
Turing machines and computable functions∗

One of the main outcomes of the course is to understand the difficulty of a certain task.
In particular, we study the complexity associated to the decision problem of languages. In
increasing order of complexity, we consider: regular, polynomial time computable, nondeter-
ministically polynomial time computable, computable in polynomial space, decidable, and
recognizable. The previous chapter focussed on the least complex languages: the regular
languages. In the next chapter we focus on the 2 classes on the other extreme: the decidable
and recognizable languages. For this we need the concept of a computable function. We ad-
dress the question: “What is the largest class of functions that are somehow computable by
a discrete mechanical process?”

Probably, most of you are familiar with a few programming languages. Nowadays, it is
easy to believe that in your favorite programming language, any discrete mechanical process
can be simulated. Unfortunately, the description of your favourite programming language can
not be used as a mathematical definition: its full specification is too long, and someone else
might insist on using his own favourite language (there exist teachers who use λ-calculus or
even self-invented languages). Still, we want a powerful enough definition from which we can
easily believe that our favorite programming languages can be “implemented” with it.

To prove that a problem can not be solved by an algorithm, we typically show that
a solution for it is as hard as evaluating all computable functions. The idea is to construct
instances of the problem that somehow “implement the same features” as used in our definition
of computable functions. For this reason we want a definition that is as simple as possible.
In summary, we need a definition that is simple and powerful enough.

Turing machines present a solution. They are simple to define, and we can implement
some simple programming language with them. After defining computable functions using
such machines, we argue that the definition is robust: having more tapes, increasing the
tape alphabet, changing the possible movements, does not change the corresponding class of
computable functions. Then we study the speed with which they compute. In particular we
show that this depends on the number of tapes it has, but this dependence is polynomial.
Afterwards, we argue that Turing machine can implement features of typical programming
languages. Finally, we show that there exist Turing machines that can simulate all other
machines.

Only in this lecture we will talk about low level details of algorithms. The hope is that
after this lecture you are convinced that (1) Turing machines are precise mathematical objects,

∗Theoretical Computer Science 2017-2018, National Research University Higher School of Economics.
First version: February 10, 2018.
Update: February 16, 2018, moved solutions to the end, correcting typos,
a small change in the definition of multitape machines.
Update: February 17, 2018, added exercise 9, 14–19, and solutions.
Update: February 28, 2018, corrected typo in the Halting condition for Turing machines.

1

(2) they can model any type of discrete computation, and (3) that you are able to estimate
the time and space they needed to complete some tasks.

1 Definition

Control head: q0

0 0 1 0 t 0 0 t t t . . .

Control head: q

t 0 1 t 1 1 1 t t t . . .

Figure 1: The initial configuration for the computation U(0010, 00) and a configuration in
the middle of some computation.

A Turing machine is a computing device that on input one or more strings might produce
as output a string. The machine has two parts: a tape and a control unit (also called
computation head). The control unit is similar to a finite state machine and is characterized
by a finite set Q of control states, a start state q0 ∈ Q and a transition function d. The
tape is a one-way infinite sequence of cells and each cell contains a symbol from some tape
alphabet Γ. In Γ there is a special symbol t , called the blank. The control unit is always
located above a cell of the tape and it can move left or right.

A computation is performed as follows. Initially the control unit is located at the leftmost
cell of the tape and it is in a special control state q0, called start state. All cells of the tape
are blank except at the beginning of the tape, where the input strings are written, separated
by blanks, see figure 1. During the computation, the control unit transforms the tape step
by step. At each step, the control unit has a unique control state. Depending on this state
and the symbol below the control head, the transition function d, specifies

• which symbol is written in the cell below the computation head,

• whether the computation head moves one cell left or right,

• the new state of the computation head.

The transition function is a partial function. If it is undefined for some state and symbol, or
the head moves left on the first cell of the tape, the computation is finished. If this happens,
and the tape contains rt∞ for some string r that has no blanks, then r is the output of the
computation. For convenience, we require that the computation head returns to the left, and
either halts on the first cell or falls of the tape.

We define the procedure above formally. The transition function is a function

d : Q× Γ → Γ× {−1, 1} ×Q.

2

A value d(q, a) = (b,m, r) means that if the control head is in a state q above a cell containing
a ∈ Γ, it writes b ∈ Γ, moves one cell left (m = −1) or right (m = 1), and finally, changes to
the control state r ∈ Q. A computation is just a repetition of such transformations.

Notation. For a finite set A, let A∞ be the set of infinite sequences of elements in A. The ith
element of such a T ∈ A∞ is written as Ti ∈ A. Let a∞ = aa . . . Let t be a fixed symbol.
Let N = {1, 2, 3, . . . }.

At each computation step, the state of the Turing machine is described by a triple (i, q, T)∈
Z≥0 ×Q× Γ∞ where i is the position of the computation head (i = 0 indicates that the head
has fallen of the tape), q ∈ Q is its control state and T ∈ Γ∞ the contents of the tape.
These triples define a directed graph where an edge from one state to another represents a
transformation that can happen in 1 computation step.

Definition 1. A deterministic Turing machine is a 4-tuple (Q,Γ, d, q0) where Q and Γ are
finite sets, q0 ∈ Q, t ∈ Γ, and d : Q× Γ → Γ × {−1, 1} ×Q is a partial function. Consider
the directed graph whose vertices are elements of Z≥0 ×Q × Γ∞ (called states). There is an
edge from a state (i, q, T) with i ≥ 1 to the state

(i+m, r, T1 . . . Ti−1bTi+1 . . .)

if d(q, Ti) = (b,m, r). There are no other edges.
If for r, u, v, . . . , z ∈ (Γ \ {t})∗ the unique path starting in the state (1, q0, utvt . . . tzt

∞)
is finite and ends in (0, q, rt∞) or (1, q, rt∞) for some q ∈ Q, we say that U outputs r on
input u, v, . . . , z and write U(u, v, . . . , z) = r, otherwise the value is undefined.

Note that a machine halts if either the transition function is undefined or if the computa-
tion head falls of the tape, i.e., reaches position i+m = 0. Note that there are no outgoing
edges in states with position 0. There exists several variants of the definition and here one is
given that is simplified for our purposes. Note that in order to produce some valid output,
we require that the machine cleans up its tape. This requirement is convenient for induction
purposes. We also use Turing machines that can decide a language.

Definition 2. A Turing machine (Q,Γ, d, q0) decides a language L over Σ if there exists a
set F ⊆ Q such that (1) for all x ∈ Σ∗ the path starting in (1, q0, xt

∞) is finite, and (2) this
path ends in a state from Z≥0 × F × Γ∞ if and only if x ∈ L.

A language is computable or decidable if there exists a Turing machine that decides it.

When deciding a language, we do not care about the final position of the computation
head and the contents of the tape after the machine halts. In the part of computational
complexity we use the nondeterministic variant of such machines. We present the definition
here for the sake of completeness.

Definition 3. A nondeterministic Turing machine is a 4-tuple (Q,Γ, D, q0) where Q and Γ
are finite sets, q0 ∈ Q, t ∈ Γ, and D ⊆ Q × Γ × Γ × {−1, 1} × Q. Consider the graph with
vertices Z≥0 × Q × Γ∞ and directed edges from (i, q, T) to (j, r, S) if i ≥ 1, Tk = Sk for all
k 6= i, and

(q, Ti, Si, j − i, r) ∈ D.

The machine recognizes a language L over Σ if there exists an F ⊆Q such that for all x ∈ Σ∗:
x ∈ L if and only if there exists a path in this graph that starts in (1, q0, xt

∞) and ends in
an element from Z≥0 × F × Γ∞.

3

2 Examples

We give some detailed examples of Definition 1. These examples will be used in the construc-
tion of a universal Turing machine.

An enumerator of binary strings. Let ε be the empty string. We construct a machine
U such that the series ε, U(ε), U(U(ε)), . . . contains all binary strings exactly once. The
following machine maps every string to the next string in reversed lexicographic order:

ε, 0, 1, 00, 10, 01, 11, 000, 100, . . .

Let L = −1 and R = 1. The machine is given by ({s, e}, {0, 1, t}, d, s) where d is defined by

q, a d(q, a)

s, t 0, L, e
s, 0 1, L, e
s, 1 0, R, s
e, 0 0, L, e

sstart e

1|0R

0|1L

t |0L

0|0L

In the tables below, the subsequent states of the machine are given when started on input 111.

i q T

1 s 1 1 1 t t . . .
2 s 0 1 1 t t . . .
3 s 0 0 1 t t . . .
4 s 0 0 0 t t . . .
3 e 0 0 0 0 t . . .
2 e 0 0 0 0 t . . .
1 e 0 0 0 0 t . . .
0 e 0 0 0 0 t . . .

(s,1) 1 1 t t . . .
0 (s,1) 1 t t . . .
0 0 (s,1) t t . . .

0 0 0 (s, t) t . . .

0 0 (e,0) 0 t . . .
0 (e,0) 0 0 t . . .

(e,0) 0 0 0 t . . .
0 0 0 0 t . . .

The state (0, e, 0000t∞) has no outgoing edge, because of the condition i ≥ 1 for the edges of
the computation graph in Definition 1. Hence, the computation halts with the desired output
0000. On the right, a different representation of the computation path is given. This table
with cells in Γ ∪ (Γ×Q) is called a tableau. Tableaus are important in the study of NP-hard
problems. In the next chapter we also use them to study tilings of the plane.

Exercise 1. Give a schematic representation of a Turing machine that maps any bitstring x
to 0x.

Exercise 2. Design a Turing machine that inverts the machine U constructed above; more
precisely, maps ε to ε and every other string to the preceeding one in ε, 0, 1, 00, 10, 11, 000, 100, . . .
Thus, U(0) = ε, U(1) = 0, U(00) = 1, etc.

3 A robust definition of computable functions

Definition 4. A partial function f : Σ∗ → Σ∗ is partial computable if there exists a deter-
ministic Turing machine U such that U and f are defined for the same x ∈ Σ∗ and if defined,
then f(x) = U(x). A function is computable if it is total and partial computable.

In a similar way we define (partial) computable functions with more arguments. These
definitions do not change if we change our model of Turing machines: we could equivalently

4

use two-way infinite tapes, multiple tapes (see further), and even two-dimensional tapes. The
class of computable functions on Σ∗ also does not change if we change the tape alphabet to
Γ = Σ ∪ {t}. We can also consider machines that in each computation step either writes or
moves. However, some changes can be dangerous: if the computation head can not move left,
the tape will become practically useless.

Recall that in our definition, a machine should always move its computation head 1 step
left or right in a computation step.

Lemma 5. The class of computable functions does not change if we consider machines that
in each computation step can move left, right, or remain above the same cell.

Proof. Assume a machine makes the following 2 computation steps when it is in control state
q: it reads a symbol a, writes b, does not move, and goes to state r. In the next step, it
reads the previously written symbol b, writes c, moves in direction M ∈ {L,N,R}, where N
represents no move, and obtains control state t. These two steps can be combined in one: it
could read a, write c, move in direction M and arrive in state t.

Now we know how to transform the schematic representation of the machine, to remove
edges where the machine does not move. For each path of length 2 whose edges are consecu-
tively labelled by (a|bN) and (b|cM) for a, b, c ∈ Γ and M ∈ {L,N,R} we do the following:
we delete the first edge with label (a|bN), and add an edge labelled by (a|cM) from the start
to the endpoint of the path. After this, we removed all edges in which the machine does not
move, except for those after which the machine halts.

Now assume the machine is in a state q, reads a, writes b, does not move, and goes to
state r in which it halts. Thus the transition function is undefined in (r, b). We can not
remove the edge a|bN from the schematic representation, because this changes the output.
In stead we let the machine go forward to write b and go backward. For this, we add two
states h1 and h2. For every e ∈ Γ, there is an edge labelled by e|eL from h1 to h2. For every
remaining edge a|bN , we add an edge labelled by a|bR that leaves from the same state and
goes to h1. Now we have removed all edges in which the control head does not move, without
changing the output of the machine.

Lemma 6. The definition of partial computable functions does not change if we consider
only Turing machines that never fall of the tape, in other words, for all inputs in Σ∗, the
computation path terminates in some state (i, q, T) with i ≥ 1.

Proof. The idea is to simulate the original machine with the following modifications. We keep
a “mark” on the first cell and if the original machine goes left on a marked cell, we let our
machine halt. Formally, this is realized by extending the tape alphabet Γ with a copy å of
each symbol a.

By Lemma 5 we can construct a machine that on some computation steps does not move
its computation head. The new machine first replaces the symbol in the first cell by its copy
and does not move. For this we add a new start state to the set of states. After this, the
machine arrives in the start state of the original machine. Then the computation of the
original machine is ran with the following modifications:

• during the computation it keeps marked cells marked and unmarked cells unmarked,

• if it wants to go left or halts on a marked symbol, it writes the corresponding unmarked
symbol and halts, (thus the machine does not move in this step),

5

By construction the first cell is always marked and the machine never goes left on this cell.
The machine also computes the same partial function.

Exercise 3. Show that if f and g are computable then also the function t 7→ f(g(t)) is
computable.

Decidable languages can also be defined using computable functions. Let

1L(x) =

{
1 if x ∈ L,
0 otherwise.

Lemma 7. A language L ⊆ Σ∗ is decidable if and only if 1L is computable.

The proof is not so hard, there are just a some technical details, for example, one needs
to explain that the tape of the decider can be cleaned up, that one can return to the initial
position while remembering the result and then write the result.

Exercise 4. Show that regular languages are decidable. (Note that not all decidable lan-
guages are regular, see further.)

Exercise 5. What is the set of languages decided by Turing machines that in each compu-
tation step can move their computation head only to the right?

4 Multitape Turing machines

A k-tape Turing machine is a Turing machine with k tapes, numbered from 1 to k. Each
tape has its own head for reading and writing. All these heads are controlled by a single
control unit. Initially all input is written on the first tape and all other tapes only contain
blanks. In each computation step, all heads simultaneously read the cell, then they all write
an individual symbol, and all move in an individual direction. Afterwards, the control unit
transits to its new state. For convenience, we allow that computation heads do not move in
a computation step. The control unit of a k-tape TM is described by a partial function

d : Q× Γk → Γk × {−1, 0, 1}k ×Q.

The computation terminates if one of the read-write heads goes of the tape, or if d is undefined
for the state and the scanned symbols. The output is defined in a similar way on the first
tape. We do not repeat the formal definition because it is similar; we just mention that the
full state of the machine is described by a triple in Zk

≥0 ×Q× (Γk)∞.

4.1 Multitape Turing machines compute the same functions

Theorem 8. A partial function can be computed by a multitape Turing machine if and only
if it can be computed by a single tape Turing machine.

Proof. Every single-tape machine is a multitape machine, so one direction is obvious. For
each multitape TM M we need to construct a single tape TM S that simulates M .

The scanned contents of the k tapes are written after each other, separated by some
symbol # that is not in the alphabet of M , see figure 2. S’s tape alphabet consists of this
symbol # and two copies of M ’s alphabet, one copy we denote with dotted symbols. These

6

M

0 1 t t . . .

0 0 1 1 0 0 t . . .

0 t . . .

S

0̊ # 0 0 1 1̊ 0 0 # 0̊ 1 # t . . .

Figure 2: Definition of a multitape Turing Machine.

dotted symbols represent marked cells and are used for cells above which the reading/writing
head is located.

On input w = utvt . . . tz, S proceeds as follows:

1. First the input is transformed to the form

#ẘ1w2 . . . w|w|# t̊# t̊ . . .# t̊#.

After the transformation, the head returns to the beginning of the tape.

2. To simulate a single move in M , all dotted letters are scanned and “remembered” by the
computation head. Then the computation head returns to the beginning of the tape.

3. S makes a second pass through the dotted letters and updates them according to the
writing and the movements of M ’s heads. Then it returns to the beginning of the tape.

4. In the previous step, if at some point S wants to overwrite a symbol #, (this means that
M performs a right move to a previously unscanned cell), then S moves the remaining
tape one cell to the right, returns, and inserts the appropriate symbol.

5. If M does not halt, S repeats step 2. Otherwise, S deletes all symbols that represent
the other tapes, returns left, and halts.

Each time S executes steps 2 − 4 above, it simulates 1 step in the computation of M . This
is repeated until M terminates, and then S also terminates. The last step guarantees that
the output is the same. It can be verified that all these steps can indeed be carried out by a
Turing machine. This implies the theorem.

7

4.2 Multitape machines are faster than single tape machines

The proof of Theorem 8 implies a stronger result: one can simulate a k-tape machine U by
a single tape machine that runs in time O

(
(timeU (x) + |x|)2

)
, where the implicit constants

in the O(·) notation depend on k (but not on x). We show that this quadratic increase is
necessary.

For this we study the language of palindromes. Palindromes are also used for words in
natural languages: they are the words that remain the same when spelled backwards. In
English one has the following examples: level, kayak, madam, radar, rotator. If punctuations
and spaces are ignored: “test set”, “race car”, “Was it a car or a cat I saw?” and “Dammit,
I’m mad!”.

Fix some alphabet Σ. Let xR be the reverse of a string x, i.e., xR = x|x|x|x|−1 . . . x1.

PALΣ = {x ∈ Σ∗ : x = xR}

Imagine you are given a long sentence and you have to check whether it is a palindrome.
How would you proceed? Perhaps the easiest way is to compare the first letter to the last
letter, mark both letters, then compare the first unmarked letter against the last unmarked
letter, mark them, and so on. We can speed this up by remembering several letters at a time,
but this speed up is limited by the numbers we can simultaneously remember.

This strategy can be executed on a single tape Turing machine. It requires quadratic time
in the length of the string, because the machine must make a linear number of comparisons
and on average these comparisons are at a distance of half of the length of the string. Note
that the machine can speed up by comparing chunks at once. But for large strings, the
computation time remains quadratic: by definition, the control head has finitely many states,
and therefore can “remember” at most finitely many symbols. We now show that this strategy
is essentially optimal.

Theorem 9. For any single tape machine U that decides PAL, there exists a c and infinitely
many x ∈ PAL such that the computation time of U(x) exceeds |x|2/c.

Exercise 6. Show that the language PAL can be decided in time O(n) on a 2-tape Turing
machine.

In the proof of the theorem, we use crossing sequences and some results about crossing
sequences. The idea of our proof is to express that the machine should cross the cells in the
middle many times. The sum of the lengths of these crossing sequences lower bounds the
computation time. Fix a machine U .

Definition 10. The crossing sequence ci(x) for a string x on position i is the list q1, q2, . . . , , qe
of consecutive control states that U has at the end of the computation steps in which the head
moves to the ith tape cell.

See figure 3. Let |ci(x)| represent the length of the crossing sequence. Note that
∑∞

i=1 |ci(x)|
is equal to the computation time of U on input x.

Lemma 11. If ci(u) = cj(v), ui = vj, and U accepts both u and v, then U also accepts

u1 . . . uivj+1 . . . v|v|.

8

0 1 1 0 0 0 0 0 0 1 1 0 t t . . .

i

q1

q2

q3

q4

Figure 3: Crossing sequence ci(x)

Proof. Consider the following communication problem between Alice and Bob. Alice has a
part w1 . . . wi of a string w and Bob has a part wiwi+1 . . . w|w|. Together they want to figure
out whether U(w) = 1.

They can do this by running the machine on their parts of the tape, and sending the state
each time the machine arrives at the border of their part.

More precisely, Alice starts to run the machine and when it arrives on the ith cell, she
sends the control state to Bob. If the machine returns to her part she continues to compute,
and otherwise, she waits while Bob simulates the machine on his part. If in Bob’s simulation
the machine arrives at the ith cell, he informs Alice of its control state. If the machine returns
to his part, he continues computing, otherwise, he waits for Alice’s message, and so on.

Note that at each point, both parties know who might send the next message, because
each time the machine arrives in the ith cell, they both know its state, and hence the new
value of the cell and the part to which it goes.

If the string u1 . . . uivj+1 . . . v|v| is splitted at position i, Alice will send the same messages
as in the computation for u when splitted in positions i, and Bob will send the same message
as in the computation for v splitted in j. This is because the respective computations only
depend on the computations on their parts and the messages previously received from the
other. This follows by induction. We explain this in detail.

The first message of Alice will be (ci(u))1, because changing the cells at the right of
position i does not influence her first run of computations. At some point, the machine might
go to Bob’s side. Bob’s computation only depends on the message(s) of Alice and his part of
the input. Thus both for v and u1 . . . uivj+1 . . . v|v|, he receives the same input part (recall
that ui = vj), and by assumption on the crossing sequence he received the same message
(cj(v))1 = (ci(u))1 (or the same multiple messages if the machine previously returned on the
ith cell). Thus his next message in both cases will be the next element of the common crossing
sequence, and the argument continues.

Because at each point, the computation follows either the computation of u or v, also this
computation halts. This happens either on Alice’s or Bob’s part, and because both u and v
are accepted, Alice and Bob will conclude that u1 . . . uivj+1 . . . v|v| is also accepted.

From now on, we use the binary alphabet and write PAL{0,1} = PAL.

Corollary 12. Assume U decides PAL. If x, y ∈ {0, 1}n, x 6= y and i, j ∈ [n + 1, 3n], then
ci(x02nxR) 6= cj(y02nyR).

Proof. We prove the contra positive. Let u = x02nxR and v = y02nyR with |x| = |y| = n.

9

For i, j ∈ [n+ 1, 3n] we have

u1 . . . uivj+1 . . . v4n = x0kyR

for some k. If the crossing sequences at i and j are equal, Lemma 11 implies that U accepts
x0kyR, and hence, by assumption on U , this string is in PAL. The reverse of the string is
y0kxR, hence x = y.

Proof of Theorem 9. The total computation time on input x equals the sum of the lengths
of ci(x). Let U be a machine that decides PAL. We use Corollary 12 to show that there
exists an n-bit x for which the length of all crossing sequences ci(x02nxR) with i ∈ [n+ 1, 3n]
exceeds n/e, (e depends on the machine U). This implies the theorem.

Let x be of length n and let dx be the shortest crossing sequence in the positions [n+1, 3n]:

cn+1(x02nxR), . . . , c3n(x02nxR).

By Corollary 12, dx 6= dy whenever x 6= y. Now consider the set of all shortest crossing
sequences corresponding to x of length n:{

dx : x ∈ {0, 1}n
}

This set contains precisely 2n elements. Therefore, it must contain at least one long se-
quence dx, because the number of different crossing sequences of size at most ` equals

∑̀
i=0

|Q|i ≤ (1 + |Q|)` .

Let x be such that 2n ≤ (|Q|+ 1)|dx|. Thus |dx| ≥ n/e for some e that does not depend on n.
By definition of dx, all crossing sequences cn+1(x02nxR), . . . , c3n(x02nxR) have length at least
` ≥ n/e. Thus,

∑∞
i=1 |ci(x)| ≥ 2n2/e and the computation time is proportional to the squared

length of x02nxR ∈ PAL.

Exercise 7. With essentially the same proof, we can show that if U is a single tape machine
that decides the languages {

zz : z ∈ {0, 1}∗
}

than there is a c and infinitely many strings z such that U(zz) computes at least |z|2/c steps.
Explain where we have to adapt the proof above.

Exercise 8. Let U be a deterministic single tape machine that maps a pair (x, y) to x + y,
where x and y are interpreted as numbers in binary. Show that for some c and for infinitely
many n there are n-bit x, y for which U runs in time n2/c. Hint: use addition to solve the
problem of exercise 7 by consider pairs (x, y) where x is the bitwise inverse of y.

Exercise 9. Clearly, PAL is a decidable language. Give 2 proofs that PAL is not a regular
language by using (1) the pumping lemma and (2) Theorem 9.

Exercise 10. This exercise is harder, and intended for students who need a challenge.
Show that if a language can be decided by a Turing machine that on input x runs in time
o(|x| log |x|), then the language is regular. Hint: Show that for long x there must be 3 equal
crossing sequences. Then construct 2 shorther strings and repeat the decomposition.

10

5 Universal Turing machines

It is easy for us to believe that if a function can be programmed in some programming
language, then it can be implemented in one of the well known languages used for general
programming, such as C++, Java or Python. In this section we hope to convince you that
Turing machines have the same power. We show that they can simulate finite register ma-
chines. Then we argue that typical features of programming languages can be implemented
in this language. Finally we show that there are Turing machines that can simulate any other
Turing machine given an argument that contains a description of a Turing machine.

In 1936, when Alain Turing made the first mathematical construction of such machines,
many people where surprised that this was possible. They did not expect that mechanical
computation could be used in such a flexible way. Nowadays, for people who can program
or are aware of applications of artificial intelligence, this is not surprising. Some specialists
claim that this idea was important in the early history of computer science, because it inspired
people to write programs that write and rewrite other programs, like compilers.

What might be surprising nowadays, is that there exist such universal Turing machines
that are very simple. Currently, such machines are known with only s = 6 states that uses
a t = 4 symbol tape. (Some simple transformation of the input of the simulated machine is
needed for this construction.) This machine was constructed by Y. Roghozin. It is an open
question whether there exists such a machine for which s+ t < 10. The current lower bound
for such machines is s+ t ≥ 4.1

5.1 Computation with finitely many registers

We study machines that manipulate finitely many registers, i.e., variables with values in
Z≥0 = {0, 1, 2, . . . }. The operation of the machine is specified by a list of numbered commands.
Let a and b be variables. A command can be of the following types:

• a := 0

• a := b

• a := a+ 1

• a := a− 1 (if a = 0 then a remains 0)

• Stop

• Goto line 〈numberN〉

• If a = 0 then goto line 〈number N〉 else goto line 〈number M〉.

This list contains several redundant commands, they are just listed for convenience. Perhaps
you can already guess how the commands operate. Here is an example of a program that
implements f(a, b) = a+ b.

Input variables: a, b

Output variable: d

1 D. Woods and T. Neary, The complexity of small universal Turing machines: a survey, Theoretical
Computer Science, 410(4-5) p. 443-450, 2009.

11

1. c := a

2. d := b

3. If c = 0 then goto line 4 else goto line 5

4. Stop

5. c := c− 1

6. d := d+ 1

7. Goto line 3

The commands in a program are executed subsequently until a Goto or If statement is
reached. We explain the latter. If the variable in the if statement is zero, then the computation
is resumed at line number N , otherwise, at line number M . The input of a register machine
is stored in one or more variables. Initially, all other variables are zero. After a stop line is
reached, the output is obtained from a specified variable.

Note that addition of two n-bit binary numbers requires O(n) time on a Turing machine.
Here, it requires O(2n) time, hence the construction is highly inefficient.

Exercise 11. Show that the set of functions that can be evaluated by these machines does
not change if we remove both the copy command a := b and the reset command a := 0.

In the example above the program does not change the value of its input variables. If a
function f can be implemented in this way, we can extended the set of instructions with lines
u := f(a, b, . . . , e). The extended language implements the same functions, because each such
a line can be expanded to the code of the function, provided we adapt the line numbers and
adapt the names of the variables that are used twice. Now it is clear how to write programs
for subtraction, multiplication, devision, remainder (mod operation), exponentiation, prime
testing, computing the n-th prime number, etc.

In the next chapter we use the following exercise.

Exercise 12. Show that a program for any register machine can be rewritten as a program
that only uses the following three types of commands:

• a := a+ 1

• If a = 0 then goto line m else a := a− 1 and goto line n

• Stop

5.2 Turing machines can simulate register machines

We show that register machines and Turing machines can evaluate the same functions. For
this, we need to associate bitstrings with the numbers 0, 1, 2, . . . For this we use the sequence
from the first example of section 2

ε ↔ 0
0 ↔ 1
1 ↔ 2

00 ↔ 3
01 ↔ 4

. . .

12

Theorem 13. For every register machine there exists a Turing machine that computes the
same function.

Proof. We give the proof for one argument functions. The idea is to use the Turing machines
from the examples in section 2 to implement the increment a := a+1 and decrement a := a−1
commands. By applying the construction of Lemma 6 we obtain machines that never leave
the tape.

We assume that the register machine uses the same variable for input and output; if this
is not the case, we copy the output variable to the input variable. In exercise 11 it is shown
that the copy and reset commands are redundant, so we can modify our program such that
these lines do not appear. If the program of the register machine uses k variables, then we
use a Turing machine with k-tapes. Each tape stores one variable and the 1st tape is used
for the input-output variable.

For each line ` of the program, the computation head contains some sufficient number of
states q`,1, . . . , q`,e to execute the following instructions.

• If line ` contains a command Goto line n, then the list contains a single state q`,1 and
regardless of the content of the tapes, the subsequent state is qn,1.

• If a line ` contains a command a := a+ 1, then the machine of section 2 is run on the
tape that contains a. If this machine halts, then the computation head switches to the
state q`+1,1. Similar for a decrement operator.

• If line ` contains an If command, q`,1 checks whether the first cell of the variable’s tape
is blank and transfers to qN,1 or qM,1 accordingly. Here, N and M are the line numbers
indicated in the then and else parts.

• If the `th line is a stop-line, then d(q`,1, a1 . . . ak) is undefined for all a1 . . . ak ∈ Γk.

It is easy to understand that this machine simulates the register machine.

5.3 Register machines can simulate Turing machines

In general, it is easier to implement functions in this language compared to programming
Turing machines, and therefore, it is easier to believe that any algorithm can be programmed
in it. However, the language lacks arrays. It turns out that this can be implemented too: an
array [a, b, c, d, e] can be stored as A = 2a3b5c7d11e. The commands A[i] := k and f := A[i]
can now be replaced by small programs with input variables A, i, k and f,A, i. (In particular
these programs will include the computation of the nth prime number for a given n.) In fact,
we can code an infinite sequence of nonnegative integers in this way, provided this sequence
is initialized with all zeros, because a zero at position e contributes a factor (pe)

0 = 1.

Exercise 13. Show that the class of functions which can be implemented in this language
remains the same if we restrict the number of variables to a large enough constant, say 100.

Theorem 14. Every partial computable function can be evaluated by a machine with finitely
many registers.

Proof. We assume that we have arrays available as explained above. Let (Q,Γ, d, q0) be a
deterministic Turing machine with one tape. We can code the tape in a list variable T and

13

access the ith cell using T [i]. We associate every symbol in Γ with a number 0, 1, . . . , |Γ| − 1;
we choose 0 for the t symbol. Because at each computation step, there is only a finite part
of the tape that is used, at most finitely many elements in the array are nonzero, and at each
point, the full tape is represented by a finite product.

We first explain how to simulate a computation step. For this, we maintain four variables:

• q encodes the state of the computation head,

• i encodes the position of the head,

• T encodes the tape (as an array),

• b encodes the current tape symbol that is scanned.

The “main loop” of the program updates these values. There are many ways to implement
the main loop, just verify for yourself there exists at least one way.

Before entering the main loop, we must transform the input. Initially, each input string is
represented as its index in the list of all strings in the order above. Assume that we associate
0 ∈ Γ with 1 ∈ N and 1 ∈ Γ with 2 ∈ N. It is a bit tedious but not to hard to find a program
that transforms x = x1 . . . xe the number 21+x131+x2 . . . p1+xe

e . Then we run the simulation
above. After a halting state is reached, we must capture and transform the output. Again,
verify for yourself there is at least one way to program this.

Theorem 15 (Universal Turing machine.). There exists a partial computable function ϕ : {0, 1}∗×
{0, 1}∗ → {0, 1}∗ such that for each partial computable function g : {0, 1}∗ → {0, 1}∗ there ex-
ists a string w such that g equals the partial function x 7→ ϕ(w, x).

Proof idea. The previous two theorems state that register machines and Turing machines
compute the same functions. Therefore, it suffices to show that a register machine can be
encoded in an integer, and that there exists a register machine that can simulate any other
register machine given the corresponding integer as additional input. There are many ways
to do this. For example, we may implement 2 dimensional arrays and store the description
of such a machine in such an array: all information in a command line can just be described
by a few numbers. We store all variables in a one-dimensional array. Then construct a main
loop to update the line number and the variables.

6 Some decidable languages

From now on, we present algorithms as usual, using high level descriptions.

Exercise 14. Assume that B and C are decidable. Show that also B ∪C, B ∩C, B \C, BC
and B∗ are decidable. Is every finite set decidable?

We define decidable sets for pairs of strings using some standard pairing function. Natural
numbers N = {1, 2, . . . }, integers, and tuples of such objects can all be represented using
bitstrings, and we assume that we have fixed such a representation. Rational numbers can
be interpreted as a pair in N× Z, and can therefore also be represented.

14

Exercise 15. Consider the set of all n for which the decimal representation of π = 3.14159 . . .
contains at least n nines in a row.

π = 3.1415999265358999799932384626433832799950288419997169993999999375105820999749994459992307816406

286208999999862803 . . . 7477130999999605187072113499999999999999999983729997804999999510599973173 . . .

For example, the 2nd part of π’s decimals representation above2 contains the substring 999999,
hence S contains 1, 2, . . . , 6. Show that this set is decidable. (Note that the proof is noncon-
structive.)

Exercise 16. Show that an infinite set of natural numbers is decidable if and only if it is
the image of an increasing computable function, i.e., if there exists a computable increasing
f : N → N such that S = {f(1), f(2), f(3), . . . }.

Exercise 17. Show that the set of rational numbers smaller than
√

2 is decidable. Do the
same for the irrational number e =

∑∞
i=0

1
i! (the base of the natural logarithm).

Exercise 18. Show that every partial computable f : N→ N has a partial computable pseudo
inverse, i.e., a function g for which f(g(f(x))) = f(x) for all x.

We fix a method to encode an automaton B as a bitstring 〈B〉. We assume that given
such a description 〈B〉 and a string w, we can simulate the automaton on input w.3

We use a generic method to combine descriptions of several objects, and for this we also
use the bracket notation. For example, for an automaton B and a string w, we use 〈B,w〉 for
a representation of the pair (B,w). Given such a representation, a Turing machine can start
the simulation of B on input w. This implies for example that the set

ADFA = {〈B,w〉 : B is an DFA that accepts w}

is decidable.

Lemma 16. The following set is decidable:

ENFA = {〈B〉 : B is an NFA that accepts no strings}

Proof. The algorithm that decides the set proceeds as follows. First we use 〈B〉 to construct
the directed graph of all states. Then we search for a vertex in the set of accepting states that
can be reached from the start state. We can do this to by checking all paths of length at most
|Q| − 1, where Q is the set of states. Why is it enough to check paths of length |Q| − 1?

The method described in the proof requires exponential time. Do you know faster methods?

Exercise 19. Show that the following sets is decidable

EQNFA = {〈B,C〉 : B and C are NFAs that accepts the same strings}.

Exercise 20. Consider the set of all descriptions 〈M〉 of nondeterministic automata M that
accept at least 1 string w that contains a substring 111. Show that this set is decidable.

2Obtained from http:/www.piday.org/million/
3 A reasonable description of automata, Turing machines, or other computing devices also means that the

set of valid descriptions is decidable.

15

A linear bounded automaton is a Turing machine that on input w never moves its com-
putation head further then the (|w| + 1)th cell of the tape. Such machines are still quite
powerful, for example, every regular language can be decided by such an automaton. The
following exercise is inspired by such machines.

Exercise 21. The set

{〈M,w〉 : M is a TM that accepts w using at most |w|+ 1 tape cells}

is decidable. Hint: the problem is that one does not know when the machine will halt. Note
that the tape and hence the machine can have at most finitely many states.

Solutions

Exercise 1. The machine has 4 states. In the start state we always write 0. In the states w0

and w1 the machine always writes 0 and 1. In the state ` the machine always moves left until
it falls of the tape.

sstart

w0

w1

`

0|0R

1|0R

t |0L

0|0R

1|0R

t |0R

1|1R

0|1R

t |1R

0|0L
1|1L

Exercise 2.

sstart `

all0

0|1R

1|0L

t |tL

1|1L

1|tL

Exercise 4. A deterministic automaton scans its input symbol by symbol, and a Turing
machine can imitate this behavior by always moving right and using the same states as the
automaton to simulates its computation. When it reaches a blank, the Turing machine halts.
If we use the same set of accept states, the machine accepts the same strings.

16

Formally, let (Q,Σ, D, s, F) be a DFA. Recall that D ⊆ Q × Σ × Q and that for all
(q, a) ∈ Q× Σ, there is an outgoing edge. For all q ∈ Q and a ∈ Σ let

d(q, a) = (R, t , r) for the unique r such that (q, a, r) ∈ D.

It is not important what the machine writes. d(q, t) is undefined for all q ∈ Q. The Turing
machine (Q,Σ ∪ {t}, d, s) will halt in a state from F precisely for those strings that are
accepted by the DFA. Hence, it decides the same language.

Exercise 5. From the solution of the previous exercise, we see that regular languages can be
decided by such machines. Note that the tape is useless for these machines, thus the machines
in some sense compute without memory. Therefore, we expect that these languages are all
regular.

We prove this formally by constructing an automaton for each such Turing machine. The
computation has 2 phases, in the first phase, it is reading the input string. In the second
phase, it is reading only blanks. At any point, the write operations do not influence the
remainder of the computation. Given such a Turing machine (Q,Γ, d, s) and accept states F ,
we define an NFA of the form (Q,Σ, D, s, F̃), where

D =
{

(q, a, r) : q ∈ Q, a ∈ Σ and d(q, a) = (b, R, r)
}

To determine whether a state q should be an accept state, we run the Turing machine on a
blank tape with q as start state. If the machine reaches a state of F , we put q into F̃ . Now
we obtained an automaton that recognizes the same language.

Exercise 8. If |x| = |y| = n and x is the bitwise inverse of y, then x+ y = 1n. Suppose that
for all n and for all inputs uv with |u| = |v| = n, we can compute the u+ v in time t(n). We
use the machine to solve the problem of 7 as follows:

On input a string zw with |z| = |w|, we negate the bits of w and compute the sum. Then
we check whether the sum equals 1n, and if this is true we accept. Otherwise, we reject.

Note that this works, the sum equals 1n if and only if z = w. The total computation
time of the algorithm is at most t(n) + en for some e and all large n. By exercise 7 for every
machine, there is a c and infinitely many z ∈ {0, 1}∗ for which t(n) + en ≥ n2/c with n = |z|.
Exercise 9. (1) Note that 0n1n0n ∈ PAL. Assume the language were regular. Consider this
string for n being the pumping length. After pumping up or down, we obtain a string of the
form 0n+j1n0n with j 6= 0. This is not a string in PAL, contrary to what we conclude from
the pumping lemma. Hence, our assumption must be false, and PAL is not regular.

(2) All regular languages can be decided using n computation steps on inputs x ∈ Σn. For
this, we use a Turing machine that runs once over the input and simulates some DFA that
recognizes the language. But this contradicts Theorem 9.

Exercise 15. By definition, if the set contains some n, then it contains also 1, 2, · · · , n − 1.
Thus, there are 2 cases: either for all n, the substring

n times︷ ︸︸ ︷
99 . . . 9

appears in the decimal expansion, or not. In the first case, we have the set equals N and this
set is clearly decidable. Otherwise, the set is finite hence decidable. In both cases the set is
decidable. But we do not know which case it is true, and hence, we can specify a program
that decides the set.

17

Exercise 16. Suppose that a set S is infinite and decidable. Consider the algorithm that
on input n, searches for n different elements in S by running the decision procedure to the
natural numbers in increasing order. This search is always terminates, because S is infinite.
After this, we output the largest element. By construction, this function is total, increasing
and computable.

Suppose f is an increasing computable function and let S = {f(n) : n ∈ N}. On input n,
the decision procedure for S searches for an argument m such that f(m) ≥ n. It accepts if
n ∈ {f(1), . . . , f(m)}, and otherwise it rejects. Note that the search for m is always successful.
Hence, this algorithm indeed decides S.

Exercise 17. For the first part, simply compute the square and compare it with 2. To decide
whether r < e, we search for a value k ≥ 1 such that r−

∑k
i=0

1
i! is either negative or exceeds 1

k! .
In the first case we accept in the second case we reject.

We show that this works. Clearly if the algorithm accepts, we have r < e. Note that for
k ≥ 2, we have that

1

k!
≥
∞∑
j=1

1

(k + j)!
,

because each term in the sum is at most half of the previous term. Hence, if the algorithm
rejects, we have r > e. If the algorithm never accepts or rejects, this means that r = e, which
is impossible because e is irrational.

Exercise 19. Let LB and LC be the languages recognized byB and C. Note that the symmetric
difference (B \ C) ∪ (C \ B) is also regular. Moreover, we can compute an automaton that
recognizes this languages: first we construct equivalent deterministic automata using the
algorithm of the proofs that DFA and NFA recognize the same languages. Now we can apply
the construction for complements. Then we apply the constructions for intersections and
unions. After the automaton is obtained, we apply the algorithm obtained from Lemma 16
to check whether this set is empty. If this is the case, we accept 〈B,C〉, otherwise we reject.

Exercise 21. We need to simulate M on input w and check whether M outputs 1. The problem
is that M might get stuck in a loop, and we do not know when to halt the simulation.

However, if M = (Q,Γ, d, s) never moves behind the (|w| + 1)th cell, then either the
computation halts, or some machine state will be visited twice, and both events can be
detected.

Indeed, the tape can have at most |Γ||w|+1 states. The number of machine states in
N × Q × Γ∞ in a computation path is is at most N = (|w| + 1)|Q|·|Γ||w|+1. Thus, if a
computation path is unbounded, some state will appear twice.

In fact, it suffices to run the computation during N steps. If the machine did not halt,
then it will never halt, because some state must have been visited twice, and hence the
computation goes in a loop.

18

	Definition
	Examples
	A robust definition of computable functions
	Multitape Turing machines
	Multitape Turing machines compute the same functions
	Multitape machines are faster than single tape machines

	Universal Turing machines
	Computation with finitely many registers
	Turing machines can simulate register machines
	Register machines can simulate Turing machines

	Some decidable languages

