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Ambiguity Attitudes and Self-Con�rming Equilibrium in
Sequential Games�

P. Battigalli,a E. Catonini,b G. Lanzani,c and M. Marinaccia
aDepartment of Decision Sciences and IGIER - Università Bocconi
bNational Research University Higher School of Economics - ICEF
cDepartment of Economics - Massachusetts Institute of Technology

Abstract

We consider a game with sequential moves played by agents who are randomly
drawn from large populations and matched. We assume that, when players are un-
certain about the strategy distributions of the opponents, preferences over actions at
any information set admit a smooth-ambiguity representation in the sense of Klibano¤,
Marinacci, and Mukerji (Econometrica, 2005). This may induce dynamically inconsis-
tent preferences and calls for an appropriate de�nition of sequential best response. We
take this into account in our analysis of self-con�rming equilibrium (SCE) and ratio-
nalizable SCE in sequential games with feedback played by agents with non-neutral
ambiguity attitudes. Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (Amer.
Econ. Rev., 2015) show that the set of SCE�s of a simultaneous-move game with
feedback expands as ambiguity aversion increases. We show by example that SCE
in a sequential game is not equivalent to SCE applied to the strategic form of such
game, and that the previous monotonicity result does not extend to general sequential
games. Still, we provide su¢ cient conditions under which the monotonicity result holds
for (rationalizable) SCE.
Keywords: Sequential games with feedback, smooth ambiguity, self-con�rming

equilibrium, rationalizable self-con�rming equilibrium.

1 Introduction

When a game is played recurrently, and the learning dynamic has reached a rest point,
each agent chooses a best reply to his subjective belief, which may be incorrect, but is

�We thank Sarah Auster, Roberto Corrao, Enrico De Magistris, Nicodemo De Vito, Thomas J. Sargent
and the partecipants to conferences and seminar presentations at Bielefeld University, Hebrew University of
Jerusalem, CISEI-2017 (Anacapri), the 6th Workshop on Stochastic Methods in Game Theory (Erice), and
ESEM 2017 (Lisbon) for useful comments. Financial support from the European Research Council (grant
324219) and Guido Cazzavillan Scholarship is gratefully acknowledged.
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con�rmed by the evidence available to him. A pro�le of strategies and beliefs with this
property is a self-con�rming equilibrium (henceforth, SCE; see Fudenberg and Levine
1993).1 The standard de�nition of SCE assumes that agents are subjective expected utility
maximizers, i.e., that they are ambiguity neutral.2 Yet, a large body of empirical evidence
supports the ambiguity aversion hypothesis. This is particularly relevant when agents only
have scarce evidence of opponents�behavior and face therefore strategic uncertainty. Fol-
lowing Battigalli, Cerreia-Vioglio, Maccheroni and Marinacci (2015, henceforth BCMM),
we analyze the SCE concept in games played by ambiguity averse agents. Unlike BCMM,
who essentially restrict their attention to simultaneous-move games, we consider games
with sequential moves, represented in extensive form. We also analyze a notion of rational-
izable SCE that captures sophisticated strategic reasoning. In a sequential game, agents
have evidence, at best, of how opponents play on the equilibrium path, but no evidence of
how they would play o¤ the path. Thus, sequential games constitute a natural context for
self-con�rming equilibrium analysis. In the rest of this introduction, we describe how this
paper adds to the previous literature in general and to BCMM in particular.

BCMM analyze SCE in simultaneous-move population games played recurrently by
agents with non-neutral attitudes toward ambiguity, which is the imperfect quanti�ability
of the relevant risks. Speci�cally, agents are assumed to have smooth-ambiguity preferences
in the sense of Klibano¤, Marinacci, and Mukerji (2005, henceforth KMM). This decision
model is �exible and analytically convenient for game theoretic applications. First, it sepa-
rates ambiguity attitudes, a stable personal trait like risk attitudes, from the perception of
uncertainty, which is a property of subjective beliefs a¤ected by the game situation; second,
it provides a parameterization of ambiguity aversion analogous to the parameterization of
risk aversion, which simpli�es comparative static exercises.

SCE is de�ned as follows: Let I denote the set of player roles (e.g., buyer and seller)
and let Si denote the set of pure strategies of any agent playing in role i. A pro�le of
strategy distributions �� = (��i )i2I 2 �i2I�(Si) is a self-con�rming equilibrium if, for each
i 2 I and each s�i 2 Si with ��i (s�i ) > 0, there is a belief �i about the strategy distributions
��i of the opponents that justi�es s�i as a KMM-best response and is consistent with
the long-run distribution of ex post observations for i generated by s�i and �

�
�i (e.g., the

(s�i ; �
�
�i)-induced distribution of terminal nodes). Since the distribution of observations

may not reveal the true underlying distribution of strategies ���i, agents may be uncertain
about it.

Assuming that the own-payo¤ relevant consequences are observed by each agent after
each play, BCMM prove amonotonicity result: higher ambiguity aversion entails a larger

1A version of this equilibrium concept was �rst put forward by Battigalli (1987) and called �conjectural
equilibrium� (see also Battigalli and Guaitoli, 1988). Part of the literature on this topic maintained the
same terminology. Note that Fudenberg and Levine (1993) assume that agents observe ex-post the path
of play, whereas Battigalli (1987) and most of the papers on conjectural equilibrium consider more general
hypotheses about feedback. See the discussion in Battigalli et al. (2015) and the references therein.

2See Cerreia-Vioglio et al. (2013) and the survey by Marinacci (2015).
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set of equilibria. Intuitively, for each agent, the strategy played repeatedly in equilibrium
yields known risks, because the agent observes his long-run distribution of payo¤s, while
deviations are untested and may be perceived as ambiguous; therefore, higher ambiguity
aversion penalizes deviations, but not the equilibrium choice. This monotonicity result
implies that greater ambiguity aversion entails less predictability of strategies in the long-
run, because the set of possible steady states is larger.3

The scope of BCMM�s analysis is essentially limited to simultaneous-move games and,
possibly, games played in strategic form, such as experimental games played in the lab
with the so-called �strategy method,�4 because it is well known that ambiguity aversion
may make preferences over strategies dynamically inconsistent (e.g., Siniscalchi 2011). As
a consequence, there would be incentives to make covert commitments if such commitment
moves were available.5 Thus, the fact that agents in sequential games cannot (irreversibly)
choose strategies� because they just choose actions at decision nodes� must be faced and
dealt with explicitly. We assume that agents are sophisticated: they understand their fu-
ture, contingent incentives; thus, they choose actions in early stages predicting that such
incentives determine their actions in later stages, that is, they plan by �folding back�
given their subjective beliefs about other players; hence they execute �unimprovable�
strategies. Since unimprovable strategies may be di¤erent from best replies in the normal
form of the game, the de�nition of equilibrium due to BCMM cannot be applied to se-
quential games. Note that this is unrelated to how agents react to completely unexpected
events. The con�rmed-beliefs condition of SCE implies that agents cannot be surprised on
the equilibrium path; furthermore, the SCE concept does not rely on complete informa-
tion, nor does it capture strategic reasoning; hence, it does not model how agents predict
the reactions of others to unexpected moves. In this paper, we also analyze reactions to
unexpected moves and strategic reasoning about such reactions.

Two questions naturally arise: First, how does SCE de�ned on the extensive form relate
to SCE in the normal form of the same game? Second, does the comparative ambiguity
aversion result extend to games with sequential moves? To elaborate on the �rst question,
�x a sequential game � represented in extensive form with a set of paths (terminal nodes)
Z and a speci�cation of players�feedback f = (fi)i2I , that is, what they can observe at
the end of each play; formally, each fi is a function de�ned on Z. Then, we can derive the
normal (or strategic) form (G;F ) = N (�; f), where G is given by the normal-form payo¤
functions, and each player i�s feedback fi about the path is replaced by a corresponding
normal-form feedback Fi de�ned on the set S = �i2ISi of pure strategy pro�les (e.g., each

3A similar result can be proved for comparative risk aversion in the particular case of pure SCE (see the
lecture notes of Battigalli, 2017), and for comparative risk or ambiguity aversion in the case of rationalizable
strategies (Battigalli et al., 2016a). However, the intuition and proof in the case of rationalizability are very
di¤erent from the SCE case.

4See the survey by Brandts and Charness (2011) and the references therein.
5Unlike overt commitment, covert commitment moves are not observed by other players. The strategic

advantages of overt commitment are well known at least since Schelling (1960) and do not depend on
dynamic inconsistency as traditionally de�ned in decision theory.

3



player only observes his monetary payo¤, which is a function of s 2 S). Under subjective
expected utility maximization, which is dynamically consistent, SCE in the extensive form
is realization equivalent to SCE in the normal form. With ambiguity aversion, instead,
we show that there may be di¤erent, non-nested sets of equilibrium outcomes; in other
words, working with the normal form is neither too permissive nor too restrictive, it is just
wrong.6

Given that the sets of SCE outcomes in the extensive and normal form do not coincide,
we cannot rely on the monotonicity result of BCMM to argue that in a game with sequential
moves the set of SCE outcomes expands as ambiguity aversion increases. Indeed, we
show by example that monotonicity does not hold in general. It is still true that, on the
equilibrium path, equilibrium actions entail known risks, while deviations may be perceived
as ambiguous. But, if a deviation is followed by other actions of the same player, folding-
back planning may require that plans (i.e., predictions) about these actions change with
ambiguity aversion, and dynamic inconsistency may lead to an increase in the value of
deviations.

Despite this, we can prove the monotonicity result for two special cases: (i) games
where, on each path, no player moves more than once, and (ii) pure strategy equilibria of
games with no chance moves.7 In case (i), the di¢ culties mentioned above cannot arise;
in case (ii) one can show that, loosely speaking, in equilibrium ambiguity aversion is not
distinguishable from the risk aversion of expected utility maximizers, who are dynamically
consistent. We also prove a related noteworthy result: The set of SCE outcomes with am-
biguity neutral agents is always included in the set of SCE outcomes with ambiguity averse
agents. This means that the standard version of the SCE concept, by ignoring ambiguity
aversion, overestimates the predictability of long-run outcomes in recurrent interactions.

Next, we turn to the well known issue of the impossibility of overt (i.e., observable)
commitment and how this a¤ects strategic reasoning and equilibrium. Rationality in dy-
namic games requires that agents choose subjective best replies at all information sets,
including the unexpected one, given beliefs revised upon observing unexpected moves. We
call this condition �full unimprovability.�If SCE is not re�ned so as to capture strate-
gic reasoning, requiring full unimprovability rather than simple unimprovability does not
change the set of equilibrium outcomes. The reason is that in an SCE agents may hold
wrong beliefs about the reactions of others to non-equilibrium moves, which are necessarily
unexpected; hence, they can expect responses that are irrational given the actual payo¤
functions of co-players. Assuming instead that (some features of) such payo¤ functions

6Fudenberg and Levine (1993) note that SCE is not normal-form invariant, arguing that the normal
form is therefore insu¢ cient. But their comment rests on the maintained assumption that players always
observe ex-post the path of play, which in a simultaneous-move game is just the actual pro�le of strategies
(actions of the normal form). Therefore, when they compare SCE in the extensive and normal form, they
change what players can observe ex post about the behavior of others: only on-path actions in the extensive
form, and complete strategies in the normal form.

7We call such equilibria �symmetric�because in the population game scenario they represent situations
where all agents in the same role play in the same way.
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are common knowledge, one can embed strategic reasoning into the SCE concept: if (a)
players are rational, (b) their beliefs are con�rmed, and (c) there is common belief of (a)
and (b), then their strategies form a rationalizable SCE. This concept has been ana-
lyzed under the assumption of subjective expected utility maximization, that is, neutral
ambiguity attitudes (e.g., Rubinstein and Wolinsky 1994, Dekel et al. 1999).8 Here we pro-
vide an extension for non-neutral ambiguity attitudes. The analysis involves some delicate
technical details.

The rest of the paper is organized as follows. Sections 2 and 3 introduce the setup and
the smooth ambiguity criterion; Section 4 de�nes and analyzes unimprovability; Section
5 de�nes our SCE concept; Section 6 presents comparative results for SCE; Section 7
introduces full unimprovability and shows that such strengthening by itself does not a¤ect
SCE outcomes; Section 8 relies on full unimprovability to de�ne rationalizable SCE and
provides comparative results for such concept; �nally, Section 9 discusses the relevance of
some assumptions and equilibrium concepts, and provides hints for the generalization of
the analysis. The main text contains some intuitive arguments, but all formal proofs are
collected in the Appendix.

2 Framework

We analyze an agent with non-neutral ambiguity attitudes who plays a game with sequential
moves. We assume that the commitment technology of this agent is explicitly represented
by the rules of the game. Therefore, the agent can control � i.e., irreversibly choose �
only his (pure) actions at whatever information set is being reached. We also assume that
he is sophisticated and therefore he takes this into account when he plans how to play the
game.

We take the point of view of an agent who plays in role i 2 I of a �nite extensive-form
game � and has perfect recall. Let Hi denote the collection of information sets of i and
let Ai(h) be the set of actions available at h 2 Hi. We assume for expositional simplicity
that jAi (h) j � 2 for each h 2 Hi, where jXj denotes the cardinality of a �nite set X. This
means that we include in Hi only the information sets where i is active. Let ? denote the
root of the game, then f?g 2 Hi if and only if i is a �rst mover.9 We endow Hi with the

8Battigalli (1987) and Battigalli and Guaitoli (1988) consider a weaker concept of SCE in rationalizable
strategies justi�ed by the following assumptions: (a) players are rational, (b) their beliefs are con�rmed,
and (c�) there is common belief of (a) only. To the best of our knowledge, unlike plain SCE concept, there is
no learning foundation of rationalizable SCE. On the other hand, we can give a kind of learning foundation
of SCE in rationalizable strategies. See our discussion in Section 9.

9Our preferred representation of games in extensive form starts from sequences of action pro�les, that
correspond to the nodes of the game tree (e.g., Chapters 6 and 11 of Osborne and Rubinstein, 1994) and
allows for the representation of players�information also at nodes where they are not active, such the root
for players who are not �rst-movers. This a¤ects the way we draw pictures and describe examples, but it
is otherwise irrelevant for the analysis of the paper.
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weak (respectively, strict) precedence relation � (�) inherited from the game tree.10 The
set of strategies for player i is Si = �h2HiAi(h). For every si 2 Si and h 2 Hi, we let si;h
denote the action speci�ed by si at h; thus, si = (si;h)h2Hi 2 �h2HiAi(h).

We model randomization explicitly as the choice of a randomization device. Therefore
it is important to allow for chance moves as the moves of a special player denoted by
0 62 I. With this, H0 denotes the collection of information sets of the chance player, A0 (h)
is set of chance moves available at h 2 H0, and S0 = �h2H0A0(h) is the set of �strategies�
of the pseudo-player 0. Throughout, we maintain for simplicity the assumption that the
probabilities of chance moves are commonly known. Such probabilities are speci�ed by a
�behavioral strategy� �0 2 �h2H0�(A0 (h)), with �0 (a0jh) > 0 for every h 2 H0 and
a0 2 A0 (h); �0 induces the �mixed strategy��0 2 �(S0) such that

�0 (s0) =
Y
h2H0

�0 (s0;hjh) > 0

for every s0 2 S0. Thus, the outcome distributions respectively induced by �0 and �0
coincide for every strategy pro�le of the true players (see Kuhn, 1953). Since players are
always certain that the �mixed strategy of chance� is �0, we model explicitly only each
player i�s beliefs about the behavior of the true opponents �i = Infig. We let S = �j2ISj
denote the set of pure strategy pro�les of the true players, whereas S�i = �j2InfigSj and
S0;�i = S0�S�i denote the set of pure strategy pro�les of opponents respectively excluding
and including chance.

Let Z denote the set of terminal nodes of the game. Every pro�le (s0; s) induces a
complete path, hence a terminal node, through the outcome function

� : S0 � S ! Z.

Since the de�nition of � is standard, we take it for granted and then de�ne some derived
concepts using �.

For conceptual clarity, we also include in the description of the extensive form � a
consequence function


 : Z ! C

which speci�es the material consequence c = 
(z) 2 C of each terminal node z 2 Z.
For example, we may have C � RI where c = (cj)j2I is a consumption allocation or a
distribution of monetary payo¤s to players. Thus, player i�s risk attitudes (preferences
over objective lotteries of consequences) are represented by a vNM utility function

vi : C ! R.
10Perfect recall implies that, for all h; h0 2 Hi , there are nodes (histories) x 2 h and x0 2 h0 such that

x precedes x0 if and only if every node of h0 is preceded by a node of h. With this, we can stipulate that,
for all h; h0 2 Hi, h strictly precedes h0, written h � h0, if every node of h0 is strictly preceded by a node
of h. Perfect recall implies that each h 2 Hi can have at most one immediate predecessor. The re�exive
closure of � is � , an antisymmetric, and transitive relation that makes Hi a directed forest. If f?g 2 Hi,
then (Hi;�) is a directed tree.
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To ease notation, we write the payo¤ function of i as

ui = vi � 
 : Z ! R.

It is convenient to specify the information about strategies implied by any information
set h. First, for any node x, let

S0;I (x) = f(s0; s) 2 S0 � S : x � �(s0; s)g

denote the set of pure strategy pro�les reaching x. With this, for any subset of nodes h,

S0;I(h) =
[
x2h

S0;I (x)

is the set of strategy pro�les (s0; s) reaching h,

S0;�i(h) = projS0;�iS0;I(h) = fs0;�i 2 S0;�i : 9 (x; si) 2 h� Si; x � �(si; s0;�i)g

is the set of pure strategy pro�les of chance and opponents that allow for h, and

Si(h) = projSiS0;I(h) = fsi 2 Si : 9(x; s0;�i) 2 h� S0;�i; x � �(si; s0;�i)g

is the sets of i�s strategies allowing for h.
It is useful to keep in mind that perfect recall implies the following factorization:

8h 2 Hi, S0;I(h) = Si(h)� S0;�i(h).

Furthermore, it also implies that

8g; h 2 Hi, g � h) S0;�i(h) � S0;�i(g).

Intuitively, i obtains �ner information about strategies as the play unfolds.
Each agent playing in role i knows that his opponents are drawn at random from large

populations j 2 Infig of agents, with each agent playing a pure strategy. The distribution
of pure strategies in population j is some unknown measure �j 2 �(Sj), hence, by
randommatching, the objective probability of facing opponents playing pure strategy pro�le
s�i = (sj)j2Infig is the unknown product11

��i(s�i) =
Y

j2Infig
�j(sj):

11Statistical independence follows from random matching: For each i 2 I, let Pi denote the of agents
playing in role i, and let &i : Pi ! Si denote the (measurable) strategy map of population i. If agents are
drawn at random from their populations, that is, according to a uniform distribution on �i2IPi, then the
induced distribution on S given (&i)i2I is a product measure.
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To ease notation, we identify each pro�le of distributions (�j)j2Infig with the corresponding
product distribution on S�i. We let

��i =
n
��i 2 �(S�i) : 9 (�j)j2Infig 2 �j2Infig�(Sj) ; ��i = �j2Infig�j

o
denote the set of these product distributions.12 We endow ��i with the topology inherited
from the Euclidean topology on RS�i , which makes it compact, and with the corresponding
Borel sigma algebra B(��i).

At each point of the game, the agent playing in role i has some belief �i 2 �(��i). The
belief �i that i holds at the beginning of the game is i�s prior. For each �i 2 �(��i), we
let p�i 2 �(S�i) denote the predictive probabilities implied by �i: for each s�i 2 S�i,

p�i(s�i) =

Z
��i

��i(s�i)�i(d��i):

We summarize our notation in the following table and illustrate it with an example.
We will refer to this example repeatedly.

Notation Terminology
� extensive-form game
i; j 2 I players (j = 0 62 I denotes chance)
h 2 Hi information sets of i
� (�) (strict) precedence relation of �
(Hi;�) directed forest of information sets of i
ai 2 Ai(h) i�s actions at h 2 Hi

si 2 Si = �h2HiAi(h) strategies of i
s 2 S (s�i 2 S�i, s0;�i 2 S0;�i) strategy pro�les (of �i = Infig, of f0g [ Infig)
S0;I(h) strategy pro�les (including 0) reaching h
Si(h) = projSiS0;I(h) strategies of i allowing for h
S0;�i(h) = projS0;�iS0;I(h) strategy pro�les of 0 and �i allowing for h
S�i(h) = projS�iS0;I(h) strategy pro�les of �i allowing for h
�j 2 �(Sj) strategy distributions on Sj
��i 2 ��i � �(S�i) product distributions on S�i
�i 2 �(��i) beliefs of i
p�i 2 �(S�i) predictive probabilities implied by �i
z 2 Z terminal histories/nodes
� : S0 � S ! Z outcome function

 : Z ! C consequence function
vi : C ! R vNM utility function of i
ui = vi � 
 : Z ! R payo¤ function of i

12We use symbol � to denote both the Cartesian product of sets and the product of measures.
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Figure 1: Leading Example

Example 1 The game depicted in Figure 1 is a two-person, common-interest, multistage
game where I = f1,2g and 0 is chance. If we identify nodes with histories,13 information
sets, actions sets and terminal histories/nodes are as follows:

H0 = fIng, H1 = ff?g; f(In;G)gg , H2 = f(In;G)g,

A0(fIng) = fE;Gg, A2(f(In;G)g) = fL;Rg,

A1(f?g) = fIn;Outg, A1(f(In;G)g) = fT;M;Bg,

Z = fOut;(In;E)g [ ff(In;G)g � fT;M;Bg � fL;Rgg .

Numbers at terminal histories/nodes, including the boxes in the matrix subgame, give the
common payo¤ of players 1 and 2. The probabilities of chance moves are �0(E) = �0(G) =
1
2 .
Assume that the agent in role 1 has the following belief:

�1 (�2) =

�
1
2 if �2 2 f�L; �Rg ;
0 otherwise,

where �x denotes the Dirac measure supported by x. Intuitively, he thinks that all the agents
playing in role 2 �attended the same school� and hence are doing the same thing, but he
does not know what. The induced predictive probabilities are p�1 (L) = p�1 (R) =

1
2 . N

13See, e.g., Chapter 11 in Osborne and Rubinstein (1994).
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3 Smooth-ambiguity preferences over actions

In this section, we take the perspective of an agent, or decision maker, playing in role i,
henceforth DMi, with given beliefs about the behavior of agents in di¤erent roles and a well
de�ned plan, or strategy. Speci�cally, he has a plan si specifying the action si;h 2 Ai(h) he
expects to take (but he is not committed to take) at each information set h 2 Hi; he has no
randomization technology beyond what is already explicitly represented in the extensive
form of the game (see Section 2), and we assume that he is certain about his contingent
behavior, i.e., he has a deterministic contingent plan.

Conditional distributions and conditional objective expected utility Let ��i(h)
denote the set of distributions that assign positive probability to S�i(h), that is,

��i(h) = f��i 2 ��i : ��i(S�i(h)) > 0g.

For every h 2 Hi and ��i 2 ��i (h), we can compute the objective conditional distribution
on the opponents�strategy pro�les consistent with h:

8 (s0; s�i) 2 S0;�i(h), �0;�i(s0; s�ijh) =
�0(s0)��i(s�i)

(�0 � ��i) (S0;�i(h))
(1)

(note that that ��i 2 ��i(h) if and only if (�0 � ��i)(S0;�i(h)) > 0, because �0 is strictly
positive). With this, we can de�ne the strategic-form vNM conditional expected util-
ity function

Ui(�; �jh) : Si(h)� ��i(h) ! R,
(si; ��ijh) 7!

P
s0;�i2S0;�i(h) �0;�i(s0;�ijh)ui(�(si; s0;�i))).

In words, if i is certain that ��i is the true objective probability model, then upon observing
h (he believes that) his conditional objective expected utility from following strategy si 2
Si (h) is Ui(si; ��ijh).14

Plans and replacements Plan si yields a continuation on the information sets in Hi
following any given h 2 Hi (that is, the projection of si onto �fh02Hi:h�h0gAi(h0)). DMi

expects to continue according to this plan, but he knows (by perfect recall) that he has
already chosen the actions leading to h, possibly violating si, and he considers the conse-
quences of choosing action ai 2 Ai(h), again possibly violating si. It is convenient to de�ne
14One can show that this coincides with the more familiar formula

Ui(si; ��ijh) =
X
x2h

Psi;��i (xjh)
X
z2Z

Psi;��i (zjx)ui (z)

where Psi;��i (�j�) denotes the probability of reaching a node conditional on an information set, or an earlier
node, given by ��i and the known probabilities of chance moves.
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the replacement plan (sijh; ai) obtained by replacing si with the already chosen actions
at information sets preceding h and with action ai at h:

(sijh; ai)h0 =

8<:
ai if h0 = h,
�i(h

0; h) if h0 � h,
si;h0 otherwise,

where �i(h0; h) is the action chosen at h0 � h in order to reach h.15 Finally, we let sijh
denote the replacement plan obtained when action si;h is played at h:�

sijh
�
h0
=

�
�i(h

0; h) if h0 � h,
si;h0 otherwise.

Action values We assume that DMi�s preferences over actions, given his beliefs and
plan, satisfy the smooth-ambiguity model of KMM: On top of the vNM utility function
vi : C ! R speci�ed by game � (hence, the payo¤ function ui = vi � 
), we assume that
there is a continuous and strictly increasing second-order utility function

�i : Vi! R,

where
Vi =

h
min
z
vi(
(z));max

z
vi(
(z))

i
is the convex hull of the range of vi. For every given h 2 Hi, �i 2 �(��i(h)), and si 2 Si,
DMi assigns values to actions ai 2 Ai(h) as follows:

Vi(aijh; si; �i; �i) = ��1i

 Z
��i(h)

�i
�
Ui
�
(sijh; ai); ��ijh

��
�i(d��i)

!
. (2)

Condition �i (��i(h)) = 1 suggests that, in eq. (2), we interpret �i as the conditional
belief of DMi upon observing h. We postpone the de�nition of conditional beliefs to Section
4. If �i assigns probability 1 to some ��i 2 ��i (h) (that is, �i = ���i 2 �(��i (h))), then

Vi(aijh; si; �i; �i) = ��1i
�
�i
�
Ui
�
(sijh; ai); ��ijh

���
= Ui

�
(sijh; ai); ��ijh

�
.

Thus, ambiguity attitudes are immaterial when DMi is certain about the true probability
model, because in this case he does not perceive any ambiguity. Note also that (2) boils
down to the classical subjective expected utility formula if �i is linear (ambiguity neutral-
ity), hence equivalent to the identity function IdVi . On the other hand, ambiguity aversion
is characterized by the concavity of �i. We emphasize in our notation only the dependence
of values of i�s actions on parameter �i, not on the vNM utility function vi, because we are
going to consider di¤erent possible shapes of �i (in particular, linear and concave) with a
�xed vi.
15By perfect recall, �i is well de�ned.
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Example 2 In the game of Figure 1,

U1 (In:B; �Lj f(In;G)g) = 36,

U1 (In:B; �Rj f(In;G)g) = 1,

and

U1 (In:B; �Lj f?g) =
1

2
� 36 = 18,

U1 (In:B; �Rj f?g) =
1

2
� 1 = 1

2
.

Assume �1 (ui) =
p
ui and let �1 be the belief of Example 1, that is

�1 (�2) =

�
1
2 if �2 2 f�L; �Rg ;
0 otherwise;

then

V1 (Bj f(In;G)g ; s1; �1; �1) =
�
1

2

p
36 +

1

2

p
1

�2
= (3:5)2 = 12:25

for each s1 2 S1 ((In;G)). N

4 Conditional beliefs and unimprovability

A prior belief �i 2 �(��i) over co-players� strategy distributions induces a joint belief
��i 2 �(S0;�i � ��i) determined by the following equation:

8(s0; s�i; E�i) 2 S0;�i � B(��i), ��i(f(s0; s�i)g � E�i) = �0(s0)
Z
E�i

��i(s�i)�i(d��i).

(3)
Note that16

��i(S0;�i � E�i) = �i (E�i) , (4)

and
��i(S0 � fs�ig � ��i) = p�i(s�i):

Each information set h 2 Hi corresponds to the conditioning event S0;�i(h)� ��i (h).
Let

Hi(�i) = fh 2 Hi : ��i(S0;�i(h)� ��i (h)) > 0g = fh 2 Hi : p�i(S�i(h)) > 0g
16One may use beliefs over the product space S0;�i � ��i as the primitive object. Of course, the

structural assumption that agents know the probabilities of chance moves and that they are randomly
matched with opponents drawn large populations implies that only beliefs that admit the representation
(3) for some �i 2 �(��i) are admissible. Then we can derive the belief over distributions using (4). For a
decision theoretic approach akin to the one discussed in this footnote, with models in place of population
distributions, see Cerreia-Vioglio et al. (2013).
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denote the subset of information sets of player i that he believes he can reach with posi-
tive probability.17 If h 2 Hi(�i), then we can derive the conditional probability of every
measurable set E�i 2 B(��i) of strategy distributions:

�i(E�ijh) = ��i(S0;�i � E�ijS0;�i(h)� ��i (h))

=
��i((S0;�i � E�i) \ (S0;�i(h)� ��i (h)))

��i (S0;�i(h)� ��i (h))

=
��i(S0;�i(h)� (��i (h) \ E�i))P

(s0;s�i)2S0;�i(h) �0(s0)
R
��i(h)

��i(s�i)�i(d��i)

=

P
(s0;s�i)2S0;�i(h) �0(s0)

R
��i(h)\E�i ��i(s�i)�i(d��i)P

(s0;s�i)2S0;�i(h) �0(s0)p�i(s�i)

=

R
E�i
(�0 � ��i)(S0;�i(h))�i(d��i)
(�0 � p�i)(S0;�i(h))

: (5)

For example, if �i has �nite support :

�i(��ijh) =
�i(��i)(�0 � ��i)(S0;�i(h))P

�0�i2Supp�i
�i(�

0
�i)(�0 � �0�i)(S0;�i(h))

.

With this, we let

Vi (aijh; si; �i; �i) = ��1i

 Z
��i(h)

�i
�
Ui
�
(sijh; ai); ��ijh

��
�i(d��ijh)

!
(6)

whenever h 2 Hi (�i), and we derive well de�ned preferences over actions (given �i and si)
only for information sets that are possible according to �i. This is what we need for our
baseline de�nition of unimprovability, which is instead silent about choices at information
sets deemed unreachable.

De�nition 1 A strategy si is (�i; �i)-unimprovable if

8h 2 Hi(�i), si;h 2 arg max
ai2Ai(h)

Vi(aijh; si; �i; �i).

Since the game has �nite horizon, we can interpret unimprovability as �folding-back
optimality�: given (�i; �i), DMi derives a contingent plan that prescribes a choice for each
information set he deems reachable. He starts from information sets h 2 Hi(�i) with
no followers in Hi(�i), and to each one of them he assigns an action si;h that maximizes

17The equality holds because the probabilities of chance moves are strictly positive.
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Vi(aijh; si; �i; �i). Then he folds back, considering the information sets h 2 Hi(�i) such
that every follower has no further followers; for every such follower, viz. h0, DMi predicts
that the previously selected maximizing action si;h0 will be chosen; and so on until all the
reachable information sets in Hi(�i) have been covered backwards.

Of course, we could de�ne beliefs, and thus impose optimality requirements, also at
information sets in HinH(�i). For the time being, we are not interested in doing so: the
moves of DMi at each h 2 HinH(�i) will be immaterial for the equilibrium outcomes (by
ex post perfect recall and con�rmed beliefs, see Section 5), and impossible to predict for
the opponents as long as we do not assume that they know the payo¤ function of i (cf.
Section 7).

From the point of view of an external observer, or of agents in roles di¤erent from i, it
is impossible to distinguish between two strategies of DMi that yield the same outcomes
independently of the opponents�behavior. This leads to the following notion of equivalence,
which will play an important role in comparing self-con�rming equilibria for di¤erent levels
of ambiguity aversion (see Section 6).

De�nition 2 (Kuhn, 1953) Two (possibly degenerate) strategy distributions ��i and �i are
realization-equivalent if they induce the same distribution on terminal nodes, that is,

8(z; s0; s�i) 2 Z � S0 � S�i,
X

si:�(s0;si;s�i)=z

��i (si) =
X

si:�(s0;si;s�i)=z

�i(si).

The set of strategy distributions realization-equivalent to ��i is denoted by [�
�
i ].

We let [s�i ] denote the set strategies (that is, Dirac distributions) realization-equivalent
to s�i .

Remark 1 Fix any �i; ��i 2 �(Si); �i 2 [��i ] if and only if �i ([s�i ]) = ��i ([s�i ]) for every
s�i 2 Si.

Let Hi(si) = fh 2 Hi : si 2 Si (h)g denote the subset of information sets of DMi that
can be reached when si is played. Focusing on pure strategies, we obtain the following
observation:

Remark 2 (Theorem 1, Kuhn 1953) Fix any si; s�i 2 Si; si 2 [s�i ] if and only if si and s�i
are behaviorally equivalent, that is, if and only if Hi(si) = Hi(s�i ) and si;h = s

�
i;h for each

h 2 Hi(s�i ).

Now, suppose that DMi is ambiguity neutral: �i = IdVi . Then, by a classical dynamic
programming result, unimprovability is equivalent to �global� (ex ante) subjective EU-
maximization:18

18All the dynamic programming results of this section can be proved by standard folding-back arguments.
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Proposition 1 For every strategy s�i 2 Si and prior �i 2 �(��i) the following are equiv-
alent:
(1) [s�i ] contains a (�i; IdVi)-unimprovable strategy,
(2) s�i 2 argmaxsi2Si

P
(s0;s�i)

�0 (s0) p�i(s�i)ui (� (s0; si; s�i)).

We introduce the following strengthening of unimprovability:

De�nition 3 A strategy si is (�i; �i)-sequentially optimal if

8h 2 Hi(�i), si 2 arg max
s0i2Si

��1i

 Z
��i(h)

�i

�
Ui(s

0
ijh; ��ijh)

�
�i(d��ijh)

!
.

If DMi has dynamically inconsistent preferences over strategies, a (�i; �i)-sequentially
optimal strategy may not exists, as illustrated in Example 3 below. However, if DMi

is ambiguity neutral (hence, his preferences are dynamically consistent), unimprovability
coincides with sequential optimality:

Proposition 2 A strategy si is (�i; IdVi)-unimprovable if and only if it is (�i; IdVi)-
sequentially optimal.

Example 3 Consider the game of Figure 1 and the belief �1 of Example 1:

�1 (�2) =

�
1
2 if �2 2 f�L; �Rg ;
0 otherwise.

Then
H1(�1) = H1 = ff?g; f(In;G)gg .

The induced belief on S0,2 � �2 is

��1(s0; s2; �2) =

�
1
4 if (s0; s2; �2) 2 fE,Gg � f(L; �L); (R; �R)g,
0 otherwise.

For an ambiguity neutral player 1 with belief �1, the value of M and B at (In;G) is�
1
236 +

1
21
�
> 9, so it is higher than the value of T. Therefore, by folding-back, the

(�1; IdVi)-unimprovable strategies are In:M and In:B.
Now suppose instead that the ambiguity attitudes of player 1 are represented by some

strictly concave ��1 with:

��1 (u) =
p
u if 1 � u < 36;

��1

�
1

2

�
= �1:
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At (In;G), player 1 still prefers M (or B) over T, because:

V1(Mj f(In;G)g ; s1; �1; ��1) = ��
�1
1

�
1

2
��1(1) +

1

2
��1(36)

�
= (3:5)2 > 9 = V1(Tj f(In;G)g ; s1; �1; ��1).

Hence, a (�1; ��1)-unimprovable strategy must prescribe action M or B at (In;G). But
then, it must also prescribe action Out at f?g. Indeed, for every strategy s1 such that
s 1;(In;G) 2 fM;Bg we have:

V1(Inj f?g ; s1; �1; ��1) = ��
�1
1

�
1

2
� ��1

�
1

2
� 36
�
+
1

2
� ��1

�
1

2
� 1
��

=

�
1

2
�
p
18� 1

2

�2
< 4 = V1(Outj f?g ; s1; �1; ��1).

So, on the one hand, the only (�1; ��1)-unimprovable strategies are Out.M and Out.B. On
the other hand, from the perspective of the agent at the root of �, the value of committing
to strategy In:T is

V1(Inj f?g ; In:T; �1; ��1) =
 r

1

2
� 9
!2

> 4 = V1(Outj f?g ; Out:a1; �1; ��1); (7)

for all a1 2 fT;M;Bg. So, player 1 would commit to In:T if he only could. N

This example illustrates the well-known dynamic inconsistency of preferences of decision
makers with non-neutral attitudes towards ambiguity.19 ;20 To address this problem, we
assume that agents are su¢ ciently sophisticated to understand the incentives they would
face at each information set deemed possible, and plan/predict their contingent behavior
by folding back. The resulting (�i; �i)-unimprovable strategy (or strategies) represents how
agents in role i with belief �i predict they would choose at future information sets; such
strategy and �i yield a value for each action available at the current information set.

Of course, DMi may be indi¤erent at some information sets. A further re�nement
can be obtained for ambiguity averse agents by imposing a consistent-planning condition:
whenever DMi is indi¤erent at h then he breaks ties according to the preferences at the
immediate predecessor of h in Hi. If this does not solve all the indi¤erences, ties are broken
according to the preferences of the twice-removed predecessor, and so on. We omit this
re�nement for simplicity, and also because we �nd it arbitrary.
19See Siniscalchi (2011), for illustrative examples and an in-depth analysis of this issue.
20Note that these dynamic inconsistencies arise as a consequence of the combination of Bayesian updating

and non-neutral ambiguity attitudes. Indeed, it is not even obvious from the decision theoretic literature
that ambiguity averse players are supposed to update beliefs according to the standard rules of conditional
probabilities (see Epstein and Schneider 2007, Hanany and Klibano¤ 2009, and Hanany et al. 2017). Instead
we take the position that these rules are part of rational cognition, and we stick to them. This position
is supported also by works that justify Bayesian updating in an evolutionary perspective, see Blume and
Easley (2006) and the references therein.
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5 Selfcon�rming equilibrium

BCMM analyze a notion of smooth self-con�rming equilibrium under the assumption that
agents play the strategic form of a game with feedback and ambiguity attitudes, as with
the strategy method in lab experiments. Speci�cally, consider a triple (�; f; �), where � is a
standard extensive-form game, f = (fi : Z !M)i2I is a pro�le of feedback functions such
that every fi describes the messagem 2M that player i observes ex post as a function of the
terminal node, and � = (�i : Vi! R)i2I is a pro�le of strictly increasing functions capturing
players attitudes toward ambiguity. The structural strategic feedback function of i
associates each strategy pro�le (s0; s) with a corresponding message, that is, Fi = fi � � :
S0�S !M . We let F̂i (si; ��i) 2 �(M) denote the pushforward distribution of messages
induced by strategy si and the pro�le of strategy distributions ��i, given �0. Speci�cally:

8 (si; ��i;m) 2 Si � ��i �M , F̂i (si; ��i) (m) =
X

(s0;s�i):Fi(s0;si;s�i)=m

�0 (s0)��i (s�i) .

To relate to BCMM it is convenient to de�ne the strategic, or normal form of a game
with feedback (�; f). The normal-form (expected) payo¤ function of player i is Ui :
S ! R with

8s 2 S, Ui(s) =
X
s02S0

�0(s0)ui(�(s0; s)))

Similarly, we de�ne normal-form feedback function �Fi : S ! �M as follows: If strategy
pro�le s is played in the long run, then i observes the distribution of messages determined
by s and and chance probabilities. Therefore, we let �M = �(M) and

8 (s;m) 2 S �M , �Fi (s) (m) = F̂i
�
si; �s�i

�
(m) =

X
s0:Fi(s0;s)=m

�0 (s0) .

With this, the normal form of (�; f) is N (�; f) =
�
Si; Ui; �Fi

�
i2I . The equilibrium concept

of BCMM applies to (N (�; f) ; �) =
�
Si; Ui; �Fi; �i

�
i2I under the assumption that each

agent in role i covertly commits in advance to a strategy si. Here, instead, we analyze an
equilibrium concept that is appropriate when agents play (�; f; �) with the �direct method�
making choices as the play unfolds, and we compare it with the strategic-form concept of
BCMM.

Given that the information structure of � is assumed to satisfy perfect recall, we main-
tain the assumption that (�; f) satis�es �ex post perfect recall�:21

21See Battigalli et al. (2016b). There, the statement of the ex post perfect recall property is slightly
di¤erent. The two versions are equivalent for extensive-form representations that specify the information
of each player i at each nonterminal node, not only those where i is active (cf. Battigalli and Bonanno,
1999). Otherwise, one should use the statement of this paper.
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Assumption (Ex post perfect recall) For every player i 2 I, the augmented collection
of information sets that includes the partition of Z induced by fi,

Ĥi = Hi [ ff�1i (m) : m 2 fi (Z)g;

satis�es the perfect recall assumption. Thus, in particular, for all terminal histories z; z0 2
Z, if there are an information set h 2 Hi and a node x 2 h such that x � z and either
z0 has no predecessor in h, or �i(x; z) 6= �i(x0; z0) for the predecessor x0 of z0 in h, then
fi(z) 6= fi(z0).

Furthermore, we also consider (but we do not always assume) the following property
of feedback:22

De�nition 4 An extensive-form game with feedback (�; f) satis�es observable payo¤ s
whenever the payo¤ of every player only depends on his ex post information:

8
�
i; z; z0

�
2 I � Z2, fi (z) = fi

�
z0
�
) ui (z) = ui

�
z0
�
.

In other words, the payo¤ function is constant on each element of the ex post information
partition ff�1i (m) : m 2 fi (Z)g. We say that (�; f; �) satis�es observable payo¤s if (�; f)
does.

In some examples, we will assume that agents observe the terminal node they reach,
that is, fi = IdZ . We call this hypothesis perfect feedback.

De�nition 5 A self-con�rming equilibrium (SCE) of (�; f; �) is a pro�le of strategy
distributions �� = (��i)i2I with the following property: For each i 2 I and �si 2 Supp��i there
is a belief ��si 2 �(��i) such that
( rationality) �si is (��si ; �i)-unimprovable,

( con�rmed beliefs) ��si

�n
��i 2 ��i : F̂i(�si; ��i) = F̂i(�si; ���i)

o�
= 1.

An SCE �� is a symmetric SCE (symSCE) if, for each i 2 I, there is a pure strategy �si
with ��i(�si) = 1, that is, if all agents in the same population i play the same pure strategy.

The con�rmed beliefs condition requires that the belief ��si justifying �si exclude all the
distributions that are not observationally equivalent to the true one, ���i. When pro�les ��
and

�
��si
�
i2I;�si2Supp��i satisfy the foregoing SCE conditions, we say that �� is justi�ed by

con�rmed beliefs
�
��si
�
i2I;�si2Supp��i . The set of (symmetric) self-con�rming equilibria of

(�; f; �) is denoted by SCE(�; f; �) (symSCE(�; f; �)).

22See Battigalli et al. (2016b) for an in-depth analysis of the properties of feedback and how they a¤ect
the SCE set.
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As in BCMM, the con�rmed beliefs condition says that an agent rules out opponents�
strategy distributions that are inconsistent with his �empirical distribution� of observa-
tions. More speci�cally, we consider stability conditions for a pro�le of strategy distribu-
tions in a scenario where agents drawn at random from large populations (corresponding
to game roles) play the given game recurrently and learn from their personal experience.
Suppose each agent keeps playing the same (pure) strategy for a very long time, and
consider an agent in role i who has been playing �si and accumulated a large dataset of
personal observations. With probability 1, and in the limit, this dataset is summarized by
the frequency distribution of observations generated by his strategy �si and by the actual
strategy distributions for the opponents� populations, ���i, that is, F̂i(�si; ���i).23 Every
pro�le of distributions ��i that yields the same distribution of observations is empirically
indistinguishable from the true one, ���i, and hence it cannot be objectively rejected.

We �rst observe that every game with feedback and ambiguity attitudes has an SCE:

Proposition 3 For every (�; f; �), SCE(�; f; �) 6= ;.

Intuitively, every �nite game � has a sequential equilibrium
�
��i
�
i2I in behavioral strate-

gies. Consider the corresponding mixed strategy pro�le (��i)i2I and let ��si = ����i for every
i and �si 2 Supp��i. Since no ambiguity is perceived, agents with these beliefs behave as
expected utility maximizers. With this, it can be shown that each �si 2 Supp��i is (��si ; �i)-
unimprovable, because �� corresponds to a sequential equilibrium.

Observe that our de�nition does not coincide with the one proposed in BCMM, because
the rationality assumption of BCMM is given by the ex ante KMM criterion:

�si 2 arg max
si2Si

Z
��i

�i (Ui (si; ��i))�i (d��i) .

This best reply condition is appropriate only in simultaneous moves games, possibly ob-
tained by having agents play the strategic form of a sequential game (cf. BCMM, pp.
665-667). Here, instead, we require agents to maximize the KMM value over actions at
every information set they deem reachable. Therefore, the set of self-con�rming equilibria

à la BCMM of a sequential game (�; f; �) is SCE (N (�; f); �) = SCE
��
Si; Ui; �Fi; �i

�
i2I

�
.

Proposition 1 implies that our de�nition is (realization) equivalent to the one of BCMM
when agents are ambiguity neutral : Given �� 2 SCE (N (�; f); IdVi) with associated be-
liefs (�si)i2I;si2Supp��i , replace each si 2 Supp��i with a realization-equivalent (�si ; IdVi)-
unimprovable strategy ŝi(si), where ŝi(�) is a suitably de�ned map (see Proposition 1); then
de�ne �i as the pushforward of ��i under map �si(�), that is, �i = ��i � ŝ�1i ; the resulting
pro�le � with associated beliefs (�ŝi(si))i2I;si2Supp��i satis�es the SCE conditions. To sum
up:

23See Battigalli et al. (2016c) for a learning foundation of self-con�rming equilibrium with non-neutral
ambiguity attitudes.
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Remark 3 Suppose that �i is linear for each i 2 I. Then, for every �� 2 SCE (N (�; f); �)
there is some � 2 SCE (�; f; �) such that, for each i 2 I, ��i and �i are realization-
equivalent.

If agents instead are ambiguity averse, the SCE�s of a game are not realization-equivalent
to SCE�s of its strategic-form representation.

Example 4 Consider the game of Figure 1. In Example 3 we considered a belief �1 and
ambiguity attitudes ��1 of player 1 such that Out:M and Out:B are (�1; ��1)-unimprovable
strategies. It follows that (Out:M;L) (for instance) is a symmetric SCE of the game, where
Out:M is justi�ed by belief �1 (trivially con�rmed for any feedback function) and L is
(vacuously) justi�ed by any belief (for any ��2). However, note that inequality (7) implies
that (Out:M;L) does not belong to SCE

�
N (�; f); ��

�
. Speci�cally, (7) implies that, for

every belief �1 and action a1 2 fT;M;Bg, strategy Out:a1 is not ex-ante optimal, and thus
it does not satisfy the best reply condition of BCMM. N

Comment on knowledge of the game The de�nition of SCE relies on very weak
interpretive assumptions about agents�knowledge of the game: each agent playing in role
i has to know only his preferences (vi; �i), the extensive-game form (hence, also � : S ! Z
and 
 : Z ! C), and his feedback function fi : Z ! M . Therefore, in a SCE an agent in
population i may believe that a positive fraction of agents in population j are implementing
strategies that cannot be justi�ed by any belief, given their true preferences and feedback
(vj ; �j ; fj) (possibly unknown to agents in population i). Essentially, SCE is a solution
concept for incomplete information games with private values. In Section 8, we analyze
a notion of rationalizable SCE that is appropriate when there is common knowledge of
(�; f; �). Here, we just note that our de�nition of SCE is realization equivalent to one that
replaces unimprovability with respect to a prior belief �i with full unimprovability with
respect to a system of conditional beliefs (�i(�jh))h2Hi (see Proposition 9 in Section 7).

6 Monotonicity of selfcon�rming equilibrium

In this section we analyze changes in the set of equilibria when feedback and ambiguity
attitudes are modi�ed with respect to some baseline �f and �� respectively. Say that the
feedback pro�le f is coarser than �f if fi is �fi-measurable24 for each i 2 I; in other words,
for each player i, the partition of Z induced by fi is coarser than the partition of Z induced
by �fi. It is quite straightforward to show that if f is coarser than �f then SCE(�; f; �) �
SCE(�; �f; �), because coarser ex post information makes it easier to satisfy the con�rmed
beliefs condition (see BCMM).

We would also like to prove an extension for sequential games of the followingmonotonic-
ity theorem of BCMM: under observable payo¤s, the SCE correspondence is monotone with
24That is, fi = �i � �fi for some �i : �fi (Z)!M .
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respect to ambiguity aversion, that is, as ambiguity aversion increases, the set of SCE ex-
pands. Speci�cally, say that (�; f; �) features more ambiguity aversion than (�; f; ��)
if, for each i 2 I, �i = 'i � ��i for some concave and strictly increasing function 'i. Say
that (�; f; �) features ambiguity aversion if each �i is concave. BCMM proved that if
(�; f) has observable payo¤s and (�; f; �) features more ambiguity aversion than (�; f; ��),
then

SCE (N (�; f); �) � SCE
�
N (�; f); ��

�
.

Therefore, if (�; f; �) features ambiguity aversion, then

SCE (N (�; f); �) � SCE (N (�; f); IdV) .

As already observed, self-con�rming equilibria in the strategic and extensive form of
the game are not realization equivalent. Hence, the monotonicity result of BCMM cannot
be invoked to obtain an equivalent result for SCE in sequential games, not even in terms of
induced outcome distributions. Yet, the core of the argument of BCMM can be adapted to
sequential games when all the strategies in the support of an SCE with baseline ambiguity
attitudes �� are sequentially optimal under the con�rmed beliefs that justify them, that is,
at every reachable information set h the prescribed continuation strategy is the one that
maximizes the value at h (see De�nition 3).

Recall that [�i] (respectively [si]) is the set of distributions (resp., strategies) realization
equivalent to �i (resp. si), and that �0i 2 [�i] if and only if �0i ([si]) = �i ([si]) for every si.25

Lemma 1 Suppose that (�; f; �) features more ambiguity aversion than (�; f; ��) and �x
any �� 2 SCE(�; f; ��) justi�ed by the con�rmed beliefs

�
��si
�
i2I;�si2Supp��i. Suppose that for

each i 2 I, every �si 2 Supp��i is (��si ; ��i)-sequentially optimal. Then, there exists some
� 2 SCE(�; f; �) such that, for each i 2 I, �i 2 [��i] and every si 2 Supp�i is justi�ed by
con�rmed belief ��si for some �si 2 [si] \ Supp��i.

We provide a sketch of proof of Lemma 1 because it helps to understand how dy-
namic (in)consistency matters for SCE analysis. Fix �� 2 SCE(�; f; ��) and consider a
strategy �si 2 Supp��i that is sequentially optimal given ��si . Since the con�rmed-beliefs
condition does not depend on ambiguity attitudes, we only have to argue that some
si 2 [�si] is

�
��si ; �i

�
-unimprovable. Fix any h consistent with �si, that is, h 2 Hi(�si).

By ex post perfect recall, ��si assigns probability 1 to the set of distributions ��i such that
��i (S�i (h)) = ���i (S�i (h)), because i observes the frequency of h. There are two cases.
(1) If ���i (S�i (h)) > 0, then ��si (��i (h)) > 0 and conditional belief ��si (�jh) is determined
by Bayes rule. Since payo¤s are observable, according to conditional belief ��si (�jh) the
equilibrium action �si;h is unambiguous (that is, it involves known risks), whereas devia-
tions are untested and can be perceived as ambiguous. Thus, keeping continuation plan

25See De�nition 2 and Remark 1.
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and beliefs �xed, an increase in ambiguity aversion from the baseline ��i to the more con-
cave �i decreases the value of deviations without a¤ecting the value of �si;h. Moreover, by
sequential optimality, after each deviation the original continuation plan described by �si is
optimal under ��i given ��si (�jh). This implies that any (��si ; �i)-unimprovable continuation
plan makes deviations less attractive under ��i (if the plan involves further deviations from
�si down the road) and hence less attractive than �si;h under the higher ambiguity aversion
represented by �i. (2) If ���i (S�i (h)) = 0, also ��si assigns probability 0 to h (that is,
h =2 Hi

�
��si
�
) and unimprovability does not impose any optimality requirement on �si;h

(see De�nition 1). Hence, one can �nd a
�
��si ; �i

�
-unimprovable and realization-equivalent

strategy si 2 [�si]. The following example illustrates this intuition.

Example 5 Let �0 be the game of Figure 1, but with payo¤ 5 instead of 4 at outcome
Out. The symmetric SCE (Out:M;L) of (�; f; ��) of Example 4 is also a symmetric SCE
of (�0; f; ��) justi�ed by the same con�rmed beliefs as in Examples 1 and 4:

�1 (�2) =

�
1
2 if �2 2 f�L; �Rg ;
0 otherwise.

Now, Out:M is not only a (�1; ��1)-unimprovable strategy, but it is also (�1; ��1)-sequentially
optimal, because at the root the best alternative strategy In:T (see Example 3) yields an
unambiguous expected payo¤ of 4:5 < 5. Consider now any strictly increasing and concave
transformation �1 = '1 � ��1 such that:

�1 (u) = ��1(u) =
p
u if u 2 [0; 9],

��1(u) = 6 > �1 (36) > �1 (9) = 3.

Speci�cally, �1 (36) is close to 3. In the transformation from ��1 to �1, the values of In:M
and In:B at the root (given �1) decrease, whereas the value of In:T is constant. Then, at
the root, In:a�1 is worse than Out, where a

�
1 denotes any action that maximizes player 1�s

(�1; �1)-value conditional on f(In;G)g. This implies that Out:a
�
1 is (�1; �1)-unimprovable

and
�
Out:a�1 ;L

�
is a symmetric SCE of (�0; f; �) realization equivalent to (Out:M;L). N

What can go wrong when the SCE strategies are not sequentially optimal under the
con�rmed beliefs that justify them? Take the viewpoint of an agent in population i at some
information set h 2 Hi(�i) \H(si), where si is the agent�s strategy in an SCE of

�
�; ��; f

�
and �i is the con�rmed belief that justi�es it. At h, the agent evaluates a deviation from
the equilibrium action si;h to an alternative action ai, after which he might play once more
at an information set h0 2 Hi(�i). Suppose that, given his belief and some action a0i at
h0, the deviation at h has a higher value than the SCE expected payo¤. Yet, si is not
(�i;

��i)-sequentially optimal, the agent also realizes that his �future self� at h
0 will play

action si;h0 di¤erent from a0i, and this makes the agent prefer si;h to ai at h. But, as his
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ambiguity aversion increases from ��i to �i, the future self of the agent may switch from
si;h0 to a0i at h

0 for all the con�rmed beliefs that justify si;h under ��i. Then, although for
any �xed belief and action at h0 the value of ai compared to si;h at h decreases (because
ai exposes the agent to ambiguity while si;h does not, and the agent has become more
ambiguity averse), the value of ai at h under the predicted choice at h0 can increase when
moving from ��i to �i. The following example demonstrates this possibility.

Example 6 Consider the game of Figure 1. Let ��1 and �1 be the ambiguity attitudes
described in Examples 4 and 5. In Appendix 6 we show that, if � (36) is su¢ ciently small,
Out does not belong to the set of SCE outcomes of (�; �; f) (although it does for (�; f; ��)).
The intuition is as follows. For an intermediate level of ambiguity aversion, captured by
the baseline second-order utility ��1, upon reaching (In;G) player 1 is tempted by actions
M and B even under the most pessimistic belief (�1(�j f(In;G)g) = 1

2�L +
1
2�R, cf. Lemma

9). At the root, he anticipates this and, scared by the implied ex-ante objective expected
reward of 12 under the �bad model� (�L if he plans M and �R if he plans B), he chooses
Out: For a higher level of ambiguity aversion, captured by �1, at (In;G) player 1 is tempted
by M and B only for su¢ ciently optimistic beliefs. As a consequence, at the root, he is
less worried by the �bad model,� either because now he plans the unambiguous action T
for the subgame, or because he plans an ambiguous action and he deems the �bad model�
su¢ ciently unlikely. Therefore, he chooses In at the root. N

Thus, the monotonicity result of BCMM does not extend to all sequential games, even
if we restrict our attention to distributions of outcomes.26 Yet, we can use Lemma 1 to
show that the monotonicity result holds for classes of games and equilibria of interest.

6.1 No player moves more than once

We say that no player moves more than once27 in � if, for every i 2 I and z 2 Z,
there is at most one information set h 2 Hi that contains a predecessor of z. In this class
of games, at any information set h 2 Hi, the agent does not move again after h; thus,
no information set of i is prevented by any strategy of i. In this case the value of an
action at h 2 Hi does not depend on i�s strategy, unimprovability coincides with sequential
optimality,28 strategies (or strategy distributions) are realization-equivalent if and only if
they coincide, hence Lemma 1 implies the following result:

Corollary 4 Fix two games with observable payo¤s where no player moves more than
once, (�; f; �) and (�; f; ��), so that (�; f; �) features more ambiguity aversion than (�; f; ��).

26This shows that the conjecture informally stated by BCMM (p. 667) is false.
27Perfect information games with this property have been called �simple� (see, e.g., Fudenberg and

Levine, 2006). We prefer the more explicative phrase because (i) we are not assuming perfect information
and (ii) �simple� is vague and had been used earlier with a di¤erent meaning (see Battigalli, 2003).
28 Indeed, Proposition 2 can be extended to any �i in one-move games; yet, Proposition 1 cannot!
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Then
SCE(�; f; �) � SCE(�; f; ��).

6.2 Symmetric self-con�rming equilibria

Consider now a symmetric SCE �s in a game with observable payo¤s and without chance
moves. We can show that there is a symmetric SCE equilibrium s with the same outcome.29

Theorem 5 Fix two games with observable payo¤s, ambiguity aversion, and without chance
moves, (�; f; �) and (�; f; ��), so that (�; f; �) features more ambiguity aversion than (�; f; ��).
Then:

� (symSCE(�; f; �)) � �
�
symSCE(�; f; ��)

�
.

We prove Theorem 5 in the Appendix, here we provide an intuitive argument. The
SCE strategies may not be sequentially optimal under the con�rmed beliefs that justify
them. However, consider alternative beliefs that are supported by Dirac models and give
the same predictive beliefs as the original ones. By construction, these beliefs are con�rmed
by the equilibrium play, and they feature two additional properties. First, they are the
most pessimistic beliefs among those that give rise to the same predictive probabilities;
thus, by certainty of the equilibrium payo¤, they justify a realization equivalent symmetric
SCE. This is shown by Lemma 9 in the Appendix and it is based on the following intu-
ition: A belief supported by Dirac models is a �mean-preserving spread�of the objective
expected payo¤s that the agent deems possible, and the concavity of �i implies that player
i is averse to such spread. Second, absent chance moves, beliefs supported by Dirac models
cannot entail dynamic inconsistencies of preferences over strategies; thus, the symmetric
SCE�s they justify features sequentially optimal strategies. This is shown by Lemma 8
in the Appendix. The main idea behind this result is that dynamic inconsistency is due
to the perception of hedging opportunities that may be optimal ex-ante, but would not
be implemented ex-post after (partial) resolution of the uncertainty. But, absent chance
moves, an agent whose belief is supported by Dirac models does not perceive such hedg-
ing opportunities. With this, we can use Lemma 1 to prove the monotonicity result for
equilibrium outcomes.

Absence of chance moves and symmetry of the equilibrium are tight conditions. In
Example 6, outcome Out is induced by a symSCE of the game with chance moves (�; f; ��),
but it is not induced by any symSCE of the game (�; f; �), which features more ambiguity

29Note that we can identify symSCE
�
�; fi; ��

�
with a subset of S. Hence, it makes sense to write

�
�
symSCE

�
�; fi; ��

��
.
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aversion. As for the role of symmetry (pure equilibrium), consider the following example.

Figure 2: A 3-person common interest game: I = f0; 1; 2g

Example 7 Let �0 be the following modi�cation of the game of Figure 1: deviating from
our standard notation, here 0 is not chance but rather an actual player, choosing between
E and G simultaneously with player 1 at the root. Assuming common interests, all players
obtain payo¤ 4 at both outcomes (E;Out) and (G;Out). See Figure 2. Assume perfect
feedback and consider the same ��1 and �1 of Example 6. The SCE �� = (�0;Out:M;L)
of (�0; f; ��) yields outcomes (E;Out) and (G;Out) with probability 1

2 (cf. Example 4). By
perfect feedback and con�rmed beliefs, in any realization-equivalent SCE player 1 is certain
of �0. Yet, for the same argument as for Example 6, no (�1; �1)-unimprovable strategy of
player 1 prescribes action Out when the marginal of �1 on �0 is �0. Thus, no SCE of
(�0; f; �) yields the same outcome distribution as ��. N

6.3 Ambiguity aversion versus ambiguity neutrality

Fix a sequential game with feedback (�; f) and let IdV = (IdVi)i2I) denote the pro�le
of players�identity functions characterizing their neutrality toward ambiguity. We relate
the set SCE (�; f; IdV) of SCE�s of � given feedback functions f and neutral ambiguity
attitudes with the set SCE (�; f; �) with non-neutral ambiguity attitudes �. We start with
a preliminary observation:30

Remark 4 For every two-person game with feedback (�; f) and every pro�le � of second-
order utility functions, SCE (�; f; IdV) � SCE (�; f; �) :
30Cf. footnote 23 of BCMM.
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To see this, note that ambiguity neutrality and the convexity of ��i = �(S�i) in two-
person games allow to replace the justi�ed beliefs supporting �� as an SCE of (�; f; IdV) with
the corresponding Dirac beliefs supported by their predictive measure. Since ambiguity
attitudes are immaterial for agents with Dirac beliefs, �� is also an SCE of (�; f; �). This
argument does not hold with n > 2 players, because in this case ��i is not convex, hence,
the Dirac measure supported by the predictive of ��si may belong to �(� (S�i)) n�(��i).
Nonetheless, we can relate SCE (�; f; IdV) and SCE (�; f; �) for a large class of games.

As a corollary of their main monotonicity result, BCMM show that, under observable
payo¤s, SCE (N (�; f) ; IdV) is contained in SCE (N (�; f) ; �) if each �i is concave and
there are observable payo¤s. Even if the main monotonicity result of BCMM does not
extend to SCE of sequential games for the entire spectrum of ambiguity attitudes, we
are still able to obtain a sequential version of this corollary in terms of induced outcome
distributions. By dynamic consistency under ambiguity neutrality (i.e., by Proposition 2),
the result about the comparison between ambiguity neutrality and ambiguity aversion is a
corollary of Lemma 1. De�ne the function

�̂ : � ! �(Z)

�� 7! �̂(��)(z) =
P

(s0;s):�(s0;s)=z

�0(s0) � ��(s),

where � is the set of product measures on S. This is the pushforward map that gives for
every (product) distribution over strategy pro�les �� the corresponding probability distrib-
ution �̂ (��) on terminal nodes.

Corollary 6 Suppose that (�; f) has observable payo¤s and (�; f; �) features ambiguity
aversion. Then, the set of SCE distributions over terminal nodes of (�; f; �) contains the
set of SCE distributions over terminal nodes with ambiguity neutrality:

�̂ (SCE(�; f; �)) � �̂(SCE(�; f; IdV)):

Given the large body of empirical evidence supporting the ambiguity aversion hypothe-
sis, we conclude that the standard SCE concept, which implicitly assumes neutral ambiguity
attitudes, overestimates the predictability of long-run outcomes of learning dynamics.

Finally, note that Corollary 4 and Corollary 6, via Lemma 1, imply that all beliefs
that justify SCE(�; f; ��) in one-move games or under ambiguity neutrality (linear ��) also
justify the corresponding equilibria under �. This is not true for symmetric equilibria in
games without chance moves (see the proof of Theorem 5).

7 Conditional probability systems and full unimprovability

So far we studied how ambiguity aversion and the ensuing possibility of dynamic incon-
sistency (the incentive to covertly commit, if possible) a¤ect SCE analysis. However, we
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neglected strategic reasoning based on common knowledge of (some features of) the game.
To analyze strategic reasoning in sequential games we have to address an additional and
more traditional issue: We need to model how a player thinks that the other agents would
react to unexpected moves. Even if players are ambiguity neutral, the analysis of Sections
4-6 is insu¢ cient to address this issue: As a preliminary step, we need to assume that agents
have well de�ned conditional beliefs at all information sets, including the unexpected ones.
The conditional beliefs of any given agent at di¤erent information sets have to be mutu-
ally consistent if we want to preserve/extend the unimprovability principle. Moreover, we
want to model players who reason strategically about the game before playing it. For this
purpose, we have to consider also their beliefs at the root, even if they are not �rst movers.
Therefore, for every i 2 I, we will consider the expanded collection of information sets
�Hi = Hi [ ff?gg.
To simplify the analysis of this section and the following one we focus on games without

chance moves. Thus, the outcome function is � : S ! Z, the strategic-form payo¤ feedback
and payo¤ functions of player i are Fi = fi � � : S !M and Ui = ui � � : S ! R.31

To understand the following de�nition, consider beliefs �i(�jg); �i(�jh) 2 �(��i) at two
information sets g and h, so that g precedes h (g � h), and suppose that h is possible
according to �i(�jg), that is, p�i(S�i(h)jg) > 0. Then, the conditional belief �i(�jh) can be
derived from �i(�jg) in the way prescribed by (5): for all E�i 2 B(��i),

�i(E�ijh) =
R
E�i\��i(g) ��i(S�i(h)jg)�i(d��ijg)

p�i(S�i(h)jg)
.

Next note that we can write the required relation between �i(�jg) and �i(�jh) without
explicitly stating condition p�i(S�i(h)jg) > 0: for all g; h 2 �Hi with g � h, and E�i 2
B(��i)

�i(E�ijh)p�i(S�i(h)jg) =
Z
E�i\��i(g)

��i(S�i(h)jg)�i(d��ijg): (8)

De�nition 6 A conditional probability system (CPS) on (��i; �Hi) is an array of
probability measures

�i(�j�) = (�i(�jh))h2 �Hi 2 [�(��i)]
�Hi

such that
(1) for all h 2 �Hi, �i(��i (h) jh) = 1,
(2) for all g; h 2 �Hi with g � h eq. (8) holds.

De�nition 7 A CPS on (S�i; �Hi) is an array of probability measures

pi(�j�) = (pi(�jh))h2 �Hi 2 [�(S�i)]
�Hi

31The analysis can be extended to games with chance moves, but some of the notation and some of the
proofs would be more complex.
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such that (pi(�jh))h2 �Hi = (p�i(�jh))h2 �Hi for some CPS �i(�j�) = (�i(�jh))h2 �Hi on (��i; �Hi).

In De�nition 7, we de�ne a CPS on (S�i; �Hi) indirectly as the �predictive�of some CPS
on (��i; �Hi). We could have given a direct de�nition: Indeed, pi 2 [�(S�i)] �Hi is a CPS on
(S�i; �Hi) if and only if (�1) for every h 2 �Hi, pi(S�i(h)jh) = 1 and (�2) for all g; h 2 �Hi with
g � h and all s�i 2 S�i(h),

pi(s�ijh)pi(S�i(h)jg) = pi(s�ijg). (9)

Notation 7 The set of CPS�s on (��i; �Hi) [(S�i; �Hi)] is denoted by �
�Hi(��i) [�

�Hi(S�i)].

With this, we can give a stronger de�nition of unimprovability:

De�nition 8 A strategy si is fully (�i(�j�); �i)-unimprovable (where �i(�j�) 2 �
�Hi(��i))

if
8h 2 Hi, si;h 2 arg max

ai2Ai(h)
Vi(aijh; si; �i; �i).

It is well known that, for ambiguity neutral agents, we have a re�ned dynamic pro-
gramming result:32

Proposition 8 For every s�i 2 Si and �i(�j�) 2 �
�Hi(��i), the following are true:

(1*) [s�i ] contains a fully (�i(�j�); IdVi)-unimprovable strategy if and only if

8h 2 �Hi(s
�
i ), s

�
i 2 arg max

si2Si(h)

X
s�i2S�i(h)

Ui(si; s�i)p�i(s�ijh);

(2*) s�i is a fully (�i(�j�); IdVi)-unimprovable strategy if and only if

8h 2 �Hi; (s
�
ijh; s

�
i;h) 2 arg max

si2Si(h)

X
s�i2S�i(h)

Ui(si; s�i)p�i(s�ijh).

Full-improvability solves the di¢ culties described above. Intuitively, we can interpret
a (�i(�j�); �i)-fully unimprovable strategy s�i as the plan of an agent in role i, which can be
obtained with a �folding back�dynamic programing procedure on the subjective decision
tree implied by CPS �i(�j�). In our perspective, the fact that the beliefs of an agent with
perfect recall are given by a CPS re�ects the epistemic unity of the agent�s self: the
agent always incorporates new information into his system of knowledge and beliefs in a way
that is consistent with his previous beliefs and with the rules of conditional probabilities,
even when new information follows previously unexpected information.

Before we move on to model strategic reasoning, we verify that even if SCE is strength-
ened by requiring full unimprovability, the set of possible outcomes does not change.
32De�nition 8 requires maximization over actions; hence, it considers only the information sets where i is

active. The following propositions relate to maximization over strategies; hence, they also include (ex ante)
maximization at f?g even if i is not a �rst mover. Also, recall that, according to our notation, (s�ijh; s�i;h)
is the minimal modi�cation of s�i that makes h reachable and plays like s

�
i at all information sets h

0 that
do not strictly precede h.
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De�nition 9 A fully unimprovable self-con�rming equilibrium of (�; f; �) is a
pro�le of strategy distributions (��i )i2I with following property: For every i 2 I and
s�i 2 Supp��i there is a CPS �s�i (�j�) 2 �

�Hi(��i) such that
( rationality) s�i is fully (�s�i (�j�); �i)-unimprovable,
( con�rmed beliefs) �s�i

�n
��i 2 ��i : F̂i(s�i ; ��i) = F̂i(s�i ; ���i)

o
jf?g

�
= 1.

Note that the con�rmed beliefs condition refers only to the initial beliefs �s�i (�jf?g)
because it implies that conditional beliefs are con�rmed by observed conditional frequencies
at every history that is reached with positive probability in equilibrium (see the proof of
Lemma 4). By inspection of De�nitions 5 and 9 it is also clear that every fully unimprovable
SCE is also an SCE. The following proposition implies that SCE and fully unimprovable
SCE are realization equivalent.

Proposition 9 For every SCE there is a corresponding fully unimprovable SCE that yields
the same probability distribution on terminal nodes.

Intuitively, since SCE does not rely on complete information and does not model strate-
gic thinking, requiring rational reactions to unexpected moved adds little to the analysis:
Agents are not assumed to know the preferences of others, hence they are not assumed to
rule out irrational reactions to deviations.

8 Knowledge of the game and strategic reasoning

What if (�; f; �) (or a part of it) is common knowledge? Then it makes sense to explore a
notion of �rationalizable SCE�according to which agents reason strategically about their
opponents taking into account their preferences and feedback functions (cf. Rubinstein and
Wolinsky 1994, Battigalli 1999, Dekel et al. 1999, Esponda 2013, Fudenberg and Kamada
2015). We illustrate this with two simple examples.

Example 8 (Cf. Fudenberg and Levine, 1993). Figure 2 depicts the so called �Entry
game� often used to illustrate the shortcomings of the Nash equilibrium concept. To com-
plete the speci�cation of (�; f; �) assume observable payo¤s (hence, in this case, perfect
feedback) and let � be an arbitrary pair of strictly increasing functions.33 It can be checked
that the set of SCE�s of (�; f; �) is

f�� 2 � : ��1(A) = 1, or (��1(A) < 1; ��2(L) = 1)g.

First-movers who choose A (go Across) get no feedback and can thus hold trivially con�rmed
beliefs that make them play A. As for second-movers, their plan becomes relevant only if a

33One can show that ambiguity aversion does not matter when players have only two strategies.
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Figure 2: Entry game

positive fraction of �rst-movers choose D (go Down). In that case, the only rational choice
is L (Left). In equilibrium, �rst-movers going Down correctly predict Left, which makes
Down a strict best response. How can a �rst mover expect that the second mover goes Right
with high probability (i.e., that a large fraction of second movers play Right)? Informally,
this is possible if either the �rst mover gives a high probability to the second mover being
irrational, or� more reasonably� if the �rst mover does not know v2. If instead the �rst
mover knows v2 and believes in the rationality of the second mover, then he predicts that
Down would be followed by Left, and he would go Down. Intuitively, only one SCE is
consistent with belief in rationality and knowledge of the game: (D;L). However, this is
not formally captured by the con�rmed beliefs condition of De�nition 5. According to such
de�nition, if an agent in population 1 does not play Down, he can keep the belief that the
second mover would play Right after Down: If v2 is unknown to �rst movers, they have no
way to understand that only Left is rational. Relatedly, the set of equilibrium distributions
on terminal nodes is unchanged if we adopt the stronger de�nition of unimprovability: The
latter implies ��2(L) = 1, but the �rst movers who go Across because they have wrong beliefs
have no way to �nd out they are wrong; hence, the equilibrium distributions on terminal
nodes are the same. N

Example 9 (Rubinstein and Wolinsky 1994, Battigalli 1999). Two players must simulta-
neously choose a location among the equally spaced points 0, 1, 2, 3 on the real line. Their
payo¤ is the negative of the distance between their chosen locations and each player, that
is, Ui(s1; s2) = �js1 � s2j; furthermore, each player observes this distance and, of course,
remembers his action: Fi(s1; s2) = (si; js1 � s2j). Again, let us �x an arbitrary concave �
and� for simplicity� let us focus on the symmetric equilibria. The set of symmetric SCE�s
is

symSCE = f(0; 0); (1; 1); (2; 2); (3; 3); (1; 2); (2; 1)g :
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Of course, (1; 2) and (2; 1) are not Nash equilibria. They are symmetric SCE�s supported
by con�rmed beliefs according to which each agent assigns the same probability to the co-
player being either on his right, or on his left. However, if the game is common knowledge,
an agent with such beliefs infers that with probability :5 his co-player is �cornered� at an
extreme point and cannot be best responding to con�rmed beliefs. This is unlikely to be
a stable situation under complete information if players reason strategically, because no
player has reasons to believe that the co-player would keep playing in the same way. N

Symmetrically rationalizable SCE We capture with an inductive de�nition the be-
havioral consequences of the following assumptions on rationality and interactive beliefs:
(1) agents are rational (in the sense of full unimprovability) and have con�rmed beliefs,
and (2) there is common belief at the beginning of the game that (1) holds. This is easier
to do in a particular case, i.e., when all agents in the same population follow the same plan
(symmetric SCE) and there is common full belief of this.34 In this case, the CPS �i (�j�)
on (��i; �Hi) is supported by Dirac models, and therefore it is isomorphic to a CPS p�i
on (S�i; �Hi). A variation of the algorithm de�ned by Battigalli (1999) (see also Esponda
2013) precisely captures the foregoing epistemic assumptions. As in Section 7, also in this
section we assume for simplicity that there are no chance moves.

Given a CPS �i(�j�) 2 �
�Hi(��i), we let

ri(�i(�j�); �i) =
�
si 2 Si : 8h 2 Hi, si;h 2 arg max

ai2Ai(h)
Vi(aijh; si; �i (�j�) ; �i)

�
denote the set of fully (�i; �i)-unimprovable strategies of i. When �i(�j�) is isomorphic to a
predictive CPS pi(�j�), as in the case we are considering right now, it makes sense to write
ri(pi(�j�); �i).

De�nition 10 For each i 2 I, let B0i = Si �M , and

Bk+1i =

�
(�si; �mi) 2 Bki :

9pi(�j�) 2 � �Hi(S�i); �si 2 ri(pi(�j�); �i);
pi
�
F�1�si ( �mi) \

�
s�i : (sj ; Fj (�si; s�i))j2Infig 2 Bk�i

	
jf?g

�
= 1

�
for each k 2 N0. A strategy pro�le �s is a symmetrically rationalizable SCE for game
(�; f; �) (without chance moves) if (�si; Fi(�s))i2I 2 �i2I

\
k2N

Bki . The set of symmetrically

rationalizable self-con�rming equilibria of (�; f; �) is denoted by symRSCE(�; f; �).

Intuitively, (�si; �mi) 2 B1i if �si is justi�ed by some CPS such that i is initially certain
to get message �mi if he plays �si. Thus, (�si; Fi(�s))i2I 2 �i2I

\
k2N

B1i if �s is an unimprovable

34Note, we did not say �belief at the beginning of the game,�because now we mean �probability 1 belief
conditional on every information set.�This is called �full belief� in epistemic game theory (e.g., Battigalli
et al. 2017).

31



SCE (with beliefs supported by Dirac models). Then, (�si; �mi) 2 B2i if �si is justi�ed by some
CPS such that i is initially certain to get message �mi if he plays �si, and furthermore he is
initially certain that everybody else is playing strategies justi�ed by con�rmed beliefs. The
iterations capture higher levels of (initial) mutual belief in rationality and in con�rmation
of beliefs.

Remark 5 A strategy pro�le �s is a symmetrically rationalizable SCE for (�; f; �) if
and only if there is a pro�le of �nite subsets ( �Bi)i2I 2 �i2I2Si�M such that, for every i 2 I,
there is �mi 2M with (�si; �mi) 2 �Bi, and for every (ŝi; m̂i) 2 �Bi, there is pi(�j�) 2 � �Hi(S�i)
with ŝi 2 ri(pi(�j�); �i) and

pi(F
�1
ŝi
(m̂i) \

�
s�i : (sj ; Fj(ŝi; s�i))j 6=i 2 �B�i

	
jf?g) = 1: (10)

The Remark above shows that our inductive de�nition is an extensive-form version
with ambiguity attitudes of Rubinstein�s and Wolinsky�s (1994) rationalizable conjec-
tural equilibrium. Next we o¤er a characterization with sets of strategy pro�les. Let
symSCE0(�; f; �) = S and

symSCEk+1(�; f; �) =�
�s 2 symSCEk(�; f; �) : 8i 2 I;9pi(�j�) 2 �

�Hi(S�i); �si 2 ri(pi(�j�); �i);
pi
�
F�1�si (Fi(�s)) \ symSCE

k(�; f; �)�si jf?g
�
= 1

�
,

where, for any subset X � S and strategy �si 2 Si,

X�si = fs�i 2 S�i : (�si; s�i) 2 Xg

is the section of X at �si (thus, symSCEk(�; f; �)�si is the section of symSCE
k(�; f; �) at

�si). Note that symSCE1(�; f; �) coincides with the set of fully unimprovable symmetric
SCE�s of (�; f; �) justi�ed by con�rmed beliefs supported by Dirac models. Thus, �s 2
symSCE2(�; f; �) if each �si is a best reply to a con�rmed belief that assigns probability
1 to other players choosing best replies to con�rmed beliefs supported by Dirac models,
given �si and message mi = Fi(�s).

The following result shows that symmetric RSCE is characterized by the iterated dele-
tion of strategy pro�les

�
symSCEk(�; f; �)

�
k2N:

Lemma 2 For every k 2 N, and �s 2 S, �s 2 symSCEk(�; f; �) if and only if (�si; Fi(�s))i2I 2
Bk. Therefore, \

k

symSCEk(�; f; �) = symRSCE(�; f; �).

Example 10 One can easily check that the only rationalizable SCE for the game of Fig-
ure 2 is (D;L), independently of �: Only L is fully unimprovable for player 2, thus
symSCE1(�; f; �) = f(A;L); (D;L)g and symSCE1(�; f; �)A = fLg. Therefore,

symSCE2(�; f; �) = f(D;L)g:

N
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Example 11 Now consider the rationalizable SCE�s set for the distance game of Example
9:

symSCE1(�; f; �) = symSCE(�; f; �) = f(0; 0); (1; 1); (2; 2); (3; 3); (1; 2); (2; 1)g .

Let �s = (1; 2). We show that �s =2 symSCE2(�; f; �). Consider player 1. If we had
�s 2 symSCE2(�; f; �), then �s1 = 1 would be a best reply to a belief p1 such that p1(f0; 2g\
symSCE1(�; f; �)�s2 jf?g) = 1. But symSCE1(�; f; �)�s2 = f1; 2g. Thus

f0; 2g \ symSCE1(�; f; �)�s2 = f2g,

and the best reply to s2 = 2 is s1 = 2. A similar argument shows that (2; 1) =2 symSCE1(�; f; �).
Hence only the pure Nash equilibria are symRSCE. N

We can prove for the symRSCE correspondence two monotonicity results analogous to
those obtained for the symSCE correspondence (cf. Corollary 4 adapted to symSCE and
Theorem 5):

Theorem 10 Fix two games with observable payo¤s and no chance moves where no player
moves more than once, (�; f; �) and (�; f; ��), so that (�; f; �) features more ambiguity
aversion than (�; f; ��). Then,

symRSCE(�; f; ��) � symRSCE(�; f; �):

Theorem 11 Fix two games with ambiguity aversion, observable payo¤s, and no chance
moves, (�; f; �) and (�; f; ��), so that (�; f; �) features more ambiguity aversion than (�; f; ��).
Then, for every �s 2 symRSCE(�; f; ��) there is some s 2 symRSCE(�; f; �) such that,
for each player i, si is realization equivalent to �si; therefore,

�(symRSCE(�; f; ��)) � �(symRSCE(�; f; �)).

Intuitively, these results rely on the following intermediate step:35

Monotonicity of the justi�ability correspondence: For every information set
h 2 Hi and compact subset �ijh � �(S�i (h)), if an action ai is justi�ed as a best reply
to some conditional belief �pi;h 2 �

�
�ijh

�
given baseline ambiguity attitudes ��i, then there

is some pi;h 2 �
�
�ijh

�
that justi�es ai as a best reply given the more ambiguity averse

attitudes �i. This holds, in particular, when �ijh =
�
�s�i : s�i 2 S�i (h)

	
is the set of

Dirac distributions in �(S�i (h)).

Then we can show that if a strategy is fully
�
�pi; ��i

�
-unimprovable, then it is also fully

(pi; �i)-unimprovable for some suitably chosen belief system pi that coincides with �pi on the
equilibrium path (by the usual argument that equilibrium actions are unambiguous, hence
deviations become less appealing), and can be chosen o¤ the equilibrium path invoking
monotonicity of the justi�ability correspondence.
35See Lemma 10 and its corollary in the Appendix; cf. Battigalli et al. (2016a) and Weinstein (2016).
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Rationalizable SCE We now de�ne rationalizable SCE for population games, that is,
we consider the general non-symmetric version of rationalizable SCE. By analogy with
Lemma 2, we perform an iterated deletion of distributions of strategy pro�les.

To ease notation, let

�̂�i(si; ���i) =
n
��i 2 ��i : F̂i(si; ��i) = F̂i(si; ���i)

o
denote the partially identi�ed set of co-players strategy distributions observationally equiv-
alent for i to ���i given si. With this, let SCE0(�; f; �) = �i2I�(Si), and

SCEk+1(�; f; �) =(
�� 2 SCEk(�; f; �) :

8i 2 I;8si 2 Supp��i;9�si(�j�) 2 �
�Hi(��i); si 2 ri(�si(�j�); �i);

�si

�
�̂�i(si; ���i) \ proj��iSCE

k(�; f; �)jf?g
�
= 1

)
for every k 2 N0.36 Note that SCE1(�; f; �) is the set of fully unimprovable SCE�s of
(�; f; �).

De�nition 11 A pro�le of strategy distributions �� 2 � is a rationalizable self-con�rming
equilibrium for (�; f; �) if

�� 2
T
k2N

SCEk(�; f; �).

The set of rationalizable self-con�rming equilibria of (�; f; �) is denoted by RSCE(�; f; �).

The most important di¤erence with respect to the de�nition of rationalizable symmetric
self-con�rming equilibrium is best understood by looking at the second step, where agents
check if it is possible that others are best responding to con�rmed beliefs. If there is
common belief of symmetry, an agent playing strategy si is certain that all the other
agents in population i also use si, and this is taken into account when he checks whether
the agents in co-players�populations are best responding to con�rmed beliefs. If instead
it is understood that di¤erent agents in population i may use di¤erent strategies, an agent
playing si may think that only a negligible fraction of other agents in i is playing si,
therefore, the fact that he is playing si does not enter this calculation. Essentially, we are
assuming that each agent has a belief about the whole pro�le of distributions, that is, a
belief over � = �j2I�(Sj). For the purpose of computing best replies, only the marginal
over ��i matters. But in order to check whether everybody is best replying to con�rmed

36Note the following slight abuse of notation. If, for some k 2 N0, si 2 Si; ���i 2 ��i the set �̂�i(si; ���i)\
proj��iSCE

k(�) is not measurable, than the requirement

�si

�
�̂�i(si; ���i) \ proj��iSCE

k(�)jf?g
�
= 1

means that there is a measurable set �0 �
�
�̂�i(si; ���i) \ proj��iSCE

k(�)
�
with �si (�

0jf?g) = 1.
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beliefs, the distribution of strategies in population i is crucial (see Fudenberg and Kamada,
2015, 2017).

Say that � (hence also (�; f; �)) has observable deviators if the factorization

S (h) = �j2ISj (h)

holds for each information set h of each player. Intuitively, this means that if an information
set is reached unexpectedly the active player is able to understand who deviated from the
expected path (cf. Fudenberg and Levine 1993, and Battigalli and Guaitoli 1998). We can
prove the following monotonicity result for the RSCE correspondence:

Theorem 12 Fix two games with observable payo¤s and observable deviators where no
player moves more than once, (�; f; �) and (�; f; ��), so that (�; f; �) features more ambi-
guity aversion than (�; f; ��). Then RSCE(�; f; ��) � RSCE(�; f; �).

We assume observable deviators because in the proof we use a version of the previous
result about monotonicity of the justi�ability correspondence where S�i (h) is replaced by
the (compact) space of product distributions on S�i (h), which makes sense if S�i (h) is a
product set.

9 Discussion

We discuss the relevance of some assumptions, some extensions, and possible modi�cations
of solution concepts.

9.1 Pure equilibrium and absence of chance moves

We extended the monotonicity result of BCMM and proved monotonicity of the (ratio-
nalizable) SCE correspondence with respect to ambiguity aversion in games where players
move at most once on any path, and in games without chance moves if attention is re-
stricted to symmetric, i.e. �pure,�equilibria. Here we discuss the relevance of symmetric
(rationalizable) SCE in games without chance moves.

We justi�ed our assumption that players do not randomize arguing that if randomiza-
tions were feasible they could be represented in the extensive form by means of chance
moves. Thus, when we exclude chance moves we implicitly assume that players cannot
randomize at all. We point out that, in our analysis of full unimprovability and rational-
izable SCE, this assumption is made for simplicity and that it is crucial for Theorem 11
only.

A methodological reason to be interested in pure equilibria is that we may want to ana-
lyze explicitly the population game as a grand game with many players who are randomly
matched.37 Assuming that individual agents do not randomize (see the previous comment),

37That is, if each population i has n agents, the grand game has n� jIj players.
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we should consider the pure equilibria of such grand game. While this argument justi�es
the focus on pure equilibria, it also implies that we should allow for chance moves.

We do not focus on pure equilibria of games without chance moves because they are, in
general, plausible, but rather because such focus improves our understanding of the interac-
tion between nonmonotonicity of the equilibrium correpondence and dynamic inconsistency
of preferences.

9.2 Heterogeneous populations

Our analysis can be easily extended to the case of populations with heterogeneous personal
traits a¤ecting preferences, or feedback. Let �i be a parameter space of possible personal
traits of agents in population i. Parameter �i 2 �i may a¤ect tastes and risk attitudes (v�i),
ambiguity attitudes (��i), and feedback (f�i). Each agent�s personal traits are privately
known to him. Assume for simplicity that �i is �nite and let � i 2 �(�i) denote the
exogenous distribution of personal traits in population i. For any j 2 I and �j 2 �j we
let ��j denote the strategy distribution in the subpopulation of agents with trait �i. For

any pro�le of distributions
�
��j
�
�j2�j

2 �(Sj)�j and any sj 2 Sj the aggregate fraction
of agents playing sj is

P
�j2�j � j (�j)��j (sj). With this, we can extend SCE and the

re�nements analyzed in this paper by taking into account that unimprovability and belief
con�rmation depend on personal traits (cf. Ch. 7 in Battigalli 2017, and Dekel et al. 2004):

A pro�le of distributions
�
(��i)�i2�i

�
i2I

is a selfcon�rming equilibrium if there is a pro�le

of beliefs
��
��i;si

�
�i2�i;si2Supp��i

�
i2I

such that, for all i 2 I, �i 2 �i, and si 2Supp��i

1. si is unimprovable given ��i;si , v�i , and ��i ,

2. ��i;si

�n
�0�i 2 ��i : F̂�i

�
si; �

0
�i
�
= F̂�i

�
si;�j 6=i

�P
�j2�j � j (�j)��j

��o�
= 1.

The de�nition of rationalizable SCE can be extended in a similar way, taking into ac-
count what is assumed to be commonly known about the exogenous distributions of traits.
Our results about nonsymmetric SCE can be seamlessly extended to such notion of (ratio-
nalizable) SCE. As for the results about symmetric (rationalizable) SCE in games without
chance moves, they only apply to the case in which all agents of the same population use
the same strategy despite di¤erences in personal traits. Therefore, these results are less
relevant.

9.3 Incomplete information

A related extension concerns the case where some features of game are not known or
commonly known. It is straightforward to relax the assumption that the probabilities of
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chance moves are (commonly) known: Chance can be analyzed as an indi¤erent player;38

then, one just applies the de�nitions we already have for games without chance moves,
letting the chance player distribution be the one obtained from the objective probabilities
of chance moves. Of course, there cannot be symmetric equilibria of such game, because
the strategy distribution of the chance player is strictly positive. More generally, we can
parametrize all the features of the game that are not commonly known with a parameter
pro�le � = (�j)j2I[f0g 2 �, where �0 parameterizes chance probabilities and other non
personal aspects of the game such as some aspects of the consequence function, and each
�i (i 2 I) parameterizes privately known personal features. Then we can give de�nitions
of SCE at a given �, and of rationalizable SCE given that it is common knowledge that
� 2 � (cf. Ch. 7 in Battigalli 2017, Battigalli and Guaitoli 1988, and Esponda 2013).

9.4 Rationalizable selfcon�rming equilibrium

We put forward a relatively simple de�nition of rationalizable SCE that can be formally de-
rived from the epistemic assumptions of (a) subjective rationality, (b) belief con�rmation,
and (c) initial common belief of (a) and (b). These epistemic assumptions can be formally
stated by means of extensive-form type structures (see, e.g., Battigalli et al. 2017). The
derivation of symmetric rationalizable SCE from assumptions (a)-(c) is quite straightfor-
ward for the symmetric case, which is relevant for repeated games played by impatient
players. The derivation from (a)-(c) of nonsymmetric rationalizable SCE in population
games is more complex. We can think of one that goes through approximations via large
�nite populations. We provide below a critical discussion of rationalizable SCE based on
our knowledge of dynamic epistemic game theory and our intuitions about learning dynam-
ics. We emphasize that this discussion is not speci�cally related to the issue of ambiguity
aversion.

While plain SCE can be justi�ed as the set of rest points of learning dynamics (e.g.,
Battigalli et al. 1992, Battigalli et al. 2016c and references therein), we are not aware
of any learning foundation for rationalizable SCE. As we think about one, the very de�-
nition of rationalizable SCE appears questionable. Let us consider the simplest possible
scenario: A �xed set I of completely impatient players plays � in�nitely many times, with
imperfect monitoring about past periods outcomes (terminal nodes) given by the pro�le
of feedback functions f = (fi)i2I ; if players have nonneutral attitudes toward ambiguity,
they are represented by the pro�le of second-order utility functions � = (�i)i2I ; (�; f; �)
is common knowledge. Suppose that players are rational and there is common belief in
rationality at the beginning of the �rst period. Also suppose for simplicity that players�
initial beliefs about �rst-period strategies assign strictly positive probability to opponents�
�rst-period strategies consistent with rationality and initial common belief in rationality,

38More precisely, chance can be analyzed as an indi¤erent player no feedback. Ex post perfect recall
applies only to real players.
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called �initially rationalizable�strategies (Battigalli et al. 2017).39 Then players never
observe zero-probability events and have well de�ned updated beliefs that always satisfy
one-period rationality and common initial belief in rationality; hence, they play initially
rationalizable strategies of (�; f; �) in every period. If one-period strategies and updated
beliefs converge, then the limit is a pure SCE in initially rationalizable strategies of (�; f; �).
This is a weaker equilibrium concept than rationalizable SCE, because it requires common
initial belief in rationality, not common belief in con�rmation. This (somewhat informal)
argument shows that the conjunction of SCE and initial rationalizability is necessary condi-
tion of steady states of learning dynamics that satisfy the foregoing epistemic assumptions.
The arguments o¤ered by Rubinstein and Wolinsky (1994) suggest, however, that this con-
dition may not be su¢ cient for stability (cf. Examples 9 and 11). We conjecture that
rationalizable SCE is a su¢ cient condition for stability, but it is not clear to us why it
should also be necessary.

Be as it may, why should we assume players hold strictly positive beliefs over the set of
initially rationalizable strategies? After all, the epistemic assumptions that justify initial
rationalizability do not require any kind of strict positivity of beliefs. If we drop this as-
sumption about the support of initial beliefs, we open the door to surprises as the learning
dynamic unfolds and we have no reason to suppose that surprised players keep believ-
ing in the strategic sophistication of the opponents, or even their subjective rationality,
unless we strengthen the assumptions about players�belief in the strategic sophistication
of opponents. Indeed, the very de�nition of initial rationalizability allows surprised play-
ers to assign positive updated probabilities to never-best-replies of the opponents. Thus,
we suggest that a more interesting approach is to assume �common strong belief� in ra-
tionality: players always assign probability 1 to the �highest level of strategic sophisti-
cation� of the opponents consistent with what they observe. Within a one-period play,
these epistemic assumptions yield a solution concept called �strong rationalizability�
(Battigalli et al. 2017). Suppose that these epistemic assumptions hold and the learning
dynamic converges; then the limit must be a pure SCE in strongly rationalizable strategies,
which is� essentially� the concept �rst put forward by Battigalli (1987) and Battigalli and
Guaitoli (1988). Thus, SCE in strongly rationalizable strategies is a necessary condition
for stability under the foregoing epistemic assumptions. Again, arguments à la Rubinstein
and Wolinsky (1994) suggest that it may not be su¢ cient. We can give a de�nition of
�strongly rationalizable SCE� in which �initial belief� is replaced by �strong belief.�
We conjecture that strongly rationalizable SCE provides su¢ cient conditions for stability,
but it is not clear to us that these conditions are also necessary.

Of course, the assumption that players are impatient is just a simpli�cation. If a player
is somewhat patient and plays a repeated game, he may sacri�ce short-run expected payo¤s
to experiment, or to teach opponents to play in future periods in ways he �nds advantageous

39 Initially rationalizable strategies can be obtained with an iterated elimination algorith similar to the
one used to de�ne symSCE, but without the con�rmed-belief requirement.
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to him. This is why the literature on learning and convergence to equilibrium in games often
focuses on population games: if populations are large, the incentive to teach is shut down,
and the incentive to experiment disappears in the long run if updated beliefs converge.
The interaction of epistemic assumptions and learning dynamics in recurrent play within a
population game scenario is hard to analyze, and learning foundations for (nonsymmetric)
rationalizable SCE are therefore harder to provide. An alternative route is to put forward a
de�nition of rationalizable SCE for repeated games, similar to the de�nition of �subjective
equilibrium� of Kalai and Lehrer (1993a,b, 1995), but with the additional requirement
of common belief in rationality. Arguments similar to those o¤ered above suggest that
an equilibrium concept based on common strong belief in rationality and� possibly� in
belief con�rmation could capture interesting necessary and/or su¢ cient conditions for the
stability of beliefs (about repeated games strategies) under learning.

To sum up, it is not surprising that more than two decades after Rubinstein and Wolin-
sky (1994) put forward the rationalizble SCE concept a learning foundation is still lacking.
We suggest that, as one seriously tries to provide such a foundation, di¤erent versions of
the rationalizable SCE will concepts turn out to be relevant.

10 Appendix

10.1 Proof of Proposition 3

Every �nite game � has a sequential equilibrium in behavioral strategies �� =
�
��i
�
i2I . For

each i 2 I, let ��i denote the mixed strategy associated with ��i according to Kuhn�s (1953)
transformation:

8si 2 Si, ��i (si) =
Y
h2Hi

��i (si;hjh) .

Let ��si = ����i for every i. By construction, these beliefs are correct, hence con�rmed. To
show that �� is an SCE justi�ed by these con�rmed beliefs, we must prove that, for each i,
each �si 2 Supp��i is (��si ; �i)-unimprovable.

It is well known that every pure strategy in the support of a sequential equilibrium is
a sequential best reply to the equilibrium beliefs. Therefore, for every i 2 I, h 2 Hi and �si
such that

Q
h02Hi

��i
�
�si;h0 jh0

�
> 0, that is, for every �si 2 Supp��i,

�si;h 2 arg max
ai2Ai(h)

X
x2h

P(�sijh;ai);���i (xjh)
X
z2Z

P(�sijh;ai);���i; (zjx)ui (z) ,

where Psi;���i (�j�) denotes the probability of a node conditional on an information set, or an
earlier node, determined by the behavioral strategy pro�le

�
si; ���i

�
and the probabilities

of chance moves. Since ���i is by construction realization-equivalent to ���i, Psi;���i (�j�) =
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Psi;���i (�j�); hence,

8si 2 Si (h) , Ui (si; ���ijh) =
X
x2h

Psi;���i (xjh)
X
z2Z

Psi;���i (zjx)ui (z) .

Since ��si = ����i ,

8ai 2 Ai (h) , Vi
�
aijh;��si ; �i

�
= ��1i

�
�i
�
Ui
��
�sijh; ai

�
; ���ijh

���
= Ui

��
�sijh; ai

�
; ���ijh

�
.

Therefore �si is
�
��si ; �i

�
-unimprovable. �

10.2 Example 6

We prove that in Example 6, there exists a concave and strictly increasing transformation
�1 = '1���1 such that for every belief �1, Out is not prescribed by any (�1; �1)-unimprovable
strategy of player 1. As anticipated in Example 5, we look for a �1 such that

�1 (u) = ��1(u) =
p
u if u 2 [0; 9],

��1(36) = 6 > k = �1 (36) > �1 (9) = 3,

with k = �1 (36) close to 3.
For every �2 in �(A2(f(In;G)g)) = �(fL;Rg), let

eM(�2) = 1 � �2 (L) + 36 � �2 (R)

denote the objective expected payo¤ of M in the subgame. For every probability measure
� on �(fL;Rg), de�ne G� : �(fL;Rg)! [0; 1] as

G�(�2) = �
��
�02 2 �(fL;Rg) : eM(�02) � eM(�2)

	�
.

Player 1 prefers M to T only if

V1(Mj f(In;G)g ; s1; �1; �1) � 9 = V1(Tj f(In;G)g ; s1; �1; �1).

Let � = �1 (�j f(In;G)g). Then, for every �2 2 �(fL;Rg),40

��11 (G�(�2) � �1(eM(�2)) + (1�G�(�2)) � �1 (36)) � V1(Mj f(In;G)g ; s1; �1; �1),

that is,

G�(�2) � �1(eM(�2)) + (1�G�(�2)) � �1 (36) � �1(V1(Mj f(In;G)g ; s1; �1; �1)).
40Given the belief � and a model �2 , G�(�2 ) is the probability assigned by � to the models that, paired

with action M, yield an (objective) expected utility lower or equal to the one obtained under model �2 .
Therefore, the value of action M under � cannot exceed the value of M under the following belief: the
models that, paired with action M, yield an (objective) expected utility equal to the one obtained under
model �2 have probability G�(�2 ), whereas �R has probability (1�G�(�2 )).
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Therefore, a necessary condition for 1 to chooseM over T is that, for every �2 2 �(fL;Rg),

G�(�2) � �1(eM(�2)) + (1�G�(�2)) � k � 3.

Solving for �̂2 such that eM(�̂2) = 17=2, we get

G�(�̂2) �
k � 3

k �
p
17=2

: (11)

The interpretation is that the probability assigned to the models under which action M
has an (objective) value lower or equal than 17=2 must be su¢ ciently small if player 1 is
to choose M at (In;G).

Now, we return to the choice of player 1 at the root of the game. Note that

�1 = �1 (�j f?g) = �1 (�j f(In;G)g)

because the belief about the co-player cannot change upon observing one�s own move, or
a chance move. The DM is sophisticated, therefore, before choosing between In and Out,
he predicts his behavior at (In;G). There are three cases:

1. Player 1 understands that his subjective belief �1 makes him play T at (In;G). Then,
since In:T is preferred to Out for every belief, he will play In at f?g.

2. Player 1 understands that his subjective belief �1 makes him play M at (In;G). But
then, it must be the case that (11) holds. Therefore, the probability assigned to
the models that (given In:G) yield an objective expected utility of choosing action
M larger than or equal to 17

2 is at least 1 �
k�3

k�
p
17=2

. In turn, this implies that the

probability assigned to the models that, ex-ante, yields an objective expected utility
of strategy In:M larger than or equal to 17

4 is at least 1 � k�3
k�
p
17=2

. But then, the

evaluation of strategy In:M under belief �1 satis�es the following conditions:
41

�1(V1(Inj f?g ; In.M; �1; �1)) � �1 (1=2) �
k � 3

k �
p
17=2

+ �1(17=4) �
 
1� k � 3

k �
p
17=2

!

=

p
17

2
� k � 3
k �

p
17=2

�
 p

17

2
+ 1

!
:

For k = �1 (36) su¢ ciently close to 3, �1(V1(Inj f?g ; In.M; �1; �1)) is higher than 2,
thus player 1 chooses In over Out.

41The �rst inequality is due to the following fact. The probability assigned by �1 to the models that,
ex-ante, given strategy In:M, yield an (objective) expected utility larger or equal than 17

4
must be larger or

equal than 1 � k�3
k�
p
17=2

. Therefore, the value of action In given strategy In.M under �1 cannot be lower

than its value under the following belief: the set of models that, given strategy In.M, yield an (objective)
expected utility equal to 17

4
has subjective probability 1� k�3

k�
p
17=2

, whereas �L has subjective probability
k�3

k�
p
17=2

.
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3. Player 1 understands that his subjective belief �1 makes him play B at (In;G). A
similar argument as for the previous case shows that for k su¢ ciently close to 3 also
in this case player 1 chooses In over Out.

Summing up, there is a concave and strictly increasing transformation �1 = '1 � ��1
such that Out is not prescribed by any (�1; �1)-unimprovable strategy for all beliefs �1.

10.3 Monotonicity of the SCE correspondence

De�ne the set of messages for i consistent with an information set h 2 Hi as follows:

Mi (h) = fm : 9 (x; z) 2 h� Z; (x � z) ^ (m = fi (z))g :

Lemma 3 Ex post perfect recall implies that

S0;�i (h) =
[

m2Mi(h)

F�1i;si (m)

for all i 2 I, h 2 Hi, and si 2 Si (h).

In words, S0;�i (h) is the union of the sets of preimages of messages consistent with h,
because these messages �record�that h has been reached.

Proof. Fix i, h 2 Hi, and si 2 Si (h) arbitrarily. First note that perfect recall implies

S0;I (h) = Si (h)� S0;�i (h) .

We �rst prove that
S0;�i (h) �

[
m2Mi(h)

F�1i;si (m) .

Fix any s0;�i 2 S0;�i (h); since si 2 Si (h) and S0;I (h) = Si (h)�S0;�i (h), then (si; s0;�i) 2
S0;I (h), that is, x � � (si; s0;�i) for some x 2 h. Thus, by de�nition ofMi (h), fi (� (si; s0;�i)) 2
Mi (h). Hence, s0;�i 2 F�1i;si (m) for some m 2Mi (h).

Next we prove by contraposition that the converse

S0;�i (h) �
[

m2Mi(h)

F�1i;si (m)

is implied by ex post perfect recall. Suppose that we can �nd some m 2 Mi (h) and
s00;�i 2 F�1i;si (m) nS0;�i (h). We show that this implies a violation of ex post perfect recall.
Since m 2 Mi (h), there is a pair (x; z) 2 h � Z such that x � z and fi (z) = m. Fix any
s0;�i 2projS0;�i��1 (z), so that (si; s0;�i) 2 Si (h)�S0;�i (h) = S0;I (h) for some si 2 Si(h).
Let z = � (si; s0;�i) and z0 = �

�
si; s

0
0;�i

�
. Then, by choice of s0;�i and s00;�i, fi (z) =
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m = fi (z
0), z is preceded by a node of h and z0 is not preceded by any node of h. Hence,

there are z; z0 2 Z such that z has a predecessor in h, z0 has no predecessor in h, and yet
fi (z) = m = fi (z

0), thus violating ex post perfect recall. �

The following result says that the value of equilibrium actions is unambiguous, hence
independent of ambiguity attitudes:

Lemma 4 Let �� be an SCE of the game with observable payo¤s (�; f; �) justi�ed by the
con�rmed beliefs

�
�si
�
i2I;si2Supp��i. For every i 2 I and si 2 Supp��i and h 2 Hi(�si) \

Hi(si), action si;h is �i(�jh)-unambiguous, and its value is the conditional objective expected
payo¤, that is,

Vi(si;hjh; si; �si ; �i) = Ui(si; ���ijh).

Proof. By ex post perfect recall and Lemma 3,

S0;�i (h) =
[

m2Mi(h)

F�1i;si (m) (12)

for each h 2 Hi. Also, recall that

�̂�i (si; ���i) =
n
��i 2 ��i : 8m; (�0 � ��i) (F�1i;si (m)) = (�0 � ���i) (F

�1
i;si
(m))

o
is the partially identi�ed set of co-players distributions of strategies observationally equiv-
alent (obs.eq) for i to ���i given si.

Fix any h 2 Hi(�si) \Hi(si). Then,

8��i 2 �̂�i (si; ���i) ,

(�0 � ��i) (S0;�i (h))
(12,obs:eq)
= (�0 � ���i) (S0;�i (h))

(12,conf)
=

�
�0 � p�si

�
(S0;�i (h)) > 0,

(13)
where the �rst equality follows from eq. (12) and the fact that ��i is observationally
equivalent to ���i, the second equality follows from eq. (12) and belief con�rmation (conf),

that is �si

�
�̂�i (si; ���i)

�
= 1, and the inequality follows from h 2 Hi(�si).

Fix anym 2Mi (h); by observable payo¤s (obs.p), there is um 2 R such that ui (�(s0; si; s�i)) =
um for all (s0; s�i) 2 S0 � S�i with fi(�(s0; si; s�i)) = m. Then, observable payo¤s and
eq.s (12)-(13) imply that

8��i 2 �̂�i (si; ���i) , Ui(si; ��ijh) = Ui(si; ���ijh). (14)

Indeed, we have

Ui(si; ��ijh)
(def)
=

X
(s0;s�i)2S0;�i(h)

�0(s0) � ��i(s�i)
(�0 � ��i) (S0;�i(h))

ui(�(s0; si; s�i)))

43



(12;obs:p)
=

X
m2Mi(h)

(�0 � ��i) (F�1i;si (m))v
m

(�0 � ��i) (S0;�i(h))
(obs:eq)
=

X
m2Mi(h)

(�0 � ���i) (F�1i;si (m))v
m

(�0 � ���i) (S0;�i(h))

(12;obs:p)
=

X
(s0;s�i)2S0;�i(h)

�0(s0) � ���i(s�i)
(�0 � ���i) (S0;�i(h))

ui(�(s0; si; s�i)))
(def)
= Ui(si; ���ijh).

Con�rmed beliefs (�si

�
�̂�i (si; ���i)

�
= 1), the updating formula (5), and eq.s (13)-(14)

yield

Vi(si;hjh; si; �si ; �i) = �
�1
i

 Z
��i(h)

�i (Ui(si; ��ijh))�si (d��ijh)
!

(5)
= ��1i

0@Z �i (Ui(si; ��ijh))
(�0 � ��i) (S0;�i (h))�
�0 � p�si

�
(S0;�i (h))

�si (d��i)

1A
(14;conf:)
= ��1i

0@�i (Ui(si; ��ijh))Z (�0 � ��i) (S0;�i (h))�
�0 � p�si

�
(S0;�i (h))

�si (d��i)

1A
(13)
= ��1i (�i (Ui(si; ���ijh))) = Ui(si; ���ijh).

�

An increase in ambiguity aversion (weakly) decreases the values of actions:

Lemma 5 If (�; f; �) features more ambiguity aversion than (�; f; ��). Then,

Vi(aijh; si; �i; ��i) � Vi(aijh; si; �i; �i)

for all i 2 I, �i 2 �(��i), si 2 Si, h 2 Hi (�i), and ai 2 Ai (h).

Proof. Fix i and si arbitrarily. For every h 2 Hi and ai 2 Ai (h), de�ne the following
auxiliary function:

Usi;h;ai : ��i (h) ! R,
��i 7! Ui

��
sijh; ai

�
; ��ijh

�
.

With this, for every �i 2 �(��i) and h 2 Hi (�i), the conditional belief �i (�jh) is well
de�ned and

Vi(aijh; si; �i; ��i) = ��
�1
i

�
E�i(�jh)

�
��i � Usi;h;ai

��
, (15)

Vi(aijh; si; �i; �i) = ��1i
�
E�i(�jh) [�i � Usi;h;ai ]

�
.
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Since �i = ' � ��i for some concave and strictly increasing ' : ��i (Vi) ! R, Jensen�s
inequality implies

'
�
E�i(�jh)

�
��i � Usi;h;ai

��
� E�i(�jh)

�
' � ��i � Usi;h;ai

�
= E�i(�jh) [�i � Usi;h;ai ] .

By monotonicity of ' and ��i, and recalling that �
�1
i = ��

�1
i � '�1, we obtain

E�i(�jh)
�
��i � Usi;h;ai

�
� '�1

�
E�i(�jh) [�i � Usi;h;ai ]

�
,

��
�1
i

�
E�i(�jh)

�
��i � Usi;h;ai

��
�
�
��
�1
i � '�1

� �
E�i(�jh) [�i � Usi;h;ai ]

�
= ��1i

�
E�i(�jh) [�i � Usi;h;ai ]

�
.

By eq. (15), Vi(aijh; si; �i; ��i) � Vi(aijh; si; �i; �i). �

Lemma 6 Fix two games with observable payo¤s, (�; f; �) and (�; f; ��), such that (�; f; �)
features more ambiguity aversion than (�; f; ��). Fix an SCE �� of (�; f; ��) and justifying
beliefs

�
�si
�
i2I;si2Supp��i. Suppose that for each i 2 I, every si 2 Supp��i is (�si ; �i)-

sequentially optimal. Then, there exist maps �si : Supp��i ! Si, i 2 I, such that

(i) for every i 2 I and h 2 Hi(si), �si(si)h = si;h, and

(ii) � = (��i � �s�1i )i2I is an SCE of (�; f; �) where for every i 2 I and si 2 Supp��i, �si
justi�es �si(si).

(So, � and �� are realization equivalent and are justi�ed by the same beliefs.)

Proof For every i 2 I and si 2 Supp��i, we construct a (�si ; �i)-unimprovable strategy
�si(si). Map �si : Supp��i ! Si is such that (1) �si(si)h = si;h for all h 2 Hi(si), and (2)
�si(si) is derived by folding back on Hi

�
�si
�
nHi(si) given �si and �i.

42 Therefore, by
construction, for every h 2 Hi

�
�si
�
nHi(si),

�si(si)h 2 arg max
ai2Ai(h)

Vi(aijh;�si(si); �si ; �i).

Now, let h 2 Hi
�
�si
�
\Hi(si). For every ai 2 Ai(h), we have

Vi(�si(si)hjh;�si(si); �si ; �i) = Vi(si;hjh; si; �si ; �i)
(L4)
= Ui(si; ���ijh)
(L4)
= Vi(si;hjh; si; �si ; ��i)
(s:opt)

� Vi(aijh;�si(si); �si ; ��i)
(L5)

� Vi(aijh;�si(si); �si ; �i),
42Note that if h =2 Hi(si), and h0 � h, h0 =2 Hi(si), therefore the folding back construction is well de�ned.

See Section 4 for the description of folding back optimality.
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where the �rst equality follows from construction of �si(si), the second and the third equal-
ities from Lemma 4, the �rst inequality from sequential optimality (s.opt), and the second
inequality from Lemma 5. This shows that �si(si) is (�si ; �i)-unimprovable.

To conclude, note that the pro�le
�
��i � �s�1i ;

�
�ŝi
�
ŝi2Supp(��i��s�1i )

�
i2I
, where �ŝi(�) =

�si(�) for some si with ŝi = �si(si), also satis�es the con�rmed beliefs condition (because�
�si(si); (��j � �s�1j )j 6=i

�
and (si; ���i), given �0, induce the same distribution over terminal

nodes). Therefore (��i � �s�1i )i2I is an SCE of (�; f; �). �

10.4 Symmetric equilibria

In this subsection and the following ones, we consider games without chance moves. There-
fore, the outcome function and the strategic-form feedback and payo¤ functions of player
i are, respectively,

� : S ! Z,

Fi = fi � � : S !M ,

and
Ui = ui � � : S ! R.

The proof of Theorem 5 requires some preliminary results. For every i 2 I, consider
the augmented collection

Ĥi = Hi [
�
f�1i (m) : m 2 fi (Z)

	
that includes also i�s terminal information sets. By ex post perfect recall of Ĥi, we can
derive from the game tree a transitive and antisymmetric precedence relation � on Ĥi that
makes it a directed forest (collection of directed trees). Furthermore, we can extend to
Ĥi the de�nition of the sets S (h), Si (h) and S�i (h) so that S (h) = Si (h) � S�i (h); in
particular, for each m 2 fi (Z),

S
�
f�1i (m)

�
= F�1i (m) = projSiF

�1
i (m)� projS�iF

�1
i (m)

= Si
�
f�1i (m)

�
� S�i

�
f�1i (m)

�
.

Note that, for each �i, we can de�ne the collection of information sets in Ĥi that are
possible under �i:

Ĥi (�i) =
n
h 2 Ĥi : p�i (S�i (h)) > 0

o
.

Note that, Hi (�i) � Ĥi (�i). Also, for each h 2 Hi and ai 2 Ai (h), we de�ne the collection
of information sets in Ĥi that �immediately�follow h and action ai:

Ĥi(h; ai) =
n
h0 2 Ĥi :

�
h � h0

�
^
�
�i
�
h; h0

�
= ai

�
^
�
@h00 2 Hi; h � h00 � h0

�o
.
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Finally, it is convenient to extend the formula for the values of actions (given strategy and
belief) from Hi (�i) to Ĥi (�i). Thus, we stipulate that if h = f

�1
i (m) then Ai (h) = fami g

is the singleton that contains only the pseudo-action �i observes m.�By observability of
payo¤, if h = f�1i (m), then Vi (ami jh; si; �i; �i) = ui (z) for every z 2 h, independently of
(si; �i; �i).

Remark 6 By ex post perfect recall, for every i 2 I; h 2 Hi and ai 2 Ai (h), fS�i(h0)gh02Ĥi(h;ai)
is a partition of S�i(h).

Proof We �rst prove that distinct elements of the collection fS�i(h0)gh02Ĥi(h;ai) are
disjoint. By ex post perfect recall S (h0) = Si (h0)� S�i (h0) for each h0 2 Ĥi. Let

Si (h; ai) = fsi 2 Si (h) : si;h = aig

denote the strategies of i allowing for h and choosing ai at h. Then, by de�nition of
Ĥi(h; ai), Si (h0) = Si (h; ai) for each h0 2 Ĥi (h; ai), because i does not move again after
choosing ai and before any such h0. Therefore,

8h0 2 Ĥi (h; ai) , S
�
h0
�
= Si (h; ai)� S�i

�
h0
�
.

Take any h0; h00 2 Ĥi (h; ai) with h0 6= h00 (if such distinct information sets exist). By
de�nition of Ĥi (h; ai), h0 � h00 and h00 � h0. By perfect recall, this implies that�

z0 2 Z : 9x0 2 h0; x0 � z0
	
\
�
z00 2 Z : 9x00 2 h00; x00 � z00

	
= ;,

which in turn implies that S (h0) \ S (h00) = ;. Since Si (h0) = Si (h; ai) = Si (h
00), then

S�i (h0) \ S�i (h00) = ;.
Note that [

h02Ĥi(h;ai)

S�i(h
0) � S�i (h)

because h � h0, hence S�i (h0) � S�i (h), for each h0 2 Ĥi(h; ai).
To prove the converse, pick any (si; s�i) 2 Si (h; ai) � S�i (h) and let h0 be the �rst

information set in Ĥi after h (possibly a terminal information set) reached by the path
with terminal node � (si; s�i). Then h0 2 Ĥi(h; ai) and s�i 2 S�i(h0). Therefore,

S�i (h) �
[

h02Ĥi(h;ai)

S�i(h
0).

We conclude that fS�i(h0)gh02Ĥi(h;ai) is a partition. �

We say that a belief �i 2 �(��i) is supported by Dirac models if

�i
��
�s�i : s�i 2 S�i

	�
= 1.
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Then
8s�i 2 S�i, �i

�
�s�i

�
= p�i (s�i)

and
8h 2 Ĥi (�i) ;8s�i 2 S�i (h) , �i

�
�s�i jh

�
= p�i (s�ijh) .

If �i is supported by Dirac models,

Vi (aijh; si; �i; �i) = ��1i

0@ X
s�i2S�i(h)

p�i (s�ijh)�i
�
Ui
��
sijh; ai

�
; s�i

��1A .
Since �i is strictly increasing, maximizing Vi (aijh; si; �i; �i) is the same as maximizing

�i (Vi (aijh; si; �i; �i)) =
X

s�i2S�i(h)
p�i (s�ijh)�i

�
Ui
��
sijh; ai

�
; s�i

��
and we can focus on the latter expected value. Under a belief supported by Dirac mod-
els, �i (Vi (si;hjh; si; �i; �i)) is a weighted sum of the expected values given by si at the
next information sets (including the terminal ones), where the weights are the predictive
probabilities of reaching them.

Lemma 7 Fix any i 2 I and a belief supported by Dirac models �̂i. Then, for every si 2 Si
and h 2 Hi (�̂i),

�i (Vi (si;hjh; si; �̂i; �i)) =
X

h02Ĥi(h;si;h)

p�̂i
�
S�i

�
h0
�
jh
�
�i
�
Vi
�
sijh0 jh0; si; �̂i; �i

��
.

Proof. Fix si 2 Si and h 2 Hi (�̂i) arbitrarily. By Remark 6 and taking into account that
�̂i is supported by Dirac models, we can write

�i (Vi (si;hjh; si; �̂i; �i)) =
X

s�i2S�i(h)
p�̂i (s�ijh)�i

�
Ui
�
sijh; s�i

��
=

X
h02Ĥi(h;si;h)

X
s�i2S�i(h0)

p�̂i (s�ijh)�i
�
Ui
�
sijh; s�i

��
=

X
h02Ĥi(h;si;h):p�̂i (S�i(h0)jh)>0

p�̂i
�
S�i

�
h0
�
jh
� X
s�i2S�i(h0)

p�̂i (s�ijh)
p�̂i (S�i (h

0) jh)�i
�
Ui
�
sijh; s�i

��
.

By the chain rule, for every h0 2 Ĥi(h; si) with p�̂i (S�i (h
0) jh) > 0 and for every

s�i 2 S�i(h0),
p�̂i (s�ijh)

p�̂i (S�i (h
0) jh) = p�̂i

�
s�ijh0

�
.
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Furthermore, for every h0 2 Ĥi(h; si;h) and s�i 2 S�i (h0), Ui
�
sijh; s�i

�
= Ui

�
sijh0 ; s�i

�
,

because both sijh and sijh0 make h0 reachable and make the same choices before h0 (by
perfect recall), at h0, and after h0 (by de�nition of replacement); thus,X

s�i2S�i(h0)

p�̂i (s�ijh)
p�̂i (S�i (h

0) jh)�i
�
Ui
�
sijh; s�i

��
=

X
s�i2S�i(h0)

p�̂i
�
s�ijh0

�
�i
�
Ui
�
sijh0 ; s�i

��
= �i

�
Vi
�
sijh0 jh0; si; �̂i; �i

��
and we obtain the desired result. �

Iterating the previous formula and using the chain rule, one can prove the following:

Corollary 13 Fix i 2 I and a belief �̂i supported by Dirac models. Then, for every si 2 Si
and h 2 Hi (�̂i) ;

�i (Vi (si;hjh; si; �̂i; �i)) =
X

s�i2S�i

p�̂i (s�ijh)�i
�
Ui
�
sijh; s�i

��
:

Thus, maximizing the conditional value of a strategy under a belief �̂i supported by
Dirac models is the same as maximizing the subjective expectation of the transformed
utility ûi = �i � Ui. Applying Proposition 2 to �̂i and ûi we obtain the following:

Lemma 8 For every i 2 I and �̂i 2 �(��i), if �̂i is a belief supported by Dirac mod-
els, then the set of (�̂i; �i)-unimprovable and (�̂i; �i)-sequentially optimal strategies of i
coincide.

Note that, for every belief �i 2 �(��i) there is a unique belief �̂i supported by Dirac
models with the same predictives as �i:

8s�i 2 S�i, �̂i
�
�s�i

�
= p�i (s�i) .

This implies that

8h 2 Hi (�i) ;8s�i 2 S�i (h) , �̂i
�
�s�i jh

�
= p�i (s�ijh) .

We show that, for an ambiguity averse agent, �̂i is the �most pessimistic�belief with the
same predictive as �i in the following sense: for every h 2 Hi (�i) = Hi (�̂i), the value at
h 2 Hi (�i) of a (�i; �i)-unimprovable strategy is at least as high as the value at h of a
(�̂i; �i)-unimprovable strategy. Formally:

Lemma 9 Fix i 2 I, �i 2 �(��i), and a concave second-order utility function �i. Let
�̂i 2 �(��i) denote the belief supported by Dirac models with the same predictive as �i,
and let s�i be (�i; �i)-unimprovable; then,

8si 2 Si;8h 2 Ĥi (�i) , Vi
�
s�i;hjh; s�i ; �i; �i

�
� Vi (si;hjh; si; �̂i; �i) .
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Proof. First note that Ĥi (�i)� with the obvious precedence relation� is a directed
forest and its leaves are also leaves in Ĥi as well, that is, if h is a leaf in Ĥi (�i) then h
is a set of terminal nodes (h 2

�
f�1i (m) : m 2 fi (Z)

	
). Furthermore, Ĥi (�i) = Ĥi (�̂i)

because p�i (S�i (h)) = p�̂i (S�i (h)) for every h 2 Ĥi. We prove the result by induction on
the depth of h within Ĥi (�i).

Basis step. Let h = f�1i (m) be a terminal information set in Ĥi (�i). Then the weak
inequality holds trivially as an equality: in particular, by observable payo¤s

8z 2 h, Vi
�
s�i;hjh; s�i ; �i; �i

�
= ui (z) = Vi (si;hjh; si; �i; �i) .

Inductive step. Let h have at least one follower in Ĥi (�i) and suppose, by way of
induction, that for every h0 2 Ĥi (�i) with h � h0,

Vi(s
�
i;h0 jh0; s�i ; �i; �i) � Vi(si;h0 jh0; si; �̂i; �i). (I.H.)

Consider the replacement plan shi =
�
s�ijh; si;h

�
, that is,

8h0 2 Hi,
�
shi

�
h0
=
�
s�ijh; si;h

�
h0
=

8<:
si;h if h0 = h,
�i (h

0; h) if h0 � h,
s�i;h0 if h0 � h.

Since s�i is (�i; �i)-unimprovable

Vi
�
s�i;hjh; s�i ; �i; �i

�
� Vi (si;hjh; s�i ; �i; �i) .

Next we prove that
Vi (si;hjh; s�i ; �i; �i) � Vi (si;hjh; si; �̂i; �i) ,

which implies the thesis.
To ease notation, write

Ĥi (h; ai; �i) = Ĥi (h; ai) \ Ĥi (�i)

for the collection of information sets that immediately follow h after ai and can be reached
with positive probability under �i; Ĥi (h; ai; ��i) is similarly de�ned (thus, Ĥi (h; ai; ��i) =
Ĥi
�
h; ai; ���i

�
). By Remark 6, the de�nitions of Vi and shi , Jensen�s inequality, the chain

rule for ��i (�j�), Bayes rule for �i (�j�), Lemma 7, and the Inductive Hypothesis,

�i (Vi (si;hjh; s�i ; �i; �i))
(R6;def)
=

Z
��i(h)

�i

0B@ X
h02Ĥi(h;si;h)

X
s�i2S�i(h0)

��i (s�ijh)Ui
�
shi ; s�i

�1CA�i (d��ijh)
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=

Z
��i(h)

�i

0B@ X
h02Ĥi(h;si;h;��i)

��i
�
S�i

�
h0
�
jh
� X
s�i2S�i(h0)

��i (s�ijh)
��i (S�i (h0) jh)

Ui

�
shi ; s�i

�1CA�i (d��ijh)
(Jen;ch)

�
Z
��i(h)

X
h02Ĥi(h;si;h;��i)

��i
�
S�i

�
h0
�
jh
�
�i

0@ X
s�i2S�i(h0)

��i
�
s�ijh0

�
Ui

�
shi ; s�i

�1A�i (d��ijh)
(def)
=

X
h02Ĥi(h;si;h;�i)

Z
��i(h0)

��i
�
S�i

�
h0
�
jh
�
�i

�
Ui

�
s�ijh0 ; ��ijh

0
��
�i (d��ijh)

=
X

h02Ĥi(h;si;h;�i)

p�i
�
S�i

�
h0
�
jh
� Z

��i(h0)

��i (S�i (h0) jh)
p�i (S�i (h

0) jh) �i
�
Ui

�
s�ijh0 ; ��ijh

0
��
�i (d��ijh)

(Bayes)
=

X
h02Ĥi(h;si;h;�i)

p�i
�
S�i

�
h0
�
jh
� Z

��i(h0)
�i

�
Ui

�
s�ijh0 ; ��ijh

0
��
�i
�
d��ijh0

�
(def)
=

X
h02Ĥi(h;si;h;�i)

p�i
�
S�i

�
h0
�
jh
�
�i
�
Vi(s

�
i;h0 jh0; s�i ; �i; �i)

�
(I:H:)

�
X

h02Ĥi(h;si;h;�i)

p�i
�
S�i

�
h0
�
jh
�
�i
�
Vi(si;h0 jh0; si; �̂i; �i)

� (L7)
= �i (Vi (si;hjh; si; �̂i; �i)) .

Since �i is strictly increasing, Vi (si;hjh; s�i ; �i; �i) � Vi (si;hjh; si; �̂i; �i) : �

Proof of Theorem 5. Let z� 2 �
�
symSCE

�
�; f; ��

��
. Then, there is a symmetric

SCE (s�i )i2I of (�; f;
��) such that z� = �((s�i )i2I). Let (s

�
i )i2I be justi�ed by the pro�le

of con�rmed beliefs (�i)i2I . For each i 2 I, let m�
i = fi (z

�), and let �̂i 2 �(��i) the
belief supported by Dirac models with the same predictive as �i, so that Hi (�i) = Hi (�̂i).
Fix any

�
�̂i;
��i
�
-unimprovable strategy ŝ�i and let ŝi be the strategy that coincides with

equilibrium strategy s�i on each path observationally equivalent to the equilibrium path,
and with ŝ�i on the other paths, that is,

8h 2 Hi, ŝi;h =
(
s�i;h if h � f�1i (m�),
ŝ�i;h if h � f�1i (m�).

By construction, �
�
(ŝi)i2I

�
= �

�
(s�i )i2I

�
= z�. For each i 2 I, since �i is a con�rmed

belief and �̂i has the same predictive as �i,

p�̂i
�
S�i

�
f�1 (m�)

��
= p�i

�
S�i

�
f�1 (m�)

��
= 1.
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Therefore, each belief in pro�le (�̂i)i2I is con�rmed under both (s
�
i )i2I and (ŝi)i2I . We are

going to prove that each ŝi is
�
�̂i;
��i
�
-sequentially optimal, which implies that (ŝi)i2I is an

SCE of (�; f; ��) and that Lemma 6 applies. Therefore, there is an equivalent symmetric
SCE (si)i2I of the more ambiguity averse game (�; f; �) such that �

�
(si)i2I

�
= z�, as

desired.
Sequential optimality of ŝi under

�
��i; �̂i

�
. We show that ŝi is

�
��i; �̂i

�
-unimprovable.

Since �̂i is supported by Dirac models, Lemma 8 implies that ŝi is also
�
�̂i;
��i
�
-sequentially

optimal.
By belief con�rmation and perfect recall, the collection of information sets over which

s�i and ŝi coincide is given by those that are possible (indeed, certain) under (ŝi; �̂i), that
is,

Hi (�̂i) \Hi (ŝi) =
�
h 2 Hi : h � f�1i (m�)

	
,

because i expects message m� with certainty given that he plans to play ŝi.
By (ex post) perfect recall, for all h; h0 2 Hi (�̂i) such that h � f�1i (m�) (hence

h =2 Hi (ŝi)), h � h0 implies h0 � f�1i (m�). Therefore,

8h 2 Hi (�̂i) nHi (ŝi) , ŝi;h = ŝ�i;h

and
8h 2 Hi (�̂i) nHi (ŝi) , Vi

�
�jh; ŝi; �̂i; ��i

�
= Vi

�
�jh; ŝ�i ; �̂i; ��i

�
.

By
�
�̂i;
��i
�
-unimprovability of ŝ�i , this implies

8h 2 Hi (�̂i) nHi (ŝi) , ŝi;h 2 arg max
ai2Ai(h)

Vi
�
aijh; ŝi; �̂i; ��i

�
.

Next consider any h 2 Hi (�̂i) \Hi (ŝi), hence any h � f�1i (m�). Belief con�rmation
(for both �i and �̂i), payo¤s observability, and the de�nition of ŝi imply

ui(z
�) = Vi

�
s�i;hjh; s�i ; �i; ��i

�
:

By de�nition of ŝi,

Vi
�
ŝi;hjh; ŝi; �̂i; ��i

�
= ui(z

�) = Vi
�
s�i;hjh; s�i ; �i; ��i

�
:

By Lemma 9,

Vi
�
s�i;hjh; s�i ; �i; ��i

�
� Vi

�
ŝ�i;hjh; ŝ�i ; �̂i; ��i

�
:

Hence:
Vi
�
ŝi;hjh; ŝi; �̂i; ��i

�
� Vi

�
ŝ�i;hjh; ŝ�i ; �̂i; ��i

�
:

By de�nition of ŝi and
�
�̂i;
��i
�
-unimprovability of ŝ�i

8ai 2 Ai (h) nfŝi;hg, Vi
�
ŝ�i;hjh; ŝ�i ; �̂i; ��i

�
� Vi

�
aijh; ŝ�i ; �̂i; ��i

�
= Vi

�
aijh; ŝi; �̂i; ��i

�
,
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where the equality holds because ŝi;h = ŝ�i;h and ŝi coincides with ŝ
�
i after deviations from

an expected path. Collecting these equalities and inequalities, we obtain

8h 2 Hi (�̂i) \Hi (ŝi) , ŝi;h 2 arg max
ai2Ai(h)

Vi
�
aijh; ŝi; �̂i; ��i

�
.

Therefore ŝi is
�
�̂i;
��i
�
-unimprovable. �

10.5 Full Unimprovability and Rationalizable SCE

For the reader�s convenience we recall some notation and de�nitions of Section 7. �Hi =
Hi [ ff?gg is the extended collection of information sets that includes the initial infor-
mation set f?g even if i is not a �rst mover ( �Hi = Hi if i is a �rst mover). With this,
we let �Hi (�i) = Hi (�i) [ ff?gg be the subcollection of possible information sets given
prior �i. A CPS ��i (�j�) 2 �

�Hi (��i) � [� (��i)]
�Hi for player i speci�es an initial belief

��i (�j f?g) 2 �(��i) and a conditional belief ��i (�jh) for each h 2 Hi. Full (��i (�j�) ; �i)-
unimprovability requires value-maximization over actions at each h 2 Hi, that is, at the
information sets where i is active. The initial belief ��i (�j f?g) matters to compare full
(��i (�j�) ; �i)-unimprovability with (�i; �i)-unimprovability, because in the latter �i has to
be interpreted as an initial belief. Furthermore ��i (�j f?g) captures how i strategically an-
alyzes the game before playing it. Finally, recall that here we assume that there are no
chance moves.

10.5.1 Equivalence of SCE and fully unimprovable SCE

Proof of Proposition 9. First note that, for every prior �i on ��i, one can �nd a
CPS ��i(�j�) on (��i; �Hi) such that �i(�jh) = ��i(�jh) for all information sets h 2 �Hi (�i):
Let ��i(�jf?g) = �i and derive ��i(�jh) by conditioning for all h 2 Hi(�i). Next, for every
h 2 HinHi(�i) whose immediate predecessor h in ( �Hi;�) belongs to �Hi (�i), �x some
��i(�jh) 2 �(��i(h)) such that p��i(�jh)(S�i(h

0)) > 0 for all the information sets h0 that
weakly follow h (e.g., ��i(�jh) = 1

jS�i(h)j
P
s�i2S�i(h) ��s�i ) and derive ��i(�jh

0) from ��i(�jh)
by conditioning. One can check that the constructed array (��i(�jh))h2 �Hi 2 [�(��i)]

�Hi is a
CPS.

Fix an SCE � justi�ed by con�rmed beliefs
�
�si
�
i2I;si2Supp�i . For each i 2 I and

si 2 Supp�i, let ��si(�j�) 2 �
�Hi(��i) be a CPS such that ��si(�jh) = �si(�jh) for every

h 2 Hi(�si) (see above). Now construct a new strategy ŝi(si) so that (1) ŝi(si)(h) = si(h) for
all h 2 Hi(�si), and (2) ŝi(si) is derived by folding back onHinHi(�i) given ��si(�j�). Since si
is
�
�si ; �i

�
-unimprovable, ŝi(si) must be fully (��si(�j�); �i)-unimprovable. By construction,

(si; �i) and (ŝi(si); ��si(�jf?g)) imply the same probabilities of terminal nodes, because,
they reach the same information sets, Hi(si)\Hi(�si) = Hi(ŝi(si))\Hi(��si(�jf?g)), where
si and ŝi(si) prescribe the same actions.
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By ex post perfect recall and the self-con�rming conditions for �, for every i 2 I and
si 2 Supp�i, (si; �si) and (si; ��i) yield the same probabilities of reaching information
sets of i: p�si (S�i(h)) = ��i(S�i(h)) for every h 2 Hi(si). Therefore, by construction,
�p��si (S�i(h)jf?g) = ��i(S�i(h)) for every i 2 I, si 2 Supp�i, and h 2 Hi(si). Now, for
every i 2 I, consider the pushforward measure �̂i = �i � ŝ�1i , that is,

8si 2 Si, �̂i(si) =
X

s0i :̂si(s
0
i)=si

�i(s
0
i).

By construction � and �̂ yield the same distribution over terminal nodes, because they reach
the same information sets and, for each i 2 I, the pure strategies in the support of �i take
the same actions as the associated pure strategies in the support of �̂i at all reachable infor-

mation sets. Furthermore, the pro�le
�
�̂i;
�
���si(�j�)

�
�si2Supp�̂i

�
i2I
, where ���si(�j�) = ��si(�j�)

for some si 2 ŝ�1i (si),
43 also satis�es the con�rmed beliefs condition on top of the full

unimprovability condition. Therefore �̂ is a fully unimprovable SCE. �

10.5.2 Monotonicity of the symmetric RSCE correspondence

Recall that in the analysis of symmetric RSCE, we assume that there are no chance moves.

Proof of Remark 5 (Only if) Let �Bi =
\
k2N

Bki for each i 2 I; it can be checked that

( �Bi)i2I satis�es the required property.
(If) We show by induction that if ( �Bi)i2I 2 �i2I2Si�M has the required property, then

�Bi � Bki for every i 2 I and k 2 N0. The claim is trivially true for k = 0. Suppose it is
true for k 2 N0. Fix i 2 I and (ŝi; m̂i) 2 �Bi arbitrarily. Then (ŝi; m̂i) 2 Bki (inductive
hypothesis), and there is pi(�j�) 2 � �Hi(S�i) with ŝi 2 ri(pi(�j�); �i) such that eq. (10) holds.
By the inductive hypothesis, �B�i � Bk�i; hence

pi

�
F�1ŝi (m̂i) \

n
s�i : (sj ; Fj(ŝi; s�i))j 6=i 2 Bk�i

o
jf?g

�
� pi

�
F�1ŝi (m̂i) \

�
s�i : (sj ; Fj(ŝi; s�i))j 6=i 2 �B�i

	
jf?g

�
,

and (10) implies

pi

�
F�1ŝi (m̂i) \

n
s�i : (sj ; Fj(ŝi; s�i))j 6=i 2 Bk�i

o
jf?g

�
= 1.

Therefore, (ŝi; m̂i) 2 Bk+1i . �
43 It can be checked that it does not matter which si 2 ŝ�1i (si) we pick.
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Proof of Lemma 2 The statement is trivially true for k = 0. Suppose, by way of
induction, that

symSCEk(�; f; �) =
n
�s : (�si; Fi(�s))i2I 2 B

k
o
.

We �rst show that, for every �xed �s in the above set and i 2 I

F�1�si (Fi(�s)) \ symSCE
k(�; f; �)�si = F

�1
�si (Fi(�s)) \

n
s�i : (sj ; Fj(�si; s�i))j2Infig 2 Bk�i

o
.

(16)
(Proof of �) By de�nition of section and the inductive hypothesis,

symSCEk(�; f; �)�si =
n
s�i : (�si; s�i) 2 symSCEk(�; f; �)

o
=

n
s�i :

�
(�si; Fi(�si; s�i)); (sj ; Fj(�si; s�i))j2Infig

�
2 Bk

o
�

n
s�i : (sj ; Fj(�si; s�i))j 6=i 2 Bk�i

o
.

Hence

F�1�si (Fi(�s)) \ symSCE
k(�; f; �)�si � F�1�si (Fi(�s)) \

n
s�i : (sj ; Fj(�si; s�i))j2Infig 2 Bk�i

o
.

(Proof of �) Let ŝ�i 2 F�1�si (Fi(�s)) \
�
s�i : (sj ; Fj(�si; s�i))j2Infig 2 Bk�i

	
. Since ŝ�i 2

F�1�si (Fi(�s)) and (�si; Fi(�s)) 2 B
k
i , then Fi(�si; ŝ�i) = Fi(�s) and�

(�si; Fi(�si; ŝ�i)); (ŝj ; Fj(�si; ŝ�i))j2Infig
�
2 Bk.

Hence, ŝ�i 2 symSCEk(�; f; �)�si . Thus

F�1�si (Fi(�s)) \
n
s�i : (sj ; Fj(�si; s�i))j2Infig 2 Bk�i

o
� F�1�si (Fi(�s)) \ symSCE

k(�; f; �)�si .

This completes the proof of (16). �
Now, let �s 2 symSCEk+1(�; f; �); then �by de�nition � �s 2 symSCEk(�; f; �) and

the inductive hypothesis implies that ((�si; Fi(�s)))i2I 2 Bk. Let (pi(�j�))i2I be as in the
de�nition of symSCEk+1(�; f; �). Then, by eq. (16),

pi

�
F�1�si (Fi(�s)) \

n
s�i : (sj ; Fj(�si; s�i))j2Infig 2 Bk�i

o
j f?g

�
= 1

for every i 2 I, and (�si; Fi(�s))i2I 2 Bk+1. Similarly, let (�si; Fi(�s))i2I 2 Bk+1; then, by eq.
(16),

pi

�
F�1�si (Fi(�s)) \ symSCE

k(�; f; �)�si j f?g
�
= 1

for every i 2 I, and �s 2 symSCEk+1(�; f; �). �
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Our results about monotonicity of the RSCE correspondence rely on the following result
of monotonicity of the justi�ability correspondence: Consider a decision problem under
uncertainty (Â; Ŝ; û) where Â and Ŝ are �nite sets of actions and states, and û : Â� Ŝ ! R
is a vNM utility function. Fix a non-empty and compact set of distributions �̂ � �

�
Ŝ
�
.

Let IC � RR denote the set of strictly increasing and continuous functions. For each
� 2 IC and � 2 �(�̂) de�ne the set of (�; �)-best replies:

r̂(�; �) = argmax
a2A

Z
�̂
� (E� [û(a; �)])� (d�) .

Similarly, for each p 2 �
�
Ŝ
�
we write

r̂(p; �) = argmax
a2A

X
s2Ŝ

� (û(a; s)) p (s) ,

which is the special case when � is supported by Dirac beliefs and p is the corresponding
predictive belief. If an action is a (�; �)-best reply we say that it is �-justi�ed by �; we
say that it is �-justi�able if is �-justi�ed by some �. Battigalli et al. (2016a) proved
that the �-justi�ability correspondence is monotone with respect to concave and strictly
increasing transformations (see also Weinstein, 2016):

Lemma 10 For all ��; � 2 IC, if � 2 IC is a concave transformation then[
�2�(�̂)

r̂(�; � � ��) �
[

��2�(�̂)

r̂(��; ��).

Since Ŝ �=
n
�s : s 2 Ŝ

o
� �

�
Ŝ
�
, letting �̂ =

n
�s : s 2 Ŝ

o
in Lemma 10 we obtain the

following:

Corollary 14 For all ��; � 2 IC, if � 2 IC is a concave transformation then[
p2�(Ŝ)

r̂(p; � � ��) �
[

�p2�(Ŝ)

r̂(�p; ��).

From now on, whenever we refer to games in which every player moves at most once
along every path, strategies will be omitted from the value formulas. In this class of games,
the value of an action at an information set depends only on the action itself and not on
the overall strategy of the agent.

Proof of Theorem 10 To prove the result, we will show that

8k 2 N, symSCEk(�; f; ��) � symSCEk(�; f; �).
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Then the claim follows from Lemma 2. The statement is trivially true for k = 0. Suppose,
by way of induction, that

symSCEk(�; f; ��) � symSCEk(�; f; �). (I.H.)

Fix �s 2 symSCEk+1(�; f; ��) and i 2 I arbitrarily. By de�nition of symSCEk+1 and the
inductive hypothesis (I.H.), there is �pi(�j�) 2 �

�Hi(S�i) such that �si is fully (�pi(�j�); ��i)-
unimprovable and

Supp�pi(�j f?g) �
�
F�1�si (Fi(�s)) \ symSCE

k(�; f; ��)�si

� (I:H:)
�

�
F�1�si (Fi(�s)) \ symSCE

k(�; f; �)�si

�
:

We construct pi(�j�) 2 � �Hi(��i) such that pi(�jh) = �pi(�jh) for each h 2 �Hi(�pi(�j f?g)) and
�si is fully (pi(�j�); �i)-unimprovable. Since

Supppi(�j f?g) = Supp�pi(�j f?g) �
�
F�1�si (Fi(�s)) \ symSCE

k(�; f; �)�si

�
and the construction holds for each i, this implies that �s 2 symSCEk+1(�; f; �).

(Construction of pi (�j�)) Since i moves at most once on every path, Hi(si) = Hi;
furthermore, the value of any action ai 2 Ai (h) (h 2 Hi) is independent of i�s strategy. To
construct pi(�j�), keep the same initial belief as �pi: pi(�j f?g) = �pi(�j f?g). By symmetry
(pure equilibrium), no chance moves, con�rmed beliefs and ex-post perfect recall, there is
a unique h 2 Hi(�pi(�j f?g)) = Hi(pi(�j f?g)) that i expects to reach with probability 1
under �pi. Thus, let pi(�jh) = �pi(�j f?g) = �pi(�jh) for h 2 Hi(�pi(�j f?g)) even if h 6= f?g. It
follows that for the unique h 2 Hi(pi(�j f?g)) and for every ai 2 Ai(h),

Vi(�si;hjh; pi; �i)
(L4)
= Ui(�s)

(L4)
= Vi(�si;hjh; pi; ��i)
(uprv:)

� Vi(aijh; pi; ��i)
(L5)

� Vi(aijh; pi; �i),

where the equalities follow from h 2 Hi(�pi(�j f?g)) = Hi(pi(�j f?g)) and (given the observ-
ability of payo¤s) Lemma 4, the �rst inequality follows from (pi(�jf?g); ��i)-unimprovability
of �si (uprv.) and the second one from Lemma 5.

Now, consider any h 2 HinHi(�pi(�j f?g)). Since �si is fully (�pi(�j�); ��i)-unimprovable, we
have

�si;h 2 arg max
ai2Ai(h)

Vi(aijh; �pi; ��i) = arg max
ai2Ai(h)

E�pi(�jh)
�
��i � Uh;ai

�
:

By Corollary 14 there exists some pi;h 2 �(S�i(h)) such that

�si;h 2 arg max
ai2Ai(h)

Epi;h
�
' � ��i � Uh;ai

�
= arg max

ai2Ai(h)
Epi;h [�i � Uh;ai ] :
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Let pi(�jh) = pi;h. By the one-move assumption, h has no strict predecessors or followers
in Hi. Then, the array (pi(�jh))h2 �Hi is a CPS. By construction �si is fully (pi(�j�); �i)-
unimprovable. �

We conclude that �s 2 symSCEk+1(�; f; �). �

Proof of Theorem 11 Throughout the proof, for each s = (sj)j2I , let [s] = �j2I [sj ]
and [s�i] = �j 6=i [sj ]. To prove the result, we will show that for every k 2 N and �s 2
symSCEk(�; f; ��), there exists s 2 symSCEk(�; f; �) with s 2 [�s]. Then the claim follows
from Lemma 2. The statement is trivially true for k = 0.

Suppose, by way of induction, that the statement is true for k. Let

�s = (�si)i2I 2 symSCEk+1(�; f; ��) � symSCEk(�; f; ��)

(the inclusion holds by de�nition). By the inductive hypothesis, for every i 2 I, there exists
some s� = (s�i )i2I 2 symSCEk(�; f; �) such that s� 2 [�s]. Since �s 2 symSCEk+1(�; f; ��),
for every i 2 I there is some CPS �pi(�j�) 2 �

�Hi(S�i) such that �si is fully (�pi(�j�); ��i)-
unimprovable and

Supp�pi(�j f?g) �
�
F�1�si (Fi(�s)) \ symSCE

k(�; f; ��)�si

�
:

It can be checked that, for any s = (si; s�i) 2 symSCEk(�; f; �), if si 2 [s�i ], then
(s�i ; s�i) 2 symSCEk(�; f; �) as well. Then, by the inductive hypothesis, for every s�i 2
symSCEk(�; f; ��)�si , there exists s

0
�i 2 symSCEk(�; f; �)s�i such that s

0
�i 2 [s�i]. More-

over, since strategic feedback depends only on the realization equivalence classes of strate-
gies, for each s�i 2 F�1�si (Fi(�s)) and s

0
�i 2 [s�i], we have s0�i 2 F�1s�i (Fi(s

�)). So, we can
construct a belief p�i 2 �(S�i) with

Suppp�i �
�
F�1s�i

(Fi(s
�)) \ symSCEk(�; f; �)s�i

�
such that for each ŝ�i 2 Suppp�i ,

p�i ([ŝ�i]) = �pi([ŝ�i] j f?g): (17)

Since �pi(�j f?g) is the predictive probability isomorphic to a belief over Dirac models, by
Corollary 13 player i�s preferences are dynamically consistent. Thus,44

�si 2 arg max
si2Si

X
s�i

��i(Ui(si; s�i)�pi(s�ij f?g)):

44Recall that, for every p 2 �(S) and every strictly increasing function �,

arg max
si2Si

��1 (Ep [� (Ui;si)]) = arg max
si2Si

E [� (Ui;si)] .
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But then, by eq. (17), we also have

�si 2 arg max
si2Si

X
s�i

��i(Ui(si; s�i)p
�
i (s�i)): (18)

Consider the decision problem
�
Â; Ŝ; û

�
where Â = Si, Ŝ = F�1s�i (Fi(s

�))\symSCEk(�; f; �)s�i ,

and û is the restriction of ��i � Ui on Â� Ŝ. By eq. (18), �si is ��i-justi�ed by p�i 2 �
�
Ŝ
�
.

By Corollary 14, there exists pi 2 �
�
Ŝ
�
that �i-justi�es �si. Let pi(�j f?g) = pi. Then

pi(�j f?g) 2 �
�
F�1s�i

(Fi(s
�)) \ symSCEk(�; f; �)s�i

�
and

�si 2 arg max
si2Si

X
s�i

�i(Ui(si; s�i)pi(s�ij f?g)).

By dynamic consistency of player i�s preferences and standard arguments, this implies that
for every si 2 [�si], for every h0 2 Hi(pi(�j f?g)) \Hi(�si),

si;h0 2 arg max
ai2Ai(h0)

X
s�i

�i(Ui((sijh0 ; ai); s�ijh0)pi(s�ijh0),

where pi(s�ijh0) is derived by conditioning.
Next, �x h 2 Hi(�si)nHi(pi(�j f?g)) with h0 2 Hi(pi(�j f?g)) for all h0 � h. By dynamic

consistency, we can frame the continuation of the game as a (static) decision problem�
Â; Ŝ; û

�
, with Â = Si (h), Ŝ = S�i (h) and û is the restriction of ��i � Ui on Â � Ŝ =

Si(h)�S�i (h). By the same argument as above, since �si is ��i-justi�ed by �pi(�jh), Corollary
14 implies that �si is �i-justi�ed by some pi(�jh) 2 �(S�i (h)). By dynamic consistency
of player i�s preferences and standard arguments, this implies that for every si 2 [�si], for
every h0 2 Hi(pi(�jh)) \Hi(�si) with h � h0,

si;h0 2 arg max
ai2Ai(h0)

X
s�i

�i(Ui((sijh0 ; ai); s�ijh0)pi(s�ijh0),

where pi(s�ijh0) is derived from pi(s�ijh) by conditioning.
Repeating iteratively the operation at all information sets that are not reached with

positive probability under the probability measures already constructed, one can �nally
construct a CPS p̂i(�j�) 2 � �Hi(��i) such that p̂i(�jh) = pi(�jh) for each h 2 Hi(�si) with
pi(S�i(h)jh0) = 0 for all h0 � h. Since every si 2 [�si] is (p̂i(�j�); �i)-unimprovable at every
h 2 Hi(si), there exists a fully (p̂i(�j�); �i)-unimprovable si 2 [si] = [s�i ]. Let s = (si)i2I .
By construction,

p̂i(�j f?g) 2 �
�
F�1s�i

(Fi(s
�)) \ symSCEk(�; f; �)s�i

�
:
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By si 2 [s�i ] and s 2 [s�], F�1s�i (Fi(s
�)) = F�1si (Fi(s)). So, s 2 symSCE1(�; f; �).

If k > 0, for all s0�i 2 S�i, (s�i ; s
0
�i) 2 symSCE1(�; f; �) if and only if (si; s0�i) 2

symSCE1(�; f; �). So, symSCE1(�; f; �)s�i = symSCE
1(�; f; �)si . But then, p̂i(�j f?g) 2

�
�
F�1si (Fi(s)) \ symSCE

1(�; f; �)si
�
, and so s 2 symSCE2(�; f; �). Inductively,

p̂i(�j f?g) 2 �
�
F�1si (Fi(s)) \ symSCE

k(�; f; �)si

�
;

and so s 2 symSCEk+1(�; f; �). �

10.5.3 Monotonicity of the RSCE correspondence

We �rst use Lemma 10 to prove a preliminary monotonicity result for the set of fully
unimprovable SCEs.

Lemma 11 Fix two games with observable payo¤s where no player moves more than once,
(�; f; �) and (�; f; ��), so that (�; f; �) features more ambiguity aversion than (�; f; ��).
Then SCE1(�; f; ��) � SCE1(�; f; �).

Proof of Lemma 11 Let �� 2 SCE1(�; f; ��): Fix i 2 I; si 2Supp��i and let ��si(�j�) 2
�
�Hi(��i) be such that si is fully (��si(�j�); ��i)�unimprovable and

Supp��si(�j f?g) � �̂�i(si; ���i)
(def:)
=

n
��i 2 ��i : F̂i(si; ��i) = F̂i(si; ���i)

o
:

We will construct �si(�j�) 2 �
�Hi(��i) such that �si(�jh) = ��si(�jh) for each h 2 �Hi(��si(�j f?g)),

and si is fully (�si(�j�); �i)-unimprovable. Since

Supp��si(�j f?g) = Supp�si(�j f?g) � �̂�i(si; ���i),

this implies that �� 2 SCE1(�; f; �):
Recall that Hi(si) = Hi because i moves at most once on every path. To construct

�si(�j�), keep the same prior belief: �si(�j f?g) = ��si(�j f?g): For each h 2 Hi(��si(�j f?g)) =
Hi(�si(�j f?g)) de�ne �si(�jh) by conditioning. Hence, for each h 2 �Hi(��si(�j f?g)), �si(�jh) =
��si(�jh). Thus, for every ai 2 Ai(h),

Vi(si;hjh;�si ; �i)
(L4)
= Ui(si; ���ijh)

(L4)
= Vi(si;hjh;�si ; ��i)
(uprv:)

� Vi(aijh;�si ; ��i)
(L5)

� Vi(aijh;�si ; �i),
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where the equalities follow from Lemma 4, the �rst inequality from full (��si(�j�); ��i)-
unimprovability of si (uprv.), and the second one from Lemma 5.

Now, consider any h 2 HinHi(��si(�j f?g)). Since si is fully (��si(�j�); ��i)-unimprovable
and ��si(��i(h)jh) = 1 by condition (1) of De�nition 6, we have

si;h 2 arg max
ai2Ai(h)

Z
��i

��i(Ui((sijh; ai); ��ijh)��si(d��ijh)

= arg max
ai2Ai(h)

Z
��i(h)

��i

0@ X
s�i2S�i(h)

��i(s�ijh)ui (� (ai; s�i))

1A ��si(d��ijh), (19)
where we abuse notation and write � (ai; s�i), because i does not move before h, nor after
h, hence the terminal node reached depends only on s�i 2 S�i (h) and the action chosen
by i at h. Next, we consider the problem of choice under uncertainty (Â; Ŝ; û) where
A = Ai (h), Ŝ = S�i(h), û(ai; s�i) = ui (� (ai; s�i)). Recall that we assumed observable
deviators, hence

S�i(h) = �j 6=iSj (h)

and it makes sense to consider the following compact set of product distributions

��ijh = f��i 2 ��i : ��i (�j 6=iSj (h)) = 1g � ��i (h) .

The following map associates each ��i 2 ��i (h) with the corresponding updated distrib-
ution ��i (�jh) de�ned in (1):

&h;�i : ��i (h) ! ��ijh
��i 7! 1S�i(h) (�)

��i(�)
��i(S�i(h))

[1S�i(h)) denotes the indicator function of set S�i (h)]. Note that ��i (h) is a (relatively)
open subset of the Polish space ��i and &h;�i is continuous. Furthermore, the restriction
&h;�ij��ijh is the identity on ��ijh, because ��i (S�i (h)) = ��i (�j 6=iSj (h)) = 1 implies

��i (s�ijh) =
��i (s�i)

��i (S�i (h))
= ��i (s�i)

for each s�i. Therefore &h;�i is also onto and &h;�i is a measurable surjection that yields
the onto pushforward map

&̂h;�i : � (��i (h)) ! �
�
��ijh

�
,

�i 7! �i � &�1h;�i.

Let ��sijh = ��si (�jh) � &
�1
h;�i 2 �(��ijh), that is,

8E 2 B(��ijh); ��sijh(E) = ��si(&
�1
h;�i(E)jh):

61



For every ai 2 Ai(h), we have:

Z
��i(h)

��i

0@ X
s�i2S�i(h)

��i(s�ijh)vi (
 (� (ai; s�i)))

1A ��si(d��ijh) =
Z
��ijh

��i

0@ X
s�i2S�i(h)

��i(s�ijh)vi (
 (� (ai; s�i)))

1A ��sijh(d��i (�jh)):
Lemma 10, eq. (19), and the above equality imply that si;h is �i-justi�ed by some belief

�ijh 2 �(��ijh), that is,

si;h 2 arg max
ai2Ai(h)

Z
�(��ijh)

�i

0@ X
s�i2S�i(h)

��i(s�ijh)vi (
 (� (ai; s�i)))

1A�ijh(d��i (�jh)).
Now go back to a belief on ��i (h): Since the pushforward map &̂h;�i is onto we can �nd

some belief �si(�jh) 2 &̂
�1
h;�i

�
�ijh

�
� �(��i (h)) such that

si;h 2 arg max
ai2Ai(h)

Z
�(��i(h))

�i

0@ X
s�i2S�i(h)

��i(s�ijh)vi (
 (� (ai; s�i)))

1A�si(d�̂�ijh)
= arg max

ai2Ai(h)

Z
��i

�i(Ui((sijh; ai); ��ijh)�si(d��ijh).

We can do this for every o¤-path information set h 2 HinHi(��si(�j f?g)) and ob-
tain an array

�
�si (�jh)

�
h2 �Hi 2 �h2 �Hi�(��i (h)) (recall that �si coincides with ��si on

Hi(��si(�j f?g)) that satis�es condition (1) of the de�nition of CPS by construction. Since
every player moves at most once on every path, condition (2) trivially holds. Finally, by
construction, si is fully (�i(�j�); �i)-unimprovable. �

Comment: What matters in the previous proof is that the range &h;�i (��i (h)) of
the continuous map &h;�i is a compact subset of �(S�i (h)) even though ��i (h) is not
closed. We used the assumption of observable deviators to prove it. There are simple
examples of games without observable deviators where &h;�i (��i (h)) is not compact and
therefore we cannot apply Lemma 10. However, we have not yet found examples of games
without observable deviators where players move at most once and monotonicity of � 7!
SCE1(�; f; ��) (hence, monotonicity of RSCE) does not hold.

Proof of Theorem 12 Lemma 11 shows that the result holds for k = 1: Suppose by
way of induction that SCEk(�; f; ��) � SCEk(�; f; �). Fix � 2 SCEk+1(�; f; ��), i 2 I,
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si 2 Supp�i arbitrarily and let ��si(�j�) 2 �
�Hi(��i) be a con�rmed CPS that ��i-justi�es si,

that is, si is fully (��si(�j�); ��)-unimprovable and

��si

�
�̂�i(si; ��i) \ proj��iSCE

k(�; f; ��)j f?g
�
= 1.

Since � 2 SCEk+1(�; f; ��) � SCEk(�; f; ��), the inductive hypothesis implies � 2 SCEk(�; f; �),
so there is �̂si(�j�) 2 �

�Hi(��i) such that si is fully (�̂si(�j�); �i)-unimprovable. Let �si(�j�) 2
�
�Hi(��i) be such that �si(�jh) = ��si(�jh) for each h 2 �Hi(��si(�j f?g)) and �si(�jh) =

�̂si(�jh) for each h 2 Hin �Hi(��si(�j f?g)). By same argument employed in the proof of
Lemma 11, �si(�j�) is a CPS and si is (�si(�j�); �i)-unimprovable. Moreover, by construc-
tion and the inductive hypothesis,

�si

�
�̂�i(si; ��i) \ proj��iSCE

k(�; f; �)j f?g
�

� �si

�
�̂�i(si; ��i) \ proj��iSCE

k(�; f; ��)j f?g
�

= ��si

�
�̂�i(si; ��i) \ proj��iSCE

k(�; f; ��)j f?g
�
= 1.

Therefore si is �i-justi�ed by a con�rmed CPS that initially believes proj��iSCE
k(�; f; �).

This holds for every i 2 I and Supp�i, thus, � 2 SCEk+1(�; f; �). �
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