Seminar Theoretical Computer science. Februari 26th, 2018.

The class \mathbf{P}

Exercise 1. Suppose some pancakes are stacked on a surface. No two pancakes have the same size. For convenience denote the smallest pancake by 1 , the second smallest by 2 , etc. The only permissible operation on the stack of pancakes is as follows: Insert a spatula between 2 pancakes or between the bottom pancake and the surface, then rotate the pancakes above the spatula. Give an algorithm that sorts any stack of n pancakes (smallest at the top largest at the bottom) with at most poly(n) many flips.

A solution for this example: $314|2 \rightarrow 4132| \rightarrow 23|14 \rightarrow 321| 4 \rightarrow 1234 .{ }^{1}$
Exercise 2. Construct a polynomial time algorithm that for any given undirected graph G finds out whether the nodes of G can be colored in red or blue so that every two adjacent nodes have different colors.

Exercise 3. Construct a polynomial time algorithm that for any given integers a, b, c computes $\left(a^{b} \bmod c\right)$. The numbers a, b, c are written in binary.

Exercise 4. Show that the following problem is in the class P.
Input: \quad A sequence of words $a_{0}, a_{1}, \ldots, a_{n}$ in the 1-letter alphabet $\{1\}$.
Question: Is a_{0} a concatenation of some words a_{1}, \ldots, a_{n}, i.e., $a_{0}=a_{i_{1}} a_{i_{2}} \ldots a_{i_{s}}$ with $1 \leq i_{1}<\cdots<i_{s} \leq n$.
Exercise 5. Let A be a language over an alphabet Σ. The Kleene star A^{*} is a language consisting of words in the form

$$
a_{1} a_{2} \ldots a_{k}, \quad \text { where } a_{i} \in A, k \geq 0
$$

Prove that if $A \in \mathrm{P}$ then $A^{*} \in \mathrm{P}$.

The class NP

Exercise 6. Suppose $A, B \in$ NP. Is it true that $A \cup B \in \mathrm{NP}$? Is it true that $A \cap B \in \mathrm{NP}$?
Exercise 7. Prove that if $A \in \mathrm{NP}$ then $A^{*} \in \mathrm{NP}$.
Exercise 8. Show that if $\mathrm{P}=\mathrm{NP}$, then there exists an algorithm that on input a Boolean formula ϕ decides whether ϕ is satisfiable, and if it is satisfiable, returns an assignment of the variables that makes ϕ true. Moreover, the algorithm runs in time polynomial in the size of ϕ. (Note that with this technique, one can compute certificates for any problem in NP.)

[^0]
Reductions and NP-completeness

Exercise 9. Show that if $\mathrm{P}=\mathrm{NP}$ then every language $A \in \mathrm{P}$ is NP-complete, except $A=\varnothing$ and $A=\Sigma^{*}$.
Exercise 10. Consider the following problems:
The problem IndSet:
Input: \quad A graph $G=(V, E)$ and a number $k \in \mathbb{Z}_{\geq 0}$.
Question: Does there exist k points in V that are pairwise unconnected?
The problem 0-1 integer Programming:
Input: \quad A matrix $A \in \mathbb{Z}^{m \times n}$ and a vector $b \in \mathbb{Z}^{m}$.
Question: Is there an $x \in\{0,1\}$ such that $A x \leq b$.
Show that IndSet $\leq_{p} 0-1$ integer programming.
Exercise 11. Prove that 3SAT reduces to halting problem
Input: \quad A description of a Turing machine M and a string w.
Question: Does M halt on the input w ?
Exercise 12. Show that Clique reduces to
The problem HalfClique:
Input: \quad A graph $G=(V, E)$
Question: Does G have a clique of size more than $|V| / 2$.

[^0]: ${ }^{1}$ Remark: B. Gates and C. Papadimitriou gave a better algorithm that uses at most $5 / 3 n$ flips in the worst case. Currently, the best known algorithm uses $\frac{18}{11} n$ flips. It is also known that no algorithm exists that always uses less than $\frac{15}{14} n$ flips. No better bounds are known.

