every n 2 N,

i 2 I, and si 2 Si;n, si 2 �(�i) for some �i that strongly believes (S�i;q)n�1q=0 .

De�nition 6 Strong Rationalizability (Battigalli and Siniscalchi, [5]) is the unique uncon-
strained and maximal elimination procedure. Let ((Sqi )i2I)

1
q=0 denote it, and let M be the

n 2 N such that Sn�1 6= Sn = Sn+1.

De�nition 7 For each i 2 I, �x �i � �H(Sh�i). Strong-�-Rationalizability (Battigalli

[3], Battigalli and Siniscalchi [6]) is the elimination procedure ((Sqi;�)i2I)
1
q=0 such that, for

every n 2 N, i 2 I, and si 2 Si, si 2 Si;n if and only if si 2 �(�i) for some �i 2 �i that
strongly believes (Sq�i;�)

n�1
q=0 .
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De�nition 8 For each i 2 I, �x �i � �H(Sh�i). Selective Rationalizability (Catonini [7])
is the elimination procedure ((Sqi;R�)i2I)

1
q=0 such that (S

q
R�)

M
q=0 = (Sq)Mq=0 and for every

n > M , i 2 I, and si 2 Si, si 2 Sni;R� if and only if si 2 �(�i) for some �i 2 �i that
strongly believes (Sq�i;R�)

n�1
q=0 .

11

The main technical result of the paper is the outcome inclusion between two elimination

procedures with the following feature. Take the �nal output of the �rst procedure and �x

beliefs that justify the surviving strategies. Consider all the beliefs that, along the paths

predicted by the �rst procedure, assign the same probability distribution over such paths

as one of the �xed beliefs. Suppose that, in both procedures, the sequential best replies

to these beliefs always survive. Then, the �nal output of the second procedure predicts all

such paths.

Lemma 2 Fix h 2 H, two elimination procedures ((Shi;q)i2I)1q=0, ((Shi;q)i2I)1q=0, and, for
every i 2 I, a map �hi : S

h
i;1 �! �H

h

i (Sh�i) such that �
h
i (s

h
i ) strongly believes (S

h
�i;q)

1
q=0

and shi 2 �(�
h
i (s

h
i )) � S

h
i;1 for all shi 2 S

h
i;1. Suppose that for every i 2 I, shi 2 S

h
i;1,

m 2 N, and �hi that strongly believes (Sh�i;q)m�1q=0 (resp., (S
h
�i;q)

m�1
q=0 ) with �

h
i (S�i(z)jeh) =

�
h
i (s

h
i )(S�i(z)jeh) for all eh 2 H(Sh1) and z 2 Zeh \ �(Sh1), �(�hi ) � Shi;m (resp., �(�hi ) �

S
h
i;m). Then �(S

h
1) � �(Sh1).

Section 5 contains a sketch of the proof of the lemma. Now I focus on the implications

of the lemma for the elimination procedures of interest.

Consider �rst-order belief restrictions (�i)i2I with the following characteristic: for each

player i and CPS �i, only the beliefs at the strongly-�-rationalizable histories about the

strongly-�-rationalizable paths matter to determine whether �i belongs to �i or not. Then,

Strong-�-Rationalizability sati�es the hypotheses of Lemma 2 as �rst elimination procedure,

whereas Strong Rationalizability, being an unconstrained procedure, satis�es the hypotheses

of Lemma 2 as second elimination procedure. The desired outcome inclusion result with

respect to belief restrictions that "do not end up o¤-path" obtains.

Theorem 1 Fix (�i)i2I � �i2I�H(S�i). Suppose that for each i 2 I and �i; �
0
i 2

�H(S�i), if �i 2 �i and �0i(S�i(z)jeh) = �0i(S�i(z)jeh) for all eh 2 H(S1� ) and z 2 �(S1� ),
then �0i 2 �i. Then, �(S1� ) � �(S1).
11Selective Rationalizability is de�ned in [7] under the more restrictive assumption of independent ra-

tionalization. That is, a valid �i is required to strongly believe (S
q
j;R�)

n�1
q=0 for all j 6= i, in place of just

(Sq�i;R�)
n�1
q=0 . However, this assumption is immaterial for the result on Selective Rationalizability of this

paper (Theorem 3).
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Proof. For each i 2 I and si 2 S1i;�, �x any �
h
i (s

h
i ) 2 �i that strongly believes

(Sq�i;�)
1
q=0 such that si 2 �(�i). By hypothesis of this theorem, the hypothesis of Lemma

2 obtains. For every m 2 N and �i that strongly believes (S
q
�i)

m�1
q=0 , �(�i) 2 Smi . Thus, by

Lemma 2, �(S1� ) � �(S1). �

As discussed in the Introduction, Theorem 1 provides insight on what can determine

the non monotonicity of predictions with respect to belief restrictions: the presence of

o¤-the-path belief restrictions. Yet, it is of little help in determining ex-ante which belief

restrictions preserve common strong belief in rationality and which do not. This is because

whether restrictions are o¤-path or not has to be assessed with respect of the �nal output

of Strong-�-Rationalizability itself.

Consider now �rst-order belief restrictions that correspond to the belief in a speci�c path

z 2 Z. That is, at the beginning of the game, players believe that the opponents will play
compatibly with the path. By CPS-3, this belief is maintained as long as no deviation from

the path occurs. Moreover, assume that if a player deviates from the path, the opponents

keep believing that the other players were not planning to deviate. This is coherent with

the notion of belief in the (path) agreement adopted in [7]. All this coincides with assuming

that every player i strongly believes in Sj(z) for all j 6= i. Preliminarly, I show that this is
equivalent to the belief in S�i(z) on path only.

Lemma 3 Fix z 2 Z. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1
for all h � z, and let ��i be the set of all �i�s that strongly believe Sj(z) for all j 6= i. Then,
S1� = S1�� and S

1
R� = S

1
R��.

Proof. Fix n � 0 and suppose to have shown that for each m � n, Sm� = Sm�� (S
0
� =

S0�� .trivially holds). If S
n
� = ;, Sn+1� = Sn+1�� = ;. Else, for each i 2 I, there exists

�i 2 �i that strongly believes (S
q
�i;�)

n�1
q=0 such that �(�i) \ Si(z) 6= ;. Fix i 2 I and

si 2 SinSi(z). Let m := max
n
q � n : si 2 Sqi;�

o
. If m > 0, there exists �i 2 �i that

strongly believes (Sq�i;�)
m�1
q=0 such that si 2 �(�i). Fix ��i 2 �i that strongly believes

(Sq�i;�)
m�1
q=0 such that ��i (�jh) = �i(�jh) for all h � z and ��i (�jeh) = �i(�jeh) for all eh 2

H(Si(z))nH(S�i(z)) (it is compatible with CPS-3 because �i(S�i(eh)jh) = 0 for all h � z
and eh 2 H(Si(z))nH(S�i(z))). Then, there exists s�i 2 �(��i )(z) � Smi;� such that for alleh 2 H(si) \H(Si(z))nH(S�i(z)), s�i (eh) = si(eh). If m = 0, �x the unique s�i 2 Si(z) such
that for all eh 6� z, s�i (eh) = si(eh). For each h 2 H(Si(z)), let �h(si) := s�i . For each

h 62 H(Si(z)), let �h(si) := si. For all si 2 Si(z) and h 2 H, let �h(si) := si.
Fix now i 2 I and �i 2 �i that strongly believes (S

q
�i;�)

n
q=0. Note that for each si 2 Si

and h 2 H, if si 2 Si(h), �h(si) 2 Si(h), and if h 2 H(Si(z)), �h(si) 2 Si(z). Thus, I
can construct ��i 2 ��i that strongly believes (S

q
�i;�)

n
q=0 = (Sq�i;��)

n
q=0 as, for all h 2 H,
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��i ((sj)j 6=ijh) = �i(((�
h)�1(sj))j 6=ijh). For each h � z, since �i(S�i(z)jh) = 1, ��i (�jh) =

�i(�jh), and for each h 6� z and ez � h, by construction, ��i (S�i(ez)jh) = �i(S�i(ez)jh). Hence,
�(�i) = �(�

�
i ). So, S

n+1
� � Sn+1�� . By �

�
i � �i and (S

q
�i;�)

n
q=0 = (S

q
�i;��)

n
q=0, S

n+1
�� � S

n+1
� .

The proof can be repeated for Selective Rationalizability with n �M in place of n � 0,
where (SqR�)

M
q=0 = (S

0
R��)

M
q=0 holds by de�nition. �

If the belief restrictions on S�i(z) only along z end up o¤ the paths predicted at some

intermediate step of Strong-�-Rationalizability, the procedure yields an empty set at the

following step. Otherwise, Theorem 1 can be easily applied and monotonocity of strategic

reasoning with respect to path restrictions obtains.

Theorem 2 Fix z 2 Z. Let ��i be the set of all �i�s that strongly believe Sj(z) for all j 6= i.
Then �(S1��) � �(S1).

Proof. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1 for

all h � z. If S1� = ;, �(S1� ) � �(S1) is trivially true, so suppose S1� 6= ;. For each
i 2 I, and si 2 S1i;�, si 2 �(�i) for some �i 2 �i. For each �i 2 �i and �i with

�i(S�i(z)jh) = �i(S�i(z)jh) for all h � z, �i 2 �i. Thus, the hypotheses of Theorem
1 hold, and �(S1� ) � �(S1). Then, by Lemma 3, �(S1��) � �(S1). �

Also Selective Rationalizability eventually saves only strategies that are sequential best

replies to beliefs in the restricted sets. Therefore, for path restrictions, Lemma 2 holds with

Selective Rationalizability and Strong-�-Rationalizability regardless of the roles assigned

to the two procedures. Then, the outcome equivalence of the two procedures under path

restrictions obtains.

Theorem 3 Fix z 2 Z. Let ��i be the set of all �i�s that strongly believe Sj(z) for all j 6= i.
Then �(S1��) = �(S

1
R��).

Proof. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1 for all

h � z. First I show that �(S1� ) � �(S1R�). If S
1
� = ; it is trivially true, so suppose

S1� 6= ;. For each i 2 I, and si 2 S1i;�, si 2 �(�i) for some �i 2 �i. For each �i 2 �i and
�i with �i(S�i(z)jh) = �i(S�i(z)jh) for all h � z, �i 2 �i. Thus, the hypotheses of Lemma
2 hold. So, �(S1� ) � �(S1R�). The same proof can be repeated for �(S1� ) � �(S1R�). Hence
�(S1� ) = �(S

1
R�). Then, by Lemma 3, �(S

1
��) = �(S

1
R��). �

The last two theorems clearly hold with strong belief in S�i(z) instead of (Sj(z))j 6=i.
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4 Order independence

In absence of belief restrictions, that is with unconstrained elimination procedures, the

hypotheses of Theorem 2 clearly hold. An unconstrained elimination procedure is what I

refered to in the Introduction as an order of iterated elimination of never sequential best

replies. Thus, using Theorem 2 in both directions with the maximal unconstrained elimi-

nation procedure and any non maximal one, the order independence of iterated elimination

of never sequential best replies in terms of predicted outcomes obtains.

Theorem 4 For any unconstrained elimination procedure ((Si;q)i2I)1q=0, �(S1) = �(S
1).

Proof. Any two uncontrained elimination procedures, taken in both orders, obviously
satisfy the hypotheses of Lemma 2. �

Backward Induction is an elimination procedure of actions where an action of a player

at a history is eliminated when it is not optimal against any belief about the surviving

current and future actions of the opponents. An outcome equivalent elimination procedure

of strategies deletes all the strategies that reach the history and prescribe such action.

These strategies are clearly not optimal under strong belief in the surviving strategies of

the opponents. A strategy, instead, may be never sequential best reply as a whole, but still

survive Backward Induction because, at each history, it prescribes an action which is part

of some optimal continuation plan.

De�nition 9 Backward Induction is a sequence ((Sqi;B)i2I)
1
q=0 where, for every i 2 I,

BI1 S0i;B = Si;

BI2 for each n 2 N and si 2 Si, si 2 Sni;B if and only if si 2 S
n�1
i;B and for each h 2 H(si),

there exist �i that strongly believes S
n�1
�i;B and esi 2 Si(h) such that esi 2 br(�i; h) andesi(h) = si(h).12

Backward induction can be seen as part of non-maximal, unconstrained elimination

procedure.

Lemma 4 Let N be the smallest n such that SnB = S
n+1
B . Let ((eSqi )i2I)Nq=0 := ((Sqi;B)i2I)Nq=0

and, for every n > N , i 2 I, and si 2 Si, let si 2 eSni if and only if there exists �i that
strongly believes (eSq�i)n�1q=0 such that si 2 �(�i). Thus, ((eSqi )i2I)1q=0 is an unconstrained
elimination procedure.
12Note that for any h; h0 2 H with h 6� h0 6� h and Sni;B(h) \ Sni;B(h0) 6= ;, and for any si 2 Sni;B(h) and

s0i 2 Sni;B(h0), there exists s00i 2 Sni;B(h)\Sni;B(h0) such that s00i jh = si and s00i jh0 = s0i. Thus, all combinations
of backward induction moves survive and the use of strategies in only for coherence with the framework of
this paper.
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Proof. EP1 is satis�ed by BI1. EP3 is satis�ed by �niteness of the game. EP2 is

satis�ed for all n > N by construction. It remains to show that EP2 is satis�ed for n � N .
Fix i 2 I, �i that strongly believes (eSq�i)n�1q=0 , and si 2 �(�i). Then, for all h 2 H(si),
si 2 br(�i; h). Thus, by BI2, si 2 eSni . �

Being an un�nished, unconstrained elimination procedure, the backward induction pro-

cedure predicts a superset of the outcomes predicted by Strong Rationalizability.

Theorem 5 Every strongly rationalizable outcome is a backward induction outcome.

Proof. Immediate from Lemma 4 and Theorem 4. �

Since in perfect information games without relevant ties the backward induction outcome

is unique, the following obtains.

Corollary 6 (Battigalli, [1]) In every perfect information game without relevant ties,
Strong Rationalizability and Backward Induction yield the same unique outcome.

5 Proof of the main lemma.

The proof proceeds as follows. For simplicity, assume that there are two players, i and j; the

argument extends immediately to games with more than 2 players. We show by induction

that for every shi 2 S
h
i;1 and n 2 N, there are: (1) �hi (shi ) that strongly believes (Sh�i;q)n�1q=0

and, along the paths induced by S
h
1 (henceforth, just "paths"), mimicks13 a CPS �hi (s

h
i )

that justi�es that shi 2 S
h
i;1; (2) s

h
i 2 �(�hi (shi )) that mimicks shi along the paths; and

the same for j. By the assumption about ((Shk;q)k2I)
1
q=0, s

h
i 2 S

h
i;n. All such s

h
i �s allow to

construct at step n+ 1 a CPS �hj (s
h
j ) as in (1) for each s

h
j 2 S

h
j;1.

Now, suppose by contradiction that for some shj 2 S
h
j;1, every such �

h
j (s

h
j ) does not

justify any strategy shj that mimicks s
h
j along the paths. For each history bh that immediately

follows a unilateral deviation of player j from the paths, consider the most pessimistic belief

of j over Shi;n(bh)jbh. For each shi 2 Shi;1, by induction hypothesis there is shi 2 Shi;n that
mimicks shi along the paths and is a sequential best reply to a belief, �

h
i (s

h
i ), that assigns

probability zero to each deviation of j until it occurs. Then (by Lemma 5), �hi (s
h
i ) can be

combined with any beliefs after j�s deviations, and shi can be combined with any reactions

to such beliefs. This is proved by Lemma 6 So, player j can have a belief �hj that mimicks

13 In the sense of the statement of the lemma.

11



�
h
j (s

h
j ) along the paths and, at the same time, features the most pessimistic belief after

each deviation. By the initial assumption of this paragraph, player j will deviate under �hj .

Let bh be a history that may immediately follow the deviation under �hj . So, player j will
deviate towards bh also when �j is constructed with a less pessimistic belief over Shi;n(bh)jbh.
This is proved by Lemma 7 As said, player i can be surprised by the deviation. Thus,

she can allow bh and, at the same time, have any belief thereafter. So, with the assumption
on ((Shi;q)i2I)

1
q=0, S

h
n(
bh)jbh features all the sequential best replies to CPS�s �bhi that strongly

believe (Sbh�i;q)nq=0 for all i 2 I.
Re�ne Shn(bh)jbh by iteratively eliminating strategies that are not sequential best replies

to any �bhi that strongly believes (Sbh�i;q)mq=0. Then, we obtain an elimination procedure
((S

bh
k;q)k2I)

1
q=0 with non-empty S

bh
1 that satis�es the assumption of the lemma. That the

deviation is pro�table against all beliefs over S
bh
i;1 w.r.t. remaining on the paths against

�
h
j (s

h
j ) implies that also the elimination procedure ((S

bh
k;q)k2I)

1
q=0 := ((S

h
k;q(
bh)jbh)k2I)1q=0

satis�es the assumption of the lemma. Note the inversion of the roles of the two procedures

with respect to the original procedures from which they have been derived. If the lemma

holds in the subgame �(bh), we have the desired contradiction: Sbh1 is non-empty too, hencebh 2 H(Sh1), but bh follows a unilateral deviation from the paths induced by Sh1. Proceeding
by induction on the depth of subgames and observing that the lemma clearly holds for

subgames of depth 1, the proof is complete.

Now we follow the sketch above on an example. Consider the following game.

AnB W E AnB L C R

N 2; 2 �� �! U 1; 1 1; 0 0; 0

S 0; 0 1; 1 M 0; 0 0; 1 1; 0

D 0; 0 0; 0 0; 3

Let ((Sh
0

i;q)i2I)
1
q=0 be Strong Rationalizability: ((S

q
i )i2I)

1
q=0. At the �rst step, Ann eliminates

N:D. At the second step, Bob eliminates E:R. At the third step, Ann eliminates N:M . At

the fourth step, Bob eliminates E:C. The �nal output is S1 = (S;N:U)� (W;E:L). Strong
Rationalizability trivially satis�es the assumption of the lemma.

For each player i = A;B, let �i be the set of CPS�s that strongly believe in opponents�

strategies that comply with the path (N;W ):

�i :=
�
�i 2 �Hi (S�i) : �i(S�i((N;W ))jh0) = 1

	
; i = A;B.

Let ((S
h0

i;q)i2I)
1
q=0 be Strong-�-Rationalizability: ((S

q
i;�)i2I)

1
q=0. At the �rst step, Ann elim-

inates S and N:D, and Bob eliminates E:L and E:C. At the second step, Ann eliminates

12



N:U and Bob eliminates E:R. The �nal output is: S1� = f(N:M;W )g.
Let sA = N:M , sB = W , �hA(N:M) = (�W ; �E:R), and �

h
B(W ) = (�N:M ; �N:M ), where

�s indicates a Dirac measure on s. For every n 2 N, i = A;B, and �i that strongly believes
Sn�1�i;�; :::; S

0
�i;� with �i(S�i((N;W ))jh0) = �

h
i (S�i((N;W ))jh0) = 1, �(�i) � Sni;�. So,

((Sqi;�)i2I)
1
q=0 satis�es the assumption of the lemma. Indeed, �(S

1
� ) = f(N;W )g � �(S1),

but S1A;� \ S1A = ;.
Now we follow the sketch above. Fix n 2 N and suppose to have shown that for each

i 2 A;B, there exist:

1. �i(si) that strongly believes S
n�1
�i ; :::; S

0
�i with �i(si)(S�i((N;W ))jh0) = �

h
i (S�i((N;W ))jh0) =

1;

2. si 2 �(�i(si)) � Sni with si(h0) = N if i = A, si(h0) =W if i = B.

Suppose that (�) for every �B that strongly believes SnA; :::; S0A with �B(SA((N;W ))jh0) =
�
h
B(SA((N;W ))jh0) = 1, �(�B) \ SB((N;W )) = ;. For each a 2 SnA((N;E))j(N;E), �x
sA 2 SnA((N;W )) with sAj(N;E) = a; there exists �B that strongly believes SnA; :::; S0A with
�B(sAjh0) = 1, and by (�), �(�B) � SB((N;E)). For each b 2 SnB((N;E))j(N;E), �x
sB 2 SnB((N;E)) with sBj(N;E) = B; there exists �A that strongly believes S

n�1
B ; :::; S0B

with �A(�jh0) = �i(sA)(�jh0) and �A(sBj(N;E)) = 1, and �(�A) � SnA((N;E)).
Let (S

(N;E)
q )1q=0 = ((S

q((N;E))j(N;E))nq=0(S
(N;E)
q )1q=n+1), where for eachm � n+1, i =

A;B, and �i that strongly believes (S
(N;E)
�i;q )

m�1
q=0 , �(�i) � S

(N;E)
i;m . Since Sn((N;E))j(N;E)

is non-empty (by induction hypothesis and by (�)) and features all best replies to beliefs
in the set, (S

(N;E)
q )1q=0 is an elimination procedure with S

(N;E)
1 6= ;. Let (S(N;E)q )1q=0 =

((Sq�((N;E))j(N;E))1q=0. For each a 2 S
(N;E)
A;1 and q 2 N, if a 2 S(N;E)A;q , there is sA 2

SqA;�((N;W )) with sAj(N;E) = a; thus, there exists �B that strongly believes S
q
B;�; :::; S

0
B;�

with �B(sAjh0) = 1, and by the incentives given by (�), �(�B) � SnB;�((N;E)). So, the
best replies to a are in S(N;E)B;q+1. For each b 2 S

(N;E)
B;1 and q 2 N, if b 2 S(N;E)B;q , there is sB 2

SqB;�((N;E)) with sBj(N;E) = b; thus, there exists �A that strongly believes S
q
A;�; :::; S

0
A;�

with �A(�jh0) = �i(sA)(�jh0) and �A(sBj(N;E)) = 1, and �(�A) � SnA;�((N;E)). So, the
best replies to b are in S(N;E)A;q+1. Then, since S

(N;E)
1 is a set with the best reply property,

S
(N;E)
1 � S(N;E)1 , which contradicts S1� ((N;E)) = ;.

6 Appendix

Formal proof of Lemma 2.
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We need additional notation. For any h 2 H, bh � h, (shj )j2I 2 Sh, (s
bh
j )j2I 2 S

bh,
�hi 2 �H

h
(Sh�i), �

bh
i 2 �H

bh
(S
bh
�i), bZ � Zbh, and J � I, let:

� shJ =
bZ sbhJ if for each z 2 bZ and bh � eh � z, shJ(eh) = sbhJ(eh);

� �hi =
bZ �bhi if for each z 2 bZ and bh � eh � z, �hi (Sh�i(z)jeh) = �bhi (Sbh�i(z)jeh);

� shJ =
bh sbhJ and �hi =bh �bhi if, respectively, shJ =Zbh sbhJ and �hi =Zbh �bhi ;

� br(�hi ;bh) is the set of continuation best replies to �hi (�jbh).
Moreover, for any S

h
= �i2IS

h
i � Sh, de�ne the set of histories that follow a unilateral

deviation by player i from the paths induced by S
h
as:

� Di(S
h
) := feh 2 HnH(Sh) : p(eh) 2 H(Sh) ^ eh 2 H(Sh�i)g.

The �rst two lemmata claim the survival of strategies, or conjectures over such strategies,

which combine substrategies that have survived by assumption. The reason why such

lemmata are needed is merely the following. Fix bshi ; shi 2 Shi;n and bh; h 2 H(bshi ) \ H(shi )
such that h 6� bh 6� h: there needs not exist shi 2 Shi;n(bh) \ Shi;n(h) such that shi jbh = shi jbh
and shi jh = bshi jh. The intuitive reason is the following: player i may allow bh and h either
because she is con�dent that bh will be reached and she has appropriate expectations after bh,
or because she is con�dent that h will be reached and she has appropriate expectations after

h. If bshi is best reply to the �rst conjecture and shi is best reply to the second conjecture,bshi jh and shi jbh may be "emergency plans" for an unpredicted contingency, after which the
expectations would not have justi�ed the choice to allow h and bh in the �rst place. Here is
an example. The following is a simpli�ed version of the game in Figure 4 in Battigalli [1],

provided by Gul and Reny. The payo¤s are of player 1.

2  o� 1
# i

1  a� 1  l� 2 �r ! 1 �a0 ! 1

# b b0 #
0  c� 3 3 �c0 ! 0

# d d0 #
3 3

Player 1 can rationally play i:a:b0 (if she expects r and d0 but not d), i:b:a0 (if she expects

l and d but not d0), but not i:a:a0. If one starts from i:a:b0, you cannot modify b0 into a0

because i:a:b0 is a sequential best reply only to CPS�s that assign initial positive probability
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to r, therefore the belief at (i; r) cannot be modi�ed without modifying the initial belief,

hence the previous choices. Instead, i:a:b0 can be modi�ed into i:b:b0 because i:a:b0 is rational

under zero probability to l.

Lemma 5 Fix an elimination procedure ((Shi;q)i2I)q�0, n 2 N, i 2 I, bh 2 Hh, and �hi that

strongly believes (Sh�i;q)
n�1
q=0 such that �

h
i (S

h
�i(
bh)jp(bh)) = 0. Fix shi 2 �(�hi ) \ Shi (bh), �bhi that

strongly believes (Sh�i;q(bh)jbh)n�1q=0 , and s
bh
i 2 �(�

bh
i ).

Consider the unique eshi =bh sbhi such that for every eh 62 Hbh, eshi (eh) = shi (eh).
There exists e�hi =bh �bhi that strongly believes (Sh�i;q)n�1q=0 such that e�hi (�jeh) = �hi (�jeh) for

all eh 62 Hbh, and eshi 2 �(e�hi ) (so, �(�hi )(bh) 6= ; implies �(e�hi )(bh) 6= ;).
Proof.
Fix a map & : Sbh�i ! Sh�i such that for each s

bh
�i 2 S

bh
�i, &(s

bh
�i) =

bh sbh�i and &(sbh�i) 2
Sh�i;m(

bh) for all m � 0 with sbh�i 2 Sh�i;m(bh)jbh. Since & is injective, we can construct an
array of probability measures e�hi = (e�hi (�jeh))eh2Hh on Sh�i as e�hi (�jeh) = �hi (�jeh) for all eh 62 Hbh
and e�hi (&(sbh�i)jeh) = �bhi (sbh�ijeh) for all eh 2 Hbh and sbh�i 2 Sbh�i. Thus, e�hi satis�es CPS-1. It is
immediate to verify that e�hi satis�es CPS-2, strongly believes (Sh�i;q)n�1q=0 , e�hi =bh �bhi Finally,
since e�hi (S�i(bh)jp(bh)) = 0, e�hi satis�es CPS-3.

Fix eh 2 H(eshi )nHbh = H(shi )nH
bh. If eh � bh, by �hi (Sh�i(bh)jp(bh)) = 0 and CPS-3,

�hi (S
h
�i(
bh)jeh) = 0, and for every sh�i 62 Sh�i(bh), �(shi ; sh�i) = �(eshi ; sh�i). If eh 6� bh, for every

sh�i 2 Sh�i(
eh), bh 62 H(shi ; s

h
�i), so �(s

h
i ; s

h
�i) = �(eshi ; sh�i). Hence shi 2 br(�hi ;eh) implieseshi 2 br(�hi ;eh) = br(e�hi ;eh). Fix eh 2 H(eshi )\Hbh = H(sbhi ). For every sbh�i 2 Sbh�i, e�hi (&(sbh�i)jeh) =

�
bh
i (s

bh
�ijeh). For every bshi 2 Shi (bh), �(bshi jbh; sbh�i) = �(bshi ; &(sbh�i)). So, eshi jbh = s

bh
i 2 br(�bhi ;eh)

implies eshi 2 br(e�hi ;eh). �
Lemma 6 Fix an elimination procedure ((eShi;q)i2I)q�0, subsets of strategies (Shi )i2I , m 2 N,
and l 2 I. Let ZS := �(S

h
). For every i 2 I, suppose that there exists a map �hi : S

h
i !

�H
h
(Sh�i) such that for all s

h
i 2 S

h
i , �

h
i (s

h
i ) strongly believes S

h
�i, and:

A1 there exist maps �hi : S
h
i ! �H

h
(Sh�i) and s

h
i : S

h
i ! Shi such that for all s

h
i 2 S

h
i ,

�hi (s
h
i ) =

ZS �
h
i (s

h
i ) strongly believes (eSh�i;q)m�1q=0 and �(�hi (s

h
i )) 3 shi (shi ) =Z

S
shi ;

A2 for every shi 2 S
h
i and �

h
i =

ZS �
h
i (s

h
i ) that strongly believes (eSh�i;q)m�1q=0 , �(�

h
i ) � eShi;m.

Fix l 2 I and shl 2 S
h
l . Let D

S := Dl(S
h
). For every bh 2 DS, �x e�bhl that strongly

believes (eSh�l;q(bh)jbh)mq=0.
There exists e�hl =ZS �hl (shl ) that strongly believes (eSh�l;q)mq=0 such that e�hl =bh e�bhl for allbh 2 DS.
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Proof.
We show that for every i 6= l and shi 2 S

h
i , and for every map & : bh 2 DS 7! s

bh
i 2eShi;m(bh)jbh, there exists eshi 2 eShi;m such that eshi =ZS shi (shi ) and eshi =bh &(bh) for all bh 2 DS .

The map & is well de�ned because for each bh 2 DS , by A1 bh 2 H(shi (bshi )) for some bshi 2 Shi ,
and by A2, shi (bshi ) 2 eShi;m. Using all such eshi �s, it is easy to construct the desired e�hl .

By A1, there exists �hi (s
h
i ) =

ZS �
h
i (s

h
i ) that strongly believes (eSh�i;q)m�1q=0 such that

shi (s
h
i ) 2 �(�hi (shi )). Fix bh 2 DS \ H(shi ). Since �hi (shi ) =ZS �hi (shi ) and �hi (shi ) strongly

believes S
h
�i, �

h
i (s

h
i )(S

h
�i(
bh)jp(bh)) = 0. Since &(bh) 2 eShi;m(bh)jbh, there exists �bhi that strongly

believes (eSh�i;q(bh)jbh)m�1q=0 such that &(bh) 2 �(�bhi ). Thus, by Lemma 5, there exist e�hi =bh �bhi
that strongly believes (eSh�i;q)m�1q=0 such that e�hi (�jeh) = �hi (s

h
i )(�jeh) for all eh 62 H

bh, andeshi 2 �(e�hi ) such that eshi =bh &(bh) and eshi (eh) = shi (shi )(eh).for all eh 62 Hbh. Iterating for eachbh 2 DS , we obtain e�hi =ZS �hi (shi ) that strongly believes (eSh�i;q)m�1q=0 such that e�hi =bh �bhi for
all bh 2 DS , and eshi 2 �(e�hi ) such that eshi =ZS shi and eshi =bh &(bh).for all bh 2 DS . By A2,eshi 2 eShi;m. �
Lemma 7 Fix two elimination procedures ((Shi;q)i2I)q�0 and ((S

h
i;q)i2I)q�0. For every i 2 I,

let S
h
i := S

h
i;1 and let �hi : S

h
i ! �H

h
(Sh�i) be a map such that for every s

h
i 2 S

h
i , �

h
i (s

h
i )

strongly believes (S
h
�i;q)

1
q=0 and s

h
i 2 �(�

h
i (s

h
i )). Let Z

S := �(S
h
). Fix n 2 N, l 2 I, andbshl 2 Shl such that:14

A3 for every i 2 I and m � n, (Shq )q�0 satis�es A1;

A4 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A5 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A6 for every shl =
ZS bshl and �hl =ZS �hl (bshl ) that strongly believes (Sh�l;q)nq=0, shl 62 �(�hl ).

Let DS := Dl(S
h
). For every bh 2 DS and m 2 N, call Mbh

m (resp., M
bh
m) the set of

all �bhl that strongly believe (Sh�l;q(bh)jbh)mq=0 (resp., (Sh�l;q(bh)jbh)mq=0) for which there existsb�bhl that strongly believes (Sh�l;q(bh)jbh)nq=0 such that �bhl (S�i(z)jbh) = b�bhl (S�i(z)jbh) for all z 2
�(br(b�bhl ;bh)� Suppb�bhl (�jbh)).15

Thus, there exists bh 2 DS such that:
1. for every m � n and �bhl 2 Mbh

m, there exists �
h
l =

ZS �
h
l (bshl ) that strongly believes

(Sh�l;q)
m
q=0 such that �

h
l =

bh �bhl and �(�hl )(bh) 6= ;;
14A3, A4 and A5 need not hold for i = l to recall Lemma 6 and prove this lemma. However, l has been

included to reuse A3, A4 and A5 in the �nal proof of Lemma 2.
15Note: b�bhl refers to the second procedure even when �bhl refers to the �rst.
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2. for every p 2 N and e�bhl 2 Mbh
p , there exists e�hl =ZS �hl (bshl ) that strongly believes

(S
h
�l;q)

p
q=0 such that e�hl =bh e�bhl and �(e�hl )(bh) 6= ;.16

Proof.
Suppose by contraposition that there is a partition (D;D) of DS such that for everybh 2 D, there exist m(bh) � n and �bhl 2 Mbh

m(bh) that violate 1, and for every bh 2 D there

exist m(bh) 2 N and �bhl 2Mbh
m(bh) that violate 2. For each bh 2 DS , �x corresponding b�bhl . Let

�
h
l := �

h
l (bshl ). By Lemma 6, there exists e�hl =ZS �hl that strongly believes (Sh�l;q)nq=0 such

that for every bh 2 DS , e�hl =bh b�bhl . We want to show that there exists shl 2 �(e�hl ) such that
shl =

ZS bshl , violating A6.
Fix bh 2 D. Substitute b�bhl with �bhl in the construction of e�hl and obtain a new �hl =bh �bhl

that strongly believes (Sh�l;q)
m(bh)
q=0 with �hl (S�l(z)jeh) = e�hl (S�l(z)jeh) for all eh 62 Hbh and

z 62 Zbh. By de�nition of Mbh
m, player l expects a non higher payo¤ against b�bhl than against

�
bh
l . Thus, �(�hl )(bh) 6= ; (by the contrapositive hypothesis) implies �(e�hl )(bh) 6= ;. So,

H(�(e�hl )) \D = ;.
Write D = fh1; :::; hkg where m(h1) � ::: � m(hk). Note that (S

h
q )q�0 satis�es A1

with �hi (�) = �
h
i (�) and the identity function for shi (�). Then, by Lemma 6,17 for each

j = 1; :::; k, there exists �hl;j =
Zhn[jt=1Zh

t

�
h
l that strongly believes (S

h
�l;q)

m(hj)
q=0 such that

�hl;j =
ht �h

t

l for all 1 � t � j. Let �hl;0 := �
h
l . Fix j = 1; :::; k and suppose to have shown

that �(�hl;j�1) = �(�
h
l ). Then �(�

h
l;j�1) \ Shl (hj) = ;. By the contrapositive hypothesis,

�(�hl;j) \ Shl (hj) = ;. For all eh 62 Hhj and z 62 Zhj , �hl;j(S�l(z)jeh) = �hl;j�1(S�l(z)jeh). Then,
�(�hl;j) = �(�

h
l;j�1). Inductively, �(�

h
l;k) = �(�

h
l ) 3 bshl .

Fix eh 2 H(bshl )\HS \H(�(e�hl )). By e�hl =ZS �hl =ZS �hl;k, e�hl (S�l(z)jeh) = �hl;k(S�l(z)jeh)
for all z 2 Zeh \ ZS . Then, since �hl strongly believes Sh�l, bshl , as well as any other eshl 2 Shl
with H(eshl ) \DS = ;, induces the same outcome distribution against e�hl (�jeh) and �hl;k(�jeh).
Moreover, H(�(e�hl )) \D = ;. Finally, for all bh 2 D, by de�nition of Mbh

m, player l expects

a non higher payo¤ against b�bhl than against �bhl , and recall that e�hl =bh b�bhl and �hl;k =bh �bhl .
So, bshl 2 br(�hl;k;eh) implies bshl 2 br(e�hl ;eh). Proceeding from the root of the game, this implies

H(bshl ) \HS � H(�(e�hl )) \HS . Thus, there exists shl 2 �(e�hl ) such that shl (eh) = bshl (eh) for
all eh 2 HS . �

Proof of Lemma 2.

16Since bh 62 HS , the statement must hold vacously for some p 2 N (i.e. M
bh
p = ;).

17Using the identity function for shi (�) in the proof of the lemma and without iterating at histories bh 2
DSn

�
h1; :::; hj

	
, the constructed �hl;j clearly has the desired features.
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Recall that the depth of a game is the length of the longest terminal history of the game.

Suppose that �(h) has depth k 2 N and, if k > 1, that the lemma holds for games of depth
1; :::; k � 1. Let Sh1 6= ;, otherwise the lemma trivially holds.

We prove by induction that �(S
h
1) � �(Sh1). Note �rst that A4 and A5 hold by

hypothesis of the lemma.

Induction Hypothesis (n): (Shq )
1
q=0 satis�es A3 at n (so by A4 �(S

h
n) � �(S

h
1)).

Basis step (1): for all i 2 I, the Inductive Hypothesis holds with �hi (�) = �
h
i (�).

Inductive step (n+1).
Suppose by contradiction that the Inductive Hypothesis does not hold at n + 1. Then

A6 holds for some l 2 I and bshl 2 Shl;1. Lemma 7 yields bh 2 Dl(Sh1). If �(h) has depth 1,
Dl(S

h
1) = ;, so we have the desired contradiction. Else, de�ne ((S

bh
i;q)i2I)q�0 as follows: for

every i 2 I and m � n, S
bh
i;m = S

h
i;m(

bh)jbh; for every m > n, sbhi 2 Sbhi;m if and only if there

exists �bhi that strongly believes (Sbh�i;q)m�1q=0 such that sbhi 2 �(�bhi ).
For every i 6= l, since bh 2 Dl(Sh1), Shi;1(bh) 6= ;. So, �x bshi 2 Shi;1(bh). For every m � n,

the Induction Hypothesis provides shi (bshi ) 2 Shi;m(bh) 6= ; and �hi (bshi ) =�(Sh1) �hi (bshi ) that
strongly believes (Sh�i;q)

m�1
q=0 such that �hi (bshi )(Sh�i(bh)jp(bh)) = 0. Hence, by Lemma 5, for

every �bhi that strongly believes (Sbh�i;q)m�1q=0 , there exists �
h
i =

bh �bhi that strongly believes
(Sh�i;q)

m�1
q=0 such that �hi =

�(S
h
1) �

h
i (bshi ) and �(�hi )(bh) 6= ;. By A4, �(�hi ) � Shi;m. So,

�(�
bh
i ) � S

bh
i;m.

Fix �bhl that strongly believes (Sbh�l;q)nq=0: trivially �bhl 2 Mbh
n . Hence, by Lemma 7.(1),

there exists e�hl =�(Sh1) �hl (bshl ) that strongly believes (Sh�l;n)nq=0 such that e�hl =bh �bhl and
�(e�hl )(bh) 6= ;. By A4, �(e�hl ) � Shl;n. So �(�bhl ) � Sbhl;n 6= ;.

Hence, for every i 2 I and �bhi that strongly believes (Sbh�i;q)nq=0, �(�bhi ) � Sbhi;n 6= ;. So,
S
bh
i;n � S

bh
i;n+1 and ((S

bh
i;q)i2I)q�0 is an elimination procedure with S

bh
1 6= ;.

For every m � n, b�bhl that strongly believes (Sbh�l;q)1q=0, and �bhl =�(Sbh1) b�bhl that strongly
believes (S

bh
�l;q)

m�1
q=0 , �

bh
l 2M

bh
m.
18 Thus, by Lemma 7.(1) there exists e�hl =�(Sh1) �hl (bshl ) that

strongly believes (Sh�l;q)
m�1
q=0 such that e�hl =bh �bhl and �(e�hl )(bh) 6= ;. By A4, �(e�hl ) � Shl;m.

So �(�bhl ) � Sbhl;m.
Then, for everym 2 N, i 2 I, b�bhi that strongly believes (Sbh�i;q)1q=0 and �bhi =�(Sbh1) b�bhi that

strongly believes (S
bh
�i;q)

m�1
q=0 , �(�

bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es the hypothesis of

Lemma 2.

18Note that b�bhl strongly believes (Sbh�l;q)nq=0 = (Sh�l;q(bh)jbh)nq=0, and that �(b�bhl )�Sbh�l;1 � S
bh
1, so �

bh
l =

�(S
bh
1)

b�bhl veri�es the de�nition of Mbh
m in the statement of Lemma 7.

18



De�ne now ((Sbhi;q)i2I)q�0 as ((Shi;q(bh)jbh)i2I)q�0. By Remark 1 it is an elimination pro-
cedure.

For every i 6= l, m 2 N, and �bhi that strongly believes (Sbh�i;q)m�1q=0 , by Lemma 5 there

exists e�hi =bh �bhi that strongly believes (Sh�i;q)m�1q=0 such that for every eh 62 Hbh, e�hi (�jeh) =
�
h
i (bshi )(�jeh) and �(e�hi )(bh) 6= ;. By A5, �(e�hi ) � Shi;m.
For every m 2 N, b�bhl that strongly believes (Sbh�l;q)1q=0, and �bhl =�(Sbh1) b�bhl that strongly

believes (Sbh�l;q)m�1q=0 , �
bh
l 2M

bh
m.
19 Thus, by Lemma 7.(2) there exists e�hl =�(Sh1) �hl (bshl ) that

strongly believes (S
h
�l;q)

m�1
q=0 such that e�hl =bh �bhl and �(e�hl )(bh) 6= ;. By A5 �(e�hl ) � Shl;m.

Then, for every m 2 N, i 2 I, b�bhi that strongly believes (Sbh�i;q)1q=0 and �bhi =�(Sbh1) b�bhi
that strongly believes (Sbh�i;q)m�1q=0 , �(�

bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es the hypothesis

of Lemma 2

Since �(bh) has strictly lower depth than �(h), Lemma 2 holds. Hence, �(Sbh1) � �(Sbh1) 6=
;. But this contradicts bh 2 Dl(Sh1). �
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