Темы, выносимые на кр.3 и задачи к ним

1. Мультиколлинеарность данных и способы борьбы с ней

Мультиколлинеарность данных. Идеальная и практическая мультиколлинеарность (квазимультиколлинеарность). Теоретические последствия мультиколлинеарности для оценок параметров регрессионной модели. Нестабильность оценок параметров регрессии и их дисперсий при малых изменениях исходных данных в случае мультиколлинеарности. Признаки наличия мультиколлинеарности. Показатели степени мультиколлинеарности. Вспомогательные регрессии и показатель "вздутия" дисперсии (VIF). Индекс обусловленности информационной матрицы (CI) как показатель степени мультиколлинеарности. Полиномиальная регрессия. Методы борьбы с мультиколлинеарностью. Переспецификация модели (функциональные преобразования переменных). Исключение объясняющей переменной, линейно связанной с остальными. Понятие о методе главных компонент как средстве борьбы с мультиколлинеарностью данных. Понятие о методе LASSO.

Задачи

- 1) Признаком мультиколлинеарности служит:
- 1. маленькие t-статистики при R2, близком к 1
- 2. близкое к 0 значение коэффициента множественной детерминации
- 3. значительные изменения в оценках коэффициентов регрессии при небольших изменениях в данных
- 4. близкие к 0 значения коэффициентов корреляции регрессоров
- 5. все ответы верны
- 2) Оцененная с помощью МНК зависимость заработной платы индивида EARNINGS от его возраста AGE, опыта EXP, пола MALE, длительности обучения S, длительности обучения матери SM имеет вид (в скобках стандартные отклонения коэффициентов):

$$EA\hat{R}N = -24 - 0.099 \ AGE + 2.49 \ S + 0.26 \ SM + 0.46 \ EXP + 6.23 \ MALE, R^2 = 0.247$$
 Были оценены также вспомогательные регрессии:
$$A\hat{G}E = -.007 + 0.53 \ AGE - 0.6S + 0.23 \ SM + 1.23 \ MALE, R^2 = 0.2,$$

$$\hat{S} = 8.47 + 0.095 AGE + 0.4SM - 0.2EXP + 0.12MALE, R^2 = 0.25,$$

$$\hat{S}\hat{M} = 6.16 - 0.045 AGE + 0.42S + 0.08EXP + 0.42MALE, R^2 = 0.18,$$

$$\hat{EXP} = -.07 + 0.53 AGE - 0.6S + 0.23SM + 1.23MALE, R^2 = 0.2,$$

VIF для переменной EXP равен ____.

Ответ. 1.25

3) При применении к модели, результаты оценки которой приведены ниже,

EARNINGS	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval
S AGE Agesq EXP ETHHISP ETHBLACK MALE _cons	2.578227 -10.70493 .1300605 .4429137 -1.078255 -4.014172 6.364055 193.7202	.2288185 9.211662 .1125515 .1442633 2.268688 2.152185 1.111968 187.6859	11.27 -1.16 1.16 3.07 -0.48 -1.87 5.72 1.03	0.000 0.246 0.248 0.002 0.635 0.063 0.000	2.128729 -28.80062 0910395 .159518 -5.534941 -8.241996 4.179668 -174.9761	3.027726 7.390769 .3511605 .7263094 3.378432 .2136528 8.548442 562.4165

. vif

1/VIF	VIF	Variable
0.000708 0.000709 0.778114 0.875122 0.962602 0.966488 0.983851	1411.96 1411.13 1.29 1.14 1.04 1.03	AGE Agesq EXP S ETHBLACK MALE ETHHISP
	404.09	Mean VIF

метода последовательного исключения, на ближайшем шаге из уравнения регрессии будет удалена переменная

- 1) S 2) AGE 3) EXPSQ 4) EXP 5) ETHWHITE 6)ETHHISP 7) FEMALE 8) ни одна из перечисленных
- 4) Первой главной компонентой системы показателей $X_1,...,X_k$ называется такая линейная комбинация этих показателей
- 1. в которой коэффициент при X_1 равен 1 2. которая обладает наименьшей дисперсией 3. которая обладает наибольшей дисперсией 4. которая ортогональна всем X_j , j=1,...,k

5) (Д.А.Борзых, Б.Б.Демешев, часть задачи 7.4)

Пионеры, Крокодил Гена и Чебурашка собирали несколько дней подряд. В распоряжение иностранной шпионки, гражданки попали ежедневные данные ПО количеству собранного Шапокляк, металлолома: вектор g – для Крокодила Гены, вектор h – для Чебурашки и вектор х – для пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $\hat{cor}(g,h) = -0.9$. Гена и Чебурашка собирали независимо от пионеров, поэтому $c\hat{o}r(g,x) = 0$, $c\hat{o}r(h,x) = 0$. Если регрессоры g, h, x центрировать т нормировать, то получится матрица \widetilde{X} . Вычислите одну или две главные компоненты (выразите их через вектор-столбцы матрицы \tilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров.

Otbet.
$$(\widetilde{X}_1 - \widetilde{X}_2)/\sqrt{2}; \quad \widetilde{X}_3$$

6) (Демешев, Борзых, 7.13)

Известно, что выборочная корреляция между переменными x и z равна 0.9.

- 1. Найдите коэффициенты VIF для x и z в регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$.
- 2. В каких пределах могут лежать коэффициенты VIF для x и z в регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$?

7) (Демешев, Борзых, 7.11)

Эконометресса Алевтина перешла от исходных регрессоров к трём главным компонентам, z_1 , z_2 и z_3 . И далее посчитала коэффициенты вздутия дисперсии, VIF_j , для главных компонент. Чему они оказались равны?

2. Прогнозирование по регрессионной модели

Прогнозирование по регрессионной модели и его точность. Доверительные интервалы для прогнозных значений.

Задачи

1) На основании 5 наблюдений получена МНК оценка уравнения регрессии $\hat{Y}_i = 1.56 + 0.21 X_i$ и оценка остаточной дисперсии $\hat{\sigma}_{\varepsilon}^2 = 0.04$. Матрица наблюдений регрессоров имеет вид: $X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 6 & 8 \end{pmatrix}'$.

Построить 95% доверительный интервал для прогноза, если прогнозное значение X=2.

3. Метод максимального правдоподобия. Тесты Вальда, отношения правдоподобия, множителей Лагранжа

Метод максимального правдоподобия. Свойства оценок метода максимального правдоподобия. Соотношение между оценками коэффициентов линейной регрессии, полученными методом максимального правдоподобия и методом наименьших квадратов в случае нормально распределенной случайной составляющей. Свойства оценки дисперсии случайной составляющей, полученной методом максимального правдоподобия. Проверка гипотез с помощью теста Вальда, теста отношения правдоподобия, теста множителей Лагранжа.

Задачи

1) Логарифмическая функция правдоподобия, используемая для оценивания классической линейной регрессионной модели, имеет вид:

1)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = \frac{n}{2} \ln \sqrt{2\pi} - \frac{n}{2} \ln \sigma_{\varepsilon}^2 - \frac{1}{2} \frac{(Y - X\beta)'(Y - X\beta)}{\sigma_{\varepsilon}^2}$$
;

2)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma_{\varepsilon}^2 - \frac{1}{2} \frac{\varepsilon' \varepsilon}{\sigma_{\varepsilon}^2}$$
;

3)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = -\frac{n}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma| - \frac{1}{2} (Y - X\beta)' \Sigma^{-1} (Y - X\beta);$$

4)
$$\ln L(\beta, \sigma_{\varepsilon}^2) = \frac{n}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma| - \frac{1}{2} (Y - X\beta)' \Sigma (Y - X\beta);$$

- 5) ни один из вышеперечисленных.
- 2) Оценки метода максимального правдоподобия:
- 1) всегда состоятельные
- 2) всегда несмещенные

6)

- 3) всегда имеют нормальное распределение
- 4) могут быть как смещенными, так и несмещенными
- 5) могут иметь произвольное асимптотическое распределение
- 3) Число звонков по товару распределено по закону Пуассона $P(X=x) = P(X=x) = \frac{\lambda^x}{x!} e^{\lambda}$

Произведены замеры в течении рабочего дня, было установлено что количество звонков распределилось следующим образом:

Номер					
часа от	1	2	3	1	5
начала	1	<u> </u>	3	7	3
распродаж					
Число	22	44	59	58	47
ЗВОНКОВ	22	44	39	30	47

Найти параметр λ методом максимального правдоподобия.

Ответ. 46

4) Магнус, Катышев, Пересецкий, № 10.10

Известно, что в модели $Y = X\beta + \varepsilon$

Имеется гетероскедастичность, причем

$$\operatorname{var}(\varepsilon_i) = \sigma_1^2, i = 1, ..., n_1, \operatorname{var}(\varepsilon_i) = \sigma_2^2, i = n_1 + 1, ..., n = n_1 + n_2$$

 $\operatorname{cov}(\varepsilon_i, \varepsilon_i) = 0, i \neq j.$

В предположении нормальности вектора ошибок постройте тест отношения правдоподобия (LR-test) для проверки гипотезы $H_0: \sigma_1^2 = \sigma_2^2$.

5) Борзых, Демешев, № 5.19, 5.20

- 5.19 Исследователь Вениамин пытается понять, как логарифм количества решённых им по эконометрике задач зависит от количества съеденных им пирожков. Для этого он собрал 100 наблюдений. Первые 50 наблюдений относятся к пирожкам с мясом, а последние 50 наблюдений к пирожкам с повидлом. Вениамин считает, что ожидаемое количество решённых задач не зависит от начинки пирожков, а только от их количества, т.е. $y_i = \beta x_i + u_i$. Однако он полагает, что для пирожков с мясом $u_i \sim \mathcal{N}(0; \sigma_M^2)$, а для пирожков с повидлом $u_i \sim \mathcal{N}(0; \sigma_J^2)$.
 - 1. Выпишите логарифмическую функцию правдоподобия.
 - 2. Выпишите условия первого порядка для оценки $\beta, \sigma_M^2, \sigma_J^2$.
- 5.20 После долгих изысканий Вениамин пришёл к выводу, что $\beta=0$, т.е. что логарифм количества решенных им по эконометрике за вечер задач имеет нормальное распределение y_i с математическим ожиданием ноль. Однако он по прежнему уверен, что дисперсия y_i зависит от того, какие пирожки он ел в этом вечер. Для пирожков с повидлом $y_i \sim \mathcal{N}(0; \sigma_J^2)$, а для пирожков с мясом $y_i \sim \mathcal{N}(0; \sigma_M^2)$. Всего 100 наблюдений. Первые 50 вечеров относятся к пирожкам с мясом, последние 50 вечеров к пирожкам с повидлом:

$$\sum_{i=1}^{50} y_i = 10, \ \sum_{i=1}^{50} y_i^2 = 100, \ \sum_{i=51}^{100} y_i = -10, \ \sum_{i=51}^{100} y_i^2 = 300$$

1. Найдите оценки $\sigma_{M}^{2},\,\sigma_{J}^{2},\,$ которые получит Вениамин.

4. Гетероскедастичность

Нарушение гипотезы о гомоскедастичности. Экономические причины гетероскедастичности. Последствия гетероскедастичности для оценок коэффициентов регрессии методом наименьших квадратов и проверки статистических гипотез. Поведение графика остатков регрессии, как признак гетероскедастичности. Тесты Голдфелда-Квандта (Goldfeld-Quandt), Глейзера (Glejser Бройша-Пагана (Breusch-Pagan). Методы борьбы с гетероскедастичностью. Робастные стандартные ошибки в форме Уайта (White). Взвешенный метод наименьших квадратов. Обобщенный метод наименьших квадратов

Задачи

- 1) При гетероскедастичности возмущений нарушается условие теоремы Гаусса Маркова
 - б) (2) Оценки МНК коэффициентов в этом случае останутся
- 1) BEST 2) LINEAR 3) UNBIASED 4) ESTIMATOR 5) ничего из перечисленного

2) По данным с 1946 г. по 1975 г. Hanushek и Jackson оценили коэффициенты уравнений регрессии (в скобках указаны оценки стандартных отклонений)

$$\hat{C}_{t} = 26.19 + 0.6248 \, GNP_{t} - 0.4398 \, D_{t}$$

$$\left(\frac{\hat{C}}{GNP}\right)_{t} = 25.92 \frac{1}{GNP_{t}} + 0.6246 - 0.4315 \left(\frac{D}{GNP}\right)_{t},$$

где C – агрегированные частные потребительские расходы, GNP – BHP,

D – национальные расходы на оборону.

С какой целью оценили второе уравнение? Какое при этом было сделано предположение о дисперсии ошибок?

Otbet.
$$\sigma_i^2 \sim GNP_i^2$$

3) По данным для 45 стран исследователь оценил зависимость инвестиций I от государственных расходов G и валового внутреннего продукта Y (все переменные измеряются в миллиардах долларов США):

$$\hat{I} = 18.1 - 1.07 G + 0.36 Y$$
, $R^2 = 0.98$

Исследователь упорядочил наблюдения по увеличению Y и оценил регрессии снова для 15 стран с наименьшим Y и 15 стран с наибольшим Y. Величины RSS для этих регрессий равны 421 и 3219 соответственно. Протестируйте модель на наличие пропорциональной формы гетероскедастичности.

4) По данным для 20 стран были оценены коэффициенты уравнения регрессии

$$\hat{Y}_i = 111.78 - 0.0042 X_{2i} - 0.4898 X_{3i}$$
 $R^2 = 0.492$

где Y – младенческая смертность (количество в расчете на тысячу рожденных живыми),

 X_2 – GNP в расчете на душу населения,

 $X_{3}^{\;\;-}$ процент имеющих начальное образование в определенной возрастной группе.

При проведении теста Уайта была оценена регрессия

$$e_{i}^{2} = 4987 - 0.4718 X_{2i} - 0.8442 X_{3i}$$

$$+ 0.00001 X_{2i}^{2} + 0.4435 X_{3i}^{2} + 0.0026 X_{2i} X_{3i} R^{2} = 0.649$$

Проведя тест Уайта, проверьте гипотезу об отсутствии гетероскедастичности.

5) Предположим, что для модели парной регрессии $\sigma_{ui}^2 = \sigma^2 X_i^4$.

Как избавиться от проблемы гетероскедастичности ошибок?

- 6) Тестом, который не только позволяет выявить наличие гетероскедастичности, но и указать способ оценивания параметров σ_i^2 , является
- 1) тест Уайта 2) тест Глейзера 3) тест Рамсея 4) **тест** Хаусмана
- 7) Оценки метода наименьших квадратов коэффициентов регрессии: $Y = \beta_1 + \beta_2 X_2 + ... + \beta_k X_k + u$ останутся несмещенными при нарушении условий теоремы Гаусса – Маркова
 - 1) $var(u_i) = \sigma^2$ при всех і
 - 2) $cov(u_i; u_i) = 0; i \neq i$,
- 3) состоящих во включении в модель лишнего объясняющего фактора Z,
 - 4) состоящих в невключении в модель необходимого фактора
 - 8) FGLS-оценка коэффициентов линейной регрессионной модели $Y = X\beta + \varepsilon$, $\hat{V}[\varepsilon] = \Sigma$ имеет вид:
- 1) $(X'X)^{-1}(X'Y)$
- 2) $(X'\hat{\Sigma}^{-1}X)^{-1}(X'Y)$
- 3) $(X'\Sigma^{-1}X)^{-1}(X'\Sigma^{-1}Y)$
- 4) $(X'\hat{\Sigma}^{-1}X)^{-1}(X'\hat{\Sigma}^{-1}Y)$
- 5) нет верного ответа
 - 9) (Д.А.Борзых, Б.Б.Демешев, задача 8.26)

Пусть $Y_i = \beta X_i + \varepsilon_i$, где $E(\varepsilon_i) = 0$ и известно, что оценка для параметра

 $\widetilde{\beta} = \frac{\sum\limits_{i=1}^{n} Y_{i}}{\sum\limits_{i=1}^{n} X_{i}}$ является наилучшей (в смысле минимума дисперсии) среди всех

линейных несмещенных оценок параметра β . Чему равна в этом случае матрица ковариаций вектора ε с точностью до пропорциональности?

Задачник Борзых и Демешев

- 8.2 В модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ присутствует гетероскедастичность вида $Var(\varepsilon_i) = \sigma^2 x_i^2$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность?
- 8.3 В модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ присутствует гетероскедастичность вида $Var(\varepsilon_i) = \lambda |x_i|$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность?
- 8.4 Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на x_i^2 гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $Var(\varepsilon_i)$?
- 8.5 Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на $\sqrt{x_i}$ гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $\text{Var}(\varepsilon_i)$?
- 8.7 По наблюдениям x=(1,2,3)', y=(2,-1,3)' оценивается модель $y=\beta_1+\beta_2x+\varepsilon$. Ошибки ε гетероскедастичны и известно, что $\mathrm{Var}(\varepsilon_i)=\sigma^2\cdot x_i^2$.
 - 1. Найдите оценки \hat{eta}_{ols} с помощью МНК и их ковариационную матрицу.
 - 2. Найдите оценки $\hat{\beta}_{gls}$ с помощью обобщенного МНК и их ковариационную матрицу.
- 8.8 Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	ı			
i = 1,, 30 i = 1,, 11 i = 12,, 19 i = 20,, 30	1.21	1.89	2.74	48.69
$i=1,\ldots,11$	1.39	2.27	2.36	10.28
$i = 12, \dots, 19$	0.75	2.23	3.19	5.31
$i=20,\ldots,30$	1.56	1.06	2.29	14.51

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

- **8.12** Рассмотрим линейную регрессию $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ по 50 наблюдениям. При оценивании с помощью МНК были получены результаты: $\hat{\beta}_1 = 1.21$, $\hat{\beta}_2 = 1.11$, $\hat{\beta}_3 = 3.15$, $R^2 = 0.72$.
 - Оценена также вспомогательная регрессия: $\hat{\varepsilon}_i^2 = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i + u_i$. Результаты оценивания следующие: $\hat{\delta}_1 = 1.50$, $\hat{\delta}_2 = -2.18$, $\hat{\delta}_3 = 0.23$, $\hat{\delta}_4 = 1.87$, $\hat{\delta}_5 = -0.56$, $\hat{\delta}_6 = -0.09$, $R_{aux}^2 = 0.36$

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

- 8.15 Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.
- 8.16 Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.
- 8.17 Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.
- 8.18 Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.
 - 8.23 Рассмотрим модель регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$, в которой ошибки ε_i независимы и имеют нормальное распределение $N(0, \sigma^2)$. Для n=200 наблюдений найдите
 - 1. вероятность того, что статистика Уайта окажется больше 10;
 - ожидаемое значение статистики Уайта;
 - 3. дисперсию статистики Уайта.
 - 8.24 Найдите число коэффициентов во вспомогательной регрессии, необходимой для выполнения теста Уайта, если число коэффициентов в исходной регрессии равно k, включая свободный член.

- 8.25 По 35 наблюдениям сотрудники НИИ оценили уравнение регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и рассчитали остатки ε_i . После того они приступили к диагностике возможных недостатков модели, обнаружили гетероскедастичность и решили её побороть.
 - 1. Самый младший научный сотрудник выдвинул предположение, что стандартное отклонение случайной составляющей может быть выражено так: $\sigma_{\varepsilon,i} = ax_i$, где a неизвестный коэффициент. Каким образом нужно преобразовать исходное уравнение регрессии, чтобы избавиться от гетероскедастичности?
 - Профессор решил перепроверить результаты и оценил регрессию:

$$\hat{e}_i^2 = -0.3 + 0.08x_i - 0.01x_i^2, R^2 = 0.15.$$

Свидетельствует ли полученный профессором результат о наличии гетероскедастичности?

5. Бинарные объясняемые переменные. Логит и пробит модели

Бинарные объясняемые переменные. Модель линейной вероятности. Логит и Пробит модели, их оценивание. Интерпретация результатов оценивания моделей с бинарными объясняемыми переменными. ROC – кривая.

Задачи

Демидова, Малахов

Задача 11.1.

Исследователя интересует зависимость вероятности найти работу от уровня образования индивидуума. Введя в качестве зависимой переменную ЕМР, равную 1 для работающих и 0 для неработающих и S – количество лет обучения в качестве объясняющей, он оценил логит – модель:

$$P\{EMP_i = 1\} = \frac{1}{1 + \exp\{-Z_i\}}, Z_i = -1.006 + 0.148S$$

Оцените предельный эффект объясняющего фактора для среднего значения переменной S=13.5 .

Задача 11.2.

По наблюдениям для 570 индивидуумов оценена зависимость получения школьником аттестата от обобщенной оценки результатов тестов X. Переменная Y принимает значение 1, если аттестат был получен и 0 в противном случае.

Оцененные модели имеют следующий вид:

Логит:
$$P\{Y_i=1\} = \frac{1}{1+\exp\{-Z_i\}}$$
 , $Z_i = -5.004 + 0.1666 \, X$,

Пробит:
$$P\{Y_i=1\}=F(Z_i)$$
, $F(z)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{z}e^{-t^2/2}dt$, $Z=-\underbrace{2.7}_{(0.083)}+\underbrace{0.53}_{(0.0117)}X$

Дайте экономическую интерпретацию полученным результатам для логит и пробит моделей. Найдите предельный эффект объясняющего фактора в точке $\overline{X} = 50.15$.

Задача 11.3.

Из 750 обратившихся за ссудой в банк 250 было в ней отказано. Для оценки вероятности получения ссуды были оценены линейная и пробит модели:

$$Y = 0.5 + 1.5X$$
,

$$P{Y_i = 1} = F(Z_i), F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$$

$$Z = 0.45 + 3X$$

где $Y_i = 1$ для получивших ссуду и 0 иначе, X - доход просителя.

По пробит модели найти предельный эффект дохода в среднем.

Задача 11.4.

Для того, чтобы определить, эффективна ли новая методика преподавания микроэкономики, провели следующий эксперимент: протестировали всех студентов по микроэкономике в конце первого и второго семестра. Часть студентов во втором семестре обучали по новой методике, часть по старой. После этого в качестве объясняющей выбрали переменную Y, равную 1, если результат студента улучшился и 0 в противном случае, а в качестве объясняющих переменных X_1 – результаты теста в первом семестре, X_2 – средний балл по остальным предметам, D – равную 1, если студент обучался по новой методике и 0, если по старой.

По имеющимся данным оценили пробит- модель:

$$P{Y_i = 1} = F(Z_i), F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$$

$$Z = -7.452 + 0.052X_1 + 1.626X_2 + 1.426D$$
.

Найдите предельный эффект переменной D при средних значениях $\overline{X}_1 = 21.938$, $\overline{X}_2 = 3.117$ (разность вероятностей улучшения результата при D = 1 и D = 0).

Задание 11.3.

Для анализа аудитории, использующей Интернет для учебы по данным для 1314 индивидов были оценены линейная и пробит модели (последняя с предельными эффектами), в которых intlear = 1 при использовании индивидом Интернета для учебы и 0 в противном случае, male = 1 для мужчин и 0 для женщин, income – заработная плата индивида по основному месту работы, age – возраст. В скобках указаны соответственно t или z - статистики. В чем состоят недостатки линейной модели? Дайте интерпретацию полученным результатам.

$$INTLEAR = -0.78 - .013 AGE - 4.53 \cdot 10^{-10} INCOME - 0.073 MALE$$

$$P\{INTLEAR_i = 1\} = F(Z_i), F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$$

$$Z = 1.01 - 0.044 AGE - 1.51 \cdot 10^{-9} INCOME - 0.23 MALE$$

$$_{(7.25)}^{(7.25)} = \frac{1}{(-10.82)} INCOME - 0.23 MALE$$

Marginal effects after probit

```
variable dy/dx Std. Err. z P>z [ 95% C.I. ] age -.0147444 .00133 -11.08 0.000 -.017353 -.012136 income -5.07e-10 .00000 -0.98 0.328 -1.5e-09 5.1e-10 male* -.0783057 .02536 -3.09 0.002 -.128015 -.028597 (*) dy/dx is for discrete change of dummy variable from 0 to 1
```

Борзых, Демешев, задача 6.5.

При оценке логит модели $\mathbb{P}(y_i=1)=\Lambda(\beta_1+\beta_2x_i)$ по 500 наблюдениям оказалось, что $\hat{\beta}_1=0.7$ и $\hat{\beta}_2=3$. Оценка ковариационной матрицы коэффициентов имеет вид

$$\begin{pmatrix} 0.04 & 0.01 \\ 0.01 & 0.09 \end{pmatrix}$$

- 1. Проверьте гипотезу о незначимости коэффициента \hat{eta}_2 .
- 2. Найдите предельный эффект роста x_i на вероятность $\mathbb{P}(y_i=1)$ при $x_i=-0.5$.
- 3. Найдите максимальный предельный эффект роста x_i на вероятность $\mathbb{P}(y_i=1)$.