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At the beginning of a dynamic game, players may have exogenous theories

about how the opponents are going to play. Suppose that these theories are

commonly known. Then, players will refine their first-order beliefs and chal-

lenge their own theories through strategic reasoning. I develop and characterize

epistemically a new solution concept, Selective Rationalizability, which accom-

plishes this task under the following assumption: when the observed behavior

is not compatible with the beliefs in rationality and in the theories of all or-

ders, players keep the orders of belief in rationality that are per se compatible

with the observed behavior, and drop the incompatible orders of belief in the

theories. Thus, Selective Rationalizability captures Common Strong Belief in

Rationality (Battigalli and Siniscalchi, 2002) and refines Extensive-Form Ra-

tionalizability (Pearce, 1984; BS, 2002), whereas Strong-∆-Rationalizability

(Battigalli, 2003; Battigalli and Siniscalchi, 2003) captures the opposite epis-

temic priority choice. Selective Rationalizability is extended to encompass

richer epistemic priority orderings among different theories of opponents’be-

havior. This allows to establish a surprising connection with strategic stability

(Kohlberg and Mertens, 1986).
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1 Introduction

Consider the following dynamic game with perfect information.

Ann

N ↙ ↘ B

0, 0 Bob

R↙ ↘ A

−2, 0 Ann

P ↙ ↘ I

−1,−3 1, 1

Ann can try to Bribe Bob, a public offi cer, or Not. If she does, Bob can Accept or Report

her, so that Ann loses two utils. If Bob accepts, Ann can Implement her plan, achieving

the Pareto dominating outcome, or repent (P ) and speak with a prosecutor, harming both

Bob and herself.

Suppose that Ann is rational1 and, at the beginning of the game, believes with proba-

bility 1 that Bob would play R after B. I call this belief "(first-order belief) restriction".

Then, she plays N . Suppose that Bob believes that Ann is rational and that the restriction

holds. Then, he expects Ann to play N . So, what would he believe after observing B?

He cannot believe at the same time that Ann is rational and that the restriction holds:

the two things are at odds given B. Which of the two beliefs will Bob keep? This is the

epistemic priority issue. Suppose that he keeps the belief that the restriction holds. So,

he drops the belief that Ann is rational. Then, he can also expect Ann to play P after

(B,A) and thus play R. If Ann believes that Bob reasons in this way, she can keep her

restriction and play N .

These lines of strategic reasoning are captured by Strong-∆-Rationalizability (Bat-

tigalli, [4]; Battigalli and Siniscalchi, [10]). In this reasoning process, the faith in the

restrictions is so strong that Bob is ready to deem Ann irrational after the bribing at-

tempt. This could be the case if, for instance, the belief that Bob would report Ann is

induced by a commonly known social convention that always holds in context of the game

(see Battigalli and Friedenberg [5]). Suppose instead that, in the context of the game,

public offi cers are not commonly believed to be incorruptible. However, Bob declares that

he would play R after B. If Bob observes that Ann plays B anyway, he might think that

Ann has not taken his words seriously, rather than thinking that Ann is irrational. Then,

1 i.e. subjective expected utility maximizer given her beliefs at every information set.
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he would expect Ann to play I after A, hence he would play A instead of R. If Ann

believes that Bob is rational and keeps believing that she is rational after B, she must

believe that Bob will play A, differently than what the restriction suggests. Hence, under

this reasoning scheme, such restriction to first-order beliefs cannot hold.

Note that opposite conclusions were reached without any uncertainty about payoffs:

the two situations do not represent different types of Bob, but only different strengths of

the belief that he would report Ann.

In Section 3, I construct an elimination procedure, Selective Rationalizability, that

captures these instances of forward induction reasoning in all dynamic games with per-

fect recall and countably many conditioning events,2 although for notational simplicity

the formal analysis focuses on finite games with complete information. Selective Ra-

tionalizability refines a notion of Extensive-Form Rationalizability (Pearce [29], Batti-

galli [2], Battigalli and Siniscalchi [9]), which I will call "Rationalizability" for brevity.

Thus, Selective Rationalizability represents a natural way for players to refine their beliefs

through (possibly partial) coordination and consequent forward induction considerations

when lone strategic reasoning about rationality does not pin down a unique plan of ac-

tions. As above, Selective Rationalizability delivers an empty set when the "tentative"

first-order belief restrictions of a player are at odds with strategic reasoning. Strong-∆-

Rationalizability, instead, does not refine Rationalizability: in the example, N is not a

rationalizable outcome.3 It is worth noting that Selective Rationalizability can also be

seen as an instance of Strong-∆-Rationalizability, where the restrictions are the conjunc-

tion of the exogenous theories and the rationalizable first-order beliefs. However, keeping

the two separate has both conceptual and technical advantages. The separation allows

to investigate the epistemic priority issue between the two different sources of beliefs,

and to compare Strong-∆-Rationalizability and Selective Rationalizability for the same

restrictions. It turns out that Strong-∆-Rationalizability and Selective Rationalizability

are outcome-equivalent when the restrictions correspond to the belief in a specific path of

play.4 In general, one could expect Selective Rationalizability to always yield a (possibly

empty) subset of the strongly-∆-rationalizable outcomes. A counterexample in the Dis-

cussion Section shows that, opposite to the example above, Selective Rationalizability can

2For instance, infinitely repeated games with a finite stage game, or games with uncountably many
available actions only at preterminal histories.

3The game has no simultaneous moves and no relevant ties. Therefore, as shown by Battigalli [3] first
and Chen and Micali [16], Heifetz and Perea [22], and Perea [30] later, extensive-form rationalizability (in
all its variants, including the one of this paper) delivers the unique backward induction outcome.

4The proof of this result is rather sophisticated and it is presented in [15], where the focus is on the algo-
rithms and not on their epistemic foundations. The proof cannot be performed if Selective Rationalizability
is formalized as a special case of Strong-∆-Rationalizability.
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yield non-empty predictions when Strong-∆-Rationalizability rejects the first-order belief

restrictions; a counterexample in the Appendix shows that Selective Rationalizability and

Strong-∆-Rationalizability can even yield non-empty disjoint predictions.

In Section 4, I clarify with an epistemic characterization the strategic reasoning hy-

potheses that motivate Selective Rationalizability. Selective Rationalizability captures the

behavior of rational players who restrict their beliefs about opponents’behavior for some

exogenous reason. Moreover, at the beginning of the game, players believe that opponents

are rational and have their own restrictions; that opponents believe that everyone else is ra-

tional and has the own restrictions; and so on. These beliefs are tentative because at some

information set of a player, the observed behavior of one opponent may be incompatible,

say, with the opponent being rational and, at the same time, having beliefs in her restricted

set. In this case, our player will drop the belief that the opponent has such restrictions,

rather than dropping the belief that the opponent is rational. More generally, players al-

ways keep all orders of belief in rationality that are per se compatible with the observed

behavior, and drop all orders of belief in the restrictions that are at odds with them. I call

this choice epistemic priority to rationality. Strong-∆-Rationalizability predicts instead

the behavior of players who assign epistemic priority to the beliefs in the restrictions, and

drop the incompatible beliefs in rationality. Thus, Selective Rationalizability captures a

version of Common Strong Belief in Rationality (Battigalli and Siniscalchi, [9]), whereas

Strong-∆-Rationalizability does not. However, both solution concepts capture all orders

of belief in rationality and in the restrictions along the induced paths, if non-empty. Since

the epistemic priority issue materializes only off-path, it is hard to grasp why Strong-∆-

Rationalizability and Selective Rationalizability can yield radically different predictions.

A deeper look into their epistemic characterizations and the Discussion Section will clarify

how the epistemic priority affects predictions.

In Section 5, I extend the analysis to finer epistemic priority orderings. Each player can

have multiple theories, say two, about opponents’behavior: a weaker theory and a stronger

theory (in the sense of more restrictive). Players reason according to everyone’s weaker

theory like under Selective Rationalizability. On top of this, as long as compatible with

strategic reasoning about the weaker theories, players reason according to the stronger

theories. So, when a player displays behavior which is not compatible with strategic

reasoning about both theories, the opponents keep believing that the player is reasoning

according to the weaker theories, and drop the belief that the opponent is reasoning

according to the stronger ones.5 When the two theories correspond to an equilibrium

5By non-monotonicity of strong belief, strategic reasoning about the stronger theories can potentially
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path and an equilibrium strategy profile, a surprising connection with strategic stability

(Kohlberg and Mertens [23]) can be established. In Section 5 I provide an example and I

lay the foundations of this bridge with an extended version of Selective Rationalizability,

which encompasses nested restrictions in an epistemic priority order.

Since players’theories of opponents’behavior are assumed to be commonly known, the

most natural application of Selective Rationalizability is probably explicit pre-play coor-

dination among players. A non-binding agreement is purely cheap talk; hence, if a player

displays behavior which is not compatible with rationality and belief in the agreement,

the opponents are, in my view, more likely to abandon the belief that the player believes

in the agreement, rather than the belief that the player is rational. Or, as in the example,

the source of belief restrictions can be a public announcement.6 Thus, Selective Rational-

izability seems to be an appropriate tool to combine strategic reasoning and equilibrium

play, especially when the motivation for equilibrium is explicit coordination. The applica-

tion of Selective Rationalizability to agreements and its relationship with equilibrium are

deeply investigated in [14]. In particular, the outcomes that Selective Rationalizability

uniquely pins down for some restrictions do not include and are not included in the set of

subgame perfect equilibrium outcomes. It is worth noting that the flexibility of Selective

Rationalizability, which allows to model incomplete coordination instead of coordination

on full strategy profiles, can be crucial to induce an outcome of the game (see [14] for

details).

The Appendix contains the proofs of the results and the formal analysis of the coun-

terexample mentioned above.

2 Preliminaries

Description of the game. Consider a finite dynamic game with complete information
and perfect recall Γ =

〈
I,X, (Ai, Hi, ui)i∈I

〉
where:7

• I is the finite set of players, and for any profile (Xi)i∈I and any ∅ 6= J ⊆ I, I write

XJ := ×j∈JXj , X := XI , X−i := XI\{i}, X−i,j := XI\{i,j};

lead to behavior that cannot be rationalized under the weaker theories. For this reason, the epistemic
priority issue arises.

6Or, extending Selective Rationalizability to games with incomplete information, the restrictions can
model public news about a state of nature. For instance, in a financial market, players can tentatively
believe that everyone is behaving according to the same public information about the value of an asset.
Yet, if a player does not behave accordingly, the opponents may believe that the player has different
information rather than deeming the player irrational.

7The notation for the game is mainly taken from Osborne and Rubinstein [28].
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• Ai is the finite set of actions of player i;

• X ⊆
⋃

t∈{0,...,T}

( ⋃
∅6=J⊆I

AJ

)t
is the finite set of histories, where T is the finite horizon,

and:

1. A
0
J := ∅ =: h0 ∈ X, i.e. X contains the initial empty history;

2. for every (ã1, ..., ãl) ∈ X and every t < l, (ã1, ..., ãt) ∈ X, and I write (ã1, ..., ãt) ≺
(ã1, ..., ãl);

3. there exist a correspondence J(x) : X ⇒ I and, for every i ∈ I, a non-empty-
valued correspondence Ãi : {x ∈ X : i ∈ J(x)}⇒ Ai such that for every x ∈ X,
(x, a) ∈ X if and only if a ∈ ×j∈J(x)Ãj(x);

4. Z := {x ∈ X : J(x) = ∅} is the set of terminal histories;

• Hi ⊂ 2X is the set of information sets of player i where:

1. it partitions {x ∈ X : i ∈ J(x)};

2. for every h ∈ Hi and x, x′ ∈ h, Ãi(x) = Ãi(x
′) =: Ai(h);

3. (perfect recall) for every h ∈ Hi and x, x′ ∈ h, x 6≺ x′; moreover, for every

(x̃, ã) � x with x̃ ∈ h̃ for some h̃ ∈ Hi, there exists (x̃′, ã′) � x′ such that x̃′ ∈ h̃
and ProjAi ã

′ =ProjAi ã;
8

• ui : Z → R is the payoff function of player i.

Perfect recall implies that each Hi inherits the partial order ≺ from X.

A strategy is a function si : Hi → Ai such that for every h ∈ Hi, si(h) ∈ Ai(h). The

set of all strategies is denoted by Si. A strategy profile clearly induces one and only one

terminal history; let ζ : S → Z denote the map that associates each strategy profile with

the induced terminal history. Fix h ∈ Hi. The set of strategy profiles compatible with h
is

S(h) := {s ∈ S : ∃x ∈ h, x ≺ ζ(s)} .

Then, for each J ⊂ I, the set of J’s strategy profiles that are compatible with h is

SJ(h) :=ProjSJS(h). Perfect recall implies that S(h) = Si(h)× S−i(h); S−i(h) represents

the partial observation by player i of opponents’moves up to h. To keep the strategic

8The first statement means that players cannot end up in the same information set twice, because
they remember having moved from it the first time. The second statement means that players always
distinguish two histories if they were able to distinguish two predecessors or if they follow two different
own moves.
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reasoning hypotheses simple, I further assume the "observable deviators" property (Fu-

denberg and Levine, [20]): for each i ∈ I and h ∈ Hi,

S(h) = ×j∈ISj(h).

Observable deviators is always satisfied by games with observable actions, where informa-

tion sets are singletons. I will clarify later the simplifying role of observable deviators and

how it can be removed.

For any profile of strategy sets SJ ⊂ SJ , let SJ(h) := SJ(h)∩SJ . The set of information
sets of i compatible with SJ is

Hi(SJ) :=
{
h ∈ Hi : SJ(h) 6= ∅

}
.

Beliefs. Players update their beliefs about opponents’strategies and beliefs as the game
unfolds. A Conditional Probability System (Renyi, [31]; henceforth CPS) assigns to each

information set a belief, conditional on the observed opponents’behavior. Here I define

CPS’s over the opponents’state space Ω−i := ×j 6=i(Sj × Tj), where epistemic type spaces
(Tj)j∈I will be defined in Section 4.

Definition 1 A CPS on (Ω−i, (T−i × S−i(h))h∈Hi), with Borel sigma algebra B(Ω−i),

is an array of probability measures (µi(·|h))h∈Hi on (Ω−i,B(Ω−i)) such that for each

h ∈ Hi, µi(T−i × S−i(h)|h) = 1, and (chain rule) for every E ∈ B(Ω−i) and C,D ∈
(T−i × S−i(h))h∈Hi, if E ⊆ D ⊆ C then µi(E|D)µi(D|C) = µi(E|C).

The set of all CPS’s of player i is denoted by ∆Hi(Ω−i).9 CPS’s on strategies are

defined by replacing Ω−i with S−i and (T−i × S−i(h))h∈Hi with (S−i(h))h∈Hi .

For any J ⊆ I\ {i} and SJ ⊆ SJ , I say that µi ∈ ∆Hi(S−i) strongly believes (Battigalli

and Siniscalchi, [9])10 SJ if µi(SJ × SI\(J∪{i})|h) = 1 for all h ∈ Hi(SJ). Thanks to

observable deviators, there always exists a CPS µi that strongly believes SJ and at the

same time any given SK ⊆ SK , K ⊆ I\(J ∪ {i}). This is because, under observable
deviators, if h ∈ Hi(SJ) ∩Hi(SK), then h ∈ Hi(SJ × SK).

Rationality. I consider players who reply rationally to their beliefs. By rationality I

mean that players, at every information set, choose an action that maximizes expected

9 If each Ωj is compact metrizable, endowing the set ∆(Ω−i) of Borel probability measures on Ω−i with
the topology of weak convergence and (∆(Ω−i))

Hi with the product topology, Battigalli and Siniscalchi
[7] proved that ∆Hi(Ω−i) is a compact metrizable subset of (∆(Ω−i))

Hi .
10Battigalli and Siniscalchi make a stricter use of the term strong belief, by referring only to Borel

subsets of Ω−i or S−i.
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utility given their belief about how the opponents will play and the expectation to choose

rationally again in the continuation of the game. By standard dynamic programming

arguments, this is equivalent to playing a sequential best reply to the CPS.

Definition 2 Fix µi ∈ ∆Hi(S−i). A strategy si ∈ Si is a sequential best reply to µi if for
each h ∈ Hi(si), si is a continuation best reply to µi(·|h), i.e. for all s̃i ∈ Si(h),∑

s−i∈S−i(h)

ui(ζ(si, s−i))µi(s−i|h) ≥
∑

s−i∈S−i(h)

ui(ζ(s̃i, s−i))µi(s−i|h).

The set of sequential best replies to µi is denoted by ρ(µi).

3 Selective Rationalizability

In dynamic games, forward induction reasoning about rationality has already been studied

under different assumptions. Pearce [29] defines Extensive-Form Rationalizability under

the hypothesis that conditional beliefs satisfy structural consistency (Kreps and Wilson

[24]), that is, that they can be generated by a prior product distribution on S−i. Battigalli

[2] assumes strategic independence, which (roughly speaking) requires players to maintain

the belief about each opponent as long as her individual behavior does not contradict it.

Battigalli and Siniscalchi [9] remove any assumption of independence and require players

to maintain each order of belief in rationality only until none of the opponents contradict

it. Then, they give to the resulting elimination procedure, Strong Rationalizability, an

epistemic characterization based on the notion of strong belief. For this reason, I adopt

Strong Rationalizability as a starting point, but I amend it by introducing independent

rationalization: players maintain an order of belief in rationality of an opponent as long as

her individual behavior does not contradict it. The motivation for this choice is two-fold.

First, it is coherent with the emphasis on the persistence of beliefs in rationality. Second,

it will allow to better compare Selective Rationalizability with equilibrium refinements,

as discussed later. As far as Strong Rationalizability is concerned, it is easy to observe

that independent rationalization is immaterial for the predicted outcomes, since it kicks

in at an information set only when it is not reached anymore by some player. However,

the whole analysis can be read without independent rationalization by simply substituting

j, which will indicate one opponent of player i, with −i, i.e. all opponents of i jointly
considered. Instead, I do not adopt strategic independence. This is not in contradiction

with independent rationalization: there can be correlations11 also among the choices of
11For instance, a player can believe that two opponents get the same signal of her own intentions,

regardless of their strategic sophistication. See also Aumann [1] and Brandenburger and Friedenberg [13]
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players with different levels of sophistication. However, assuming strategic independence

would complicate the notation but not alter the results.

For brevity and to distinguish it from the original notion of Strong Rationalizability, I

will call this version simply "Rationalizability".

Definition 3 (Rationalizability) Consider the following procedure.

(Step 0) For each i ∈ I, let S0
i = Si.

(Step n>0) For each i ∈ I and si ∈ Si, let si ∈ Sni if and only if there is µi ∈ ∆Hi(S−i)

such that:

R1 si ∈ ρ(µi);

R2 µi strongly believes S
q
j for all j 6= i and q < n.

Finally let S∞i = ∩n≥0S
n
i . The profiles in S

∞ are called rationalizable.

Note that R2 can always be satisfied thanks to observable deviators. Therefore, Ra-

tionalizability always yields a non-empty output. In absence of observable deviators, in

place of strong belief in Sqj for all j 6= i, a player can instead strongly believe that (i) all

opponents play a strategy in Sqj , (ii) all opponents but one play a strategy in S
q
j , and so

on. These hypotheses correspond to nested sets of opponents’strategy profiles, which can

be strongly believed at the same time regardless of the structure of information sets. In

another paper, Battigalli and Siniscalchi [8] adopt instead a weaker but more complicated

notion of independent rationalization ("independent best rationalization").

Selective Rationalizability refines Rationalizability in the following way. Each player

has an exogenous theory of opponents’behavior and refines the rationalizable first-order

beliefs according to this theory. The theory of player i is represented by a set of CPS’s∆i ⊆
∆Hi(S−i) over opponents’strategies. Players are aware of the theories of everyone else.

Therefore, they can also expect each opponent to refine her first-order beliefs according

to the own theory. This belief towards an opponent is maintained as long as the opponent

herself is not observed making a move that contradicts it. Moreover, players expect each

opponent to reason about everyone else in the same way. Also this belief is maintained as

long as the opponent herself does not make a move that contradicts it. And so on. Thus,

Selective Rationalizability is defined under independent rationalization. This allows better

comparability with the equilibrium literature. Without independent rationalization, if a

player deviates from the agreed-upon path, each opponent is free to believe that any

for motivation of spurious correlations among players’strategies.
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other opponent is not going to implement her threat. In this way, no coordination of

threats would be required. These issues are widely discussed in [14]. Note however that

independent rationalization is immaterial for the message of this paper and for the analysis

of all the examples: players are only two in all games except for the game of Section 5,

where independent rationalization plays no role anyway.

Definition 4 (Selective Rationalizability) Fix a profile (∆i)i∈I of compact subsets of

CPS’s. Let ((Smi )i∈I)
∞
m=0 denote the Rationalizability procedure. Consider the following

procedure.

(Step 0) For each i ∈ I, let S0
i,R∆ = S∞i .

(Step n>0) For each i ∈ I and si ∈ Si, let si ∈ Sni,R∆ if and only if there is µi ∈ ∆i

such that:

S1 si ∈ ρ(µi);

S2 µi strongly believes S
q
j,R∆ for all j 6= i and q < n;

S3 µi strongly believes S
q
j for all j 6= i and q ∈ N.

Finally, let S∞i,R∆ = ∩n≥0S
n
i,R∆. The profiles in S

∞
R∆ are called selectively-rationalizable.

Step 0 initializes Selective Rationalizability with the rationalizable strategy profiles.

This is only to stress that Selective Rationalizability refines Rationalizability: S3 already

implies that players strongly believe in the rationalizable strategies of each opponent, and

that the strategies surviving step 1 are rationalizable. Indeed, Selective Rationalizability

can also be seen as an "extension" of Rationalizability, in a unique elimination procedure

where the restrictions kick in once no more strategies can be eliminated otherwise.

In absence of observable deviators, S2 and S3 can be modified in the same fashion of

R2.

Selective Rationalizability can be simplified in different ways according to the struc-

ture of the restrictions. S3 can be eliminated by requiring strategies to be rationalizable

when first-order beliefs are not restricted at the non-rationalizable information sets. Let

((Ŝnj,R∆)j∈I)
∞
n=0 denote Selective Rationalizability redefined with si ∈ S∞i in place of S3.

Definition 5 I say that ∆i ⊆ ∆Hi(S−i) is maximal if for every µi ∈ ∆i and µ∗i with

µ∗i (S−i(z)|h) = µi(S−i(z)|h) for all h ∈ Hi(S∞) and z ∈ ζ(S∞), µ∗i ∈ ∆i.

Proposition 1 Suppose that for every i ∈ I, ∆i is maximal. Then, ζ(Ŝ∞R∆) = ζ(S∞R∆).
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Proposition 2 Fix compact ∆ = (∆i)i∈I with S∞R∆ 6= ∅. There exists a profile (∆∗i )i∈I of

compact maximal subsets of CPS’s such that ζ(S∞R∆∗) = ζ(S∞R∆).

Thus, the class of maximal restrictions suffi ces to yield all the possible behavioral

implications of Selective Rationalizability.12

Selective Rationalizability is an elimination procedure. So, a classical question is whether

it can be defined as a reduction procedure, i.e. a procedure where step n can be com-

puted based on step n − 1 only. Battigalli and Prestipino [6] identify a class of restric-

tions, "closed under composition", under which Strong-∆-Rationalizability can be defined

as a reduction procedure. For instance, think of restrictions ∆i where, for some map

η : h ∈ Hi 7→ η(h) ⊆ S−i(h), µi ∈ ∆i if and only if µi(η(h)|h) = 1 for all h ∈ Hi.13 Also for
Selective Rationalizability, if the restrictions are maximal and closed under composition,

S3 and S2 can be substituted by si ∈ Sn−1
i,R∆ and strong belief in just (Sn−1

j,R∆)j 6=i, in two-

players games (and R2 by si ∈ Sn−1
i and strong belief in (Sn−1

j )j 6=i for Rationalizability).

The same would hold in games with more than two players in absence of independent ratio-

nalization, but not under independent rationalization. The reason is the following. Call j, k

two opponents of player i, and fix h ∈ Hi with Sn−1
j,R∆(h) 6= ∅ = Sn−1

k,R∆(h) and Sn−2
k,R∆(h) 6= ∅.

A strategy si ∈ Sn−1
i,R∆(h) may be a sequential best reply to some µi that strongly believes

Sn−1
j,R∆ and Sn−1

k,R∆, but not to any µ
′
i that strongly believes S

n−1
j,R∆ and Sn−2

k,R∆, because it

may not be a continuation best reply to any belief over Sn−1
j,R∆(h)× Sn−2

k,R∆(h).

It is will be useful to compare Selective Rationalizability with Strong-∆-Rationalizability,

both in terms of epistemics (in Section 4) and in terms of predictions (in the Discussion

Section). Thus, I provide here the formal definition of Strong-∆-Rationalizability.

Definition 6 (Strong-∆-Rationalizability, Battigalli and Prestipino [6]) Fix a pro-
file ∆ = (∆i)i∈I of compact subsets of CPS’s. Consider the following procedure.

(Step 0) For each i ∈ I, let S0
i,∆ = Si;

(Step n>0) For each i ∈ I and si ∈ Si, let si ∈ Sni,∆ if and only if there is µi ∈ ∆i

such that:

D1 si ∈ ρ(µi);

D2 µi strongly believes S
q
−i,∆ for all q < n.

12 In [14] I identify a class of agreements that suffi ces to yield all the possible behavioral implications
of agreements. This class of agreements gives rise to restrictions that are equivalent to the corresponding
maximal restrictions. The same applies to the agreements that correspond to a Self-Enforcing Set ([14]).
13The restrictions generated by agreements in [14] fall in this class.
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Finally let S∞i,∆ = ∩n≥0S
n
i,∆. The profiles in S

∞
∆ are called strongly-∆-rationalizable.

Note that, if D2 is modified like S2 to assume independent rationalization (or vice

versa), Selective Rationalizability can be seen as a special case of Strong-∆-Rationalizability,

since S3 is a constant restriction on CPS’s which could be incorporated in a compact ∆i.

However, to compare the two under the same restrictions and to better analyze the epis-

temic priority issues, Selective Rationalizability will be kept as a stand-alone solution

concept, isolating the exogenous restrictions.

Selective Rationalizability and Strong-∆-Rationalizability, differently than Rational-

izability, can yield the empty set. This happens when at some step there is no µi ∈ ∆i

that satisfies S2 and S3, or D2. This means that the restrictions are not compatible with

strategic reasoning about rationality and the restrictions themselves.

To see all three procedures formally at work and yield non-empty predictions, consult

the example in the Appendix.

4 Epistemic analysis

I adopt the epistemic framework of Battigalli and Prestipino [6], dropping the incomplete-

ness of information dimension.14 Players’ beliefs over strategies of all orders are given

an implicit representation through a compact, complete, and continuous type structure

(Ωi, Ti, gi)i∈I ,15 where for every i ∈ I, Ωi = Si × Ti, Ti is a compact metrizable space of
epistemic types, and gi : ti ∈ Ti 7→ (gi,h(ti))h∈Hi ∈ ∆Hi(Ω−i) is a continuous and onto

belief map. I will call "events" the elements of the Borel sigma-algebras on each Ωi, and

of the product sigma algebras on the Cartesian spaces ΩJ := ×i∈J⊆IΩi.
The first-order belief map of player i, fi : ti ∈ Ti 7→ (fi,h(ti))h∈Hi ∈ ∆Hi(S−i), is

defined as fi,h(ti) =MargS−igi,h(ti) for all i ∈ I and h ∈ Hi, so it inherits continuity from
gi. The event in Ωi where the restrictions of player i hold is

[∆i] := {(si, ti) ∈ Ωi : fi(ti) ∈ ∆i} ;

14Note that, within the same framework, I define events in a slightly different way: a player’s beliefs
are not extended over the own strategy and type, and events that restrict only her strategies and types
are defined in her own strategy-type space. This makes it easier to deal with independent rationalization.
However, given the absence of major conceptual differences, the reader is invited to consult [6] for interesting
and detailed explanations about this framework.
15Friedenberg [18] proves that in static games, such a type structure represents all hierarchies of beliefs

about strategies. Although this result has not been formally extended to dynamic games, to the best of
my knowledge, no counterexample has been found. However, the canonical type structure for CPS’s of
Battigalli and Siniscalchi [7] is compact, complete, and continuous.
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[∆i] is compact because ∆i is compact and fi is continuous. The cartesian set where the

restrictions of all players hold is [∆] := ×i∈I [∆i].

From now on, fix a Cartesian (across players) event E = ×j∈IEj ⊆ Ω. The closed16

event where player i believes in E−i at an information set h ∈ Hi is defined as

Bi,h(E−i) := {(si, ti) ∈ Ωi : gi,h(ti)(E−i) = 1}

The closedness of Bi,h(E−i) implies the closedness of all the following belief events. If

E = ×j∈I(T̂j ×Sj) for some (T̂j)j∈I , E is an epistemic event and can be believed at every

information set:

Bi(E−i) : = ∩h∈HiBi,h(E−i);

B(E) : = ×j∈IBj(E−j).

An epistemic event E is transparent when it holds and is commonly believed at every

information set:

B0(E) : = E,

Bn+1(E) : = B(Bn(E)),

B∗(E) : = ∩n≥0B
n(E)).

If E is not an epistemic event, it could be impossible for player i to believe in E−i at

some information set h ∈ Hi, because ProjS−iE−i ∩ S−i(h) = ∅. However, player i may
want to believe in E−i as long as not contradicted by observation. The event where this

persistency of the belief holds is:

SBi(E−i) :=
⋂

h∈Hi:ProjS−iE−i∩S−i(h)6=∅
Bi,h(E−i).

The "strong belief" operator SBi is non-monotonic: if E−i ⊂ F−i, it needs not be the

case that SBi(E−i) ⊂ SBi(F−i). This will explain why Strong-∆-Rationalizability is

not a refinement of Strong Rationalizability, and Selective Rationalizability, for given

restrictions, is not a refinement of Strong-∆-Rationalizability.

Suppose now that, for each opponent j, player i believes that the true pair (sj , tj) is

in Ej , as long as not contradicted by observation. Then I say that i strongly believes in

16Battigalli and Prestipino [6] provide an argument for the closedness of Bi,h(E) based on the Portmanteu
theorem. A direct proof based on the Prokhorov metric is available upon request.
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Ej for all j 6= i. Formally, I define the operator

SBi(E−i) := ∩j 6=iSBi(Ej × Ω−j,i),

and given the independent rationalization hypothesis of the paper, from now on I will

refer to this operator and not to SBi as the "strong belief " operator. Note that (si, ti) ∈
SBi(E−i) if and only if, for each j 6= i, gi(ti) strongly believes in Ej , i.e. gi,h(ti)(Ej ×
Ω−i,j) = 1 for all h ∈ Hi with ProjSjEj ∩ Sj(h) 6= ∅.

Recalling that for a profile (Xj)j∈I , X = ×j∈IXi, define inductively:

CSBi(E) : = Ei ∩ SBi(E−i),

CSB0
i (E) : = Ei,

CSBn+1
i (E) : = CSBi(CSB

n(E)),

CSB∞i (E) : = ∩n∈NCSBni (E).

The event CSB∞(E) is "correct and common strong belief in E."

First-order and higher-order beliefs are epistemic events, so they have no bite in terms

of behavior and predictions about opponents’behavior without rationality and beliefs in

rationality. The "rationality of player i" event is denoted by

Ri := {(si, t) ∈ Ωi : si ∈ ρ(fi(ti))} ,

and it is closed whenever ρ◦fi, as in finite games, is upper-hemicontinuous. The rationality
event is R := ×i∈IRi.

Here I consider rational players who keep, as the game unfolds, the highest order of

belief in rationality of each opponent that is consistent with her observed behavior. Players

further refine their first-order beliefs through the own theories. All this is captured by the

event [∆] ∩ CSB∞(R). The event "rationality and common strong belief in rationality",

CSB∞(R), characterizes Rationalizability.17 Furthermore, players believe, as long as not

contradicted by observation, that each opponent: (1) reasons in the same way; (2) believes,

as long as not contradicted by observation, that everyone else reasons in the same way;

and so on. The n-th order of this belief is captured by the event CSBn([∆]∩CSB∞(R)),

and it characterizes the n+1-th step of Selective Rationalizability. The event CSB∞([∆]∩
CSB∞(R)) captures all the steps of reasoning at once.

17Battigalli and Siniscalchi [9] characterize Strong Rationalizability with rationality and common strong
belief in rationality, where strong belief is meant without independent rationalization.
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Theorem 1 Fix a profile ∆ = (∆i)i∈I of compact subsets of CPS’s. Then, for every

n ≥ 0,

Sn+1
R∆ = ProjSCSB

n([∆] ∩ CSB∞(R)),

and

S∞R∆ = ProjSCSB
∞([∆] ∩ CSB∞(R)).

Therefore, Selective Rationalizability delivers the behavioral implications of rationality,

common strong belief in rationality, first-order belief restrictions, and common strong

belief in their conjunction. That is, step by step:

1. each player is rational and her beliefs are compatible with common strong belief in

rationality and with the first-order belief restrictions;

2. 1 holds and each player believes that 1 holds for each opponent as long as not

contradicted by observation;

3. 1 and 2 hold and each player believes that 1 and 2 hold for each opponent as long

as not contradicted by observation;

4. ...

A deeper understanding of Selective Rationalizability and epistemic priority requires

a closer look at the event that characterizes Selective Rationalizability and a compar-

ison with the characterization of Strong-∆-Rationalizability.proposed by Battigalli and

Prestipino [6]. Since independent rationalization is immaterial for this analysis, to sim-

plify exposition I assume that there are only two players.

A simple preliminary observation: In the event CSB∞(R ∩ B∗([∆])) ⊂ B∗([∆]) that

characterizes Strong-∆-Rationalizability, players keep at every information set every order

of belief in the restrictions; in the event CSB∞([∆] ∩ CSB∞(R)) ⊂ CSB∞(R) that

characterizes Selective Rationalizability players keep at every information set the highest

order of strong belief in rationality which is per se compatible with the observed behavior.18

But what about the beliefs in the restrictions under CSB∞([∆] ∩ CSB∞(R)) and the

beliefs in rationality under CSB∞(R ∩B∗([∆]))? Let E = ×i∈IEi := [∆] ∩ CSB∞(R).

Fix i ∈ I and h ∈ Hi(ProjSCSB
∞(E)). Consider the belief of player i at h in

the restrictions of −i. That is, consider the event Bi,h([∆−i]). Does it hold under

18Note that in both events, the own restrictions are never dropped: CSB∞(R ∩ B∗([∆])) ⊂ [∆] ⊃
CSB([∆] ∩ CSB∞(R)). If they are at odds with the behavioral implications of opponents’ strategic
reasoning, the events are empty. That is, the theories of opponents’behavior represented by the restrictions
are rejected by strategic reasoning.
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CSB∞i (E)? That is, does it hold that CSB∞i (E) ⊂ Bi,h([∆−i])? Fix (si, ti) ∈ SBi(E−i) ⊃
CSB∞i (E). Since h ∈ Hi(ProjS−iE), then 1 = gi,h(ti)(E−i) ≤ gi,h(ti)([∆−i]). Thus,

(si, ti) ∈ Bi,h([∆−i]). The first-order belief in the opponent’s restrictions holds at all

selectively rationalizable information sets.

Now, let B̃−i([∆i]) := ∩h′∈H−i(ProjSCSB∞(E))B−i,h′([∆i]). Consider the belief of player

i at h in the belief of −i at all h′ ∈ H−i(ProjSCSB∞(E)) in i’s restrictions. That is,

consider the event Bi,h(B̃−i([∆i])). Does it hold that CSB∞i (E) ⊂ Bi,h(B̃−i([∆i]))? Fix

(si, ti) ∈ SBi(CSB−i(E)) ⊃ CSB∞i (E). As shown for i, SB−i(Ei) ⊆ B̃−i([∆i]). Since

h ∈ Hi(ProjS−iCSB−i(E)), then 1 = gi,h(ti)(CSB−i(E)) ≤ gi,h(ti)(B̃−i([∆i])). Thus,

(si, ti) ∈ Bi,h(B̃−i([∆i])).

Proceeding by induction, one shows that at every selectively rationalizable informa-

tion sets, there is common belief that the restrictions hold at all selectively rationalizable

information sets themselves. A similar argument shows that at every information set com-

patible with CSB∞(R∩B∗([∆])) (i.e. with Strong-∆-Rationalizability), there is common

belief in rationality at all the strongly-∆-rationalizable information sets themselves.

Put down in this way, it seems that the epistemic priority issue does not actually

arise at the relevant information sets, so that Selective Rationalizability and Strong-∆-

Rationalizability, when both non-empty, should predict the same outcomes. This is false.

Common belief in rationality and in the restrictions holds along different sets of paths,

depending on which off-path beliefs sustain them: common strong belief in rationality

or transparency of the restrictions. This phenomenon is illustrated concretely in the

Discussion Section.

Since an order of belief in the restrictions is immaterial without the corresponding

order of belief in rationality, Strong-∆-Rationalizability can also be characterized with-

out requiring transparency of the first-order belief restrictions at all information sets.

That is, Strong-∆-Rationalizability is also characterized by the event CSB∞(R ∩ [∆])

(see Battigalli and Prestipino [6]),19 which puts rationality and the restrictions on the

same epistemic priority level. To complete the picture, one may wonder whether the event

CSB∞(R) ∩ B∗([∆]), which does not assign epistemic priority to rationality or the re-

strictions either, also characterizes one of the two procedures. The answer is negative.

19 In games with more than 2 players, since Strong-∆-Rationalizability is defined without independent
rationalization, CSBi has to be redefined with SBi in place of SBi.
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Consider the following game.

Ann

L↙ ↘M

Bob Bob

N ↙ ↘ O P ↙ ↘ Q

2, 2 0, 0 0, 0 1, 1

Under the restriction that Ann believes that Bob plays N , both Strong-∆-Rationalizability

and Selective Rationalizability yield L for Ann and N.Q for Bob. Yet, CSB∞(R)∩B∗([∆])

is empty, because it requires Bob to believe at (M) both that Ann is rational and that her

restriction holds, and the two things are clearly at odds. This is because restrictions and

rationality are not under the same strong belief operator, so Bob is not allowed to drop

the belief in their conjunction.20

To conclude this section, it is worth to stress which assumptions on the game and on

the type structure are crucial for the characterization result. Completeness, compactness

and continuity of the type structure play a crucial role in the proof of Theorem 1. Finite-

ness of the game, instead, is only instrumental for the existence of such type structure and

the upper-hemicontinuity of the best response correspondences, which guarantees closed-

ness of the rationality event. A complete, compact and continuous type structure exists

not only for finite games, but also for the class of "simple dynamic games" introduced by

Battigalli [4], i.e. all games where the sets of available actions are finite at all histories

(such as infinitely repeated games with a finite stage game), except possibly for preter-

minal histories where they can be any compact metric space. Indeed, the canonical type

structure for CPS’s constructed by Battigalli and Siniscalchi [7] exists in all such games.

Under continuity of the payoff functions, Battigalli and Tebaldi [11] extend the epistemic

characterization of Strong-∆-Rationalizability to simple dynamic games. The same could

be done here for Selective Rationalizability. The proof of Theorem 1 (and 2) can be easily

adapted to simple dynamic games by using Lemma 3 of Battigalli and Tebaldi [11] to

claim the existence of CPS’s over strategies and types with the desired marginal CPS over

strategies. On the other hand, finiteness allows to provide a self-contained proof of the

main results, so it is mantained.

20Friedenberg [19] obtains predictions for a two-players bargaining game by intersecting common strong
belief in rationality with the event "on path strategic certainty" and common strong belief in it. On path
strategic certainty selects the states where players have correct beliefs about the path of play induced by
their strategies. Thus, it does not fix beliefs on a particular path and it is not an epistemic event. So,
at (M), on path strategic certainty does not force Bob to keep the belief that Ann believed in N and no
contradiction with the belief in the rationality of Ann arises.
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5 Finer epistemic priority orderings

Consider the following game, where after I Cleo chooses the matrix.

A\B W E

Cleo – O −→ N 2 2 3.6 0 0 0

↓ I S 0 0 0 2 2 4

M1 L R M2 L R

U 1 1 3.3 0 0 3.3 U 0 0 0 1 1 8.1

D 0 0 3.3 1 1 3.9 D 1 1 8.1 0 0 0

All strategies are rationalizable. Suppose that players agree on the subgame perfect equi-

librium (S.U,E.L,O.M1). Consider the corresponding first-order-belief restrictions for all

players. Then, Selective Rationalizability yields the desired outcome (O, (S,E)). Upon

observing I, Ann and Bob drop the belief that Cleo believes in (S,E) and (U,L). In

particular, they can believe that Cleo did not believe in (S,E) and could rationally play

M1 after I. In this case, they have the incentive to play U against L and vice versa.

Suppose now instead that Ann and Bob have an alternative theory to rationalize

Cleo’s move I. They believe that Cleo believed that they would have complied with the

agreement on path (i.e. that they would have played (S,E) after O), but does not believe

that they will implement the threat off-path (i.e. that they will play (U,L) after I). If

Ann and Bob rationalize I under this light, they expect Cleo to pickM2, because (I,M1)

is not rational given the belief in (S,E). Under M2, Ann and Bob cannot coordinate on

(U,L).

Suppose now that players agree on the subgame perfect equilibrium (N.U,W.L,O.M1),

and that upon observing I, they believe that Cleo believed in (N,W ), but does not believe

in (U,L). This time, this does not exclude that Cleo would play M1, hoping for (D,R).

Thus, Ann may play U when she believes that Bob will play L, and vice versa. So,

the restrictions are compatible with this kind of strategic reasoning and yield the desired

outcome (O, (N,W )) as unique prediction.21

Two important questions arise now. First: Does the exclusion of (O, (S,E)) and not of

(O, (N,W )) correspond to some existing equilibrium refinement? Note that both outcomes

are induced by a subgame perfect equilibrium in (extensive-form/strongly) rationalizable

strategies. Second, and most importantly: Can this kind of strategic reasoning be modeled

21Note a seemingly paradoxical but quite customary consequence of forward induction reasoning: to
convince Cleo to play O, Ann and Bob must promise to play (N,W ), which gives Cleo a payoff of 3.6,
instead of (S,E), which yields Cleo a payoff of 4.
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as an epistemic priority order between different theories of opponents’behavior, and be

captured by a solution concept analogous to Selective Rationalizability?

The answer to the first question is yes: strategic stability à la Kohlberg and Mertens

[23].22

Definition 7 (Kohlberg and Mertens [23]) For each i ∈ I, let Σi be the set of mixed

strategies of i, i.e. the set of probability distributions over Si. A closed set of mixed

equilibria Σ̂ ⊆ Σ is stable if it is minimal with respect to the following property: for any

ε > 0, there exists δ0 > 0 such that for any completely mixed (σi)i∈I ∈ Σ and (δi)i∈I with

0 < δi < δ0 for all i ∈ I, the perturbed game where for every i ∈ I, every si ∈ Si is

substituted by (1− δi)si + δiσi has a mixed equilibrium ε-close to Σ̂.

Consider first a set of two mixed equilibria Σ̂ = {(σi)i∈I , (σ′i)i∈I} inducing outcome
(O, (N,W )):

σC(O) = 1, σA(N.D) = σB(W.R) =
1√
2
, σA(N.U) = σB(W.L) = 1− 1√

2
;

σ′C(O) = 1, σ′A(N.D) = σ′B(W.R) =
2

3
, σ′A(N.U) = σ′B(W.L) =

1

3
.

Under σ, Cleo is actually indifferent between O and I.M1, while under σ′, she is indifferent

between O and I.M2. I show that Σ̂ is stable. Fix any completely mixed (σ̃i)i∈I ∈
Σ, an arbitrarily small δ0, and (δi)i∈I with 0 < δi < δ0 for all i ∈ I. Consider the

game perturbed as in Definition 7 and indicate with tilde the perturbed strategies. If

σ̃A(I.M2) > σ̃A(I.M1) (resp., σ̃A(I.M2) < σ̃A(I.M1)), assign small probability to Ĩ .M1

(resp., Ĩ .M2) and the complementary probability to Õ in such a way that, overall, I.M1

and I.M2 are played with equal probability. Then, after I, Ann and Bob are indifferent

between their actions regardless of the belief about the action of the other. Thus, since all

strategies are perturbed in the same way, Ann and Bob are indifferent between Ñ.U and

Ñ.D, and between W̃.L and W̃.R. Assign probability to these strategies in such a way that

Cleo is indifferent between Õ and Ĩ .M1 (resp., Ĩ .M2).23 For any ε > 0, by picking a small

enough δ0, we have an equilibrium in the perturbed game where the induced probabilities

22Strategic stability has been chosen over Forward Induction equilibria of Govindan and Wilson [21] or
Man [26] because the latter do not refine extensive-form rationalizability, hence do not capture all orders
of strong belief in rationality. Strategic stability, instead, refines iterated admissibility, which in generic
games corresponds to extensive-form rationalizability (Shimoji, [32]).
23Since the perturbed strategies assign positive probability to S and E, the expected payoff of Cleo after

O is lower than 3.6. The payoff of Cleo after I.M1 (resp., I.M2) can be lowered by the same amount
by assigning probabilities to Ñ.U and Ñ.D and W̃.L and W̃.R in such a way that N.D and W.R have
probability lower than 1/

√
2 (resp., higher than 2/3). This can be done with probabilities of Ñ.D and

W̃.R close to 1/
√

2 (resp., 2/3).
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over the original strategies are ε-close to those assigned by σ (resp., σ′).24

Instead, there is no stable set of equilibria inducing (O, (S,E)): any perturbation of O

that gives negligeable probability to I.M1 with respect to I.M2 cannot be compensated

by giving positive probability to Ĩ .M1, because Ĩ .M1 cannot be optimal under belief in

(S,E) (albeit perturbed). Thus, Ann and Bob must play close to an equilibrium of matrix

M2, which cannot discourage a deviation to Ĩ .M2.

This is not the first time that a connection between rationalizability and equilib-

rium refinements à la strategic stability is established. In signaling games, Battigalli and

Siniscalchi [10] show that when an equilibrium outcome satisfies the Iterated Intuitive

Criterion (Cho and Kreps [17]), Strong-∆-Rationalizability yields a non-empty set for the

corresponding restrictions (i.e. the belief that opponents play compatibly with the path).

In [14] I prove that Selective Rationalizability yields the empty set for a class of non

strategically stable equilibrium paths: those that can be upset by a convincing deviation

(Osborne [27]). So, one could think that strategic stability simply requires non-emptiness

of Selective Rationalizability/Strong-∆-Rationalizability25 under the belief in the equilib-

rium path. This is false. In the example above, both procedures yield a non-empty set

under the belief in (O, (S,E)).26 Thus, there is no incompatibility between the belief in

the path and the rationalization of deviations based on it (unlike for equilibrium paths

that can be upset by a convincing deviation). The problem is the incompatibility be-

tween the rationalization of deviations based on the belief in the path and the threats

that sustain the path in equilibrium. This calls for a rationalizability procedure that takes

both into account. The remainder of this section is dedicated to construct and character-

ize epistemically such rationalizability procedure. The scope is expanded to an arbitrary

number of theories of opponents’behavior, of an arbitrary nature (i.e. not just path versus

off-path behavior). Without the ambition to perfectly characterize strategic stability, the

application of this rationalizability procedure to equilibrium path and profile captures in a

general and transparent way the spirit of the strategic reasoning stories in the background

of strategic stability and related refinements.

When players have competing theories of opponents’behavior, the first issue to solve is

the epistemic priority ordering between them. Suppose, for instance, that each player has

two overlapping theories. Thus, some predictions may be consistent with both theories,

and both theories can be used at the same time to refine beliefs. At the beginning of the
24The set is minimal because, depending on σ̃A(I.M2) ≶ σ̃A(I.M1), only one of the two equilibria can

be approximated.
25The two conditions are equivalent: see Proposition 3.
26S1

R∆ = S1
∆ = {S.U, S.D} × {E.L,E.R} × {O, I.M2} = S∞R∆ = S∞∆ .
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game, each player believes that opponents refine beliefs according to their theories. Yet, as

the game unfolds, some player may display behavior which cannot be optimal under both

her theories at the same time. Then, for the opponents, the epistemic priority issue arises.

Which theory is the player following? Suppose that everyone solves this dilemma in favour

of the same theory. Then, this theory receives epistemic priority, and strategic reasoning

about the other theory alone kicks in only at information sets that are not compatible

with strategic reasoning about the first theory. Thus, when the theories are compatible

with strategic reasoning, strategic reasoning about the second theory alone is immaterial

for the induced outcomes. Hence, the problem is simplified by taking as second theory the

overlap with the first.

Definition 8 A chain of restrictions is a finite sequence ((∆1
i )i∈I , ..., (∆

k
i )i∈I) such that

for each i ∈ I, ∆k
i ⊂ ... ⊂ ∆1

i ⊂ ∆Hi(S−i), and for each l ≤ k, ∆l
i is compact.

Note that, in the equilibrium path —equilibrium profile motivating case, under this

formalization the equilibrium path is the primary theory of opponents’ behavior. The

equilibrium profile yields a more restrictive, secondary theory. In the intuitive narration,

players "resort" to the path theory when a deviator displays disbelief in the whole equilib-

rium profile. But since believing in the equilibrium profile actually implies believing in its

path, the belief that the deviator believes in the path holds all along, and receives higher

epistemic priority. Attributing the highest epistemic priority to the beliefs in rationality,

the theories are then considered in their epistemic priority order according to the following

extension of Selective Rationalizability.

Definition 9 Fix a chain of restrictions ((∆1
i )i∈I , ..., (∆

k
i )i∈I). Let ((Sqi,0)i∈I)

∞
q=0 denote

Rationalizability. Fix 1 ≤ l ≤ k and for each p = 0, ..., l − 1, suppose that ((Sqi,p)i∈I)
∞
q=0

has already been defined. Consider now the following procedure.

(Step 0) For each i ∈ I, let S0
i,l = S∞i,l−1.

(Step n) For each i ∈ I and si ∈ Si, let si ∈ Sni,l if and only if there exists µi ∈ ∆i

such that:

E1(l) si ∈ ρ(µi);

E2(l) µi strongly believes S
q
j,l for all j 6= i and q < n;

E3(l) µi strongly believes S
q
j,p for all p < l, j 6= i, and q ∈ N.

For every i ∈ I, let S∞i,l := ∩q∈NSqi,l.
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Similarly to Selective Rationalizability, the procedure starts with Rationalizability.

Then, the first-order belief restrictions are gradually introduced, following the descending

epistemic priority order, when strategic reasoning about the weaker theories does not

refine the strategy sets anymore. E3(l) guarantees that strategic reasoning according to the

weaker theories is maintained. This is reflected in the following epistemic characterization.

Theorem 2 Fix a chain of restrictions ((∆1
i )i∈I , ..., (∆

k
i )i∈I). For each n ∈ N ∪ {∞}, it

holds

Snk = ProjSCSB
n−1([∆k] ∩ CSB∞([∆k−1] ∩ ...CSB∞(

[
∆1
]
∩ CSB∞(R)))).

Let CSB0 := CSB∞(R) and, for each l = 1, ..., k, let CSBl := CSB∞(
[
∆l
]
∩CSBl−1).

Note that CSBk ⊆ CSB∞(R): the highest epistemic priority is still assigned to rationality.

As long as compatible with the beliefs in rationality and with the observed behavior,

players believe in the first-order belief restrictions∆1 at every order. As long as compatible

with this and with the observed behavior, players believe in the restrictions ∆2 at every

order. And so on. The own restrictions can never be dropped: if for some i ∈ I, l ≤ k

and n ≥ 0 the restrictions ∆l
i are not compatible with the behavioral implications of

CSBn−1
−i (

[
∆l
]
∩ CSBl−1), the event CSBni (

[
∆l
]
∩ CSBl−1) is empty.

Back to the equilibrium path —equilibrium profile case, if instead of considering the

belief in the equilibrium path one considers the belief in the path but not in the equilibrium

threats, an alternative theory with respect to the belief in the whole equilibrium profile is

obtained. Then, the belief in the equilibrium profile by a player is here considered by the

opponents infinitely more likely (Blume et al. [12], Lo [25]) than the belief in the path

but not in the threats,27 because the former is believed to hold at the beginning of the

game, and the latter only after a deviation that contradicts the former. Counterintuitively,

the infinitely more likely order seems inverted with respect to the epistemic priority one.

Note, though, that the belief in the path but not in the threats is not the original primary

theory ∆1
i that represents belief in the path, but the difference ∆1

i \∆2
i , where ∆2

i is the

secondary theory that represents belief in the whole equilibrium profile. However, there

seems to be a tight connection between the notion of epistemic priority and the notion of

infinitely more likely. Exploring this connection is an avenue for future research.

27The notion of Infinitely More Likely applies to Lexicographic Probability Systems (Blume et al. [12]),
but a CPS can be transformed into a Lexicographic Probability System. Siniscalchi [33] uses this connection,
but first introduces a notion of "at least as plausible as" between theories of opponents’ behavior that
applies directly to CPS’s.
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6 Discussion

To discuss some issues related to epistemic priority, consider the following game.

Ann

A↙ ↘ B

2, 2 Bob

I ↙ ↘ O

Ann\Bob L C R 3, 3

U 0, 1 0, 0 1, 0

M 1, 0 0, 4 0, 0

D 0, 0 1, 0 1, 4

One could expect that if the restrictions are not compatible with strategic reasoning

when the epistemic priority is on them, a fortiori they will not when the epistemic priority

is on rationality. This is false. Selective rationalizability can yield a non-empty set when

Strong-∆-Rationalizability does not. Suppose that Bob promises to play O and Ann

threatens not to play D otherwise. Fix the corresponding restrictions.

At step 1 of Strong-∆-Rationalizability, Ann eliminates A and Bob eliminates I.L and

I.R. At step 2, Ann eliminates B.U and B.M . At step 3, Bob obtains the empty set: he

cannot believe that Ann will not play D after I.

At step 1 of Rationalizability, Bob eliminates I.L. At step 2, Ann eliminates B.M .

At step 3, Bob eliminates I.C. All other strategies are rationalizable.28 At step 1 of

Selective Rationalizability, Ann further eliminates A and Bob further eliminates I.R. The

remaining strategies, B.U and B.D for Ann and O for Bob, are selectively rationalizable.

The algorithmic reason why Selective Rationalizability yields a non-empty set while

Strong-∆-Rationalizability does not is that S3 and the restrictions prevent Bob from

reaching (B, I) already at the first step of Selective Rationalizability, while Bob still reaches

(B, I) after the first step of Strong-∆-Rationalizability. In this way, at the second step and

at (B, I), D2 becomes stricter than S2 (which is vacuous), and forces Ann to believe that

Bob will play C after I. The epistemic reason is that, at (B, I), Ann is forced to believe

that Bob is rational and has the restriction under Strong-∆-Rationalizability (so that he

would play C), but not under Selective Rationalizability.29 Keeping the highest possible

28The tie between D and U against R is only to keep the game small; it can be eliminated by introducing
another action of Bob in the subgame.
29 In abstract terms, this is an effect of the non-monotonicity of strong belief: strong belief in the event

"Bob is rational, has the restriction, and strongly believes that Ann is rational and strongly believes that
he is rational" is less restrictive for Ann’s beliefs at (B, I) than strong belief in the larger event "Bob is
rational and has the restriction".
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order of belief in rationality may require to drop an order of belief in the restrictions, even

if it is compatible with the same order of belief in rationality at the information set. At

(B, I), if Ann believes in rationality up to the third order, she cannot believe that Bob

has the restriction, although this is compatible with just believing in Bob’s rationality.

Under Selective Rationalizability, S3 imposes from step 1 all orders of belief in rationality

that are per se compatible with the observed behavior. In this way, through S2, any

order of belief in the restrictions is maintained only as long as compatible with them (see

Section 4). Under Strong-∆-Rationalizability, the n-th order belief in rationality and in

the restrictions is always maintained at an information set that can be reached if this

belief is correct. But then, as it happens to Ann at (B, I), beliefs may fall in a subset of

n-th order belief in rationality where some higher order of belief in rationality never holds.

However, as shown in Section 4, when Selective Rationalizability or Strong-∆-Rationalizability

yields a non-empty set, it captures all orders of belief in rationality and in the restrictions

along the induced paths. Then, one could expect Selective Rationalizability and Strong-

∆-Rationalizability to yield the same paths when they both yield a non-empty set. This

is, again, false. The game after (B, I) and the restrictions are modified in the Appendix,

and the two procedures are formally shown to yield non-empty, disjoint predictions. At

(B), when Bob believes that Ann would interpret his move I by giving epistemic priority

to the beliefs in the restrictions, he prefers to play I instead of O. But then, anticipat-

ing this, Ann plays A. When instead Bob believes that Ann would interpret I by giving

epistemic priority to rationality, he prefers O over I, and then Ann plays B. So, the

selectively rationalizable information sets are the root and (B), and all orders of belief in

rationality and in the restrictions at the root and (B) hold. Although common belief in

rationality and in the restriction can hold along the (B,O) path, the path is not sustained

by off-the-path beliefs under epistemic priority to the restrictions.

In games with observable actions, there are very interesting restrictions under which

Selective Rationalizability and Strong-∆-Rationalizability predict the same outcomes (or

both deliver the empty set). Such restrictions correspond to the belief in a path of play.

That is, players strongly believe that each opponent plans to remain on-path.

Proposition 3 (Catonini [15]) Fix a game with observable actions and z ∈ Z. For each
i ∈ I, let ∆i be the set of all µi that strongly believe (Sj(z))j 6=i. Then ζ(S∞R∆) = ζ(S∞∆ ).

The proof of this result is rather sophisticated, and it is provided in [15].30

30The result is formally proved without independent rationalization, but it is possible to prove that
independent rationalization is immaterial under path restrictions.
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7 Appendix

7.1 A game

In this game, Selective Rationalizability and Strong-∆-Rationalizability yield non-empty,

yet disjoint predictions for the same first-order belief restrictions.

Ann

A↙ ↘ B

(4, 6) Bob

I ↙ ↘ O

Ann\Bob W N S E (5, 5)

T (3, 6) (0, 7) (0, 0) (0, 0)

U (0, 7) (3, 6) (0, 0) (0, 0)

M (2, 1) (2, 1) (0, 0) (0, 0)

D (0, 0) (0, 6) (1, 0) (0, 0)

B (0, 0) (0, 0) (0, 6) (1, 0)

First-order-beliefs restrictions:
∆A := ∆HA(SB); ∆B := {µB ∈ ∆HB (SA) : ∀h ∈ HB, µB(B.T |h) = µB(B.U |h) = 0}.

Rationalizability:
S1
A = SA, S

1
B = {I.W, I.N, I.S,O} ;

S2
A = {A,B.T,B.U,B.M,B.D} , S2

B = S1
B;

S3
A = S2

A, S
3
B = {I.W, I.N,O} ;

S4
A = {A,B.T,B.U,B.M} , S4

B = S3
B;

S5
A = S4

A = S∞A , S
5
B = S4

B = S∞B .

Selective Rationalizability:
S1
A,R∆ = {A,B.T,B.U,B.M} , S1

B,R∆ = {O} ;

S2
A,R∆ = {B.T,B.U,B.M} , S2

B,R∆ = S1
B,R∆;

S3
A,R∆ = S2

A,R∆ = S∞A,R∆, S
3
B,R∆ = S2

B,R∆ = S∞B,R∆.

Strong-∆-Rationalizability:
S1
A,∆ = SA, S

1
B,∆ = {I.N, I.S,O} ;

S2
A,∆ = {A,B.U,B.D} , S2

B,∆ = S1
B,∆;

S3
A,∆ = S2

A,∆, S
3
B,∆ = {I.N} ;

S4
A,∆ = {A} , S4

B,∆ = S3
B,∆;

S5
A,∆ = S4

A,∆ = S∞A,∆, S
5
B,∆ = S4

B,∆ = S∞B,∆.

25



7.2 Proofs

Proof of Proposition 1. I prove by induction a stronger statement.
Induction hypothesis (n): For every m ≤ n, i ∈ I, and si ∈ Smi,R∆ (resp., ŝi ∈

Ŝmi,R∆), there exists ŝi ∈ Ŝmi,R∆ (resp., si ∈ Smi,R∆) such that si(h) = ŝi(h) for all h ∈
Hi(S

∞).

Basis step (n = 0): It follows from Ŝ0
R∆ = S0

R∆ = S∞.

Inductive step (n + 1). Fix i ∈ I, si ∈ Sn+1
i,R∆ (resp., ŝi ∈ Ŝn+1

i,R∆), and µi ∈ ∆i that

strongly believes ((Smj,R∆)j 6=i)
n
m=0 (resp., ((Ŝmj,R∆)j 6=i)

n
m=0) such that si ∈ ρ(µi). By the

induction hypothesis, for each j 6= i, I can construct a map ηj : S∞j → S∞j such that for

eachm ≤ n and sj ∈ Smj,R∆ ⊆ S∞j (resp., sj ∈ Ŝmj,R∆ ⊆ S∞j ), ηj(sj) ∈ Ŝmj,R∆ (resp., ηj(sj) ∈
Smj,R∆) and ηj(sj)(h) = sj(h) for all h ∈ Hj(S∞). For each h ∈ Hi(S∞) and s−i ∈ S∞−i,
note that s−i ∈ S∞−i(h) if and only if (×j 6=iηj)(s−i) ∈ S∞−i(h).31 Moreover, by the induction

hypothesis, for each j 6= i and m = 1, ..., n, Hi(Smj,R∆) ∩Hi(S∞) = Hi(Ŝ
m
j,R∆) ∩Hi(S∞).

Then, there exists µi that strongly believes ((Ŝmj,R∆)j 6=i)
n
m=0 (resp., ((Smj,R∆)j 6=i)

n
m=0) and

((Sqj )j 6=i)
∞
q=0 such that µi(s−i|h) = µi((×j 6=iηj)−1(s−i)|h) for all h ∈ Hi(S∞) and s−i ∈

(×j 6=iηj)(S∞−i(h)). So, since µi(S
∞
−i|h) = 1 (by strong belief in S0

−i,R∆ = Ŝ0
−i,R∆ = S∞−i),

µi(S−i(z)|h) = µi(S−i(z)|h) for all h ∈ Hi(S∞) and z ∈ ζ(S∞). Hence: by maximality of

∆i, µi ∈ ∆i; by ζ(ρ(µ̃i) × S∞−i) ⊆ ζ(S∞) for any µ̃i that strongly believes S
∞
−i,

32 there is

si ∈ ρ(µi) ⊆ Ŝn+1
i,R∆ (resp., si ∈ ρ(µi) ⊆ Sn+1

i,R∆) such that si(h) = si(h) for all h ∈ Hi(S∞).

�

Proof of Proposition 2. For each i ∈ I, let ∆i be the (compact33) set of all µi ∈ ∆i

that satisfy S3 and S2 under (∆j)j∈I for all n ∈ N. By finiteness,34 S∞R∆ = ×i∈Iρ(∆i) =

S1
R∆
, and then each µi ∈ ∆i strongly believes (S1

j,R∆
)j 6=i, thus S1

R∆
= S∞

R∆
. Let µi ∈ ∆∗i if

and only if there exists µi ∈ ∆i such that µi(S−i(z)|h) = µi(S−i(z)|h) for all h ∈ Hi(S∞)

and z ∈ ζ(S∞). It is easy to observe that for each i ∈ I, ∆∗i is compact
35 and maximal,

and ∆∗i ⊇ ∆i. Now I show by induction that ζ(S1
R∆

) = ζ(S∞R∆∗).

31For each s′−i ∈ S∞−i(h), by perfect recall S∞i (h)× {s′−i} ⊆ S∞(h), hence there is a history x ∈ h such
that x ≺ z for some z ∈ ζ(S∞i (h) × {s′−i}) ⊆ ζ(S∞), and then for all x′ ≺ x and j 6= i with x′ ∈ h′ for
some h′ ∈ Hj , it holds h′ ∈ Hj(S

∞).
32 If this was not the case, then there would be µ̃i that strongly believes also ((Sqj )j 6=i)

∞
q=0, and s̃i ∈

ρ(µ̃i) ⊆ S∞i such that ζ({s̃i} × S∞−i) 6⊆ ζ(S∞), a contradiction.
33Compactness can be indirectly argued from the epistemic characterization and Lemma 1: ∆i =

fi(ProjTiCSB
∞
i ([∆] ∩ CSB∞(R))).

34Or milder conditions which guarantee that every si ∈ S∞i,R∆ is a sequential best reply to some µi that
strongly believes ((Sqj,R∆)j∈I)

∞
q=0 and ((Sqj )j∈I)

∞
q=0.

35For each sequence of CPS’s in ∆∗i and any corresponding sequence of CPS’s in ∆i, the equalities for
each h ∈ Hi(S

∞) and z ∈ ζ(S∞) are preserved in the limit. By compactness of ∆i, the sequence in ∆i

converges to a CPS in ∆i, so the limit of the sequence in ∆∗i is a CPS (by compactness of ∆Hi(S−i)) that
satisfies the conditions to be in ∆∗i .
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Induction hypothesis (n): For every m ≤ n, i ∈ I, and si ∈ S1
i,R∆

(resp., s∗i ∈
Smi,R∆∗), there exists s

∗
i ∈ Smi,R∆∗ (resp., si ∈ S1

i,R∆
) such that si(h) = s∗i (h) for all

h ∈ Hi(S∞).

Basis step (n = 1). Fix i ∈ I. By ∆∗i ⊇ ∆i, S1
i,R∆∗ ⊇ S1

i,R∆
. Fix s∗i ∈ S1

i,R∆∗ and

µi ∈ ∆∗i that strongly believes S
∞
−i such that s

∗
i ∈ ρ(µi). By definition of ∆∗i , there exists

µi ∈ ∆i such that µi(S−i(z)|h) = µi(S−i(z)|h) for all h ∈ Hi(S∞) and z ∈ ζ(S∞). Since

ζ(ρ(µ̃i)×S∞−i) ⊆ ζ(S∞) for any µ̃i that strongly believes S
∞
−i, there exists si ∈ ρ(µi) ⊆ S1

i,R∆

such that si(h) = s∗i (h) for all h ∈ Hi(S∞).

Inductive step (n + 1). Fix i ∈ I, si ∈ S1
i,R∆

, and µi ∈ ∆i such that si ∈ ρ(µi).

By the induction hypothesis, for each j 6= i, I can construct a map ηj : S∞j → S∞j such

that for each sj ∈ S∞j \S1
j,R∆

, ηj(sj) = sj , and for each sj ∈ S1
j,R∆

⊆ S∞j , ηj(sj) ∈ Snj,R∆∗

and ηj(sj)(h) = sj(h) for all h ∈ Hj(S
∞). For each h ∈ Hi(S

∞) and s−i ∈ S∞−i, note

that s−i ∈ S∞−i(h) if and only if (×j 6=iηj)(s−i) ∈ S∞−i(h).31 Moreover, by the induction

hypothesis, for each j 6= i and m = 1, ..., n,

Hi(S
m
j,R∆∗) ∩Hi(S∞) = Hi(S

1
j,R∆

) ∩Hi(S∞) = Hi(S
n
j,R∆∗) ∩Hi(S∞).

Then, recalling that µi strongly believes (S1
j,R∆

)j 6=i, there exists µ∗i that strongly believes

((Smj,R∆∗)j 6=i)
n
m=0 and ((Sqj )j 6=i)

∞
q=0 such that µ

∗
i (s−i|h) = µi((×j 6=iηj)−1(s−i)|h) for all

h ∈ Hi(S∞) and s−i ∈ (×j 6=iηj)(S∞−i(h)). So, since µi(S
∞
−i|h) = 1 (by strong belief in S∞−i),

µ∗i (S−i(z)|h) = µi(S−i(z)|h) for all h ∈ Hi(S∞) and z ∈ ζ(S∞). Hence: by definition of

∆∗i and µi ∈ ∆i, µ∗i ∈ ∆∗i ; by ζ(ρ(µ̃i) × S∞−i) ⊆ ζ(S∞) for any µ̃i that strongly believes

S∞−i,
32 there is s∗i ∈ ρ(µ∗i ) ⊆ Sn+1

i,R∆∗ such that s
∗
i (h) = si(h) for all h ∈ Hi(S∞). The other

direction is identical to the basis step. �

PROOFS OF THE THEOREMS.

First, I prove a generalized version of Theorem 1. Applying this result to Rationaliz-

ability yields the conditions to apply it to Selective Rationalizability and prove Theorem

1, and with further iterations, Theorem 2.

Consider this generalized rationalizability procedure (without a step 0).

Definition 10 Fix two profiles of subsets of CPS’s, (∆i)i∈I and (∆G
i )i∈I . Fix n ≥ 1 and,

if n > 1, suppose that ((Sqi,G)i∈I)
n−1
q=1 has already been defined. For every i ∈ I and si ∈ Si,

let si ∈ Sni,G if and only if there exists µi ∈ ∆i such that:

G1 si ∈ ρ(µi);
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G2 µi strongly believes S
q
j,G for all j 6= i and 1 ≤ q < n;36

G3 µi ∈ ∆G
i .

Call ∆n,G
i the set of all µi ∈ ∆i that satisfy G2 and G3.

Finally, let S∞i,G = ∩n≥1S
n
i,G and ∆∞,Gi = ∩n≥1∆n,G

i .

Consider now the following property for a Cartesian event E = ×i∈IEi ⊆ Ω.

Definition 11 A Cartesian event E = ×i∈IEi satisfies the "completeness property" if for
every i ∈ I, ti ∈ProjTiEi, si ∈ ρ(fi(ti)), and maps37 (τ j)j 6=i with τ j : sj ∈ProjSjEj 7→
(sj , tj) ∈ Ej for all j 6= i, there exists t′i ∈ Ti such that (si, t

′
i) ∈ Ei, fi(t′i) = fi(ti), and

gi,h(t′i) [{τ j(sj)} × Ω−i,j ] = fi,h(ti) [{sj} × S−i,j ] for all h ∈ Hi, j 6= i, and sj ∈ProjSjEj.

In the proof of the following, generalized characterization result, the completeness

property (assumed here and shown to hold for rationality later) allows to retrieve the

desired types from the induction hypothesis, instead of constructing them from scratch in

the inductive step (differently than, for instance, in [6]).

Lemma 1 Fix a closed, Cartesian event E = ×i∈IEi ⊆ R with the completeness prop-

erty38 such that for each i ∈ I, fi(ProjTiEi) = ∆i∩∆G
i
(39) (which implies S1

i,G =ProjSiEi).
40

Then, for every n ∈ N, CSBn−1(E) has the completeness property and for each i ∈ I,
fi(ProjTiCSB

n−1
i (E)) = ∆n,G

i (which implies Sni,G =ProjSiCSB
n−1
i (E)).

Moreover, CSB∞(E) has the completeness property and for each i ∈ I, fi(ProjTiCSB
∞
i (E)) =

∆∞,Gi and S∞i,G =ProjSCSB
∞
i (E).

Proof. For finite n, the proof is by induction.

Induction Hypothesis (n=1,...,m): the Lemma holds for n = 1, ...m.

Basis step (n=1): the Lemma holds for n = 1 by assumption.

Inductive step (n=m+1): For each i ∈ I, let Fi = CSBm−1
i (E) and Gi =

CSBmi (E)

36Vacuous for n = 1.
37Note that the maps are injective.
38The event E can be empty, just like CSB∞(R) ∩ [∆] in Theorem 1.
39Since fi is continuous and ProjTiEi is compact (because Ei is closed and Ti is compact),compactness

of ∆i ∩∆G
i is implied.

40⊆ is guaranteed by the completeness property of E; ⊇ is guaranteed by the fact that E ⊆ R.
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Fix i ∈ I and µi ∈ ∆m+1,G
i . Since µi ∈ ∆m,G

i , by the Induction Hypothesis there

exists ti ∈ProjTiFi such that fi(ti) = µi. Fix maps (τ j)j 6=i with τ j : sj ∈ProjSjFj 7→
(sj , tj) ∈ Fj for all j 6= i. By the Induction Hypothesis, F has the completeness property.

So, there exists (s′i, t
′
i) ∈ Fi such that fi(t′i) = fi(ti), and for every h ∈ Hi, j 6= i, and

sj ∈ProjSjFj , gi,h(t′i) [{τ j(sj)} × Ω−i,j ] = fi,h(ti) [{sj} × S−i,j ]. Then, since fi(ti) strongly
believes Smj,G =ProjSjFj (by the Induction Hypothesis), gi(t

′
i) strongly believes Fj . So,

(s′i, t
′
i) ∈ SBi(F−i) ∩ Fi = Gi.

Fix i ∈ I and ti ∈ProjTiGi. Since ti ∈ProjTiFi, by the Induction Hypothesis fi(ti) ∈
∆m,G
i . Since ti ∈ProjTiSBi(F−i), gi(ti) strongly believes Fj for all j 6= i, hence fi(ti)

strongly believes ProjSjFj . By the Induction Hypothesis ProjSjFj = Smj . So fi(ti) ∈
∆m+1,G
i .

Now I show that G has the completeness property. Fix i ∈ I, ti ∈ProjTiGi ⊆ProjTiFi,

si ∈ ρ(fi(ti)), and maps (τ j)j 6=i with τ j : sj ∈ ProjSjGj 7→ (sj , tj) ∈ Gj ⊆ Fj for all

j 6= i. Extend each τ j to τ ′j : sj ∈ProjSjFj 7→ (sj , tj) ∈ Fj in such a way that for every
sj ∈ProjSjGj , τ

′
j(sj) = τ j(sj). By the Induction Hypothesis, F has the completeness

property. So, there exists t′i ∈ Ti such that (si, t
′
i) ∈ Fi, fi(t′i) = fi(ti), and for every

h ∈ Hi, j 6= i, and sj ∈ProjSjFj , gi,h(t′i)[{τ ′j(sj)} × Ω−i,j ] = fi,h(ti) [{sj} × S−i,j ]. Since
ti ∈ProjTiSBi(F−i), fi(ti) strongly believes ProjSjFj for all j 6= i. Then, gi(t′i) strongly

believes Fj . So (si, t
′
i) ∈ SBi(F−i) ∩ Fi = Gi. �

Now I prove that the lemma holds for n =∞. By finiteness, there is M ∈ N such that
S∞G = SMG . For each i ∈ I, let Fi := CSBMi (E) and Gi := CSB∞i (E).

For each j ∈ I, sj ∈ S∞j,G, and q ∈ N, as shown above ({sj} × Tj) ∩ CSBq−1
j (E) is

non-empty, and also closed (see Section 4). Thus, (({sj} × Tj) ∩ CSBq−1
j (E))q∈N is a

sequence of nested, non-empty closed sets, so it has the finite intersection property. Then,

since Ωj is compact,

∩q∈N(({sj} × Tj) ∩ CSBq−1
j (E)) = ({sj} × Tj) ∩Gj 6= ∅.

So, S∞j,G ⊆ProjSjGj , and as shown above S
∞
j,G =ProjSjFj ⊇ProjSjGj . Hence, S

∞
j,G =ProjSjGj

and there exists a map τ j : sj ∈ProjSjFj 7→ (sj , tj) ∈ Gj ⊂ Fj .

Fix i ∈ I and µi ∈ ∆∞,Gi . Since µi ∈ ∆M+1,G
i , as shown above there exists ti ∈ProjTiFi

such that fi(ti) = µi, and F has the completeness property. So, there exists (s′i, t
′
i) ∈ Fi

such that for every i ∈ I, fi(t′i) = fi(ti), and for every h ∈ Hi, j 6= i, and sj ∈ProjSjFj ,

gi,h(t′i)[{τ j(sj)} × Ω−i,j ] = fi,h(ti) [{sj} × S−i,j ]. Then, since fi(ti) strongly believes

SMj,G = S∞j,G =ProjSjGj , gi(t
′
i) strongly believes Gj . Hence, for each q ≥ M , since
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ProjSjCSB
q
j (E) = S∞j,G and CSBqj (E) ⊃ Gj , gi(t′i) strongly believes CSB

q
j (E). So,

(s′i, t
′
i) ∈ SBi(CSB

q
−i(E)). Then, inductively, (s′i, t

′
i) ∈ CSB

q+1
i (E) for all q ≥ M . Thus

(s′i, t
′
i) ∈ Gi.
Fix i ∈ I and ti ∈ProjTiGi. For every q ≥ 1, ti ∈ProjTiCSB

q−1
i (E), thus, as shown

above, fi(ti) ∈ ∆q,G
i . Then, fi(ti) ∈ ∆∞,Gi .

Finally, I show thatG has the completeness property. Fix i ∈ I, ti ∈ProjTiGi ⊆ProjTiFi,

si ∈ ρ(fi(ti)), and maps (τ j)j 6=i with τ j : sj ∈ ProjSjGj 7→ (sj , tj) ∈ Gj ⊆ Fj for all j 6= i.

As shown above, ProjSjGj =ProjSjFj , and F has the completeness property. So, there

exists t′i ∈ Ti such that (si, t
′
i) ∈ Fi, fi(t′i) = fi(ti), and for every h ∈ Hi, j 6= i, and

sj ∈ProjSjFj , gi,h(t′i)[{τ j(sj)} × Ω−i,j ] = fi,h(ti) [{sj} × S−i,j ]. Since ti ∈ProjTiSBi(F−i),

fi(ti) strongly believes ProjSjFj =ProjSjGj for all j 6= i. Then, gi(t′i) strongly believes

Gj . Hence, for each q ≥ M , since ProjSjCSB
q
j (E) =ProjSjGj and CSBqj (E) ⊃ Gj ,

gi(t
′
i) strongly believes CSB

q
j (E). So, (si, t

′
i) ∈ SBi(CSB

q
−i(E)). Then, inductively,

(si, t
′
i) ∈ CSB

q+1
i (E) for all q ≥M . Thus (si, t

′
i) ∈ Gi. �

Proof of Theorems 1 and 2.

Let (∆0
i )i∈I := (∆Hi(S−i))i∈I . Fix a chain of restrictions ((∆1

i )i∈I , ..., (∆
k
i )i∈I). (For

Theorem 1, let (∆1
i )i∈I = (∆i)i∈I .) Let CSB∞−1 := R and, for each l = 0, ..., k and

n ∈ N0 ∪ {∞}, let CSBnl := CSBn(
[
∆l
]
∩ CSB∞l−1) (so, CSBn0 = CSBn(R)). For each

i ∈ I, let ∆G
i,0 := ∆Hi(S−i). For each l = 1, ..., k, let ∆G

i,l be the set of CPS’s that satisfy

E3(l) (so, ∆G
i,1 is the set of CPS’s that satisfy S3). Then, Theorem 1 is given by Lemma

1 with E :=
[
∆1
]
∩ CSB∞0 = [∆] ∩ CSB∞(R) and (∆G

i )i∈I := (∆G
i,1)i∈I ;41 Theorem 2 is

given by Lemma 1 with E :=
[
∆k
]
∩CSB∞k−1, (∆i)i∈I = (∆k

i )i∈I , and (∆G
i )i∈I := (∆G

i,k)i∈I .

I am going to show inductively that each E =
[
∆l
]
∩ CSB∞l−1 satisfies the conditions of

Lemma 1.

Induction Hypothesis (l = 0, ..., k): Lemma 1 holds for E :=
[
∆l
]
∩ CSB∞l−1,

(∆i)i∈I = (∆l
i)i∈I , and (∆G

i )i∈I = (∆G
i,l)i∈I .

Basis step (l = 0):
The event E =

[
∆0
]
∩ CSB∞−1 = R is closed (see Section 4). Now I show that it has

the completeness property. Fix i ∈ I, ti ∈ProjTiRi, si ∈ ρ(fi(ti)), and, for each j 6= i,

τ j : sj ∈ProjSjRj 7→ (sj , tj) ∈ Rj . Extend each τ j to τ ′j : sj ∈ Sj 7→ (sj , tj) ∈ Ωj in

such a way that for every sj ∈ProjSjRj , τ
′
j(sj) = τ j(sj). Define νi ∈ (∆(S−i × T−i))Hi as

41Differently than Selective Rationalizability, the generalized procedure used here does not have a step
0. However, as alredy observed in Section 3, step 0 is immaterial in presence of S3.
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νi((τ
′
j(sj))j 6=i|h) = fi,h(ti)[s−i] for all h ∈ Hi and s−i = (sj)j 6=i ∈ S−i (it is well defined

because each τ ′j is injective). It is easy to verify that νi is a CPS given that fi(ti) is a CPS.

By ontoness of gi, there exists t′i ∈ Ti such that gi(t′i) = νi. Clearly, fi(t′i) = fi(ti), which

implies (si, t
′
i) ∈ Ri, and gi,h(t′i) [{τ j(sj)} × Ω−i,j ] = fi,h(ti) [{sj} × S−i,j ] for all h ∈ Hi,

j 6= i, and sj ∈ProjSjRj .

Moreover, fi(ProjTiRi) = ∆Hi(S−i) = ∆0
i ∩∆G

i,0. So, the conditions of Lemma 1 are

satisfied.

Inductive step (l):
By assumption,

[
∆l
]
is closed, and CSB∞l−1 is closed too (see Section 4). Thus,

E =
[
∆l
]
∩CSB∞l−1 is closed. Now I show that it has the completeness property. Fix i ∈ I,

ti ∈ProjTiE, si ∈ ρ(fi(ti)), and, for each j 6= i, τ j : sj ∈ProjSjE 7→ (sj , tj) ∈ProjΩjE.

Extend each τ j to τ ′j : sj ∈ProjSjCSB∞l−1 7→ (sj , tj) ∈ProjΩjCSB∞l−1 in such a way that

for every sj ∈ProjSjE, τ
′
j(sj) = τ j(sj). By the Induction Hypothesis, CSB∞l−1 has the

completeness property. So, there exists t′i ∈ Ti such that (si, t
′
i) ∈ProjΩiCSB∞l−1, fi(t

′
i) =

fi(ti) and for every h ∈ Hi, j 6= i, and sj ∈ProjSjCSB∞l−1, gi,h(t′i)[{τ ′j(sj)} × Ω−i,j ] =

fi,h(ti) [{sj} × S−i,j ]. Thus, for every h ∈ Hi, j 6= i, and sj ∈ProjSjE, gi,h(t′i) [{τ j(sj)} × Ω−i,j ] =

fi,h(ti) [{sj} × S−i,j ]. Since fi(t′i) = fi(ti), f(t′i) ∈ ∆l+1
i ⊂ ∆l. Thus, (si, t

′
i) ∈ ProjΩiE.

By the Induction Hypothesis, fi(ProjTiCSB∞l−1) = ∆l−1
i ∩∆G

i,l ⊇ ∆l
i ∩∆G

i,l for all i ∈ I.
Thus, fi(ProjTiE) = ∆l

i ∩∆G
i,l.

So, the conditions of Lemma 1 are satisfied. �
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