
Self-enforcing agreements and forward induction

reasoning�

Emiliano Catoniniy

June 2017

Abstract

In dynamic games, players may observe a deviation from a pre-play, possi-

bly incomplete, non-binding agreement before the game is over. The attempt

to rationalize the deviation may lead players to revise their beliefs about the

deviator�s behavior in the continuation of the game. This instance of forward

induction reasoning is based on interactive beliefs about not just rationality,

but also the compliance with the agreement itself. I study the e¤ects of such

rationalization on the self-enforceability of the agreement. Accordingly, out-

comes of the game are deemed implementable by some agreement or not. Con-

clusions depart substantially from what the traditional equilibrium re�nements

suggest. A non subgame perfect equilibrium outcome may be induced by a self-

enforcing agreement, while a subgame perfect equilibrium outcome may not.

The incompleteness of the agreement can be crucial to implement an outcome.

A particular way to rationalize deviations allows to establish connections with

strategic stability (Kohlberg and Mertens, 1986).
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1 Introduction

When the players of a dynamic game can communicate before the game starts,

they are likely to exploit this opportunity to reach a possibly incomplete agree-

ment1 about how to play. In most cases, the context allows them to reach only

a non-binding agreement, which cannot be enforced by a court of law. The

only way a non-binding agreement can affect the behavior of players is through

the beliefs it is able to induce in their minds. This paper sheds light on which

agreements players can believe in and, among them, which agreements players

will comply with. Moreover, in an implementation perspective, the paper in-

vestigates which outcomes of the game can be secured by some agreement. The

paper will not deal with the pre-play bargaining phase. Yet, assessing their

credibility has a clear feedback on which agreements are likely to be reached.

I take the view that players believe in the agreement only if compatible

with the beliefs in rationality2 and their interaction with the beliefs in the

agreement of all orders. Ann will believe in the agreement only if Bob may

comply with it in case he is rational, he believes in the agreement, he believes

that Ann is rational and believes in the agreement (which may add non-agreed

upon restrictions on what Bob expects Ann to do), and so on. Moreover, I take

the view that deviations, or more generally past actions, are not interpreted

as mistakes but as intentional choices. Suppose that for Bob, in case he is

rational and believes in the agreement, some move makes sense only if he

plans to play a certain action thereafter. Ann, upon observing such move, will

believe that Bob will play that action (and Bob may use the move to signal

this). This instance of forward induction reasoning is based not just on the

belief in Bob’s rationality, but also on its interaction with the belief that Bob

believes in the agreement. Example 3 in Section 2 is a case in point. Consider

now a move that Bob, if he is rational and believes in the agreement, cannot

find profitable whatever he plays thereafter. Example 1 in Section 2 illustrates

1The formalization of agreements in this paper can also be given different interpretations.
For instance, the agreement can represent public announcements (by a subset of players).

2The notion of rationality employed in this paper imposes expected utility maximization,
but it does not impose by itself any restriction on beliefs. See Section 3 for details.
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a situation of this kind. Then Ann cannot keep believing that Bob is rational

and, at the same time, that he believes in the agreement. Which belief will she

maintain? Given the cheap talk nature of the agreement, I take the view that

Ann will keep believing that Bob is rational (if this is per se compatible with

Bob’s behavior). However, in Section 5 I argue that the main insights of the

paper go through under the opposite assumption. In addition, if compatible

with Bob’s behavior, Ann may maintain the belief that Bob believes that she

would have not violated the agreement before him. In Section 6 I argue that

the main insights go through also under this additional assumption.

For notational simplicity, I restrict the attention to the class of finite games

with complete information, observable actions,3 and no chance moves. How-

ever, the methodology can be applied to all dynamic games with perfect recall

and countably many information sets,4 hence possibly infinite horizon. Which

agreements will be believed and complied with? Which outcomes of the game

can be achieved through some agreement? To answer these questions, the

concepts of credibility, self-enforceability (of agreements) and implementability

(of outcomes) are introduced. An agreement is credible if believing in it is

compatible with the strategic reasoning hypotheses. A credible agreement is

self-enforcing if it induces players to follow only paths of play that are allowed

by the agreement itself. An outcome is implementable if it is the only outcome

induced by some self-enforcing agreement.

In two-players games, I find that an outcome is implementable if and

only if it is induced by a Nash equilibrium in extensive-form rationalizable

strategies (Pearce [26]; Battigalli and Siniscalchi [8]) that satisfies "realization-

strictness": all the normal-form best replies to co-players’equilibrium strate-

gies induce the equilibrium outcome. Therefore, standard elimination proce-

dure and fixed point condition provide to the analyst (or to a mediator) the

set of outcomes that can be achieved through pre-play coordination. Also in

3Games where every player always knows the current history of the game, i.e. – allowing
for truly simultaneous moves – information sets are singletons. For instance, all repeated
games with perfect monitoring are games with observable actions.

4This limitation allows to use Conditional Probability Systems (see Section 3), which
require a countable set of conditioning events.
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games with more than two players, an implementable outcome is not necessar-

ily induced by a subgame perfect equilibrium (henceforth, SPE). This result

may be surprising for two reasons. First, it is obtained under all the orders

of belief in rationality which are compatible with the observed behavior, also

after deviations from the agreed-upon path. Second, the literature has always

assigned to subgame perfection a dominating role. At the end of Section 6 I

will elaborate further on why I find this emphasis misplaced.5

In games with more than two players, not all realization-strict Nash equi-

libria in extensive-form rationalizable strategies induce an implementable out-

come: the threats of two players towards a deviator may be mutually incom-

patible. Thus, further conditions on off-the-path behavior are required. To

accomplish this task, I define a new, set-valued solution concept in reduced

strategies: Self-Enforcing Set (henceforth, SES). Differently than in a SPE, in

a SES the plans of deviators are not exogenously given, but are determined

by forward induction. To implement a SES outcome, players can agree on the

SES itself. Hence, they do not need to promise (and co-players trust) what

they would do after an own violation of the agreement. That SES’s are set-

valued reflects the incompleteness of the agreement, which may be crucial for

the implementation of an outcome: see Example 2 in Section 2.

Sometimes, the implementation of an outcome is possible only if players

declare in advance what they would do after a own deviation. To fully char-

acterize implementable outcomes, SES’s are enriched through the notion of

tight agreement. Like SES’s, tight agreements only require to verify one-step

conditions instead of many steps of reasoning, and implement exactly the out-

comes they allow. In this sense, tight agreements are truthful. Hence, the

5The relationship between subgame perfection and strategic reasoning in absence of
agreements has already been extensively studied for perfect information games (i.e. without
simultaneous moves) with no relevant ties. Reny [27] shows that backward and forward
induction strategies do not coincide. Nonetheless, Battigalli [4] proves that backward and
extensive-form rationalizability yield the same unique outcome. This result is proved also
by Heifetz and Perea [19] and by Chen and Micali [12]. The latter show that in all games
with perfect recall, extensive-form rationalizability refines backward induction without equi-
librium reasoning in terms of outcomes. In a previous work I find an overlapping between
extensive-form rationalizability and SPE outcomes in games with observable actions.
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characterization of implementable outcomes with tight agreements provides a

revelation principle for agreements design: players need not be vague about

the outcome they want to achieve.6

In many contexts, there are limitations to which agreements players can

actually reach. On the one hand, players may be unable (or unwilling) to

coordinate on a precise outcome.7 On the other hand, in some contexts it may

be natural to agree simply on an outcome to reach, without discussing what

to do in case of a deviation. The methodology developed in the paper allows

to evaluate agreements with any kind of incompleteness.

This work is greatly indebted to the literature on rationalizability in dy-

namic games. In this literature, restrictions to first-order beliefs are usually ac-

counted for through Strong-∆-Rationalizability (Battigalli, [5]; Battigalli and

Siniscalchi, [9]). Strong-∆-Rationalizability is based on the hypothesis that

players do not maintain the belief in the rationality of the co-players when

they display behavior which cannot be optimal under their first-order belief

restrictions. Battigalli and Prestipino [7] show that Strong-∆-Rationalizability

captures indeed transparency of the first-order belief restrictions, i.e. the as-

sumption that all orders of belief in the restrictions always hold in the game.

Battigalli and Friedenberg [6] interpret the restrictions as the context in which

the game takes place; for instance, a well-established convention.

To characterize the different hypotheses of this paper, another rationaliz-

ability procedure with first-order belief restrictions, Selective Rationalizability,

is constructed and analyzed epistemically in [11]. Selective rationalizability

captures common strong belief in rationality (Battigalli and Siniscalchi [8]),

i.e. the assumption that any order of belief in rationality holds as long as

not contradicted by the observed behavior. Thus, it combines unconstrained

strategic reasoning (i.e. based only on beliefs in rationality) and constrained

strategic reasoning (i.e. based also on first-order belief restrictions). In Section

6Thus, agreement incompleteness and the related uncertainty are useful only off-path.
7For instance, Harrington [18] documents instances of "mutual partial understanding"

among firms which leaves the exact path of price increase undetermined to escape antitrust
sanctions. Such mutual understanding can be modeled as an incomplete agreement, whose
consequences can be studied with the methodology developed in this paper.
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5, I show how the assumptions and the notions adopted in this paper explain

the differences in the results with respect to this literature.

Kohlberg and Mertens [20] were the first to introduce forward induction

considerations into equilibrium reasoning, through the set-valued notion of

strategically stable equilibria. Govindan and Wilson [15] refine sequential equi-

librium with a notion of forward induction. However, these two prominent

works and the related literature share the two same shortcomings. First, they

never question subgame perfection as a must-have for a "strategically stable"

solution. Second, the strategic reasoning that leads to playing such equilibria

is unclear or limited.8 The rationalizability approach adopted in this paper,

which is backed by epistemic foundations, allows to eliminate both shortcom-

ings. First, there is no constraint about how precisely and on which kind of

equilibrium behavior players agree. Second, there is transparency about which

particular agreements, beliefs, and epistemic assumptions induce different lines

of reasoning, with a clear demarcation between unconstrained and constrained

forward induction reasoning (missing in this literature).

In this sense, this work can also be interpreted as the axiomatic realization

of a program akin to Kohlberg and Mertens’(see [20], p. 1020).9 Full-fledged

forward induction reasoning is captured and clarified. Agreements provide

clear motivation and intuitive implementation, whereas strategic stability re-

quires to retrieve hard-to-guess mixed strategies for the verification of the most

intuitive outcomes. Implementable outcomes are proved (and not assumed)

to be realization-strict Nash, but not necessarily subgame perfect. In Section

6, I take a class of strategically unstable equilibria and show precisely which

kind of forward induction reasoning is able to rule them out. It turns out that

the idea behind subgame perfection is at deep contradiction precisely with this

kind of forward induction reasoning.

8A similar critique to strategic stability has been put forward by Van Damme [29].
9Kohlberg and Mertens [20] write: "We agree that an ideal way to discuss which equi-

libria are stable, and to delineate this common feeling, would be to proceed axiomatically.
However, we do not yet feel ready for such an approach; we think the discussion in this
section will abundantly illustrate the diffi culties involved." Nowadays, the achievements of
epistemic game theory allow to overcome many of these diffi culties.
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Section 2 discusses the three simple examples mentioned above. More

elaborate examples where the main ideas interact (Examples 4 and 5), along

with an applied example, are presented in the Supplemental Appendix. Section

3 introduces the theoretical framework and the analytic tools for the formal

treatment of Section 4. Sections 5 and 6 discuss the relationship with the

literatures on rationalizability and on equilibrium in dynamic games, and the

robustness of the analysis to different kinds of forward induction reasoning.

The Appendix collects all the proofs.

2 Examples

Example 1 Consider the following game.

A\B W E A\B L R

N 3, 3 ·− −→ U 1, 1 2, 2

S 0, 0 2, 2 D 0, 6 3, 5

The subgame has only one equilibrium, where all actions are played with equal

probability. Hence, the unique SPE of the game induces outcome (S,E), which

is Pareto-dominated by (N,W ). Suppose, Ann and Bob agree to play (N,W )

and that Ann should play U in case of deviation of Bob. Is the agreement

credible? If Bob is rational, he may deviate only if he does not believe in N ,

or U , or both. Then, after the deviation, Ann cannot believe at the same time

that Bob is rational and believes in the agreement. If she drops the belief that

Bob believes in the agreement and maintains the belief that Bob is rational,

she can believe that Bob does not believe in U and that he will play L. Hence,

she can react with U . Anticipating this, Bob can expect N and U , and refrain

from deviating. Further steps of reasoning do not modify the conclusion: the

agreement is credible and, once believed, players will comply with it.

Example 4 provides a similar game where the unique SPE outcome is

Pareto-dominated by a just Nash one. While here the Nash threat U is played

with positive probability also in the SPE, the credible threat that sustains the
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Nash outcome in Example 4 differs from the unique equilibrium action of the

subgame. Moreover, while here the SPE outcome can be achieved without an

explicit threat,10 in Example 4 the unique SPE outcome cannot be secured

without explicit threats, just like the Nash.

Example 2. In this 4-players game,11 in the subgame, Cleo chooses the
matrix, Ann the row, and Bob the column (payoffs are in alphabetical order).

Dave – Inst −→
Out ↓

5, 5, 1, 3

Int Arm Not Not Arm Not

Arm 4, 4, 0, 2 4, 3, 2, 1 Arm 0, 0, 1, 9 6, 1, 1, 6

Not 3, 4, 2, 1 5, 5, 0, 0 Not 1, 6, 1, 6 5, 5, 1, 3

Dave, a weapons producer, can instigate a conflict between Ann and Bob.

If he does, Cleo can intervene to avoid an escalation and retaliate against

Dave, with a cost of 1 for herself and 3 for him. By doing so, if only Ann

or only Bob participates to the arms race, Cleo can extract 2 utils from the

other for protection. Under Cleo’s peacekeeping, the arms race transfers 1

from Ann/Bob to Dave, and Ann and Bob prefer to adopt the same strategy;

in case of escalation, the arms race transfers 3, and Ann and Bob have the

incentive to be belligerent when the other is peaceful, and vice versa. The

unique equilibrium of the subgame assigns equal probability to all actions and

induces Dave to instigate. However, instead of looking for a diplomatic solution

that involves all parties, Cleo can simply threaten Dave to intervene, while Ann

and Bob remain silent. This is credible: under belief in the intervention, both

actions are rational for Ann and Bob, who may fail to coordinate. Once Dave

believes in Cleo’s intervention, he has the incentive not to instigate.

10If players agree on (S,E) and Ann deviates to N , Bob can still believe that she is
rational and believes in the agreement. In this case, Ann would deviate only under beliefs
about Bob’s reaction which make her play D. But then, Bob would always react with L.
11This game is freely inspired by the leading example in Greenberg [16], with a funda-

mental difference: in that example, the mediating country remains silent, and there simply
exist beliefs about its behavior that make the warring countries behave as desired; here the
warring countries remain silent and the mediating country speaks, and this suffi ces to pin
down beliefs that all induce the desired behavior by the first mover (here a fourth country).
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Example 3. Consider now the twofold repetition of the following game.

A\B Work FreeRide

W 2, 2 1, 3

FR 3, 1 0, 0

Ann and Bob agree that only Ann will work in the first period and, if this

happens, only Bob will work in the second period. They do not agree on

what to do if the agreement is violated in the first period. Suppose that Bob

deviates to Work in the first period. Ann can still believe that Bob is rational

and believed in the agreement. But then, she must believe that Bob will

not work in the second period, otherwise his deviation cannot be profitable.

So, she reacts to the deviation by working also in the second period. If Bob

believes that Ann believes that he is rational and believes in the agreement,

he anticipates this reaction and chooses to deviate. Anticipating this, Ann

cannot believe in the agreement. The agreement is not credible.

Suppose now that Ann and Bob agree that only Bob will work in both

periods. But then, Bob can signal with a deviation to Free Ride his intention

to free ride also in the second period, so that Ann works in the second period

and Bob benefits from the deviation.

Two objections may be raised at this point. First, Ann could interpret

the deviation as follows: "Bob believed that I would have not complied with

the agreement, and best replied by not complying himself." But then, if the

beliefs of Ann are Bayes-consistent, she must believe that Bob does not trust

her from the start: the deviation of Bob is not at odds with the belief that Ann

complies with the agreement. Second, Ann and Bob could agree beforehand

on what to do in case of deviation. For social convenience, they may not be

willing to do so. Or, when Bob displays disbelief in the agreement, Ann may

still believe that he believes that she would have not violated the agreement

before him. This belief gives rise to the rationalization of deviations depicted

above and further discussed in Section 6.

This example is analyzed formally in the Supplemental Appendix.
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3 Agreements, beliefs and strategic reasoning

3.1 Preliminaries

Primitives of the game.12 Let I be the finite set of players. For any profile
(Xi)i∈I and any ∅ 6= J ⊆ I, I write XJ := ×j∈JXj, X := XI , X−i := XI\{i}.

Let (Ai)i∈I be the finite sets of actions potentially available to each player.

Let H ⊆ ∪t=1,...,TA
t∪{∅} be the set of histories, where h0 := ∅ ∈ H is the start

of the game and T is the finite horizon. For any h = (a1, ..., at) ∈ H and l < t,

it holds h′ = (a1, ..., al) ∈ H, and I write h′ ≺ h.13 Let Z := {z ∈ H : ∀h ∈
H, z 6≺ h} be the set of terminal histories (henceforth, outcomes or paths)14,
and H := H\Z the set of non-terminal histories (henceforth, just histories).

Let Ai : H ⇒ Ai be the correspondence that assigns to each history h, always

observed by player i, the set of actions Ai(h) 6= ∅15 available at h to player i;
as standard, for all h ∈ H, (h, a) ∈ H if and only if a ∈ A(h). Let ui : Z → R
be the payoff function of player i. The list Γ =

〈
I,H, (ui)i∈I

〉
is a finite game

with complete information and observable actions.

Derived objects. A strategy of player i is a function si : h ∈ H 7→
si(h) ∈ Ai(h). Let Si denote the set of all strategies of i. A strategy profile

s ∈ S naturally induces a unique outcome z ∈ Z. Let ζ : S → Z be the

function that associates each strategy profile with the induced outcome. For

any h ∈ H, the set of strategies of i compatible with h is:

Si(h) := {si ∈ Si : ∃z � h,∃s−i ∈ S−i, ζ(si, s−i) = z} .

For any (Sj)j∈I and i ∈ I, let Si(h) := Si(h) ∩ Si. For any J ⊆ I, let

H(SJ) :=
{
h ∈ H : SJ(h) 6= ∅

}
denote the set of histories compatible with

12The basic notation for games is mostly taken from Osborne and Rubinstein [25].
13H endowed with the precedence relation ≺ is a tree with root h0.
14In many papers, paths and outcomes are different objects and a map from paths to

outcomes is assumed. Since this distinction is immaterial for this paper, outcomes will be
identified with paths. The term "path" will be used with emphasis on the sequence of moves,
and "outcome" with emphasis on the conclusion of the game.
15When player i is not truly active at history h, Ai(h) consists of just one "wait" action.
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SJ . For any h = (h′, a) ∈ H, let p(h) denote the immediate predecessor h′ of

h.

Throughout the paper, what a strategy prescribes at histories that are

precluded by the strategy itself will be completely immaterial. Therefore, the

domain of each strategy si is restricted to H(si); however, the term strategy

rather than reduced strategy or plan of actions is kept for brevity. At times,

the domain of strategies will be further restricted to the histories that follow

a given one. The restriction of a strategy si ∈ Si(h) to the histories following

h is denoted by si|h and is called continuation plan. A continuation plan can
also be seen as a strategy of the subgame with root h, denoted by Γ(h). Let

Shi be the set of player i’s continuation plans from h on (or, equivalently, the

strategies of Γ(h)). For any SJ ⊂ SJ , let

SJ |h :=
{
shJ ∈ ShJ : ∃sJ ∈ SJ(h), sJ |h = shJ

}
.

Histories and outcomes of Γ(h) will be identified by those that follow h in the

whole game, and not redefined as shorter sequences of action profiles.

Realization-strictness. ANash equilibrium s = (si)i∈I ∈ S is realization-
strict (r-strict) if, for all i ∈ I and s′i 6∈ Si(ζ(s)), ui(ζ(s)) > ui(ζ(s′i, s−i)).

3.2 Agreements

Players discuss publicly how to play before the game starts. I assume that:

• Players do not coordinate explicitly as the game unfolds: All the oppor-
tunities for coordination are discussed beforehand.

• No subset of players can reach a private agreement, secret to co-players.

• Players do not agree on the use of randomization devices. Players would
lack the incentive to (set the agreed-upon odds and) stick to the output of
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a (artificial) randomization device over the own actions.16 Players also

lack the ability to commit, otherwise it would not make sense to talk

of non-binding agreements. Agreeing on the use of joint randomization

devices, instead, would expand the set of outcomes players can achieve,17

and could be analyzed with the methodology developed in this paper.

Players can leave two kinds of strategic uncertainty, i.e. agreement in-

completeness. First, and more importantly, players can be vague about which

action they intend to play at some history. Second, players can claim to be

planning a certain action at only one of two unordered histories, without reveal-

ing at which one. This second kind of vagueness (which can also arise naturally

from rationality: see Section 3.4) can be profitably exploited in agreements:

see Example 5. A player can also declare what she plans to do in case she

deviates from her initial plans. And so on. Also the trust in a player who

has already violated the agreement can be strategically exploited:18 see again

Example 5. Thus, agreements are formally modeled as follows.

Definition 1 An Agreement is a profile of correspondences e = (ei)i∈I with

ei : h ∈ H 7→ ehi ⊆ Shi where, for all i ∈ I, e0
i := eh

0

i 6= ∅, and for all h 6= h0,

ehi 6= ∅ ⇒ ∪h′≺heh
′

i (h) = ∅ 6= ∪h′≺heh
′

i (p(h)).

Starting from the root of the game, an agreement can assign to a player a

non-empty set of continuation plans only at histories that immediately follow

a deviation by the player from the plans already assigned.19 However, (i)

the agreement may be empty at all such histories. Moreover, (ii) it may de

facto not restrict a player’s behavior also at histories that follow a deviation

16For this reason, I will talk of outcome sets instead of outcome distributions. As Pearce
[26] puts it, "this indeterminacy is an accurate reflection of the diffi cult situation faced by
players in a game." In games like matching pennies, an agreement is hardly conceivable.
17Similarly to how correlated equilibrium expands the set of Nash equilibrium outcome

distributions.
18However, differently than in a SPE, this trust will be challenged with strategic reasoning.
19This is reminiscent of the notion of basis of a CPS by Siniscalchi [28]: new theories are

introduced only at histories that are not deemed as "plausible" as the previous ones under
the theories already introduced.
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by anyone else. Agreements are particularly simple when (iii) players declare

which actions they may play at each history, independently of what they plan

to do at other histories.

Definition 2 An agreement e = (ei)i∈I is:

i reduced if for every i ∈ I and h 6= h0, ehi = ∅;

ii a path agreement on z ∈ Z if it is reduced and for every i ∈ I, e0
i = Si(z);20

iii on actions if for all i ∈ I, h ∈ H, ehi = Shi \ ∪z∈V hi S
h
i (z) for some V h

i ⊆ Z.

A reduced agreement corresponds to a profile of strategy sets.21 A path

agreement corresponds to just agreeing on an outcome to achieve. Within the

formalism of agreements, agreements on actions are expressed through vetos

V h
i cast by players on outcomes. In the examples of the paper, where most

agreements are reduced and on actions, agreements on actions are equivalently

expressed declaring actions instead of continuation plans at each individual

history. Non-reduced agreements can be found in Examples 4 and 5. An

agreement which is not on actions is discussed in Example 5. Path agreements

can be found in Examples 3 and 4.

For an agreement e = (ei)i∈I , I will refer to ζ(e0) as the outcome set that

the agreement prescribes.

3.3 Belief in the agreement

Players’beliefs are modeled as Conditional Probability Systems (henceforth,

CPS). Here I define CPS’s directly for the problem at hand.

Definition 3 Fix i ∈ I. An array of probability measures (µi(·|h))h∈H over

co-players strategies S−i is a Conditional Probability System if for all h ∈ H,
µi(S−i(h)|h) = 1, and for all h′ � h and S−i ⊆ S−i(h

′),

µi(S−i|h) = µi(S−i(h
′)|h) · µi(S−i|h′).

20The term path agreement was first used by Greenberg et al. [17]: see also footnote 34.
21Recall that all strategies are reduced.
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The set of all CPS’s on S−i is denoted by ∆H(S−i).

A CPS of a player over co-players’strategies is an array of beliefs, one for

each history, that satisfies the chain rule; that is, whenever possible, the belief

at a history is an update of the belief at the previous history based on the

observed co-players’moves.

For any player i and any set of co-players J ⊆ I\ {i}, I say that a CPS µi
strongly believes SJ ⊆ SJ if for every h ∈ H(SJ), µi(SJ × SI\(J∪{i})|h) = 1.22

In formulae and proofs, I will write "that s.b." for "that strongly believes".

Note that a player can have correlated beliefs about the strategies of differ-

ent co-players. This is not in contradiction with the absence of joint random-

ization devices in the agreement: players can believe in spurious correlations

among co-players’strategies (see, for instance, Aumann [1] and Brandenburger

and Friedenberg [10]).23 However, strategic independence (Battigalli [3])24

could be assumed throughout the paper and the results would not change.

I say that a player believes in the agreement if, at each history and for each

co-player, she assigns probability 1 to strategies of the co-player which comply

with the agreement from her most recent violation of the agreement onwards.

Definition 4 Fix an agreement e = (ei)i∈I and µi ∈ ∆H(S−i). I say that

player i believes in the agreement when, for every h ∈ H, s−i = (sj)j 6=i with

µi(s−i|h) > 0, j 6= i, and h � h,

ehj (h) 6= ∅ ⇒ sj|h ∈ ehj .

Let ∆e
i be the set of all µi ∈ ∆H(S−i) where player i believes in the agreement.

Note that every µi ∈ ∆e
i strongly believes (e0

j)j 6=i (and not just ×j 6=ie0
j).

22In the original meaning of "strong belief", due to Battigalli and Siniscalchi [8], SJ ×
SI\(J∪{i}) and not SJ is "strongly believed". The slight difference in the use of the term is
only for notational convenience.
23For instance, a player can believe that a sunny day will induce more optimistic beliefs

in two co-players.
24Roughly speaking, the assumption that a player has a separate CPS about the behavior

of each co-player.
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3.4 Rationality and Rationalizability

I consider players who reply rationally to their beliefs. A rational player, at

every history, chooses an action that maximizes her expected payoff given her

belief about how co-players will play and the expectation to choose rationally

again in the continuation of the game. By standard arguments, this is equiv-

alent to playing a sequential best reply to the CPS.

Definition 5 Fix µi ∈ ∆H(S−i). A strategy si ∈ Si is a sequential best reply
to µi if for each h ∈ H(si), si is a continuation best reply to µi(·|h), i.e. for

each s̃i ∈ Si(h),∑
s−i∈S−i(h)

ui(ζ(si, s−i))µi(s−i|h) ≥
∑

s−i∈S−i(h)

ui(ζ(s̃i, s−i))µi(s−i|h).

The set of sequential best replies to µi (resp., to some µi ∈ ∆e
i ) is denoted

by ρ(µi) (resp., by ρ(∆e
i )). The set of normal-form best replies to a probability

measure νi on S−i is denoted by ri(νi). I say that a strategy si is rational if it

is a sequential best reply to some µi ∈ ∆H(S−i). An important remark: Even

when no rational strategy prescribes action ai at two unordered histories h

and h′, there might be other two rational strategies, both compatible with h

and h′, which prescribe ai only at, respectively, h and h′.

Here I take the view that players refine their first-order beliefs through

strategic reasoning based on beliefs in rationality and beliefs in the belief in

the agreement. In particular, I assume that every player, as long as not contra-

dicted by observation, believes that each co-player is rational and believes in

the agreement; that each co-player believes that each other player is rational

and believes in the agreement; and so on. At histories where common belief in,

jointly, rationality and belief in the agreement is contradicted by observation,25

I assume that players maintain all orders of belief in rationality that are per se

compatible with the observed behavior, and drop the incompatible orders of

25In [11] I show how anticipating which beliefs are kept at these histories refines also
first-order beliefs at histories where all orders of belief in rationality and agreement hold.
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belief in the agreement. I will call independent rationalization the hypothesis

that players maintain a order of belief in rationality or in the agreement about

a co-player when her individual behavior allows, as opposed to the hypothesis

that players maintain such order of belief about all co-players only until none

of them contradicts it.26 The adoption of independent rationalization shows

better the robustness of the main insights. After a deviation that displays the

disbelief of the deviator in the agreement, without independent rationaliza-

tion co-players’threats would not be required any degree of coordination. In

Example 5, independent rationalization makes it much more challenging for

players to find an effective agreement.

As shown in [11], the behavioral consequences of this kind of strategic rea-

soning are captured by Selective Rationalizability. Selective Rationalizability

refines the following version of Extensive Form Rationalizability27 (henceforth

just Rationalizability).

Definition 6 Let S0 := S. Fix n > 0 and suppose to have defined ((Sqj )j∈I)
n−1
q=0 .

For each i ∈ I and si ∈ Si, let si ∈ Sni if and only if si ∈ ρ(µi) for some

µi ∈ ∆H(S−i) that strongly believes ((Sqj )j 6=i)
n−1
q=0 .

Finally, let S∞i := ∩n≥0S
n
i . The profiles S

∞ are called rationalizable.

Next, Selective Rationalizability. Fix an agreement e = (ei)i∈I .

Definition 7 Let S0
e := S∞. Fix n > 0 and suppose to have defined ((Sqj,e)j∈I)

n−1
q=0 .

For each i ∈ I and si ∈ Si, let si ∈ Sni,e if and only if si ∈ ρ(µi) for some

µi ∈ ∆e
i that strongly believes ((Sqj,e)j 6=i)

n−1
q=0 such that:

S3: µi strongly believes ((Sqj )j 6=i)
∞
q=0.

26This is not in contradiction with the absence of strategic independence: players can
believe in spurious correlations among co-players’ strategies, although they are ready to
believe that different co-players have different orders of belief in rationality or in the agree-
ment. For instance, the beliefs of a more and a less sophisticated players can be affected by
weather in the same way.
27This notion of Extensive-Form-Rationalizability is the adaptation of Strong Rational-

izability (Battigalli and Siniscalchi, [8]) to independent rationalization. Independent ra-
tionalization is also a feature of Independent Rationality Orderings (Battigalli [3]), where
strategic independence is adopted. The original notion of Extensive-Form-Rationalizability,
due to Pearce [26], adopts instead structural consistency (Kreps and Wilson [21]).
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Finally, let S∞i,e := ∩n≥0S
n
i,e. The profiles S

∞
e are called selectively-rationalizable.

S3 guarantees that a player always believes in co-players’strategies which

are compatible with the highest possible order of belief in rationality. Among

those, a player believes in co-players’strategies which are compatible with the

agreement and with the highest possible order of belief in the agreement. Note

that first-order belief in the agreement, as required by ∆e
i , is mandatory at

all histories. Then, the empty set is obtained when at some step some co-

player can reach a history only with strategies that do not comply with the

agreement from the history on. In this way, the compatibility of the belief in

the agreement with the strategic reasoning hypotheses is tested.

Consider now the following class of rationalizable continuation plans, which

are "realization equivalent" under the assumption that the opponents play

rationalizable plans too. For any h ∈ H(S∞) and shi ∈ Shi , let
[
shi
]∞

be

the set of all shi ∈ S∞i |h such that ζ(shi , s
h
−i) = ζ(shi , s

h
−i) for all s

h
−i ∈ S∞−i|h.

For any S
h

i ⊆ Shi (possibly empty), let [S
h

i ]
∞ := ∪

shi ∈S
h
i

[
shi
]∞
. I say that

e = (ei)i∈I is a rationalizable agreement if for all i ∈ I, ehi =
[
ehi
]∞

for all h ∈ H(S∞) and ehi = ∅ for all h 6∈ H(S∞). By Definition 12 and

Theorem 1, rationalizable agreements suffi ce to induce all the implementable

outcome sets (and also the agreements that correspond to a Self-Enforcing

Set are rationalizable, see Definition 13). S3 can be substituted by si ∈ S∞i
for all rationalizable agreements: see Lemma 3 in the Appendix. However, for

any agreement, Rationalizability and Selective Rationalizability can be merged

into one elimination procedure, where the belief in the agreement kicks in once

the rationalizable profiles are obtained (see footnote 49). Finally, strong belief

in ((Sqj,e)j 6=i)
n−2
q=0 can be replaced by si ∈ Sn−1

i,e in 2-players games or dropping

independent rationalization: see [11] for details.

Only in the applied example in the Supplemental Appendix, the game

features non-rationalizable strategies. To see Selective Rationalizability at

work, check the formalization of Example 3 in the Supplemental Appendix.

I will refer to ζ(S∞e ) as the set of outcomes induced by e, and to histories

in H(S∞) as "rationalizable histories".
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4 Self-enforceability and implementability

In order to evaluate a given agreement, two features have to be investigated.

First, whether the agreement is credible or not. Second, if the agreement is

credible, whether players will certainly comply with it or not. An agreement

is credible if believing in it is compatible with strategic reasoning.

Definition 8 An agreement e = (ei)i∈I is credible if S∞e 6= ∅.

Credibility does not imply that players will comply with the agreement,

but only that they may do so everywhere in the game. Strategic reasoning on

a credible agreement induces each player i to strongly believe in a subset of

co-players’agreed-upon plans, namely S∞−i,e ∩ e0
−i. I say that an agreement is

self-enforcing if this belief will not be contradicted by the actual play.

Definition 9 A credible agreement is self-enforcing if ζ(S∞e ) = ζ(S∞e ∩ e0).

Self-enforceability implies that players will certainly comply with the agree-

ment on the induced paths, so that no violation of the agreement will actually

occur. That is, ζ(S∞e ) ⊆ ζ(e0). This condition is also suffi cient for self-

enforceability of a credible agreement on actions.

Proposition 1 An agreement on actions is self-enforcing if and only if

∅ 6= ζ(S∞e ) ⊆ ζ(e0).

In Examples 1 and 2, the reduced agreements with, respectively, e0
A =

{N.U} , e0
B = {W}, and e0

C = {Int} , e0
i = Si, i = A,B,D are self-enforcing.

All strategies are rationalizable. At the first step of Selective Rationalizability,

in Example 1 Ann eliminates S and Bob selects W , while in Example 2 Dave

selects O and the other players do not eliminate any strategy. In both cases,

Selective Rationalizability is over at the first step. Example 3 provides two

non-credible agreements, as formally shown in the Supplemental Appendix.

A merely credible agreement fails to secure outcomes that players agreed

upon and believed in. Moreover, only self-enforcing agreements are able to

secure a specific outcome.
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Proposition 2 If ζ(S∞e ) is a singleton, then e is self-enforcing.

For these reasons, in the remainder of the paper, the focus will be on self-

enforcing agreements. Which outcomes of the game can be achieved through

self-enforcing agreements?

Definition 10 A set of outcomes P ⊆ Z is implementable if there exists a

self-enforcing agreement such that ζ(S∞e ) = P (and I say that the agreement

implements P ).

With "implementable outcomes" I will refer specifically to implementable

singletons. The set of outcomes prescribed by a self-enforcing agreement may

be larger than the outcome set it induces (i.e. ζ(e0) ⊃ ζ(S∞e )). So, a natural

question arises: for each implementable outcome set, is there an implement-

ing agreement that prescribes precisely that set of outcomes? The answer is

not obvious because simply restricting the initial plans of some self-enforcing

agreement to those that allow the implemented outcome set may not work:

see Example 4. Therefore, consider the following classes of agreements.

Definition 11 A self-enforcing agreement is truthful if ζ(S∞e ) = ζ(e0).

Definition 12 An agreement e = (ei)i∈I is tight if for each i ∈ I,

T1 For all h ∈ H(S∞), ∪h�hehi (h) 6= ∅ and ehi = [ehi ]
∞; else, ehi = ∅;

T2 For each h ∈ H(ρ(∆e
i ) ∩ S∞i )), ehi ⊆ (ρ(∆e

i ) ∩ S∞i )|h;

T3 For each µi that strongly believes e
0
−i, ζ(ρ(µi)× e0

−i) ⊆ ζ(e0).

T3 says that players who believe in the agreement have no incentive to

leave the paths it prescribes. Hence, the following holds.

Remark 1 An agreement e = (ei)i∈I where ζ(e0) is a singleton satisfies T3 if

and only if e0 is a set of r-strict Nash equilibria.
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T1 says that a tight agreement reaches all the rationalizable histories with

rationalizable continuation plans of all players; moreover, such plans allow

any rationalizable behavior at the other histories they reach, and no further

plans are declared at the non-rationalizable histories they do not reach. By

T2, the prescribed plans must also be rational for a player who believes in

the agreement and reaches the history. This guarantees that the agreed-upon

plans never fall below other plans in the "likelihood order" of co-players who

reason by forward induction about this player. Thus, the following holds.

Proposition 3 A tight agreement is truthful.

On the other hand, for every implementable outcome set, there is always

a tight agreement that prescribes it.

Theorem 1 An outcome set is implementable if and only if there exists a tight
agreement that prescribes it.

Then, by Remark 1, the following holds.

Corollary 1 Every implementable outcome is induced by a r-strict Nash equi-
librium in rationalizable strategies.28

Theorem 1 and Proposition 3 answer to the original question.

Corollary 2 Every implementable outcome set is implemented by a truthful
agreement.

Corollary 2 constitutes a revelation principle for agreements design: players

need not be vague about the outcomes they want to achieve.

Corollary 1 restricts the search for implementable outcomes to the fixed

points of the normal-form, best response correspondence, in the reduced game

of rationalizable strategies.

28It is straightforward to prove this result directly by observing that if z is implemented
by e, then any s ∈ S∞e is a strict Nash equilibrium in rationalizable strategies.
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Theorem 1 provides a full characterization of implementable outcome sets.

Tight agreements simplify the search for implementable outcome sets and im-

plementing agreements. First, the game is reduced to the rationalizable strat-

egy profiles. Once a candidate outcome (set) is fixed, Corollary 2 allows to

restrict the search to agreements that prescribe it. Moreover, one can focus on

initial plans that are rational under strong belief in the ones of co-players (by

T2), and directly provide the incentive not to deviate from the desired paths

(by T3). Then, the behavior of deviators must be specified as to satisfy T1

and T2 off-path. Note that T2 only requires to compute the sequential best

replies to the belief in the agreement itself, as opposed to the multiple steps

required by Selective Rationalizability, and without memory of the steps of

Rationalizability.

Example 5 illustrates an interesting tight agreement, which prescribes an

outcome that cannot be implemented without restrictions to the behavior of

a deviator, nor by an agreement on actions. But usually, tight agreements are

more complex than needed for the implementation of an outcome set. For a

single outcome, the simplest and more natural agreement is the corresponding

path agreement. Yet, very few path agreements are self-enforcing. In Example

4, not even the path agreement on the unique SPE outcome is self-enforcing.

Therefore, one may wonder which outcome sets can be implemented with

reduced agreements and agreements on actions.

First, let us consider reduced agreements. A reduced agreement corre-

sponds to a Cartesian set of strategy profiles. Recall that, throughout the

paper, only reduced strategies are considered. This implies that, differently

than a SPE or a tight agreement, a reduced agreement remains silent about the

behavior of deviators. However, the behavior of deviators can be (partially)

predicted by forward induction. Thus, consider the following, set-valued solu-

tion concept.

Definition 13 Fix S∗ = ×i∈IS∗i ⊆ S. I say that S∗ is a Self-Enforcing Set if

for each i ∈ I:
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♠ Rationalizability: S∗i = [S∗i ]
∞;

♣ Self-Justifiability: S∗i ⊆
{
si ∈ S∞i : ∃µi t.s.b.(S∗j , S∞j )j 6=i, si ∈ ρ(µi)

}
=: Si;

♥ Forward Induction: Si ⊆
{
si ∈ S∞i : ∃µi t.s.b.(S∗j , Sj, S∞j )j 6=i, si ∈ ρ(µi)

}
;

♦ Self-Enforceability: For each µi that s.b. S∗−i, ζ(ρ(µi)× S∗−i) ⊆ ζ(S∗).

Rationalizability says that the SES prescribes rationalizable plans without

further restricting behavior at the non-rationalizable histories. Consider now

players who strongly believe that each co-player will play as the SES prescribes

and, alternatively, as rationalizability prescribes. Self-Justifiability says that

they may play any strategy in the SES. Forward Induction says that all the

strategies such players may play, thus including the SES strategies, are com-

patible with strong belief that co-players form beliefs in the same way. At

each history h that follows a deviation by player j from S∗j , the logics of For-

ward Induction differ from the logics of subgame perfection in the following

way. Forward Induction determines the expected continuation plans of j with

forward induction reasoning, based on her belief in the SES if possible (Sj) or

just the beliefs in rationality otherwise (S∞j ). Subgame perfection prescribes

exogenously the continuation plans of deviators, and imposes that they always

best reply to the planned reactions of co-players. The best response condition

of Forward Induction, imposed after one step of reasoning instead of just at

the start, suffi ces to guarantee credibility after all steps of reasoning, which

players do not actually need to perform when they agree on a SES.

On top of this, Self-Enforceability29 guarantees that players will not leave

the paths induced by the SES if they strongly believe that all co-players will

play as the SES prescribes.30 Self-Justifiability further guarantees truthfulness

of the agreement that corresponds to the SES.

Theorem 2 Fix a SES S∗. The reduced agreement e with e0 = S∗ is truthful.

29I will write Self-Enforceability with capital letters to distinguish it from the self-
enforceability of agreements.
30This is reminiscent of the notion of "strategy subsets closed under rational behavior" by

Basu and Weibull [2], but in the context of dynamic games and with focus on the realized
paths instead of the strategies.
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Conversely, one could think that, for any self-enforcing agreement, S∞e ∩ e0

is a SES. While S∞e ∩e0 satisfies Self-Enforceability and Self-Justifiability, and

restrictions to behavior at non-rationalizable histories can always be eliminated

as to satisfy Rationalizability, S∞e ∩e0 may not satisfy Forward Induction. The

sequential best replies of player i under strong belief in (S∞j,e∩e0
j)j 6=i may not be,

at some history, what co-players expect after all steps of reasoning under the

agreement. Such refinement of beliefs may be crucial to sustain the threats.

For this reason, not every implementable outcome set is induced by some

SES, not even if implemented by a truthful, reduced agreement: see Example

5. However, a SES always exists.

Remark 2 S∞ is a SES.

The search for candidate SES’s conveniently coincides with the search of

the initial plans of a tight agreement. Then, Forward Induction must be

checked. If no candidate SES for the implementation of an outcome set satisfies

Forward Induction, then one can try to transform a candidate SES into a

tight agreement, by declaring the behavior of deviators as to satisfy T1 and

T2 off-path. This whole procedure is performed in Example 5. Also the

reduced agreement of Example 2 is an interesting SES where set-valuedness,

i.e. agreement incompleteness, plays a crucial role (while forward induction is

immaterial because each player moves only once.)

Can the SES be implemented by a reduced agreement on actions? The

answer is yes if the SES can be expressed through vetos cast by each player

on rationalizable outcomes.

Proposition 4 Fix S∗ = ×i∈IS∗i that satisfies ♣, ♥, ♦, and, for each i ∈ I:

♠ Rationalizable Vetos: S∗i = S∞i \ ∪z∈Wi
Si(z) for some Wi ⊆ ζ(S∞).

Then, S∗ is SES and ζ(S∗) is implemented by the reduced agreement on actions

with vetos V 0
i := Z\ζ(S∗i × S−i) for all i ∈ I.

Casting unilateral vetos on outcomes is equivalent to exclude actions in-

stead of strategies. The candidate SES is then the set of rationalizable strate-

gies that do not prescribe the excluded actions. The implementing reduced
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agreement on actions is the set of all strategies that allow the SES outcomes.31

Note that S∞ always satisfies Rationalizable Vetos.

Let us focus now on implementable outcomes. By Rationalizability and

Self-Enforceability, every SES that induces a unique outcome is a set of r-

strict Nash equilibria in rationalizable strategies. Does the opposite hold?

The answer is no: the threats of two different players towards a potential

deviator may be incompatible with each other. But this cannot happen in a

two-players game.

Proposition 5 Fix a two-players game and a r-strict Nash outcome z ∈ Z.
The set S∗ of all r-strict Nash equilibria s ∈ S∞(z) is a SES that satisfies

Rationalizable Vetos.

Moreover, for each s ∈ S∗, the reduced agreement e with e0 = {s} imple-
ments z.32

Together with Corollary 1, the following holds.

Theorem 3 In a two-players game, an outcome is implementable if and only
if there exists a r-strict Nash equilibrium in rationalizable strategies that in-

duces it.

Together with Proposition 5, the following holds.

Corollary 3 In a two-players game, every implementable outcome is imple-
mented by a truthful, reduced agreement on actions.

Hence, in two-players games, standard elimination procedure and fixed

point condition suffi ce to find all implementable outcomes and, for each of

them, a truthful, reduced agreement on actions that implements it.

31With V 0
i = Wi, the agreement may be not credible: for some h ∈ H(S∞i )∩H(Si\∪z∈Wi

Si(z)), it may hold S∞i (h)\∪z∈Wi
Si(z) = ∅, so strong belief in both S∞i and Si\∪z∈Wi

Si(z)
is impossible.
32The agreement on a SES that induces the outcome instead of on a precise Nash may be

however more natural: see the applied example in the Online Appendix.
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5 Comparison with rationalizability literature

The literature on strategic reasoning with first-order belief restrictions is mostly

based on the use of Strong-∆-Rationalizability ([5], [9]). The definition of

Strong-∆-Rationalizability with independent rationalization coincides with De-

finition 7 without S3 and with S0 = S. The differences between the results of

this paper and the results in this literature are due to (i) the adoption of Selec-

tive Rationalizability in place of Strong-∆-Rationalizability, (ii) the structure

on the first-order belief restrictions imposed by the notion of agreement, and

(iii) the focus on self-enforceability rather than just credibility.

Differences and similarities between Selective Rationalizability and Strong-

∆-Rationalizability are deeply analyzed in [11]. Here I only recall the main

conceptual difference behind the two solution concepts. Fix a move that a

player would not rationally make under belief in the agreement. Contrary to

Selective Rationalizability, Strong-∆-Rationalizability captures the hypothesis

that, upon observing such move, co-players drop the belief that the player is

rational. This hypothesis is called in [11] "(epistemic) priority to the agree-

ment" (as opposed to rationality). So, the question is: how would the adoption

of Strong-∆-Rationalizability instead of Selective Rationalizability affect the

results?

In every example except the applied example in the Supplemental Ap-

pendix, all strategies are rationalizable, thus Selective Rationalizability and

Strong-∆-Rationalizability coincide. Hence, the insights from the examples

are robust to a shift of epistemic priority from rationality to the agreement.

What happens in games where not all strategies are rationalizable? Let

(Sq∆e)∞q=0 be Strong-∆-Rationalizability with independent rationalization.

Remark 3 All results of Section 4 hold through verbatim after substituting:

1. selectively-rationalizable strategies (S∞e ) with strongly-∆-rationalizable

strategies (S∞∆e) everywhere;

2. rationalizable strategies (S∞) with all strategies (S) in the definitions of
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[·]∞,33 tight agreement, and SES, and with rational strategies (S1) in the

statements of Corollary 1, Proposition 5, and Theorem 3.

To verify Remark 3, the required modifications to the proofs of the results

are highlighted in the Appendix. A credible agreement under priority to ratio-

nality needs not be credible under priority to the agreement: as shown in [11],

Selective Rationalizability is not a refinement of Strong-∆-Rationalizability for

the same first-order belief restrictions. Across all agreements, instead, under

priority to the agreement more outcome sets can be implemented.

Proposition 6 If an outcome set is implementable under priority to rational-
ity, then it is implementable under priority to the agreement.

However, since agreements originate from mere pre-play cheap talk, epis-

temic priority to rationality appears in my view as a more considerate hy-

pothesis. Else, for instance, any Nash equilibrium in rational strategies of a

two-players game would correspond to a self-enforcing agreement, also when

incompatible with just strong belief in rationality.

Battigalli and Friedenberg [6] capture the implications of Strong-∆-Ratio-

nalizability without independent rationalization across all first-order belief

restrictions with the notion of Extensive Form Best Response Set. An EFBRS

is a Cartesian set of strategy profiles S = ×i∈ISi satisfying the following:

EFBRS: for every i ∈ I and si ∈ Si, si ∈ ρ(µi) for some µi that strongly

believes S−i with ρ(µi) ⊆ Si.

The EFBRS Condition is the analogue of Self-Justifiability in absence of pri-

ority to rationality and independent rationalization, but with an additional

"maximality" requirement: all the sequential best replies to some justifying

beliefs must be in the EFBRS. These beliefs are not expressed by the EFBRS

itself, whereas a SES directly provides the first-order belief restrictions that

yield the SES outcomes. The restrictions that yield the EFBRS may impose

33This is just to adapt to the formalism of Section 4: the equivalence classes become
singletons (in the sense of one reduced strategy).
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belief in specific randomizations, or, more fundamentally, differ across two

players regarding the moves of a third player.34 An agreement, instead, aligns

any two player’s beliefs about a third player’s moves. For this reason, even

with randomizations in agreements and without independent rationalization,

EFBRS’s would still be insuffi cient for implementability of the induced out-

comes under priority to the agreement, calling for Self-Enforceability in place

of maximality.

Battigalli and Siniscalchi [9] find out that, for first-order belief restric-

tions which correspond to the belief in an outcome, Strong-∆-Rationalizability

yields a non-empty set only if there exists a self-confirming equilibrium (Fu-

denberg and Levine [14]) inducing that outcome. Regardless of the epistemic

priority choice, implementable outcomes are instead all Nash by Corollary 1

and Remark 3. Why is it the case? The reason lies in the difference between

credibility and self-enforceability. Under a self-enforcing agreement, players

have the incentive to stay on path for all their refined beliefs. This allows

to find strategies of co-players against which there is no incentive to deviate.

Credibility, instead, may be granted just by some particular (correlated) belief

about the reactions of co-players to the deviation.

Conversely, in signaling games, Battigalli and Siniscalchi [9] show that

when an equilibrium outcome satisfies the Iterated Intuitive Criterion (Cho

and Kreps [13]), Strong-∆-Rationalizability yields a non-empty set under belief

in that outcome. Yet, even in the simplest examples of this paper, off-the-path

restrictions are usually needed for self-enforceability. What does strategic

reasoning under path restrictions represent when the agreement is richer than

the path agreement? The next section sheds light on this point.

34Greenberg et al. [17] define a (non-forward induction) solution concept, called "mutually
acceptable courses of action". Their leading example focuses on an EFBRS outcome z.
Strong-∆-Rationalizability yields z for first-order belief restrictions that could be derived
from an agreement for each player, but not from the same agreement for all players. Indeed,
z is not implementable under priority to the agreement. Also allowing subsets of players to
reach private agreements, z would still not be implementable, because the first-order belief
restrictions of each player need instead to be transparent to all players (as they are under
Strong-∆-Rationalizability).
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6 Comparison with equilibrium literature

Kohlberg and Mertens [20] motivate their analysis in a similar way to this

paper: "A noncooperative game is played without any possibility of commu-

nication between the players. However, we may think of the actual play as

being preceded by a more or less explicit process of preplay communication (the

course of which has to be common knowledge to all players), which gives rise

to a particular choice of strategies." ([20], page 1004) Then, they introduce

forward induction as implicit communication during the game, based on ac-

tual moves: "Essentially what is involved here is an argument of "forward

induction": a subgame should not be treated as a separate game, because it

was preceded by a very specific form of preplay communication – the play

leading to the subgame." ([20], page 1013) Finally, they claim that the "for-

ward induction" property of their notion of strategic stability, "captures the

"forward-induction" logic of our basic example." ([20], page 1029) The two

examples of forward induction in the paper refer to a player who gives up

an outside option. The consequent reasoning is not based on pre-play com-

munication: unconstrained forward induction reasoning suffi ces for players to

coordinate on the strategically stable solutions of two examples.

Govindan and Wilson [15] use the Beer-Quiche game (Cho and Kreps, [13])

to show a different kind of forward induction reasoning. In Beer-Quiche, one

of the two pure equilibria can be ruled out with a story of interactive beliefs

in its outcome distribution. That is, constrained forward induction reasoning.

However, both kinds of reasoning are hard to detect in their formal definition

of forward induction, while depth of reasoning and scope of the analysis remain

limited. As acknowledged by the authors themselves, their notion of forward

induction only captures rationality and strong belief in rationality in two-

players games ([15], page 11),35 and fails in games with more than two players

35I suggest that the two steps limitation (rationality and strong belief in rationality) on
uncontrained reasoning extends to the constrained reasoning captured by forward induction.
Moreover, I suggest that, once forward induction is immerged in sequential equilibrium, a
further step of reasoning is captured at the beginning of the game. Indeed, the equilibrium
selection in Beer-Quiche also requires a further step of reasoning at the start.
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([15], page 21). Moreover, it applies only to sequential equilibrium.

Osborne [24] identifies a class of non strategically stable SPE in two-players,

finitely repeated, coordination games: those with an equilibrium path that can

be upset by a convincing deviation. Differently than for the general definition

of strategic stability, it is easy to identify a precise line of strategic reasoning

that rules out these equilibria: forward induction about the path agreement.

Indeed, equilibrium paths that can be upset by a convincing deviation can

be characterized as non-credible path agreements. This is proved in the Sup-

plemental Appendix. Thus, also strategic stability captures (at least to some

extent) constrained forward induction reasoning about the beliefs in an out-

come (distribution).36

However, very few path agreements implement the outcome they prescribe.

Off-path restrictions are usually needed for implementation. Analogously, also

strategic stability entails restrictions on off-path continuation strategies. So,

what does strategic reasoning under the path agreement represent when off-

the-path threats are actually in place? It represents a particular way to ra-

tionalize deviations, transparent to players. This rationalization of deviations

relies on the belief that the deviator believes that no deviation by a co-player

would have occured had she stayed on path. If the deviation does not contra-

dict this belief, the co-players, instead of dropping the belief that the deviator

believes in the whole agreement, drop the belief that the deviator believes in

the post-deviation threats, and save the belief that the deviator believed in

the agreement on-path. (So, they believe that the deviator will try to achieve

a higher payoff than under the agreed-upon path.) In other words, the beliefs

in the compliance with the agreement on-path have higher epistemic priority

than the beliefs in the compliance with the agreement off-path. Assigning the

highest epistemic priority to the beliefs in rationality, I call this finer epistemic

priority order "(epistemic) priority to the path". Its behavioral consequences

are captured by an extension of Selective Rationalizability, epistemically char-

36Indeed, also Kohlberg and Mertens [20], in the applications section, refine equilibria in
Beer-Quiche with strategic stability, without discussing the connection with forward induc-
tion.
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acterized in [11]. With this, I will show the robustness of the insights of the

paper to this kind of strategic reasoning, and provide a general and transparent

approach to the forward induction stories in the background of the equilibrium

literature.

For simplicity, I restrict the analysis to agreements which prescribe a unique

outcome z. Let ((Sqj,z)j∈I)
∞
q=0 denote Selective Rationalizability under the path

agreement on z, and call (S∞j,z)j∈I z-rationalizable. Fix an agreement e = (ei)i∈I

with ζ(e0) = {z}.

Definition 14 Let S0
ez = S∞z . Fix n > 0 and suppose to have defined ((Sqj,ez)j∈I)

n−1
q=0 .

For each i ∈ I and si ∈ Si, let si ∈ Sni,ez if and only si ∈ ρ(µi) for some µi ∈ ∆e
i

that strongly believes ((Sqj,ez)j 6=i)
n−1
q=0 such that:

37

E3: µi strongly believes ((Sqj,z)j 6=i)
∞
q=0 and ((Sqj )j 6=i)

∞
q=0.

Finally, let S∞i,ez := ∩n≥0S
n
i,ez . The profiles S

∞
ez are called z-selectively-rationalizable.

E3 captures the interpretation of deviations depicted above. On top of

this, players refine their beliefs according to the whole agreement. Then, for

the agreement to be credible, the off-the-path threats have to be compatible

with the rationalization of deviations based on the beliefs in the path.

So, the credibility of the path agreement only constitutes a preliminary

test for the implementability of z under the hypotheses of this section. If the

outcome passes the test, there exist off-the-path beliefs, compatible with the

rationalization of deviations depicted above, which induce players to stay on

path. However, no agreement may be able to restrict players’beliefs to those,

like for the beliefs that sustain an EFBRS. An example of this is provided

in [11], and it motivates the consideration of different belief restrictions in an

epistemic priority order, instead of just turning to path restrictions and using

credibility in place of self-enforceability.

Analogously to Selective Rationalizability, E3 can be substituted by si ∈
S∞i,z for all the agreements e = (ei)i∈I such that, redefining [·]∞ with S∞z in

37Although typically ∆e
i 6⊆ ∆z

i , requiring µi ∈ ∆e
i is equivalent to requiring µi ∈ ∆e

i ∩∆z
i ,

thus S1
ez ⊆ S∞z ; see the manuscript "On non-monotonic strategic reasoning" (Catonini,

2017).
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place of S∞, ehi =
[
ehi
]∞
for all i ∈ I and h ∈ H(S∞z ), and ehi = ∅ otherwise.38

And again, this class of agreements suffi ces to induce all the implementable

outcome sets under priority to the path. Indeed, the analysis of Section 4 can

be replicated under this finer epistemic priority order.

Remark 4 All the results of Section 4 hold through verbatim after substituting
everywhere:

1. selectively-rationalizable strategies (Se) with z-selectively-rationalizable

strategies (Sez);

2. rationalizable strategies (S∞) with z-rationalizable strategies (S∞z ).

To verify Remark 4, the required modifications to the proofs of the results

are highlighted in the Appendix. Although z-Selective Rationalizability does

not refine Selective Rationalizability for a fixed agreement, the following holds.

Proposition 7 If an outcome is implementable under priority to the path,
then it is implementable under priority to rationality.

In all the examples, the self-enforcing agreements remain self-enforcing

under priority to the path. Hence, the insights are robust to the finer epistemic

priority order adopted in this section. Strategic stability does not eliminate

every non subgame perfect equilibrium either;39 yet, in the attempt to do so,

equilibria that are compatible with forward induction are disregarded.40

The final question is: does subgame perfection perform a meaningful fur-

ther refinement under these strategic reasoning hypotheses? My answer is no.

38I do not provide formal proof of this fact. However, E3 is maintained in the proofs.
39Kohlberg and Mertens [20] regard the inability to imply subgame perfection as a weak-

ness of stability, and "hope that in the future some appropriately modified definition of
stability will, in addition, imply connectedness and backwards induction." This paper sug-
gests the opposite direction.
40Consider the (non-SPE) outcome T in Figure 6 in [20]. Its instability is claimed at page

1030, based on the substitutability of the zero-sum subgame with its equilibrium payoffs.
But this amounts to assume that player 1 has the most pessimistic expectation for that
subgame. Allowing for more optimistic beliefs, player 2 can believe that player 1 will try to
reach the subgame. Thus, player 2 can react with R, a threat which implements T under
all epistemic priority hypotheses.
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Subgame perfection is at deep contradiction with the interpretation of devi-

ations behind this kind of forward induction reasoning. Fix a r-strict SPE.

After any deviation from the SPE path, co-players will believe that the devia-

tor believed in the path but does not believe in the threat. Then, they will not

expect the deviator to best reply to the threat. But then, that the threat is a

best reply to a plan of the deviator which is a best reply to the threat itself is

of no additional value. This breaks down the logics of subgame perfection. Ex-

ample 4 illustrates this intuition. Thus, the insistence on subgame perfection

in the forward induction literature is, in my view, particularly misplaced.41

7 Appendix - Proofs

The results of Section 4 are proved explicitly. To prove the same results

under priority to the agreement (Remark 3), substitute ((Sqj,e)j∈I)
∞
q=0 with

((Sqj,∆e)j∈I)
∞
q=0 and ((Sqj )j∈I)

∞
q=0 with (Sj)j∈I , and see the footnotes; under

priority to the path (Remark 4), substitute ((Sqj,e)j∈I)
∞
q=0 with ((Sqj,ez)j∈I)

∞
q=0

and ((Sqj )j∈I)
∞
q=0 with (((Sqj )j∈I)

Q
q=0, ((S

q
j,z)j∈I)

∞
q=0), where Q is the smallest q

such that Sq = Sq+1.

Throughout, let H∞ := H(S∞) and H∞ := {h 6∈ H∞ : p(h) ∈ H∞}. For
any µi ∈ ∆H

i (S−i), let Hµi := {h0} ∪ {h ∈ H∞ : µi(S−i(h)|p(h)) = 0}.

Proof of Proposition 1. "Only if": trivial. "If": e is credible by ζ(S∞e ) 6=
∅, and ζ(S∞e ) ⊇ ζ(S∞e ∩ e0) is obvious; for the opposite inclusion I show that

for every s = (si)i∈I ∈ S∞e , there is s∗ ∈ S∞e ∩ e0 such that ζ(s∗) = ζ(s). Fix

i ∈ I and µi ∈ ∆e
i that s.b. ((Sqj,e)j 6=i)

∞
q=0 and ((Sqj )j 6=i)

∞
q=0 with si ∈ ρ(µi). By

ζ(S∞e ) ⊆ ζ(e0), for each h ∈ H(si)∩H(S∞e ), si(h) = si(h) for some si ∈ e0
i (h).

Since the agreement is on actions, there is si ∈ e0
i such that si(h) = si(h) for

all h ∈ H(si) ∩H(S∞e ). Fix h ∈ H ′ := {h′ ∈ H(si)\H(S∞e ) : p(h′) ∈ H(S∞e )}.
Since p(h) ∈ H(si) ∩ H(S∞e ), h ∈ H(si) ⊆ H(e0

i ). Thus, since h ∈ H(si) ⊆
41Interestingly, Man [23] finds out that also the "invariance" argument, used to motivate

the notions of forward induction of Kohlberg and Mertens [20] and Govindan and Wilson
[15], does not imply sequential equilibrium.
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H(S∞i,e) and e is credible, e
0
i ∩ S∞i,e(h) 6= ∅. Fix si,h ∈ e0

i ∩ S∞i,e(h) and µi,h ∈ ∆e
i

that s.b. ((Sqj,e)j 6=i)
∞
q=0 and ((Sqj )j 6=i)

∞
q=0 with si,h ∈ ρ(µi,h). Since µi strongly

believes S∞−i,e, µi(S−i(h)|p(h)) = 0. Thus, there exists µ∗i ∈ ∆e
i that s.b.

((Sqj,e)j 6=i)
∞
q=0 and ((Sqj )j 6=i)

∞
q=0 such that µ

∗
i (·|h̃) = µi(·|h̃) for all h̃ ∈ H(S∞e ),

and µ∗i (·|h̃) = µi,h(·|h̃) for all h ∈ H ′ and h̃ � h. So, there is s∗i ∈ ρ(µ∗i ) ⊆ S∞i,e

such that s∗i (h̃) = si(h̃) = si(h̃) for all h̃ ∈ H(si)∩H(S∞e ), and s∗i |h = si,h|h for
all h ∈ H ′. Since the agreement is on actions, s∗i ∈ e0

i , and by H(s∗) ⊆ H(S∞e ),

ζ(s∗) = ζ(s). �

Proof of Proposition 2. Since e is credible, S∞e ∩ e0 6= ∅. Since ζ(S∞e )

is a singleton and ζ(S∞e ) ⊇ ζ(S∞e ∩ e0), ζ(S∞e ) = ζ(S∞e ∩ e0). �

Lemma 1 Fix an agreement e. If e satisfies T3 and e0 ⊆ S∞e , e is truthful.

Proof. First, I show that ζ(S∞e ) ⊆ ζ(e0). Fix s = (si)i∈I ∈ S∞e and h ∈ H(s)∩
H(e0). Since e0 = ×i∈Ie0

i is Cartesian, so isA
h
e := {a ∈ A : (h, a) ∈ H(e0) ∪ ζ(e0)}.

For each i ∈ I, since si ∈ ρ(∆e
i ) ∩ Si(h) and e0

−i(h) 6= ∅, by T3 si(h) ∈ Ahi,e.
Thus (h, s(h)) ∈ H(e0) ∪ ζ(e0). By induction, ζ(s) ∈ ζ(e0).

So, by e0 ⊆ S∞e , ζ(S∞e ∩ e0) = ζ(e0) = ζ(S∞e ). �

Lemma 2 Fix i ∈ I, h ∈ H∞, shi ∈ S∞i |h, and h ∈ H(shi )∩H∞. Then, [shi ]∞|h =

S∞i |h.42

Proof. Fix si, s′i ∈ S∞i (h) with si|h = shi . Fix µi, µ
′
i that s.b. ((Sqj )j 6=i)

∞
q=0 with

si ∈ ρ(µi) and s
′
i ∈ ρ(µ′i). Since µi strongly believes S

∞
−i, µi(S−i(h)|p(h)) = 0.

Then, there is µ∗i that s.b. ((Sqj )j 6=i)
∞
q=0 such that µ

∗
i (·|h̃) = µi(·|h̃) for all

h̃ 6� h, and µ∗i (·|h̃) = µ′i(·|h̃) for all h̃ � h. Thus, there is s∗i ∈ ρ(µ∗i ) ⊆ S∞i

such that s∗i |h = s′i|h and s∗i (h̃) = si(h̃) for all h̃ 6� h with h̃ ∈ H(si). So,

s∗i |h ∈ [shi ]
∞. Hence, s′i|h ∈ [shi ]

∞|h. �
42This lemma and the next are not needed under priority to the agreement.
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Lemma 3 Fix a rationalizable agreement e = (ei)i∈I . For each i ∈ I and

µi ∈ ∆e
i that s.b. (S∞j )j 6=i, [ρ(µi)]

∞ ⊆ S1
i,e.

43

Proof. Fix si ∈ [ρ(µi)]
∞ ⊆ S∞i and si ∈ ρ(µi) with si(h) = si(h) for all

h ∈ H∞ ∩H(si). For each h ∈ H∞ ∩H(si) = H∞ ∩H(si), by µi(S
∞
−i|h) = 1,

si ∈ S∞i , and si(h) = si(h) for all h ∈ H∞, also si is a continuation best reply
to µi(·|h). Fix µ′i that s.b. ((Sqj )j 6=i)

∞
q=0 with si ∈ ρ(µ′i). Fix h ∈ H(si) ∩H∞

and s−i = (sj)j 6=i ∈ S−i(h). Fix j 6= i. If sj 6∈ S∞j or ∪h≺hehj (h) = ∅, let
s′j = sj. Else, fix h ≺ h with ehj (h) 6= ∅. Since e is rationalizable, ehj = [ehj ]

∞,

and by Lemma 2, [ehj ]
∞|h = S∞j |h. Thus, there is s′j ∈ S∞j such that s′j|h ∈

ehj and s
′
j|h = sj|h. Let ηh(s−i) := (s′j)j 6=i. Since µi strongly believes S

∞
−i,

µi(S−i(h)|p(h)) = 0. Then, there exists µ∗i ∈ ∆e
i that s.b. ((Sqj )j 6=i)

∞
q=0 such

that µ∗i (·|h̃) = µi(·|h̃) for all h̃ ∈ H∞, and µ∗i (s−i|h̃) = µ′i((η
h)−1(s−i)|h̃) for all

h ∈ H(si) ∩H∞, h̃ � h, and s−i ∈ S−i(h̃). Thus, si ∈ ρ(µ∗i ) ⊆ S1
i,e. �

Proof of Proposition 3. For each i ∈ I, let Si := ρ(∆e
i ) ∩ S∞i . I show

that e0 ⊆ S∞e ; then, by T3, the result follows from Lemma 1.

By T2, e0
i ⊆ Si for all i ∈ I. Now I show that Si ⊆ S1

i,e.
44 Fix si ∈ Si,

µi ∈ ∆e
i , and µ′i that s.b. ((Sqj )j 6=i)

∞
q=0 such that si ∈ ρ(µi) ∩ ρ(µ′i). Fix

h ∈ Hµi and s−i = (sj)j 6=i with µi(s−i|h) > 0. Fix j 6= i. By T1, there is

h � h such that ∅ 6= ehj (h) ⊆ S∞j |h. By µi ∈ ∆e
i , sj|h ∈ ehj . If h ∈ H(Sj),

by T2, ehj ⊆ Sj|h. Thus, there is s′j ∈ S∞j such that s′j|h = sj|h ∈ ehj and,

if h ∈ H(Sj), s′j ∈ Sj. Let ηh(s−i) := (s′j)j 6=i. Fix h ∈ H(si) ∩ H∞45 and
s−i = (sj)j 6=i ∈ S−i(h). Fix j 6= i. If (1) sj ∈ S∞j and ∪h≺hehj (h) 6= ∅, fix h ≺ h

such that ehj (h) 6= ∅. By T1, ehj = [ehj ]
∞, and by Lemma 2, [ehj ]

∞|h = S∞j |h.
If h ∈ H(Sj), by T2, ehj ⊆ Sj|h. Thus, there is s′j ∈ S∞j such that s′j|h ∈ ehj ,
s′j|h = sj|h, and, if h ∈ H(Sj), s′j ∈ Sj. If (2) sj ∈ S∞j , ∪h≺hehj (h) = ∅,
and sj|h ∈ Sj|h, pick s′j ∈ Sj such that s′j|h = sj|h. Else (3), let s′j := sj.

Let ηh(s−i) := (s′j)j 6=i. Since h ∈ H(S∞i )\H∞, p(h) ∈ H∞, and, by µi ∈ ∆e
i

43This also implies that for rationalizable agreements, S3 can be substituted by si ∈ S∞i
at the first step. An easy induction argument extends this fact to all steps.
44Under priority to the agreement, Si = S1

i,e by definition, but the construction is still
needed for the second step.
45H∞ is empty under priority to the agreement.
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and T1, µi(
{
s−i : s−i|p(h) ∈ S∞−i|p(h)

}
|p(h)) = 1, then µi(S−i(h)|p(h)) = 0.

Thus, there exists µ∗i ∈ ∆e
i that s.b. ((Sqj )j 6=i)

∞
q=0 such that (i) µ

∗
i (s−i|h̃) =

µi((η
h)−1(s−i)|h̃) for all h̃ ∈ Hµi and s−i with µi((η

h)−1(s−i)|h̃) > 0, and (ii)

µ∗i (s−i|h̃) = µ′i((η
h)−1(s−i)|h̃) for all h ∈ H(si)∩H∞, h̃ � h, and s−i ∈ S−i(h̃).

Clearly, si ∈ ρ(µ∗i ) ⊆ S1
i,e. Obviously, Si ⊇ S1

i,e. So, S = S1
e .

Fix j 6= i. For each sj ∈ S1
j,e, sj ∈ ρ(µj) for some µj ∈ ∆e

j that s.b.

(S∞k )k 6=j. By T1, e is rationalizable. So, by Lemma 3, [S1
j,e]
∞ ⊆ S1

j,e. Moreover,

by S1
j,e ⊆ S∞j , S

1
j,e ⊆ [S1

j,e]
∞. So, S1

j,e = [S1
j,e]
∞. Thus, by S = S1

e , Sj = [Sj]
∞.

For each h ∈ H∞ ∩ H(Sj), since Sj ⊆ S∞j , by Lemma 2 [Sj]
∞|h = S∞j |h.

So, Sj|h = S∞j |h. Then, for each sj ∈ S∞j ⊇ Sj, sj|h ∈ Sj|h; so, if (1) is
not verified, (2) is. Then, µ∗i strongly believes also (Sj)j 6=i = (S1

j,e)j 6=i. So,

si ∈ S2
i,e. Thus, e

0 ⊆ S = S1
e = S2

e = S∞e . �

Proof of Theorem 2. Define S like in Definition 13. I show that e0 =

S∗ ⊆ S∞e ;
46 then, since Self-Enforceability implies T3, the result follows from

Lemma 1. By Self-Justifiability, S∗ ⊆ S. By S ⊆ S∞, S ⊆ [S]∞. Since e

is rationalizable (by Rationalizability), by Lemma 3, [S]∞ ⊆ S1
e . Obviously,

S ⊇ S1
e . So, S

∗ ⊆ S = [S]∞ = S1
e . It remains to show that S

1
e = S∞e .

Fix i ∈ I and si ∈ Si ⊆ S∞i . Fix µ
′
i that s.b. ((Sqj )j 6=i)

∞
q=0 and µi that s.b.

(S∗j , Sj, S
∞
j )j 6=i such that si ∈ ρ(µ′i) ∩ ρ(µi) (µi exists by Forward Induction).

Fix h ∈ H(si) ∩ H∞ and s−i = (sj)j 6=i ∈ S−i(h). Fix j 6= i. If sj 6∈ S∞j

or h 6∈ H(Sj), let s′j := sj. Else, sj|h ∈ S∞j |h = Sj|h (by S = [S]∞ and

Lemma 2), and if h ∈ H(S∗j ), sj|h ∈ S∞j |h = S∗j |h (by Rationalizability and
Lemma 2). Then, there is s′j ∈ Sj such that s′j|h = sj|h and, if h ∈ H(S∗j ),

by S∗ ⊆ S, s′j ∈ S∗j . Let η
h(s−i) := (s′j)j 6=i. Since µi strongly believes S

∞
−i,

µi(S−i(h)|p(h)) = 0. Thus, there exists µ∗i that s.b. (S∗j , Sj)j 6=i = (S∗j , S
1
j,e)j 6=i

and ((Sqj )j 6=i)
∞
q=0 such that µ

∗
i (·|h̃) = µi(·|h̃) for all h̃ ∈ H∞, and µ∗i (s−i|h̃) =

µ′i((η
h)−1(s−i)|h̃) for all h ∈ H(si) ∩ H∞, h̃ � h, and s−i ∈ S−i(h̃). Clearly,

si ∈ ρ(µ∗i ) ⊆ S2
i,e. Thus, S

1
e = S2

e = S∞e . �
46Under priority to the agreement, S∗ ⊆ S by Self-Justifiability, S = S1

∆e by definition,
and then S1

∆e = S2
∆e = S∞∆e by Forward Induction.
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Proof of Proposition 4.47 First, I show that S∗ is a SES, i.e. that

Rationalizable Vetos implies Rationalizability. Fix i ∈ I, si ∈ S∗i , and s
′
i ∈

[si]
∞. For each z ∈ Wi, by z ∈ ζ(S∞), si(h) = s′i(h) for all h ≺ z. Thus

si 6∈ Si(z) implies s′i 6∈ Si(z). So, s′i ∈ S∗i .
Consider now the reduced agreements e, e with, for all i ∈ I, e0

i = S∞i \∪z∈Wi

Si(z) and e0
i = Si\ ∪z∈Vi Si(z) with Vi := Z\ζ(e0

i × S−i). Fix si ∈ e0
i . Then,

ζ({si} × S−i) ∩ Vi = ∅. Thus, si ∈ e0
i . So, e

0
i ⊆ e0

i . Fix z ∈ ζ(e0
i × S−i).

Then, z 6∈ Vi. Thus, z ∈ ζ(e0
i × S−i). So, ζ(e0

i × S−i) ⊆ ζ(e0
i × S−i). Then,

by e0
i ⊆ e0

i , H(e0
i ) = H(e0

i ), and so ∆e
j ⊆ ∆e

j for all j ∈ I. Fix si ∈ e0
i ∩ S∞i .

For every z ∈ ζ({si} × S−i), z 6∈ Vi ⊇ Wi. Thus, by si ∈ S∞i , si ∈ e0
i . So, by

H(e0
i ) = H(e0

i ) ⊆ H(S∞i ), for each µj ∈ ∆e
j that s.b. (S∞i )i 6=j, µj ∈ ∆e

j . Then:

e and e are equivalent under S3; e implements ζ(S∗) by Theorem 2; e too. �

Proof of Proposition 5.48 Fix i ∈ I. For each si ∈ S∞i and s−i ∈ r−i(si),
ζ(si, s−i) ∈ ζ(S∞). Then, S∗i is the set of all si ∈ S∞i (z) such that si 6∈ Si(ẑ)

for all ẑ ∈ ζ(S∞)\ {z} with u−i(ẑ) ≥ u−i(z). So, Rationalizable Vetos holds.

Define S like in Definition 13. Fix s∗i ∈ S∗i ∪ Si and µi that s.b. S∞−i with
s∗i ∈ ρ(µi). By r-strict Nash, S ⊆ S(z). Thus, there exists µ∗i that s.b. S

∗
−i and

S∞−i such that (i) µ
∗
i (·|h) = µi(·|h) for all h 6∈ H(S−i(z)), and (ii) µ∗i (S−i|h) = 1

for all h ∈ H(S−i)\H(S∗−i). By r-strict Nash and (i), s
∗
i ∈ ρ(µ∗i ) ⊆ Si. So,

S∗ ⊆ S, i.e. Self-Justifiability holds. Thus, µ∗i strongly believes also S−i. So,

Forward Induction holds. R-strict Nash implies Self-Enforceability.

Fix s ∈ S∗. Let e be the reduced agreement with e0 = {s}. Fix i ∈ I,

s′i ∈ S∞i (z), and µ′i that s.b. (Sq−i)
∞
q=0 with s

′
i ∈ ρ(µ′i). Fix any µi that s.b.

S∞−i(z) and (Sq−i)
∞
q=0 such that µi(s−i|h0) = 1 and µi(·|h) = µ′i(·|h) for all h 6∈

H(S−i(z)). By r-strict Nash, s′i ∈ ρ(µi) ⊆ S1
i,e. Fix any µ

′′
i with µ

′′
i (s−i|h0) = 1

that s.b. (Sq−i)
∞
q=0. By r-strict Nash, ρ(µ′′i ) ⊆ S∞i (z). So, S1

e = S∞(z) 3
s. Then, µi strongly believes S

1
−i,e. Thus, S

∞(z) = S1
e = S2

e = S∞e . By

Proposition 2, e is self-enforcing. Thus, e implements z. �
47Under priority the agreement, just observe that (i) Rationalizability has no bite, so S∗

is a SES, and (ii) the candidate implementing agreement on actions corresponds to the SES
itself, so by Theorem 2 it does implement ζ(S∗).
48Under priority to the agreement, substitute (S∞i (z))i∈I with (S1

i (z))i∈I (while still
substituting (S∞i )i∈I with (Si)i∈I).
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Lemma 4 Fix an agreement e, a finite chain of Cartesian sets of strategy
profiles S = S

0 ⊃ ... ⊃ S
M 6= ∅ and L ≤M such that for all i ∈ I and si ∈ Si,

1. si ∈ S
M

i if and only if si ∈ ρ(µi) for some µi ∈ ∆e
i that s.b. ((S

q

j)j 6=i)
M
q=0;

2. if L 6= 0, si ∈ S
L

i if and only if si ∈ ρ(µi) for some µi t.s.b. ((S
q

j)j 6=i)
L
q=0.

Define [·]L, T1L, T2L, and T3L as [·]∞, T1, T2, and T3 with SL in place
of S∞. Suppose that ζ(S

M
) = ζ(S

M ∩ e0). Then, there exists an agreement e

with ζ(e0) = ζ(S
M

) which satisfies T1L, T2L, and T3L.

Proof. Let HL := H(S
L
) and HL :=

{
h 6∈ HL : p(h) ∈ HL

}
. Construct

an agreement with the following inductive procedure. Let e1 be the reduced

agreement with e1,0
i := S

M

i ∩ e0
i 6= ∅ for all i ∈ I. Fix n > 1 and suppose to

have defined an agreement en−1. Fix i ∈ I and let

H ′ : =
{
h ∈ HL : ∪h≺he

n−1,h
i (p(h)) 6= ∅ = ∪h�he

n−1,h
i (h)

}
;

m(h) : = max
{
q ≥ L : h ∈ H(S

q

i )
}
, ∀h ∈ H ′.

For each h 6∈ H ′, let en,hi := en−1,h
i . Now fix h ∈ H ′. If there is h � h with

ehi (h) 6= ∅, let en,hi := ((S
m(h)

i |h) ∩ ehi )|h, which is non-empty because S
M 6= ∅

and 1. imply the existence of j 6= i and µj ∈ ∆e
j that s.b. S

m(h)

i . Else, let

en,hi := S
m(h)

i |h. Since histories in H ′ are unordered, en is an agreement. By
finiteness, eK = eK+1 for some K ∈ N. Define e as, for each i ∈ I and h ∈ H,
ehi = [eK,hi ]L if h ∈ HL and ehi = ∅ else. By construction, e satisfies T1L.
Fix i ∈ I and let S−i ⊆ S

L

−i and k = L, or S−i ⊆ S
M

−i ∩ e0
−i and k = M .

I show that (N) for each µi that s.b. S−i, ζ(ρ(µi) × S−i) ⊆ ζ(S
k
). Suppose

not. Fix µ′i that s.b. ((S
q

j)j 6=i)
k
q=0, with µ

′
i(·|h) = µi(·|h) for all h ∈ H(S−i).

Then, ζ(ρ(µ′i)× S−i) 6⊆ ζ(S
k
) too. But by 2. for k = L and by 1. for k = M ,

ρ(µ′i) ⊆ S
k

i , a contradiction.

Fix µi that s.b. e
0
−i ⊆ S

L

−i. By construction of e, there exists µi that s.b.

eK,0−i = S
M

−i ∩ e0
−i ⊆ SL−i with µi(S−i(z)|h) = µi(S−i(z)|h) for all h ∈ HL and

z ∈ ζ(S
L
) with z � h. By (N), ζ(ρ(µi)× e0

−i), ζ(ρ(µi)× e
K,0
−i ) ⊆ ζ(S

L
). Thus,
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ζ(ρ(µi) × e−i) = ζ(ρ(µi) × eK,0−i ). By (N), ζ(ρ(µi) × eK,0−i ) ⊆ ζ(S
M

). Since

ζ(S
M

) = ζ(S
M ∩ e0) = ζ(eK,0) = ζ(e0), e0 satisfies T3L.

Finally, I will show that ρ(∆e
i )∩S

L

i = [S
M

i ]L. Then, for each h ∈ H(ρ(∆e
i )∩

S
L

i ) with ehi 6= ∅, since by T1L h ∈ HL, h ∈ H(S
M

i ). By construction of e,

ehi ⊆ [S
M

i |h]L = [S
M

i ]L|h. So T2L holds.
Fix s′i ∈ [S

M

i ]L ⊆ S
L

i . If L 6= 0, by 2. there is µ′i that s.b. ((S
q

j)j 6=i)
L
q=0 with

s′i ∈ ρ(µ′i). Fix si ∈ S
M

i with si(h) = s′i(h) for all h ∈ HL∩H(si). By 1., there

is µi ∈ ∆e
i that s.b. ((S

q

j)j 6=i)
M
q=0 with si ∈ ρ(µi). Fix h ∈ HL, s−i = (sj)j 6=i

with µi(s−i|h) > 0, and j 6= i. By T1L, there is h′′ with eh
′′
j (h) 6= ∅. If there

is h′ � h with eh
′
i (h) 6= ∅, by µi ∈ ∆e

i , sj|h′ ∈ eh
′
j , and by construction of

e, h′′ � h′. Since µi strongly believes ((S
q

j)j 6=i)
M
q=0, sj ∈ S

m

j for all m with

S
m

j (h) 6= ∅. So, sj|h′′ ∈ eh
′′
j . Fix h ∈ H(s′i) ∩HL and s−i = (sj)j 6=i ∈ S−i(h).

Fix j 6= i. If sj 6∈ S
L

j or ∪h′≺heh
′
j (h) = ∅, let s′j := sj. Else, fix h′ ≺ h with

eh
′
j (h) 6= ∅. By T1L, eh′j = [eh

′
j ]L, and by Lemma 2 with L in place of ∞,

[eh
′
j ]L|h = S

L

j |h. Thus, there is s′j ∈ S
L

j such that s
′
j|h′ ∈ eh

′
i and s

′
j|h = sj|h.

Let ηh(s−i) := (s′j)j 6=i. Since µi strongly believes S
L

−i, µi(S−i(h)|p(h)) = 0.

Then, there exists µ∗i ∈ ∆e
i that s.b. ((S

q

j)j 6=i)
L
q=0 such that µ

∗
i (·|h̃) = µi(·|h̃)

for all h̃ ∈ HL, and µ∗i (s−i|h̃) = µ′i((η
h)−1(s−i)|h̃) for all h ∈ H ′, h̃ � h, and

s−i ∈ S−i(h̃). Thus, s′i ∈ ρ(µ∗i ) ⊆ ρ(∆e
i ).

Fix si ∈ ρ(∆e
i ) ∩ S

L

i and µi ∈ ∆e
i with si ∈ ρ(µi). Let

HL,µi :=
{
h0
}
∪
{
h ∈ HL : µi(S−i(h)|p(h)) = 0

}
.

For each h ∈ HL,µi and s−i = (sj)j 6=i with µi(s−i|h) > 0, by construction of

e, there is ηh(s−i) = (s′j)j 6=i such that, for all j 6= i: (i) s′j(h
′) = sj(h

′) for all

h′ ∈ HL ∩ H(sj) with h′ � h; (ii) s′j ∈ S
m

j for all m ≥ L with S
m

j (h) 6= ∅;
(iii) if there is h � h with ehj (h) 6= ∅, s′j|h ∈ ehj . Fix any µ

∗
i ∈ ∆e

i that s.b.

((S
q

j)j 6=i)
M
q=0 such that µ

∗
i (s−i|h) = µi((η

h)−1(s−i)|h) for all h ∈ HL,µi and s−i
with µi((η

h)−1(s−i)|h) > 0. By (i), µi(S−i(z)|h) = µ∗i (S−i(z)|h) for all h ∈ HL

and z ∈ ζ(S
L
) with z � h. By (N), ζ({si} × S

L

−i) ⊆ ζ(S
L
). Thus, there is

s∗i ∈ ρ(µ∗i ) ⊆ S
M

i (by 1.) such that s∗i (h) = si(h) for all h ∈ HL ∩H(si). So,

with si ∈ S
L

i , si ∈ [S
M

i ]L. �
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Proof of Theorem 1. "If": it coincides with Proposition 3. "Only if":
fix an implementable outcome set P ⊆ Z and an agreement e with ζ(S∞e ) =

ζ(S∞e ∩ e0) = P . Apply Lemma 4 with49 (S
q
)Mq=0 = ((Sq)Lq=0, (S

q
e)
K
q=1), where

L and K are the smallest l and k such that Sl = Sl+1 and Ske = Sk+1
e . �

Proof of Proposition 6 [7]. Fix an implementable outcome set P ⊆ Z

under priority to rationality [to the path], and an implementing agreement

e. Since e is self-enforcing under priority to rationality [to the path], I can

apply Lemma 4 with (S
q
)Mq=0 = ((Sq)Dq=0, (S

q
e)
K
q=1) and L = 0 [with (S

q
)Mq=0 =

((Sq)Lq=0, (S
q
z)
D
q=1, (S

q
ez)

K
q=1)], where D andK are the smallest d and k such that

Sd = Sd+1 and Ske = Sk+1
e [where L, D and K are the smallest l, d, and k such

that Sl = Sl+1, Sdz = Sd+1
z , and Skez = Sk+1

ez ]. The obtained agreement e is tight

under priority to the agreement [to rationality]. Thus, by Proposition 3 and

Remark 3 [by Proposition 3], e implements P under priority to the agreement

[to rationality]. �
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8 Supplemental Appendix

8.1 An applied example

Consider a linear city model of monopolistic competition between two firms,

i = 1, 2.50 Each firm i sets price pi and, up to some prices, faces demand

function

Di(pi, p−i) =


0 if pi > p−i + 28

28− pi + p−i if pi ∈ [p−i − 28, p−i + 28]

56 if pi < p−i − 28.

There are two production technologies: k = 1, 2. Technology k = 1 entails no

fixed cost and a constant marginal cost c1 = 56. Technology k = 2 entails a

fixed cost F = 2128 and no marginal cost: c2 = 0. Conditional on employing

k = 1, 2, the best response function of firm i reads:

pki (p−i) = 14 +
1

2
ck +

1

2
p−i.

Conditional on employing k = 1, the unique rationalizable (hence, equilibrium)

price vector is (84, 84). Yet, if firm i can freely choose the technology, it is

indifferent between the two technologies for p−i = 76,51 and the best reply to

p−i = 84 is pi = 56 with the use of k = 2. No pure equilibrium with free choice

of technology exists.

Suppose now that firms play for two periods. Suppose that firms cannot

upgrade from k = 1 to k = 2 between the two periods, while they can costlessly

revert from k = 2 to k = 1.52 Can firms agree on (84, 84) in both periods?

50The microfoundation of the demand functions in this model is presented in Green, et.
al. [22], pages 396-397.
51Because (p1

i (76)−c1)·(28−p1
i (76)+76) = 242 = 522−2128 = p2

i (76)·(28−p2
i (76)+76)−F .

52This can represent asymmetric switching time or cost (e.g., installation time, firing
costs, if k = 1, 2 are interpreted as labor and capital intensive technologies, or domestic
production vs FDI).
However, this assumption is merely needed for firms to be able to agree on an equilibrium

price vector in the second period on path; it would be unneeded if firms were allowed to
agree on mixed actions, or the game was infinitely repeated. Such extensions would be

1



Suppose that in the first period firm i employs k = 1 and firm −i deviates
to k = 2. Then, the best response correspondences in the second period read:

p̂i(p−i) = 42 +
1

2
p−i;

p̂−i(pi) =


42 + 1

2
pi if pi < 76{

14 + 1
2
pi, 42 + 1

2
pi
}
if pi = 76

14 + 1
2
pi if pi > 76

.

In the subgame, the set of rationalizable price vectors is [68, 82] × ([52, 55] ∪
[76, 80]). Each pi ∈ [68, 82] is a best reply to a conjecture over 52 and 80.

Each p−i ∈ [52, 55] is a best reply to some pi ∈ [76, 82] and each p−i ∈ [76, 80]

is a best reply to some pi ∈ [68, 76]. Each pi > 82 can be best reply only to

p−i > 80, which can be best reply only to pi > 132, until the highest price at

which consumers buy is hit. Analogous arguments prove that all other p1, p2

are not rationalizable. There is a unique equilibrium where firm i sets pi = 76

and firm 2 sets p2 = 52 with probability 3/7 and p2 = 80 with probability 4/7.

Note preliminarly that the path z := (((1, 84), (1, 84)), ((1, 84), (1, 84))) is

not induced by any SPE of the game. The unilateral deviation in the first

period to k = 2 and p−i = 56 followed by the equilibrium of the subgame is

profitable for firm −i;53 the same applies to deviations to p−i = 52, ..., 60

Suppose instead that firm i reacts to these deviations with price pi = 68.

Then, the deviations are not profitable. Can firm i credibly threaten to fix

pi = 68 after these deviation? The answer is yes. To be rigorous, assume from

now on that firms can pick only integer prices. The price vectors that are

prescribed by the rationalizable strategy profiles of the whole game at a pre-

terminal history compatible with them must constitute a best response set.

Then, after a rationalizable deviation of firm −i to k = 2, some p−i ∈ [52, 55]

and some p−i ∈ [76, 80] must both be possible. But then, firm i can react

with pi = 76. So, whenever expecting pi = 76 makes the deviation profitable,

firm −i can fix p−i = 52, and the best reply of firm i to p−i = 52 is precisely

rather straightforward, but would complicate the analysis without providing any different
insight.
53Because 2 · (84− c1) ·28 < p2

−i(84) · (28−p2
i (84) + 84) +p2

−i(76) · (28−p2
i (76) + 76)−2F .

2



pi = 68. After the other rationalizable deviations, firm i can fix pi = 76.

The set of rationalizable strategy profiles that induce z and where players

react to rationalizable deviations with 68 if the deviation is profitable against

76 and with 76 otherwise is indeed a SES. This is straightforward to see once

the existence of rationalizable strategies with these characteristics is estab-

lished. Rationalizability is a simple algorithm that can be performed by a

computer; nonetheless, a formal construction of the SES through the steps of

Rationalizability is provided below. By Theorem 2, the agreement on the SES

implements z.

Is z implementable also under priority to the path? Yes: by displaying the

intention to gain a higher profit than under the path, firm −i is not able to
re-coordinate on a more profitable subpath with firm i, who may always react

with a lower price than firm −i hoped for. In particular, if the least optimistic
belief of −i that justifies the deviation is p̃i > 76, the best reply to the best

reply to p̃i is smaller than p̃i itself (p1
i (p

2
−i(p

1
i )) < p̃i); if 68 < p̃i ≤ 76, −i may

fix p−i = 52, and i can react with pi = 68. The construction below of the

SES is valid also under priority to the path. By Remark 4, the corresponding

agreement implements z under priority to the path.

Now I construct formally the SES. For brevity, I will omit the technol-

ogy choice in the description of strategies. For each i = 1, 2, let H∗i :=

{((1, 84), (2, p−i))}p−i=52,...,60, and for each n ≥ 0, let:

S
n

i,h : = {si ∈ Sni (z) : si(h) = 76 ∧ ∀h′ ∈ H∗i \ {h} , si(h′) = 68} , h ∈ H∗i ;

S∗,ni : = {si ∈ Sni (z) : ∀h ∈ H∗i , si(h) = 68} ;

Ŝn,xi,h : = {si ∈ Sni (h) : si(h) = x} , h ∈ H∗−i, x = 52, 80.

Fix n ≥ 0 and suppose that all these sets are non-empty and that for each

i = 1, 2 and h ∈ H∗i , there are s
∗
i ∈ S∗,ni and si,h ∈ S

n

i,h such that s
∗
i (h) =

p1
i (mins−i∈Sn−i(h) s−i(h)) = si,h(h) for all h ∈ H(Si(z)×Sn−i)\H∗i with h 6≺ z. For

each h ∈ H∗i and s̃i = s∗i , si,h, fix µ−i that s.b. (Sqi )
n
q=0 with µ−i(s̃i|h0) = 1. For

each h = ((1, 84), (k, p−i)) ∈ H(Si(z)×Sn−i)\H∗i , ρ(µ−i)∩S−i(h) = ∅, otherwise
s̃i(h) > 84 if k = 1 and s̃i(h) > 76 if k = 2, but then s̃i(h) > p1

i (p
k
−i(s̃i(h)))

3



and pk−i(s̃i(h)) = s−i(h) for some s−i ∈ ρ(µ−i) ⊆ Sn−i, contradicting s̃i(h) =

p̂i(mins−i∈Sn−i(h) s−i(h)). Thus, if s̃i = si,h, ρ(µ−i) ∩ Ŝ
n,x

−i,h 6= ∅ for x = 52, 80. If

s̃i = s∗i , ρ(µ−i) ⊆ S−i(z). Since s∗i ∈ Si(z), for each h ∈ H∗−i there is µ−i that
s.b. (Sqi )

n
q=0 with µ−i(s

∗
i |h0) = 1 such that µ−i(arg minsi∈Sni (h) si(h)|h) = 1 for

all h ∈ H(Sni ×S−i(z))\H∗−i with h 6≺ z, µ−i(Ŝ
n,52
i,h |h) = 1 for all h ∈ H∗−i\

{
h
}
,

and either µ−i(Ŝ
n,52
i,h |h) = 1, or µ−i(Ŝ

n,52
i,h |h) = 3/7 and µ−i(Ŝ

n,80
i,h |h) = 4/7. In

the first case, ρ(µ−i) ∩ S
∗,n
−i 6= ∅, in the second case ρ(µ−i) ∩ S

n

−i,h 6= ∅.
Then, by the observation above about pre-terminal histories,

S∗ := ×i=1,2

{
si ∈ S∗,∞i : ∀h ∈ H(S∞i (z)× S∞−i\S−i(z))\H∗i , si(h) = 76

}
is non-empty too, and it is clearly a SES.54

All the employed µi strongly believe S−i(z). Thus, the procedure can be

prolonged to obtain a SES S∗ ⊆ S∞z .

8.2 Games

Formalization of Example 3.

2×
A\B W F

W 2, 2 1, 3

F 3, 1 0, 0

For i = A,B, I will write a strategy si as x.y.w, where x = si(h
0), y =

si((si(h
0),W )), and w = si((si(h

0), F )). Fix z ∈ Z and consider the path

agreement e0 = SA(z)×SB(z) = S(z); then∆e
i =

{
µi ∈ ∆H(S−i) : µi(S−i(z)|h0) = 1

}
,

for i = A,B. All strategies are rational, hence rationalizable.

54A formal proof would follow the line of the proof of Proposition 5.
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Let z = ((W,F ), (F,W )). Selective Rationalizability goes as follows.

S1
A,e = SA(z); S1

B,e = SB(z) ∪ {W.F.W,W.F.F} ;

S2
A,e = {W.W.F} ; S2

B,e = S1
B,e;

S3
A,e = S2

A,e; S
3
B,e = {W.F.W,W.F.F} ;

S4
A,e = ∅.

Let z := ((F,W ), (F,W )). Selective Rationalizability goes as follows.

S1
A,e = SA(z), S1

B,e = SB(z) ∪ {F.F.F, F.W.F} ;

S2
A,e = {F.F.W} , S2

B,e = S1
B,e;

S3
A,e = S2

A,e, S
3
B,e = {F.F.F, F.W.F} ;

S4
A,e = ∅.

Example 4. Consider the following game.

A\B W E A\B L C R

N 6, 6 ·− −→ U 9, 0 0, 5 0, 3

S 0, 0 2, 2 M 0, 5 9, 0 0, 3

D 0, 7 0, 7 1, 8

All strategies are rational, hence rationalizable. The subgame has one

pure equilibrium, (D,R), and no mixed equilibrium: for Ann to be indifferent

between U and M , Bob must randomize over L,C, but when he is indifferent

between them, he prefers R; for Ann to be indifferent between U and D or M

andD, Bob must randomize over, respectively, L,R and C,R, butR dominates

L against U,D and C againstM,D. So, the game has only one SPE, inducing

path (S,E).

Players want instead to implement (N,W ). Hence they reach the reduced

agreement with e0
A = {N.U,N.M} and e0

B = {W}. The agreement is self-
enforcing: S1

e = {N.U,N.M,N.D} × {W}, thus S∞e = S1
e = S((N,W )). Also,

the agreement is self-enforcing under priority to the path: all actions of Bob
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in the subgame are best replies to some belief over the actions of Ann which

justifies the deviation. Formally, S∞z = S1
z = {N.U,N.M,N.D} × SB, and

(Sqez)
∞
q=1 = (Sqe)

∞
q=1.

Note two things about the SPE. First, despite being unique, it requires

off-the-path restrictions for its implementation. Under the path agreement on

(S,E), Ann may deviate to N.U or N.M , hoping that Bob will reply with L or

C, which are best replies against M and U . Second, the SPE action D is not

a potentially profitable deviation for Ann with respect to the path. Thus, if

the deviation is interpreted as an attempt to improve the payoff with respect

to the agreed-upon path, Bob cannot expect Ann to play D. Hence, the fact

that R is best reply to D which is best reply to R itself is of no value.

Finally, consider the following, non-reduced, agreement: e0
A = {S} , e(N,E)

A =

{D} , e0
B = SB. It implements (S,E): S1

e = SA × {E.R}; S2
e = {S} × {E.R};

so S∞e = S2
e ⊆ S((S,E)). Restrict now the initial plans of Bob to those com-

patible with (S,E), i.e. e0
B = {E.L,E.C,E.R}. Then, S1

A,e = {S,N.U,N.M}.
But then, S2

B,e = ∅. Thus, a self-enforcing agreement cannot always be made
truthful by excluding the initial plans that are not compatible with the path

it implements.

Example 5. Consider the following game.

4, ·, · A\B w e

↑ o n 3, 9, 0 0, 8, 9

Ann 5, 0, 1 s 0, 3, 0 1, 5, 9

↓ i u ↑ ↑
Bob −→ Cleo – —a −→ Bob

↓ d ↓
C\B l c r A\B w e

t 5, 4, 1 5, 6, 0 5, 0, 0 n 3, 9, 0 0, 8, 9

b 5, 4, 0 5, 0, 1 5, 10, 1 s 0, 3, 0 1, 5, 9

All strategies are rationalizable.
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Let us search for the SES’s of the game. Beside SES’s where Bob may

play d or not, which induce all possible payoff vectors,55 Self-Enforceability

and Self-Justifiability identify as candidate SES’s all sets S∗A×S∗B×S∗C where:

S∗B = {d.r} , S∗C ⊆ {b.u, b.a} , o 6∈ S∗A;

S∗B = {d.l, d.c, d.r} , b.a 6∈ S∗C ⊇ {t.a, b.u} , S∗A = {i.s.s}
t.a 6∈ S∗C ⊇ {b.a, t.u} , o 6∈ S∗A

;

S∗B ∩ {d.l, d.c, d.r} = ∅,56 S∗C = {t.a} , S∗A = {o} .

Let us verify Forward Induction. All candidate SES’s in the first and in the

second group satisfy Forward Induction: there is no history where a player is

active which is rationally reached by the player under strong belief in the SES

but not under the SES itself. Let us consider now the third group. Under

strong belief in the SES, Bob may play d.c but not d.l. Then, Forward Induc-

tion requires t.a to be rational against the belief that Bob at (i.d) will play c,

but this is not the case.

Therefore, outcome (o) is not induced by any SES. Are there restrictions

to Ann’s behavior after her deviation to i that transform some candidate SES

in the third group into a tight agreement? The answer is yes:

e0
A = {o} , e0

B = SB\ {d.l, d.c, d.r} , e0
C = {t.a} ;

e
(i)
A = {n.n, n.s, s.n} , e(i,d)

B = {l, c, r} .

T3 holds, as ρ(∆e
A) = e0

A = {o}. Since S∞ = S, for T1 to hold all histories

must reached by some (continuation) plan of all players: H(e0
A) = {h0} and

55If Bob may play d or not, then (i) Ann’s Self-Enforceability requires her to play i and
Bob’s Self-Justifiability requires Cleo to play t.a, (ii) Cleo’s Self-Justifiability requires Bob
to play d.l, (iii) Bob’s Self-Justifiability requires Cleo to play b and u, (iv) Bob’s Self-
Enforceability requires him to play d.r, Ann’s Self-Enforceability requires her to play o, and
Cleo’s Self-Justifiability requires Bob to play w and e in one of the two subgames, (v) Ann’s
Self-Enforceability requires her to play n and s in that subgame and Bob’s Self-Enforceability
requires him to play d.c (and e in the other subgame).
56And Cleo’s Self-Justifiability further requires Bob to possibly play e in a subgame he

reaches; however, this is immaterial for the discussion.
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H(e
(i)
A ) = H\ {h0}; H(e0

B) = H\ {(i, d)} and e(i,d)
B 6= ∅; H(e0

C) = H. Finally,

T2 holds. For Ann, ρ(∆e
A) = {o}, so e0

A ⊆ ρ(∆e
A) and (i) 6∈ H(ρ(∆e

A)).

Bob expects Ann to play n with probability of at least 1/2 in one of the

two subgames, where his expected payoff is then at least 6.5. Moreover, he

believes that Cleo will give him the opportunity to pick that subgame. After

d, instead, he expects Cleo to play t, with a payoff of 6. Thus, e0
B = ρ(∆e

B),

and (i.d) 6∈ H(ρ(∆e
B)). For Cleo, e0

C ⊆ ρ(∆e
C) = SC . Since the agreement is

tight, by Proposition 3 it implements (o).

Note that the agreement is not on actions: Ann promises to play n in one

of the two subgames, but she does not say in which one. Is there an agreement

on actions that implements o? No. For Ann to select o, Bob and Cleo must

exclude from the agreement, or eliminate through strategic reasoning, d and

u. If u is excluded or eliminated, Bob expects a payoff of at least 5 by not

playing d. Thus, Bob will eliminate d.l. If Bob still considers d.c or d.r when

d.l is eliminated, Cleo will best reply with b. But then Bob will select d.r, and

o is not implemented. So, the agreement must make sure that Bob eliminates

d.c and d.r no later than d.l.57 For the elimination of d.r, it is necessary that

Cleo excludes b from the agreement. Then Bob is confident that by playing

d.c he can get 6. So, for Bob to eliminate d.c, he must be confident of getting

a higher payoff without playing d. So, he must be confident that in at least

one of the two subgames, Ann will not play s. If this subgame was pinned

down by the agreement or strategic reasoning, then Bob would play w in

the subgame he moves to. Then, Cleo would select u, and o would not be

implemented. Hence, Ann, through the agreement or strategic reasoning, does

have to exclude planning s in both subgames, but at the same time she must

not reveal in which subgame she is not planning s. In this game, she can do

this only through the agreement: if she rationally plays i, she hopes for d or

u, and if d and u are not played, she could plan s in both subgames. Thus,

agreements that are not on actions can be needed to implement an
outcome.
57And excluding d.c or d.r from the agreement is not viable if it survives longer than d.l,

because it would bring to the empty set.

8



The tight agreement above is clearly equivalent to the following reduced

agreement: e0
A = {o, i.n.n, i.n.s, i.s.n}, e0

B = e0
B, e

0
C = e0

C . Thus, e is self-

enforcing (but not truthful) and it implements (o). So, one may wonder

whether reduced agreements suffi ce to implement all implementable outcomes.

The answer is no. Imagine that at the initial history, Ann plays simultaneously

with Bob in the following way:58

A\B o i

o 4, 4, · Γ′

i Γ 3, 3, ·

where Γ is the game above and Γ′ is the game above with roles and payoffs of

Ann and Bob inverted. Then, for Ann and Bob to coordinate on (o, o), at least

one of the two has to declare o (and then exclude s.s after a deviation to i as

above). Thus, non-reduced agreements can be needed to implement
an outcome.

Back to the original game, add now the following component:

0, 0, 0,−1 2, 7, 0, 0 5, 0, 1,−2

↓ i ↑ q ↑ ↑ u
Bob −→ Dave −→ Ann −→ Cleo −→
↓ d a

Let Dave get payoff0 elsewhere. All strategies are still rationalizable. Consider

the following reduced agreement on actions.

e0
A = {o} , e0

B = SB\ {d.c, d.r} , e0
C = {t.a, b.a} , e0

D = SD.

The agreement is truthful. At the first step, Ann eliminates the strategy that

prescribes s in both subgames, Cleo eliminates b.u and b.a, and Dave eliminates

q. At the second step, Bob eliminates all strategies that prescribe d. At the
58This also makes it plausible that Ann wants to contribute to the credibility of not

playing i: in the example above, she just destroys any hope to get a higher payoff than her
outside option.
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third step, Ann selects o.

Despite the existence of a truthful reduced agreement on actions that im-

plements (o), (o) is not induced by any SES. Ann’s Self-Enforceability requires

Bob not to play d and Cleo not to play u; thus, Bob’s Self-Justifiability re-

quires Cleo to play t and Dave’s Self-Justifiability requires him not to play q;

but then, believing all this, Bob can rationally play d.c but not d.l, thus Cleo’s

Forward Induction is violated. This shows that the reverse of Theorem 2
does not hold.

Also, (o) is not induced by any tight agreement on actions. Ann’s T3

requires Bob not to play d and Cleo not to play u; thus, Dave’s T2 requires

him not to play q; then, Bob’s T2 requires Cleo to play t; thus, Cleo’s T2

requires Bob to play l at (i.d), which, since Bob expect at least 5 by not playing

d, is compatible with Bob’s T2 only if Bob does not rationally play d when

he believes in the agreement. This can be accomplished in tight agreement

only if Ann excludes playing s.s, for the same argument as in the previous

game. Therefore, if one restricts the analysis to agreements on actions, a

full characterization of implementable outcomes in the fashion of Theorem

1 cannot be made; i.e., not all outcomes that are implemented by an
agreement on actions are prescribed by a tight agreement on actions.

8.3 Equilibrium paths that can be upset by a convincing

deviation

Fix a two-players (i and j) static game G with action sets Ai and Aj and payoff

function vk : Ai × Aj → R, k = i, j. Let bk and ck be the first- and second-

ranked stage-outcomes of G for player k = i, j. A path (a1, .., aT ) of Nash

equilibria of the T-fold repetition of G can be upset by a convincing deviation
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if there exist τ ∈ {1, ..., T − 1} and âi 6= aτi such that, letting T := T − τ ,

vi(âi, a
τ
j ) + vi(c

i) + (T − 1)vi(b
i) <

T∑
t=τ

vi(a
t) < vi(âi, a

τ
j ) + Tvi(b

i); (I)

Tvj(b
i) > max

aj∈Aj\{bij}
vj(b

i
i, aj) + (T − 1)vj(b

j). (J)

Condition I says that player i benefits from a unilateral deviation at τ only

if followed by her preferred subpath. Condition J says that player j cannot

benefit from a unilateral deviation from that subpath even if followed by her

preferred subpath (which also shows that i’s preferred stage-outcome is Nash,

hence the restriction to coordination games).

Example 3 provides two paths that can be upset by a convincing de-

viation,59 although the agreements on the SPE that induce them are self-

enforcing.

Proposition 8 Let z = (a1, ..., aT ) be a path that can be upset by a convincing

deviation. The path agreement on z is not credible.

Proof. Let ĥ := (a1, .., (âi, a
τ
j )) and z := (a1, .., (âi, a

τ
j ), b

i, ..., bi). Suppose

that S1
e (z) 6= ∅, otherwise S2

e = ∅. Then, for each k = i, j, there exists µk that

s.b. (Sq−k)
∞
q=0 and S−k(z) such that ρ(µk) ∩ Sk(z) 6= ∅.

Fix n ∈ N and suppose that Sn−1
i (z) 6= ∅. Fix sj ∈ Sj with µi(sj|h0) 6= 0

and µ′j that s.b. (Sqi )
∞
q=0 with sj ∈ ρ(µ′j). Since µj strongly believes Si(z),

for each h 6∈ H(Si(z)) with p(h) ≺ z, µj(Si(h)|p(h)) = 0. Thus, there exists

µj t.s.b (Sqi )
n−1
q=0 such that (i) µj(Si(z)|ĥ) = 1, (ii) µj(·|h) = µ′j(·|h) for all

h 6∈ H(Si(z)) with p(h) ≺ z and h 6= ĥ, and (iii) µj(·|h) = µj(·|h) for all

h ∈ H(Si(z)). Then, there exists η(sj) ∈ ρ(µj) ⊆ Snj such that by (iii)

sj ∈ Sj(z) ⊆ Sj(ĥ), by (i) and (J) η(sj) ∈ Sj(z), and by (ii) η(sj)|h = sj|h for
all h 6∈ H(Si(z)) with p(h) ≺ z and h 6= ĥ. Since sj ∈ Sj(z), η(sj)(h) = (sj)(h)

for all h ∈ H(sj) with h 6� ĥ. Construct µi that s.b. (Sqj )
n
q=0 and Sj(z)

59Formally, the paths do not satisfy the first strict inequality in (I), but this is immaterial
because ci ((W,W )) and bi ((W,FR)) entail the same action for player i (Bob). This would
not happen in pure coordination games that are in the focus of [24].
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such that µi(sj|h0) = µi(η
−1(sj)|h0) for all sj with µi(η

−1(sj)|h0) 6= 0. For

each z̃ 6� ĥ, µi(Sj(z̃)|h0) = µi(Sj(z̃)|h0), while µi(Sj(z)|h0) = 1. Thus, by

ρ(µi)∩Si(z) 6= ∅ and (I), ∅ 6= ρ(µi)∩Si(z) ⊆ Sn+1
i (z). So, by induction, there

exists µi that s.b. (Sqj )
∞
q=0 and Sj(z) such that ∅ 6= ρ(µi) ∩ Si(z) ⊆ S1

i,e(z).

For each µi ∈ ∆e
i , µi(Sj(z)|h0) = 1. So, for each si ∈ Si(ĥ)\Si(z), by (I)

si /∈ S1
i,e. Thus, for every µj ∈ ∆e

j that s.b. S1
i,e, µj(Si(z)|ĥ) = 1. So, by

(J), S2
j,e(ĥ) = S2

j,e(z). Since Sj(z) ⊆ Sj(ĥ), for every µi ∈ ∆e
i that s.b. S

2
j,e,

µi(Sj(z)|h0) = 1, so by (I) ρ(µi)(z) = ∅. Hence S3
i,∆e(z) = ∅. So, S4

j,∆e = ∅. �
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