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Abstract. We introduce novel notions of Cautiousness and Cautious
Belief for Lexicographic Probability Systems, whose preference-based foun-
dations build on a weak �in�nitely more likely� relation between uncertain
events. With this, we show that Iterated Admissibility characterizes the be-
havioral implications of Cautious Rationality and Common Cautious Belief
of Cautious Rationality in a (continuous and belief-complete) terminal type
structure. This contrasts with the negative result of Brandenburger, Frieden-
berg and Keisler (Econometrica 2008), according to which Rationality and
Common Assumption of Rationality is impossible in all continuous and belief-
complete type structures. On the other hand, we show that continuity and
belief-completeness cannot substitute terminality for our positive result.
Keywords: Iterated Admissibility, Weak dominance, In�nitely

More Likely, Lexicographic Probability Systems.

1 Introduction

Iterated Admissibility (henceforth IA), i.e., the iterated deletion of weakly dominated
strategies, is an important and widely applied solution concept for games in strategic
form.1 Shimoji (2004) proved that, in dynamic games with generic payo¤s at terminal
nodes, IA coincides with Pearce�s (1984) extensive-form rationalizability, a prominent
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solution concept whose foundations are well understood (see Battigalli and Siniscalchi
2002). Yet, while IA has an independent intuitive appeal, its theoretical foundations have
proved to be elusive (see, e.g., Samuelson 1992). Thus, the decision-theoretic principles
and the hypotheses about strategic reasoning that yield IA require careful scrutiny.
A recent literature� starting with the seminal contribution of Brandenburger, Frieden-

berg and Keisler (2008, henceforth BFK)� has tackled this issue building on two key ideas.
The decision-theoretic aspects of the problem have been solved through the Lexicographic
Expected Utility theory of Blume et al. (1991a). Lexicographic Expected Utility prefer-
ences are represented by Lexicographic Probability Systems (henceforth LPS�s), i.e., lists of
probabilistic conjectures in a priority order, each of which becomes relevant when the pre-
vious ones fail to identify a unique best alternative. In games with complete information,
opponents�strategies constitute the only payo¤-relevant uncertainty. In order to come up
with an educated conjecture about opponents�strategies, a player naturally starts rea-
soning about opponents�beliefs and choice criteria. BFK modeled this aspect with the
tools of Epistemic Game Theory, the formal, mathematical analysis of how players reason
about each other in games.2

Inspired by BFK, we adopt Lexicographic Expected Utility and Epistemic Game The-
ory for our epistemic foundation of IA in �nite games. However, we start from partially
di¤erent basic principles. Speci�cally, we provide novel notions of Rationality, Cautious-
ness and Cautious Belief that, appropriately combined, justify the choice of iteratively
admissible strategies in the following sense: IA characterizes the behavioral implications
of Cautious Rationality and Common Cautious Belief of Cautious Rationality (henceforth
RcCBcRc). Here we brie�y introduce the main features of our approach.

1. We model players�beliefs as LPS�s. In line with recent �ndings and developments
in the �eld, we do not require the LPS�s to be mutually singular, that is, we do not
require the measures in the LPS to have (essentially) disjoint supports.

2. We de�ne a simple notion of Cautiousness: every payo¤-relevant event is deemed
possible by the player. Together with lexicographic expected utility maximization
(what we call �rationality�), Cautiousness justi�es the choice of admissible strate-
gies.

3. We use a monotone notion of �in�nitely more likely� with the following simple
interpretation: A player deems an event in�nitely more likely than another if she
prefers to bet on the �rst rather than on the second regardless of the winning prizes
for the two bets.

4. We de�ne a notion of Cautious Belief with the following preference-based foundation:
Each payo¤-relevant component of the event is deemed in�nitely more likely than
the complement of the event.

5. We show that in all su¢ ciently rich lexicographic type structures,3 there are states
consistent with RcCBcRc, and the behavioral implication of these epistemic con-

2See Dekel and Siniscalchi (2015) for a recent survey.
3Lexicographic type structures� i.e., type structures where each type�s belief over opponents�strategies

and types is an LPS� have been introduced by BFK as the analogue of standard type structures� i.e.,
type structures where beliefs are probability measures. Type structures are a convenient modelling device,
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ditions is that players choose within the (non-empty) set of iteratively admissible
strategies.

In the rest of the Introduction, we �rst discuss BFK and the related literature, then we
illustrate our contribution, and �nally we show by example some key di¤erences between
the two approaches.

1.1 Literature review

BFK justify each step of IA through novel notions of Rationality and Assumption of an
event. Such notions are represented by events in a lexicographic type structure. More
formally, for each player i 2 I, there is a set Ti of types; each element ti 2 Ti is associated
with an LPS �i = (�

1
i ; :::; �

n
i ) on strategies and types of the other players, viz. S�i�T�i. A

strategy-type pair (si; ti) is said to be rational if, given the LPS �i = (�
1
i ; :::; �

n
i ) associated

with ti,
(R1) si maximizes lexicographic expected utility under �i, and
(R2, �full-support�) every open set O � S�i � T�i is not Savage-null, i.e., �li(O) > 0

for some l � n.
Type ti assumes an event E � S�i � T�i if
(A1) there is m � n such that �li(E) = 1 for l � m and �li(E) = 0 for l > m.
(A2) every part of E, i.e., every relatively open subset of E is not Savage-null.
The notion of Assumption captures the idea that every part of E is deemed �in�nitely

more likely� than not-E, according to the preference-based notion of In�nitely More
Likely put forward by Blume et al. (1991a) (for a formal de�nition, see De�nition A.6 in
Appendix A).
BFK show that in every lexicographic type structure satisfying a richness condition,

called belief-completeness (see Section 3.2 below for a formal de�nition), Rationality justi-
�es Admissibility, and Rationality and m-th order mutual Assumption of Rationality jus-
ti�es m+1 steps of the IA procedure. BFK also introduce the concept of Self-Admissible
Set (henceforth, SAS), a weak-dominance analogue of best-reply set (Pearce 1984). BFK
show that SAS�s characterize the behavioral implications of Rationality and Common As-
sumption of Rationality across all lexicographic type structures, and that, in turn, every
SAS can be epistemically justi�ed by Rationality and Common Assumption of Rationality
in some lexicographic type structure.

Three controversial features of BFK�s analysis have fuelled a recent literature.

Issue 1. BFK restrict attention to mutually singular LPS�s. There are reasons to �nd this
restriction uncompelling. As noted by Lee (2013), mutual singularity is merely cosmetic
when the space of uncertainty contains duplicates in terms of represented preferences, and
this is typically the case for the �rich�type structures used for the analysis of IA.

due to Harsanyi (1967), to describe players�hierarchies of beliefs; that is, their beliefs about the play of
the game (�rst-order beliefs), their beliefs about players�beliefs about play (second-order beliefs), and so
on. See Section 3.2 for formal de�nitions.

3



Issue 2. R2 and A2 depend on the topology of the type spaces and do not have a clear
interpretation in terms of belief hierarchies. We will show by example (Section 3.2) that
a full-support and a non full-support type can represent the same hierarchy of beliefs.
Analogously, Keisler and Lee (2015) show that a type can represent the same hierarchy
of beliefs but assume di¤erent sets of events depending on the topology on the set of
opponent�s types.

Issue 3. BFK considered the natural conjecture that, in all belief-complete type struc-
tures with continuous belief maps (that is, the maps that associate each type with the
corresponding LPS�s are continuous), the strategies that survive all rounds of the IA
procedure are exactly the strategies played at states with Rationality and Common As-
sumption of Rationality. However, they obtain a negative result: In every continuous,
belief-complete type structure, Rationality and Common Assumption of Rationality is
not possible at any state.

Dekel et al. (2016) provide a characterization of BFK�s preference-based notion of
Assumption that applies to all (not necessarily mutually singular) LPS�s, by amending
condition A1. With this, they prove that the results of BFK hold through in absence
of mutual singularity.4 Keisler and Lee (2015) construct a discontinuous, belief-complete
type structure where Rationality and Common Assumption of Rationality is possible.
They also show that such type structure generates the same set of hierarchies of beliefs
as a continuous one. An immediate implication of this �ndings is that BFK�s results
hinge on topological details of the type structure that cannot be expressed in terms
of belief hierarchies. Yang (2015) and Catonini (2013) obtain a non-empty �common
assumption of rationality� event in two di¤erent continuous and belief-complete type
structures. Their results are obtained by weakening condition A2 in the de�nition of
Assumption as follows: only the intersections of the event with strategy-based cylinders
and not with all open sets are required to be not Savage-null. Accordingly, Catonini
also weakens BFK�s notion of rationality with Cautiousness in place of full-support, and
maintains mutual singularity of LPS�s in the type structure.5 On the contrary, Yang
maintains BFK�s notion of rationality and drops mutual singularity for the LPS�s in
the type structure,6 but his de�nition of �Weak Assumption� and its preference-based
foundation still crucially require mutual singularity. Lee (2016a) relaxes the traditional
coherency condition on belief hierarchies while maintaining coherency of the represented
preferences. With this, he identi�es hierarchies of lexicographic beliefs without an upper
bound on the length of the LPS�s which cannot be induced by a type structure and capture
Rationality and Common Assumption of Rationality, where Rationality is weakened with

4Taking the opposite direction, Heifetz et al. (2018) impose mutual singularity of the �rst-order beliefs.
With this, they depart from IA and derive a new solution concept called �Comprehensive Rationalizabil-
ity.�Their approach is akin to ours in the interpretation and representation of players�caution.

5More precisely, Catonini (2013) constructs the �canonical� type structure that captures all lexico-
graphic hierarchies of beliefs that satisfy coherency, �mutual singularity� (of the LPS�s on opponents�
strategies and hierarchies that summarizes the hierarchy), and common certain belief thereof. A more
detailed construction of this type structure and a thorough study of its properties is carried on in Catonini
and De Vito (2016)

6In particular, Yang (2015) constructs the canonical type structure that captures all the lexicographic
hierarchies of beliefs that satisfy coherency and common (certain) belief in coherence.

4



Cautiousness in place of full-support.7 We �nd Lee�s approach extremely interesting,
thus we show in a companion paper (Catonini and De Vito 2017) that our results can be
replicated in the larger hierarchical space he considers.

1.2 Our contribution

All the papers mentioned above target the controversies in BFK only partially, often
leaving new unanswered questions. We note that the origin of the controversies lies in
the chosen notion of �in�nitely more likely.�Blume et al. (1991a) introduce a notion of
�in�nitely more likely�in the context of a �nite space of uncertainty without Savage-null
events. Further, they restrict attention to mutually singular LPS�s to obtain the following
two desirable properties: (i) the support of each measure in the LPS is in�nitely more
likely than the support of each subsequent measure; (ii) if all non-empty subsets of E
are in�nitely more likely than F , then E is in�nitely more likely than F . To extend
these properties to in�nite spaces, BFK focus on full-support, mutually singular LPS�s,
and introduce condition A2 of Assumption (cf. Appendix A, �nal comment). Thus,
Assumption requires that every part of E is in�nitely more likely than not-E. As noted
by Keisler and Lee (2015), this represents an elusive degree of �caution� towards the
assumed event, whose consequences change dramatically according to the topology on
the set of types.
Therefore, we tackle the problem at the root and we rebuild the foundations of IA with

di¤erent notions of �in�nitely more likely�and caution. The simple notion of �in�nitely
more likely� we adopt, originally introduced by Lo (1999), has properties (i) and (ii)
also in absence of mutual singularity and in presence of Savage-null events. Moreover,
it has other intuitive properties, foremost monotonicity: If event E is deemed in�nitely
more likely to occur than event F , then every event G satisfying E � G is also deemed
in�nitely more likely to occur than F . Cautiousness represents a clear condition on
the belief hierarchy, namely full-support of �rst-order beliefs. When a player focuses on
an event that she deems in�nitely more likely than its complement, the same cautious
attitude yields Cautious Belief of the event. Then, an event E is cautiously believed
if and only if all its payo¤-relevant components are deemed in�nitely more likely than
not-E.8 Di¤erently from BFK, the cautious attitude towards the event is driven only by
the primitive, payo¤-relevant uncertainty.
Equipped with these notions, we can construct in a simple way our RcCBcRc event

in every terminal type structure, that is, a type structure that �contains�all hierarchies
of beliefs (Theorem 1). We also show that the notion of belief-completeness is not, in
general, a su¢ cient �richness� condition for a type structure: There exist (continuous)
belief-complete type structures where RcCBcRc is impossible. This is so because a belief-
complete type structure is not necessarily terminal� see Theorem 3.

7Di¤erently from the full-support condition of BFK, Cautiousness can be expressed in terms of belief
hierarchies (full support of �rst-order beliefs) and is therefore suited for Lee�s epistemic analysis in the
formalism of hierarchies instead of type structures.

8Note that both Assumption and Cautious Belief have a preference-based foundation of the following
kind: A suitable family of Borel subsets of E is, in a suitable sense, in�nitely more likely than not-E.
This is true also for Weak Assumption with the same notion of in�nitely more likely as for Assumption
and the same family of Borel subsets as for Cautious Belief if the preferences can be represented by a
mutually singular LPS, but not otherwise.
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Our approach has two further advantages: First, it clari�es an important aspect of
the foundations of SAS (and of IA); second, it isolates the epistemic hypothesis that
distinguishes IA from Permissibility (Brandenburger 1992; see also Borgers 1994 and
Ben-Porath 1997), i.e., the Dekel-Fudenberg procedure (Dekel and Fudenberg 1990).
We show that SAS�s characterizes the behavioral implications of RcCBcRc across all

type structures, and that, in turn, every SAS can be justi�ed by RcCBcRc in some cautious
type structure, that is, a type structure where all types are cautious (Theorem 2). In
BFK, instead, the type structure may need types without full-support of the associated
LPS. This induced BFK to leave the following open question (open question C, p. 333):
Which SAS�s can be justi�ed within type structures with only full-support types? With
Cautious Belief in place of Assumption, all.9 Di¤erently from BFK, we can do away with
incautious types also for the justi�cation of IA. This allows us to provide an alternate
epistemic characterization of IA under transparency of Cautiousness (see Section 5 for
details).
The Dekel-Fudenberg procedure consists of one round of elimination of all weakly

dominated strategies, followed by iterated elimination of strictly dominated strategies.
In Catonini and De Vito (2018), we say that an event E is �weakly believed� if E is
in�nitely more likely than not-E, where the notion of �in�nitely more likely�is in the sense
of Lo. With this, we show that Permissibility characterizes the behavioral implications
of Cautious Rationality and Common Weak Belief of Cautious Rationality. Thus, the
di¤erence between Weak Belief and Cautious Belief, hence between IA and Permissibility,
lies in the presence or not of cautiousness towards the believed events.
Finally, it should be pointed out that all the results in this paper do not hinge on

the topology of type spaces. Therefore, we provide a justi�cation of IA using expressible
epistemic assumptions about rationality and beliefs, that is, assumptions which are ex-
pressible in a language describing primitive terms (strategies) and terms derived from the
primitives (beliefs about strategies, beliefs about strategies and beliefs of others, etc.)� cf.
Battigalli et al. (2011).

1.3 In�nitely More Likely, Cautious Belief and Assumption: an
example

Consider the following situation. There are two players, Ann (a) and Bob (b). Bob has
two strategies, u and d, and can be of two types, t0b and t

00
b . Suppose that u strictly

dominates d. Ann thinks that Bob is of type t0b and rational (which from now on will
simply mean �lexicographic expected utility maximizer�). However, she also entertains
the hypothesis that Bob might be of type t00b . In this case, she thinks that Bob chooses at
random between u and d. Ann�s unique type ta is associated with the LPS �a = (�

1
a; �

2
a),

which is summarized in the following tables.

�1a t0b t00b
u 1 0
d 0 0

�2a t0b t00b
u 0 1=2
d 0 1=2

9Our epistemic conditions only require Cautiousness in place of full-support, but this is not crucial:
see the proof of Theorem 2 in Appendix B.
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In her primary theory (�1a), Ann assigns probability 1 to Bob�s rationality, i.e., to the
event Rb = f(u; t0b); (u; t00b )g. So, she considers Bob�s rationality in�nitely more likely (à la
Lo) than Bob�s irrationality. Since Bob�s rationality has only one possible payo¤-relevant
implication (u), this also means that Ann cautiously believes in Bob�s rationality.
However, Ann does not (weakly) assume Bob�s rationality. It is true that she deems

f(u; t0b)g in�nitely more likely (à la Blume et al. 1991a) than irrationality. But this is
not true for the larger event Rb (indeed, the �in�nitely more likely�relation of Blume at
al, 1991a, is not monotonic). This is because Ann deems f(u; t00b )g �possibile� but not
in�nitely more likely than not-Rb: Her secondary theory (�2a) gives positive probability
both to the event that type t00b plays the dominated action, and to the event that t

00
b plays

the dominant action, albeit by chance.10 Paradoxically, if we modify �2a by shifting all
the probability from the rational pair (u; t00b ) to the irrational pair (d; t

00
b ), Ann would now

deem Bob�s rationality in�nitely more likely than irrationality. By contrast, In�nitely
More Likely à la Lo (and consequently Cautious Belief) has the natural property of being
preserved after an increase of the probability assigned to all Borel subsets of the in�nitely
more likely event, under any component-measure of the LPS.

Consider now the following situation, which is analyzed formally in Appendix A (Ex-
ample A.1).

�1a t0b t00b
u 1=2 1=2
d 0 0

�2a t0b t00b
u 0 1=2
d 0 1=2

Ann still cautiously believes in Bob�s rationality, and now one could expect that she con-
siders Bob�s rationality in�nitely more likely (à la Blume et al. 1991a) than irrationality
as well. Indeed, both rational strategy-type pairs of Bob, (u; t0b) and (u; t

00
b ), are deemed

in�nitely more likely than irrationality, and the event Rb coincides with the support of
�1a. Still, Ann does not consider Bob�s rationality in�nitely more likely than Bob�s irra-
tionality. Note that �a is not mutually singular. In Appendix A, we provide the formal
de�nition of in�nitely more likely à la Blume et al. (1991a) and we show why it is violated
in this example for Rb and its complement.

To summarize: If E is in�nitely more likely than F (in the sense of Blume et al.
1991a), event G is Savage-null, and event H is not Savage-null, then E [ G is in�nitely
more likely than F , while E [H may not, even when H is in�nitely more likely than F
too (in absence of mutual singularity).

1.4 Structure of the paper

The remainder of the paper is structured as follows. Section 2 introduces IA and SAS.
Section 3 provides formal de�nitions of LPS�s and type structures. Section 4 presents
our notions of Cautiousness and Cautious Belief. In Section 5 we carry on the epistemic
analysis of IA and SAS�s. Appendix A introduces the language for the preference-based
treatment of Cautious Belief, and compares formally the notion of In�nitely More Likely

10The fact that type t00b randomly chooses the dominant strategy is of course only one possible inter-
pretation. However, it seems plausible to allow for it in a theory that entertains irrational play.
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due to Lo (1999) and the one due to Blume et al. (1991a). Appendix B and Appendix
C collect the proofs omitted from the main text. Appendix D contains technical results
pertaining to the measurability of the relevant events.

2 Iterated Admissibility and Self-Admissible Sets

Throughout the paper, we �x a �nite game G = hI; (Si; ui)i2Ii, where I is a two-players
set and, for every i 2 I, Si is the set of strategies with jSij � 2 and ui : Si � S�i ! R is
the payo¤ function.11 Each strategy set Si is given the obvious topology, i.e., the discrete
topology. We letM (X) denote the set of all Borel probability measures on a topological
space X. So, for every i 2 I, we de�ne the expected payo¤ function �i by extending ui
onM(Si)�M(S�i) in the usual way:

�i(�i; ��i) =
X

(si;s�i)2Si�S�i

�i(si)��i(s�i)ui(si; s�i).

The notion of admissible strategy is standard.

De�nition 1 Fix a set Xi � X�i � Si � S�i. A strategy si 2 Si is admissible with
respect to Xi�X�i if and only if there exists ��i 2M(S�i) with ��i(X�i) = 1 such that
��i(s�i) > 0 for all s�i 2 X�i, and �i(si; ��i) � �i(s0i; ��i) for every s0i 2 Xi. If strategy
si 2 Si is admissible with respect to Si � S�i, we simply say that si is admissible.

Remark 1 Fix a set Xi�X�i � Si�S�i. A strategy si 2 Si is weakly dominated with
respect to Xi �X�i if there exists �i 2 M(Si) with �i (Xi) = 1 such that �i(�i; s�i) �
�i(si; s�i) for every s�i 2 X�i and �i(�i; s0�i) > �i(si; s

0
�i) for some s

0
�i 2 X�i. A standard

result (Pearce 1983, Lemma 4) states that a strategy si 2 Si is not weakly dominated with
respect to Xi �X�i if and only if it is admissible with respect to Xi �X�i.

The set of iteratively admissible strategies (henceforth IA set) is de�ned inductively.

De�nition 2 For each i 2 I, let S0i = Si, and for every m 2 N, let Smi be the set of all
si 2 Sm�1i that are admissible with respect to Sm�1i � Sm�1�i . A strategy si 2 Smi is called
m-admissible. A strategy si 2 S1i = \1m=0Smi is called iteratively admissible.

By �niteness of the game, it follows that Smi 6= ; for all m 2 N, and, since Smi � Sm+1i

for all m 2 N, that there exists M 2 N such that S1i = SMi . Consequently, the IA set
S1i � S1�i is non-empty.
To formally introduce SAS�s, we need an additional de�nition. Say that a strategy

s0i 2 Si supports si 2 Si, if there exists a mixed strategy �i 2M(Si) such that �i(s0i) > 0
and �i(�i; s�i) = �i(si; s�i) for all s�i 2 S�i.

11The assumption that there are two players is only for simplicity of exposition. The analysis can be
trivially extended to more than two players.
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De�nition 3 A set Qi �Q�i � Si � S�i is a Self-Admissible Set (SAS) if, for every
player i,
(a) each si 2 Qi is admissible,
(b) each si 2 Qi is admissible with respect to Si �Q�i,
(c) for every si 2 Qi, if s0i supports si then s0i 2 Qi.

Every �nite game admits an SAS� in particular, the IA set is an SAS. But, as shown
by BFK, many games possess other SAS�s, which can be even disjoint from the IA set.
A comprehensive analysis of the properties of SAS�s in a wide class of games is given by
Brandenburger and Friedenberg (2010).

3 Lexicographic beliefs and lexicographic type struc-
tures

3.1 Lexicographic probability systems

We start with some basic standard assumptions. All the sets considered in this paper
are assumed to be Polish spaces (that is, topological spaces that are homeomorphic to
complete, separable metrizable spaces), and they are endowed with the Borel �-�eld. We
let �X denote the Borel �-�eld of a Polish space X, the elements of which are called
events. When it is clear from the context, we suppress reference to �X and simply write
X to denote a measurable space.
Given a countable collection (Xn)n2N of pairwise disjoint Polish spaces, the set X =

[n2NXn is endowed with the direct sum topology,12 so that X is a Polish space. Moreover,
we endow each �nite or countable product of Polish spaces with the product topology,
hence the product space is Polish as well.
Recall thatM (X) denotes the set of Borel probability measures on a topological space

X. The setM (X) is endowed with the weak* -topology. So, if X is Polish, thenM (X)
is also Polish. We denote by N (X) (resp. Nn (X)) the set of all �nite (resp. length-n)
sequences of Borel probability measures on X, that is,

N (X) = [n2NNn (X)

= [n2N (M (X))n .

Each � = (�1; :::; �n) 2 N (X) is called lexicographic probability system (LPS).
In view of our assumptions, the topological space N (X) is Polish.
For every Borel probability measure � on X, the support of �, denoted by Supp�,

is the smallest closed subset C � X such that � (C) = 1. The support of an LPS
� = (�1; :::; �n) 2 N (X) is thus de�ned as Supp� = [l�nSupp�l. So, an LPS � =
(�1; :::; �n) 2 N (X) is of full-support if [l�nSupp�l = X. We write N+ (X) for the set
of full-support LPS�s.

12In this topology, a set O � X is open if and only if O \ Xn is open in Xn for all n 2 N. The
assumption that the spaces Xn are pairwise disjoint is without any loss of generality, since they can be
replaced by a homeomorphic copy, if needed (see Engelking 1989, p. 75).
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Suppose we are given Polish spaces X and Y , and a Borel map f : X ! Y . The mapef :M (X)!M (Y ), de�ned by

ef (�) (E) = � �f�1 (E)� ; E 2 �Y , � 2M (X) ,

is called the image (or pushforward) measure map of f . For each n 2 N, the mapbf(n) : Nn (X)! Nn (Y ) is de�ned by�
�1; :::; �n

�
7! bf(n) ���1; :::; �n�� = � ef ��k��

k�n
.

Thus the map bf : N (X)! N (Y ) de�ned by

bf (�) = bf(n) (�) , � 2 Nn (X) ,

is called the image LPS map of f . Alternatively put, the map bf is the union of the
maps

� bf(n)�
n2N
, and it is Borel measurable (see Fact D.1 in Appendix D).

Given Polish spaces X and Y , we let ProjX denote the canonical projection from
X � Y onto X; in view of our assumption, the map ProjX is continuous. The marginal
measure of � 2 M (X � Y ) on X is de�ned by margX� = gProjX (�). Consequently, the
marginal of � 2 N (X � Y ) on X is de�ned by margX� = dProjX (�), and the functiondProjX : N (X � Y )! N (X) is continuous and surjective (see Fact D.2 in Appendix D).

3.2 Lexicographic type structures

A type structure formalizes Harsanyi�s implicit approach to model hierarchies of beliefs.
The following is a natural generalization of the standard de�nition of epistemic type
structure with beliefs represented by probability measures (i.e., length-1 LPS�s; cf. Heifetz
and Samet 1998).

De�nition 4 An (Si)i2I-based lexicographic type structure (henceforth, a �type struc-
ture�) is a structure T = hSi; Ti; �iii2I where

1. for each i 2 I, Ti is a Polish space;

2. for each i 2 I, the function �i : Ti ! N (S�i � T�i) is Borel measurable.

We call each space Ti type space and we call each �i belief map.13 Members of type
spaces, viz. ti 2 Ti, are called types. Each element (si; ti)i2I 2

Q
i2I Si�Ti is called state

(of the world).

13Some authors (e.g., Battigalli and Siniscalchi 1999, Heifetz and Samet 1998) use the terminology
�type space�for what is called �type structure�here.
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Type structures generate a collection of hierarchies of beliefs for each player. For
instance, type ti�s �rst-order belief is an LPS on S�i, and is given by margS�i�i(ti). A
standard inductive procedure (see Catonini and De Vito, 2016, for details) shows how to
provide an explicit description of a hierarchy induced by a type.
We will be interested in type structures with one or more of the following features,

which do not make reference to hierarchies of beliefs or other type structures.

De�nition 5 A type structure T = hSi; Ti; �iii2I is

� �nite if the cardinality of each type space Ti is �nite;

� compact if each type space Ti is compact;

� belief-complete if each belief map �i is onto;

� continuous if each belief map �i is continuous.

The idea of belief-completeness was introduced by Brandenburger (2003) and adapted
to the present context by BFK.14 Note that each type space in a belief-complete type
structure has the cardinality of the continuum. Finite type structures are trivially compact
and continuous, but not belief-complete. No belief-complete lexicographic type structure
is also compact and continuous. To see this, observe that if the type structure is compact
and continuous, each �i(Ti) is compact but the space N (S�i � T�i) is not compact,15
hence �i cannot be onto.
We now introduce the notion of type morphism, which captures the idea that a type

structure T is �contained in�another type structure T �. In what follows, given a type
structure T = hSi; Ti; �iii2I , we let T denote the Cartesian product of type spaces, that
is, T = �i2ITi. Moreover, for a space X, we let IdX denote the identity map on X, that
is, IdX (x) = x for all x 2 X.

De�nition 6 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be two type structures. For
each i 2 I, let 'i : Ti ! T �i be a measurable map such that

��i � 'i = \�
IdS�i ; '�i

�
� �i.

Then the function ('i)i2I : T ! T � is called type morphism (from T to T �).
The morphism is called bimeasurable if the map ('i)i2I is Borel bimeasurable. The

morphism is called type isomorphism if the map ('i)i2I is a Borel isomorphism. Say
T and T � are isomorphic if there is a type isomorphism between them.

14BFK (Proposition 7.2) show with a simple, elegant argument the existence of a belief-complete
lexicographic type structure.
15The space M (X) is compact if and only if X is compact, and this in turn implies that the space

Nn (X) is also compact for every �nite n 2 N. But the same conclusion does not hold for the space
N (X). This is an instance of a well-known mathematical fact (see Theorem 2.2.3 in Engelking 1989): If
(X�)�2� is an indexed family of non-empty compact spaces with jX�j > 1 for all � 2 �, then the direct
sum [�2�X� is compact if and only if the right-directed set � is �nite.
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A type morphism requires consistency between the function 'i : Ti ! T �i and the

induced function \�
IdS�i ; '�i

�
: N (S�i � T�i) ! N

�
S�i � T ��i

�
. That is, the following

diagram commutes:

Ti
�i���! N (S�i � T�i)??y'i ??y \(IdS�i ;'�i)

T �i
��i���! N (S�i � T ��i)

.

Thus, a type morphism maps T into T � in a way that preserves the beliefs associated
with types.
The notion of type morphism does not make reference to hierarchies of beliefs. But,

as one should expect, the important property of type morphisms is that they preserve the
explicit description of lexicographic belief hierarchies: the (Si)i2I-based belief hierarchy
generated by a type ti 2 Ti in T is also generated by its image 'i(ti) 2 T �i in T �.16
Heifetz and Samet (1998, Proposition 5.1) provide this result for the case of standard
type structures; the generalization to lexicographic type structures is straightforward (see
Catonini and De Vito, 2016).
Next, we introduce the notion of terminality of a type structure.

De�nition 7 Fix a class T of type structures. A type structure T � = hSi; T �i ; ��i ii2I is
terminal with respect to T if for every type structure T = hSi; Ti; �iii2I in T, there is
a type morphism from T to T �.

Whenever T � is terminal with respect to the class of all type structures, we simply
say, as customary, that T � is terminal. In Section 5 we will show that RcCBcRc justi�es
IA in every type structure which is terminal with respect to the class of all �nite type
structures, and that such a type structure exists.

4 Cautiousness and Cautious Belief

For this section, append to the game G a type structure T = hSi; Ti; �iii2I .

4.1 Rationality and Cautiousness

For any two vectors x = (xl)
n
l=1 ; y = (yl)

n
l=1 2 Rn, we write x �L y if either (1) xl = yl

for every l � n, or (2) there exists m � n such that xm > ym and xl = yl for every l < m.

16Put di¤erently, every type morphism is also a hierarchy morphism, i.e., a map between type structures
which preserves the hierarchies of beliefs associated with types. See Friedenberg and Meier (2011) for a
general analysis on the relationship between hierarchy and type morphisms.
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De�nition 8 . A strategy si 2 Si is optimal under �i(ti) = (�1i ; :::; �ni ) 2 N (S�i�T�i)
if �

�i(si;margS�i�
l
i)
�n
l=1
�L

�
�i(s

0
i;margS�i�

l
i)
�n
l=1
, 8s0i 2 Si.

We say that si is a lexicographic best reply to margS�i�i(ti) on S�i if it is optimal
under �i(ti).

This is the usual de�nition of optimality for a strategy, but this time optimality is
taken lexicographically. We now introduce the notion of Cautiousness.

De�nition 9 A type ti 2 Ti is cautious if margS�i�i(ti) 2 N+ (S�i).

In words, the notion of Cautiousness requires that the �rst-order belief of a type be a
full-support LPS. It is therefore a condition that can be expressed in terms of primitives
of the model (i.e., hierarchies of beliefs), and it requires that every payo¤-relevant event,
viz. fs�ig�T�i, be assigned strictly positive probability by at least one of the component
measures of the LPS �i(ti).
For strategy-type pairs we de�ne the following notions.

De�nition 10 Fix a strategy-type pair (si; ti) 2 Si � Ti.

1. Say (si; ti) is rational if si is optimal under �i (ti).

2. Say (si; ti) is cautiously rational if it is rational and ti is cautious.

We let Rci denote the set of all cautiously rational strategy-type pairs of player i. As
one should expect, Cautious Rationality guarantees Admissibility.

Proposition 1 If strategy-type pair (si; ti) 2 Si � Ti is cautiously rational, then si is
admissible.

Clearly, if a type ti 2 Ti is associated with a full-support LPS, viz. �i (ti) 2 N+(S�i�
T�i), then it is cautious, but the reverse implication does not hold. We will show that
Cautiousness and Cautious Rationality are invariant to type morphisms (see Lemma 2).
Full-support is instead a topological condition which is not preserved by type morphisms,
not even when two type structures are isomorphic (so that they generate the same set of
hierarchies of beliefs). The following example elaborates on this point.
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Example 1 Let T = hSi; Ti; �iii2I be a symmetric type structure in which Ti = [0; 1], and
the set [0; 1] is endowed with the standard topology. We can construct an isomorphic type
structure T � = hSi; T �i ; ��i ii2I as follows. Let T �i = [0; 1], but T �i is endowed with the Polish
topology which makes the set f1g clopen, and which generates the same Borel �-�eld as
the one generated by the standard topology (see Theorem 3.2.4 in Srivastava 1998). So,
Ti and T �i are Borel isomorphic, but not homeomorphic. For each i 2 I, let 'i : Ti ! T �i
be the identity map. Moreover, each belief map ��i satis�es �

�
i =

\(IdSi ; 'i) � �i � ('i)
�1. It

is easy to check that ('i)i2I is a type isomorphism. Let ti 2 Ti be such that the associated
LPS �i (ti) is a product probability measure on S�i�T�i as follows: �i (ti) = ���, where
� is a full-support probability measure on S�i, and � is the Lebesgue measure. We clearly
have that �i (ti) 2 N+

1 (S�i � T�i) and �i (ti) (S�i � f1g) = 0. The set S�i�f1g is closed
in Ti, but (cl)open in T �i . It turns out that �

�
i ('i (ti)) (S�i � f1g) = 0, hence 'i (ti) 2 T �i

is not associated with a full-support LPS, although it induces the same hierarchy of beliefs
as ti 2 Ti.

4.2 In�nitely More Likely and Cautious Belief

Following Lo (1999), we say that player i deems event E in�nitely more likely than event
F if she prefers to bet on E rather than on F no matter the prizes for the two bets. We
formalize this preference-based notion in Appendix A, where we introduce the appropriate
language.17 Here, we provide the equivalent de�nition of �in�nitely more likely�in terms
of the LPS that represents player i�s preferences. This equivalence is formally proved in
Appendix A.
Given an LPS �i = (�

1
i ; :::; �

n
i ) 2 N (S�i � T�i) and an event E � S�i � T�i, let

I�i (E) = inf
�
l 2 f1; :::; ng

���li (E) > 0	 .
De�nition 11 Fix two disjoint events E;F � S�i�T�i. Say that E is in�nitely more
likely than F under �i if I�i (E) < I�i (F ).

It is straightforward to see that �in�nitely more likely�is monotone.

Remark 2 If E is in�nitely more likely than F under �i and G is an event such that
E � G, then G is in�nitely more likely than F under �i.

Consider now the following two attitudes of player i towards an event E. First,
player i deems E in�nitely more likely than its complement. Second, player i has a
cautious attitude towards the event: Before considering its complement, she considers
all the possible payo¤-relevant consequences of the event. The notion of Cautious Belief
captures both attitudes.

17At the end of Appendix A, we also provide an alternate representation of the preference-based
notion of �in�nitely more likely� in terms of the �in�nitely greater�relation between non-standard real
probability values.
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De�nition 12 Fix a non-empty event E � S�i � T�i and a type ti 2 Ti with �i (ti) =
(�1i ; :::; �

n
i ). We say that E is cautiously believed under �i (ti) at level m � n if the

following conditions hold:

(i) �li (E) = 1 for all l � m;

(ii) for every elementary cylinder C = fs�ig�T�i, if E \C 6= ; then �li (E \ C) > 0 for
some l � m.

We say that E is cautiously believed under �i (ti) if it is cautiously believed under
�i (ti) at some level m � n.
We say that ti 2 Ti cautiously believes E if E is cautiously believed under �i (ti).

Condition (i) captures the �rst attitude. Under condition (i), condition (ii) is equiva-
lent to saying that player i deems all payo¤-relevant parts of E (i.e., the intersections of
E with each strategy-based cylinder) in�nitely more likely than not-E, so it captures the
second attitude.
Di¤erently from (Weak) Assumption, De�nition 12 does not impose any requirement

on the measures �l with l > m of the LPS. This makes Cautious Belief weaker than
(Weak) Assumption18 and re�ects the fact that the notion of �in�nitely more likely�we
adopt is weaker than the one put forward by Blume et al. (1991a)� see Appendix A.
The conceptual consistency between Cautiousness and Cautious Belief is highlighted

by the following connection.

Remark 3 A type ti 2 Ti is cautious if and only if ti cautiously believes S�i � T�i.

We now present some important properties of Cautious Belief.

Proposition 2 Fix a type ti 2 Ti with �i (ti) = (�1i ; :::; �ni ).

1. Fix non-empty events E1; E2; ::: in S�i�T�i. If, for each k, type ti cautiously believes
Ek, then ti cautiously believes \kEk and [kEk.

2. A non-empty event E � S�i � T�i is cautiously believed under �i (ti) if and only if
there exists m � n such that �i (ti) satis�es condition (i) of De�nition 12 plus the
following condition:

(ii�) [l�mSuppmargS�i�li = ProjS�i (E).
18With respect to Assumption, but not to Weak Assumption, Condition (ii) of De�nition 12 is also

weaker than the corresponding Condition A2 of Assumption stated in the Introduction. Interestingly,
Dekel et al. (2016) put forward also the notion of �topological weak-dominance assumption,� which
shares A2 with Assumption and Condition (i) with Cautious Belief. Indeed, �topological weak-dominance
assumption�can be given a preference-based foundation with �in�nitely more likely�à la Lo as well.
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Proposition 2.1 states that Cautious Belief satis�es one direction of conjunction as
well as one direction of disjunction. Proposition 2.2 can be viewed as a �marginalization�
property of Cautious Belief: If E is cautiously believed under �i (ti), then (a) ProjS�i (E)
is in�nitely more likely than S�inProjS�i (E) under margS�i�i(ti), and also (b) every
strategy in ProjS�i (E) is in�nitely more likely than (every strategy in) S�inProjS�i (E)
under margS�i�i(ti). It should be noted that property (a) does not hold for (Weak)
Assumption.19

The failure of one direction of conjunction reveals that, although �in�nitely more
likely� is monotone, Cautious Belief is not. That is, even if ti cautiously believes E, ti
may not cautiously believe an event F with E � F . The reason why this can occur is
that player i may not have towards F the same cautious attitude that she has towards
E. That is, there may be some payo¤-relevant components of FnE which are not deemed
in�nitely more likely than not-F .20 This is illustrated by the following simple example.

Example 2 Let S�i =
�
s1�i; s

2
�i; s

3
�i
	
and T�i =

�
t��i
	
. Consider the LPS �i = (�

1
i ; �

2
i ) 2

N (S�i � T�i) with �1i
���
s1�i; t

�
�i
�	�

= 1 and �2i
���

s2�i; t
�
�i
�	�

= �2i
���

s3�i; t
�
�i
�	�

= 1
2
.

Consider the events E =
�
s1�i
	
� T�i and F =

�
s1�i; s

2
�i
	
� T�i. Clearly, E � F ;

however, E is cautiously believed under �i at level 1, while F is not cautiously believed
(indeed, �1i (F ) = 1 and �

2
i (F ) =

1
2
, and, with l = 1, condition (ii) of De�nition 12 is not

satis�ed for C =
�
s2�i
	
� T�i).

However, it is easy to observe that Cautious Belief is monotone with respect to events
with the same behavioral implications.

Remark 4 Let E�i; F�i � S�i � T�i be events such that E�i � F�i and ProjS�iE�i =
ProjS�iF�i. Then, if a type ti cautiously believes E�i, ti also cautiously believes F�i.

This �quasi-monotonicity�property will play a crucial role in the proof of our main
result.
For future reference, it is useful to mention the following notion of belief, called Certain

Belief (Halpern 2010), which is stronger than Cautious Belief for cautious types. Fix a
non-empty event E � S�i � T�i and a type ti 2 Ti with �i (ti) = (�1i ; :::; �

n
i ). We say

that E is certainly believed under �i (ti) if �li (E) = 1 for all l � n. In other words, E
is certainly believed under �i (ti) if its complement is deemed subjectively impossible by
the player (see Corollary A.1 for a preference-based foundation).

19If E is (weakly) assumed under �i(ti), then condition (ii�) holds (see BFK, Lemma D.1). However,
ProjS�i (E) is not necessarily (weakly) assumed under margS�i�i(ti). This stems from the fact that
the �in�nitely more likely�notion of Blume et al. (1991a) may fail to satisfy a disjunction property, as
illustrated by Example A.1 in Appendix A. If margS�i�i(ti) is a full-support LPS, then it is easy to show
that ProjS�i (E) is �topologically weak-dominance assumed�� see the previous footnote.
20So, in Cautious Belief, non-monotonicity hinges only on the cautious attitude towards the event

(namely, Condition (ii) of De�nition 12). In a related vein, Strong Belief (Battigalli and Siniscalchi,
2002) is based on a monotone likelihood relation between uncertain events (conditional probability-one
belief), but it does not satisfy monotonicity (we thank Pierpaolo Battigalli for this observation).
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5 Epistemic analysis

5.1 Epistemic analysis of iterated admissibility

Fix a type structure T = hSi; Ti; �iii2I and, for each player i 2 I, let R1i = Rci . Let
Bci : �S�i�T�i ! �Si�Ti be the operator de�ned by

Bci (E�i) = f(si; ti) 2 Si � Ti jti cautiously believes E�ig , E�i 2 �S�i�T�i.

Corollary D.1 in Appendix D shows that the set Bci (E�i) is Borel in Si � Ti; so the
operator Bci is well-de�ned.
For each m > 1, de�ne Rmi inductively by

Rmi = R
m�1
i \Bci

�
Rm�1�i

�
.

Note that
Rmi = R

1
i \

�
\l<mBci

�
Rl�i

��
,

and each Rmi is Borel in Si � Ti (see Lemma D.5 in Appendix D).
We write R1i = \m2NRmi for each i 2 I. If (si; ti)i2I 2

Q
i2I R

m+1
i , we say that there

is Cautious Rationality and mth-order Cautious Belief of Cautious Rationality
(RcmBcRc) at this state. If (si; ti)i2I 2

Q
i2I R

1
i , we say that there is Cautious Ratio-

nality and Common Cautious Belief of Cautious Rationality (RcCBcRc) at this
state.
We now state the main result of this paper.

Theorem 1 Fix a type structure T � = hSi; T �i ; ��i ii2I which is terminal with respect to
the class of all �nite type structures. Then:

(i) for each m � 1,
Q
i2I ProjSiR

�;m
i =

Q
i2I S

m
i ;

(ii)
Q
i2I R

�;1
i 6= ; and

Q
i2I ProjSiR

�;1
i =

Q
i2I S

1
i .

Theorem 1 is the weak-dominance counterpart of Theorem 8.1 in Friedenberg and
Keisler (2011). Both theorems characterize iterated dominance (respectively, weak and
strong) in a terminal type structure for �nite type structures. Hence, they provide a
richness condition for the type structure that depends on its ability to capture su¢ ciently
many hierarchies of beliefs (all those induced by �nite type structures), as opposed to
traditional self-referential conditions, such as belief-completeness.
It is important to point out that type structure T � in Theorem 1 exists. In particular,

there exists a universal type structure for LPS�s, that is, a type structure which is terminal
and for which the type morphism from every other type structure is unique.21 Lee (2016b)
shows the existence of a universal type structure for a wide class of preferences, which
includes those represented by LPS�s. Yang (2015) and Catonini and De Vito (2016)

21Within the framework of category theory, (Si)i2I -based type structures for player set I, as objects,
and type morphisms, as morphisms, form a category. The universal type structure is a terminal object
in the category of type structures.
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construct the canonical type structure for hierarchies of lexicographic beliefs; Catonini
and De Vito also show that the this type structure is universal. Since the canonical type
structure is continuous and belief-complete, it follows from Theorem 1 that RcCBcRc is
possible in a continuous, belief-complete type structure.
The proof of Theorem 1, like the proof of Theorem 8.1 in Friedenberg and Keisler

(2011), is based on the following �embedding� argument. We construct a �nite type
structure T with one cautious type for each admissible strategy, where the associated
LPS justi�es the strategy and captures as many orders of Cautious Belief of Cautious
Rationality as the number of steps of IA that the strategy survives minus 1. Then, by the
terminality property of T �, we map T in T � via type morphism. While doing so, we show
that Cautious Rationality and all orders of belief of Cautious Rationality are preserved.
For all this, we need the next three preparatory results, whose proofs can be found in
Appendix C. First, we need to show the existence of T .

Lemma 1 There exists a �nite type structure T = hSi; Ti; �iii2I such that, for each i 2 I
and each m � 1, ProjSiRmi = Smi .

Second, we need to claim the invariance of Cautious Rationality under type mor-
phisms.22

Lemma 2 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be two lexicographic type struc-
tures. Suppose that there exists a type morphism ('i)i2I : T ! T � from T to T �. Then,
a strategy-type pair (si; ti) is cautiously rational if and only if (si; 'i (ti)) is cautiously
rational.

Third, we need an analogous invariance property for Cautious Belief.23

Lemma 3 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be two lexicographic type struc-
tures. Suppose that there exists a bimeasurable type morphism ('i)i2I : T ! T � from T
to T �. Let E�i � S�i�T�i be a Borel set. Then, if a type ti 2 Ti cautiously believes E�i,
'i(ti) cautiously believes

�
IdS�i ; '�i

�
(E�i).

For our purpose, it is crucial to observe that, by Remark 4, if 'i(ti) cautiously believes�
IdS�i ; '�i

�
(E�i), then it cautiously believes also every Borel superset E��i such that

ProjS�iE
�
�i = ProjS�i

�
IdS�i ; '�i

�
(E�i). Lemma 3 holds also for Weak Assumption (but

not for Assumption) if ('i)i2I is injective, but 'i(ti) weakly assumes also a Borel superset

22This invariance property does not hold for the notion of Rationality à la BFK: If �i(ti) has full support
in a �nite type structure T , then ��i ('i (ti)) has �nite support as well, hence it is not a full-support LPS
in T � when T ��i is in�nite.
23We thank an anonymous referee for suggesting to us the result as stated in Lemma 3.

18



E��i only under some additional conditions.
24 Note, however, that we do not require that

('i)i2I be injective to prove the main result.
Finally, for the proof of Theorem 1, we �nd it convenient to single out the following

fact, whose proof is immediate.

Remark 5 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be two lexicographic type
structures. Suppose that there exists a type morphism ('i)i2I : T ! T � from T to T �.
Then, for every Ei � Si � Ti,

ProjSi ((IdSi ; 'i) (Ei)) = ProjSi(Ei).

We are now ready to prove Theorem 1.

Proof of Theorem 1: By Lemma 1, there is a �nite type structure T = hSi; Ti; �iii2I
such that ProjSiR

m
i = S

m
i for each m � 1.

Part (i): Fix a type morphism ('i)i2I from T to T �. Type structure T is �nite, so
('i)i2I is bimeasurable. We will show by induction on m � 1 that (IdSi ; 'i) (Rmi ) � R

�;m
i

and ProjSiR
�;m
i = Smi for each i 2 I.

(m = 1) Fix i 2 I. It is immediate from Lemma 2 that (IdSi ; 'i) (R
1
i ) � R�;1i . By

Remark 5, ProjSi ((IdSi ; 'i) (R
1
i )) = ProjSiR

1
i , and since ProjSiR

1
i = S

1
i , we obtain S

1
i �

ProjSiR
�;1
i . Conversely, Proposition 1 entails ProjSiR

�;1
i � S1i . Therefore, ProjSiR

�;1
i = S1i .

(m > 1) Fix i 2 I and (si; ti) 2 Rmi � Rm�1i . We want to show that (si; 'i(ti)) 2 R
�;m
i .

The induction hypothesis yields (si; 'i(ti)) 2 R
�;m�1
i . Hence, it su¢ ces to show that 'i(ti)

cautiously believes R�;m�1�i . Since ti cautiously believes Rm�1�i , it follows from Lemma 3
that 'i(ti) cautiously believes (IdS�i ; '�i)(R

m�1
�i ). Next note that

ProjS�iR
�;m�1
�i = Sm�1�i

= ProjS�iR
m�1
�i

= ProjS�i
�
(IdS�i ; '�i)(R

m�1
�i )

�
,

where the �rst equality is the induction hypothesis, the second equality follows from
the property of T , and the third equality follows from Remark 5. We also know from
the induction hypothesis that

�
IdS�i ; '�i

�
(Rm�1�i ) � R�;m�1�i , so Remark 4 allows us to

conclude that 'i(ti) cautiously believes R
�;m�1
�i .

So, we have shown that (IdSi ; 'i) (R
m
i ) � R�;mi . Then, by the property of T and

Remark 5, we obtain

Smi = ProjSiR
m
i

= ProjSi ((IdSi ; 'i) (R
m
i ))

� ProjSi (R
�;m
i ) .

24For instance, every event E��i �
�
IdS�i ; '�i

�
(E�i) such that ProjSiE

�
�i = ProjS�i

�
IdS�i ; '�i

�
(E�i)

and
�
IdS�i ; '�i

�
((S�i � T�i)nE�i) � (S�i� T ��i)nE��i is weakly assumed by 'i(ti) if ti weakly assumes

E�i. However, it is possible to construct a more complicated �nite type structure in such a way that Rmi
and R�;mi satisfy this property. Hence, our argument for the proof of Theorem 1 can be modi�ed with
Weak Assumption in place of Cautious Belief.
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To show the opposite inclusion, �x (si; ti) 2 R�;mi � R�;m�1i . Then si 2 Sm�1i . Let
��i (ti) = (�1i ; :::; �

n
i ). Since ti cautiously believes R

�;m�1
�i at some level l, it follows from

Proposition 2.2 and the induction hypothesis that

[k�lSuppmargS�i�
k
i = S

m�1
�i .

So, by Proposition 1 in Blume et al. (1991b), we can form a nested convex combination
of the measures margS�i�

k
i , for k = 1; :::; l, to get a probability measure �i 2 M (S�i),

with Supp�i = Sm�1�i , under which si is optimal. Thus, si is admissible with respect to
Si � Sm�1�i , and a fortiori with respect to Sm�1i � Sm�1�i . Hence si 2 Smi .
Part (ii): Since (Rmi )m2N and (S

m
i )m2N are weakly decreasing sequences of �nite

sets, there exists N 2 N such that RNi = R1i and SNi = S1i . Then, ProjSiR
N
i = SNi

implies ProjSiR
1
i = S1i . Hence, for every si 2 S1i , there exists ti 2 Ti such that

(si; ti) 2 Rmi for all m 2 N. We have shown in the proof of Part (i) that, for each
m 2 N, (IdSi ; 'i) (Rmi ) � R�;mi . So (IdSi ; 'i) ((si; ti)) 2 R�;mi for all m 2 N, which
implies that (IdSi ; 'i) ((si; ti)) 2 R

�;1
i . Therefore, S1i � ProjSiR

�;1
i 6= ;. By �niteness

of the game, there exists M 2 N such that SMi = S1i . It follows from Part (i) that
ProjSiR

�;M
i = SMi . Hence ProjSiR

�;1
i � S1i . We can conclude that S1i = ProjSiR

�;1
i . �

Comment on transparency of Cautiousness. Fix a type structure T = hSi; Ti; �iii2I .
Say that T is a cautious type structure if all the types of all players are cautious.
In a cautious type structure, not only all the types are cautious, but there is common
certain belief of this. In other words, there is transparency of Cautiousness. We let
C1 �

Q
i2I Si�Ti denote the event corresponding to transparency of Cautiousness in T ,

and we let C1i denote the corresponding projection on Si�Ti.25 The �nite type structure
T = hSi; Ti; �iii2I we construct for Lemma 1 is cautious. Since Cautiousness is preserved
by type morphisms (cf. Lemma 2) and the image of T in T � via bimeasurable type mor-
phism ('i)i2I corresponds to a self-evident event in T � (that is, an event in which there
is common certain belief that the players�beliefs satisfy some restrictions� see Battigalli
and Friedenberg 2012b, Appendix A), we have

Q
i2I 'i(Ti) � C�;1. This implies that the

proof of Theorem 1 can be easily adapted to provide two alternate justi�cations of IA that
makes the transparency of Cautiousness fully explicit. First, suppose that the structure
T � in the statement of Theorem 1 is the canonical one, so that it is also universal. We
can substitute the event �Cautious Rationality�with �Rationality and transparency of
Cautiousness�in T �, that is, we can de�ne R�;1i as the set R�;ci \C

�;1
i instead of just R�;ci .

Then, Theorem 1 can be read as follows: For each i 2 I, strategy si is m-admissible (resp.
iteratively admissible) if and only if it can be played in some state (si; ti)i2I where
(a) players are rational and there is transparency of Cautiousness,
(b) there is mth-order (resp. Common) Cautious Belief of (a) at this state.
This is in the same spirit of the justi�cation of Strong-�-Rationalizability (Battigalli

2003) provided by Battigalli and Prestipino (2013), where the �-restrictions on �rst-order
beliefs are transparent to the players.
Alternatively, we can adopt a �smaller�terminal type structure, which is cautious and

terminal with respect to the class of all cautious type structures. Fix any terminal type
25As shown in Appendix D, the set of cautious types of each i 2 I is a Borel subset of Si � Ti (cf.

Lemma D.4). The (Borel) set C1 can be de�ned by iterated application of the Certain Belief operator,
using arguments and techniques analogous to those in Battigalli and Friedenberg (2012b, Lemma A1),
and it can be espressed as a Cartesian product of Borel sets C1i � Si � Ti, i 2 I.
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structure T . Using arguments analogous to those in Battigalli and Friedenberg (2012b,
Appendix A), it is possible to show that the self-evident event C1 identi�es a �smaller�
type structure which is terminal with respect to the class of cautious type structures,
because, as observed, the image through type morphism of every cautious type structure
is in C1. Of course, like in Theorem 1, we can just require terminality of T � for the class
of �nite cautious type structures. This is in the same spirit of the justi�cation of Strong-
�-Rationalizability provided by Battigalli and Friedenberg (2012a), where transparency
of the �-restrictions is a contextual assumption embodied in the type structure.

5.2 Epistemic analysis of Self-Admissible Sets

The following result states that, for every type structure, the behavioral implications of
RcCBcRc constitute a SAS. Conversely, every SAS corresponds to the behavioral impli-
cations of RcCBcRc in some cautious type structure.

Theorem 2 (i) Fix a type structure T = hSi; Ti; �iii2I . Then,
Q
i2I ProjSiR

1
i is an SAS.

(ii) Fix an SAS Qi � Q�i � Si � S�i. There exists a �nite, cautious type structure
T = hSi; Ti; �iii2I such that, for each i 2 I,

ProjSiR
1
i = Qi.

The proof of Theorem 2, which is provided in Appendix C, is very similar to BFK�s
proof of the justi�cation of SAS with Rationality and Common Assumption of Rationality.
Yet, there is an interesting di¤erence in the proof of part (ii), which allows us to justify
SAS within the class of cautious type structures. There is no need to introduce incautious
types (i.e., types which are not cautious) in the �nite type structure we construct. By
contrast, the analysis in BFK requires the presence of types that are not associated with
a full-support LPS. To see why this is the case, consider the following game (BFK, Figure
2.6, and Dekel and Siniscalchi 2015, Table 12.14) between two players, Ann (a) and Bob
(b).

AnnnBob L C R
U 4; 0 4; 1 0; 1
M 0; 0 0; 1 4; 1
D 3; 0 2; 1 2; 1

Strategy L is strictly dominated, and the IA set is fU;M;Dg � fC;Rg. Strategy D
is best reply to a probability distribution over Bob�s iteratively admissible strategies,
namely 1

2
C + 1

2
R. But also U (as well as M) is a best reply to this (�rst-order) belief.

Therefore, in every type structure, D is optimal under LPS �a(ta) = (�1a; :::; �
n
a) only

if for every l = 1; :::; n such that �la(fLg � Tb) > 0, we also have �la(fRg � Tb) > 0.
Since R is weakly dominant, if every type tb 2 Tb is associated with a full-support LPS,
all strategy-type pairs in fRg � Tb are rational à la BFK (see conditions R1 and R2 in
the Introduction). Therefore, �la assigns positive probability both to the event �Bob is
rational�and to its complement. But then, if �a(ta) has full-support (so that there exists
l with �la(fLg � Tb) > 0), type ta cannot (weakly) assume rationality: see condition A1
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in the Introduction. To circumvent this problem, BFK introduce a type tb 2 Tb such that
�b(tb) is not of full-support.

26 Then, strategy D is optimal under some full-support LPS
�a(ta) = (�1a; :::; �

n
a) under which rationality is assumed at level m, and �a(ta) assigns

positive probability to the strategy-type pair (R; tb) at some level l > m.
Di¤erently from (Weak) Assumption, there are no restrictions on the component mea-

sures �m+1a ; :::; �na of an LPS �a = (�
1
a; :::; �

n
a) under which an event E is cautioulsy believed

at level m. For this reason, we do not need incautious types and we can justify SAS and
IA under transparency of Cautiousness.

5.3 Belief-completeness vs. terminality

The following result states that, for each non-degenerate game, there exists a continuous,
belief-complete type structure where RcCBcRc is not possible at any state.

Theorem 3 Fix a game G = hI; (Si; ui)i2Ii with jSij � 2 for each i 2 I. There exists a
continuous, belief-complete type structure T = hSi; Ti; �iii2I such thatQ

i2I R
1
i = ;.

Theorem 3 is proved in Appendix C. The proof is constructive. We let each type space
be the Baire space, and we de�ne a countable ordered partition (T1i ;T

2
i ; ::) of it. Types

in T1i are not cautious, while all types in T
k
i (k > 1) are cautious and are associated with

all the possible LPS�s that, at level 1, assign positive marginal probability to Tk�1�i . This
puts an upper bound on the strategic sophistication of the types in Tki , who cannot have
(k � 1)-th order Cautious Belief of Cautious Rationality.
Technically, the argument clearly exploits the lack of compactness of the type spaces,

which allows strategic sophistication to grow inde�nitely without ever reaching the in�-
nite level. Conceptually, the reason why the set of states

Q
i2I R

1
i can be empty is the

following: While a belief-complete type structure induces all beliefs about types, it need
not induce all possible hierarchies of beliefs.
Theorems 1 and 3 imply that a belief-complete lexicographic type structure need not

be terminal. In the context of ordinary probabilities (i.e., Subjective Expected Utility
preferences) Friedenberg (2010, Theorem 3.1) shows that a belief-complete type structure
is terminal provided each type space is compact and each belief map is continuous.27 In the

26However, BFK also provide a conceptual justi�cation for the introduction of types without full-
support of the associated LPS. Full-support aims to capture the attitude of players who consider �every-
thing possible,� including the possibility that the opponent may not conform to this requirement. Seen
from this angle, the fact that we do not need incautious types is conceptually consistent with our relax-
ation of the full-support requirement: Cautious players consider �possible� every payo¤-relevant event,
but not (necessarily) every event that pertains to the beliefs of the opponent. Hence, they need not
consider the possibility that the opponent is not cautious. Note that Weak Assumption, although it
relaxes the �caution�requirement towards the event, still requires types that are not associated with a
full-support LPS for the characterization of IA (and SAS).
27The reverse implication is not true: A terminal type structure need not be belief-complete, unless the

type structure is belief-non-redundant (Friedenberg 2010, Proposition 4.1), i.e., if distinct types induce
distinct hierarchies of beliefs. This de�nition of belief-non-redundancy naturally extends to the case of
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lexicographic case, there is no analogue of the aforementioned result. Catonini and De Vito
(2016) show that a belief-complete type structure is �nitely terminal, that is, following
the terminology used by Friedenberg, it induces all �nite-order beliefs. Such result is, in
some sense, tight: Belief-completeness is insu¢ cient to establish terminality, even though
the continuity requirement on the belief maps is met. As already remarked (see Section
3.2), a belief-complete, lexicographic type structure cannot be compact and continuous;
as such, Friedenberg�s result cannot be extended to the lexicographic framework.
That said, it should be emphasized that BFK�s impossibility result does not hinge

on lack of terminality of the belief-complete type structure they construct. As shown by
Keisler and Lee (2015), BFK�s analysis depends on topological features of belief-complete
type structures which are unrelated to belief hierarchies. By contrast, our message is in
line with analogous works on other solution concepts, such as Iterated (Strict) Dominance:
Friedenberg and Keisler (2011, Theorem 5.2) show that, for every non-degenerate �nite
game, there exists an associated belief-complete, standard type structure in which no
strategy is consistent with Rationality and Common Belief of Rationality. They also
show that this arises due to the lack of terminality of belief-complete type structures.
Therefore, our negative result is an analogue of Friedenberg and Keisler�s result in the
lexicographic framework (and it follows some of their ideas for the construction of the
type structure).

Appendix A: Preference-based representation of Cau-
tious Belief

Fix a lexicographic type structure T = hSi; Ti; �iii2I , where each strategy set Si is �nite.
To ease notation, it will be convenient to set 
 = S�i�T�i and to drop i�s subscript from
LPS�s �i on 
.
An act on 
 is a Borel measurable function f : 
 ! [0; 1]. We let ACT(
) denote

the set of all acts on 
. A Decision Maker has preferences over elements of ACT(
). For
x 2 [0; 1], write �!x for the constant act associated with x, i.e., �!x (!) = x for all ! 2 
.
Each constant act is identi�ed with the associated outcome in a natural way. In what
follows, we assume that the outcome space [0; 1] is in utils, i.e., material consequences are
replaced by their von Neumann-Morgenstern utility. Given a Borel set E � 
 and acts
f; g 2ACT(
), de�ne (fE; g
nE) 2ACT(
) as follows:

(fE; g
nE)(!) =

�
f(!), ! 2 E,
g(!), ! 2 
�E.

Let % be a preference relation on ACT(
) and write � (resp. �) for strict preference
(resp. indi¤erence). The preference relation % satis�es the following axioms:

Axiom 1 Order: % is a complete, transitive, re�exive binary relation on ACT(
).

lexicographic type structures. Note, however, that this notion pertains to hierarchies of LPS�s, not nec-
essarily to hierarchies of lexicographic preferences. Multiple LPS�s may represent the same lexicographic
preference relation. See Lee (2013) for a detailed analysis of this issue.
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Axiom 2 Independence: For all f; g; h 2ACT(
) and � 2 (0; 1],

f � g implies �f + (1� �)h � �g + (1� �)h, and
f � g implies �f + (1� �)h � �g + (1� �)h.

Moreover, let %E denote the conditional preference given E, that is, f %E g if and
only if (fE; h
nE) % (gE; h
nE) for some h 2ACT(
). Standard results (see Blume et al.
1991a for a proof) show that, under Axioms 1 and 2, (fE; h
nE) % (gE; h
nE) holds for all
h 2ACT(
) if it holds for some h.
Throughout, we maintain the assumption that � is a Lexicographic Expected Utility

representation of %, i.e., %=%�. (This makes sense, since each Lexicographic Expected
Utility representation satis�es Axioms 1 and 2.) In what follows, we call C � 
 an
elementary cylinder if C = fs�ig�T�i for some s�i 2 S�i. Given s�i and event E, we
say that Es�i is a relevant part of the event E if Es�i = C \ E 6= ; for the elementary
cylinder C = fs�ig � T�i. Clearly, every non-empty event E can be written as a �nite,
disjoint union of all its relevant parts.

De�nition A.1 Say that %� exhibits cautiousness if, for every elementary cylinder
C = fs�ig � T�i, there are f; g 2ACT(
) such that f ��C g.

Recall that an event E � 
 is Savage-null under % if f �E g for all f; g 2ACT(
).
Say that E is non-null under % if it is not Savage-null under %. With this, we can
introduce the notion of Certain Belief in terms of the preference relation %.

De�nition A.2 Say that event E � 
 is certainly believed under % if f �
nE g for
all f; g 2ACT(
).

Savage-null events and Certain Belief can be characterized in terms of LPS�s as follows.

Proposition A.1 Fix � = (�1; :::; �n) 2 N (
). An event E � 
 is Savage-null under
%� if and only if �l (E) = 0 for all l � n.

Proof : If �l (E) = 0 for all l � n, then obviously f ��E g for all f; g 2ACT(
). On the
other hand, if E � 
 is Savage-null under %�, then �!1 ��E

�!
0 . That is,�Z

E

d�l +

Z

nE

fd�l
�n
l=1

=

�
0 +

Z

nE

fd�l
�n
l=1

, 8f 2 ACT (
) ,

which implies �l (E) = 0 for all l � n. �

Corollary A.1 Fix � = (�1; :::; �n) 2 N (
). A non-empty event E � 
 is certainly
believed under %� if and only if it is certainly believed under �.

The set of binary acts (bets) on 
 is the set of all acts of the form (�!x E;�!y 
nE), for
x; y 2 [0; 1] and event E � 
. As the rankings of binary acts reveal the Decision Maker�s
underlying beliefs or likelihoods, we introduce an �in�nitely more likely�relation between
events which is based on bets.
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De�nition A.3 Fix events E;F � 
. Say that E is more likely than F under %� if
for all x; y 2 [0; 1] with x > y,

(�!x E;�!y 
nE) %� (�!x F ;�!y 
nF ).

Say that E is deemed in�nitely more likely than F under %�, and write E �� F ,
if for all x; y; z 2 [0; 1] with x > y,

(�!x E;�!y 
nE) �� (�!z F ;�!y 
nF ).

In words, E is more likely than F if the Decision Maker prefers to bet on E rather
than on F given the same prizes for the two bets; this choice-theoretic notion is due to
Savage (1972, p. 31). On the other hand, E is in�nitely more likely than F if betting
on E is strictly preferable to betting on F , and strict preference persists no matter how
bigger the prize z for winning the F bet is. This notion of �in�nitely more likely�is due
to Lo (1999, De�nition 1).28

Note that, according to De�nition A.3, if E ��� F , then E is non-null under %�, while
F may, but need not, be Savage-null under %�. When %� has a Subjective Expected
Utility representation, E ��� F implies that F is Savage-null.
The likelihood relation ��� possesses some natural properties. First, it is irre�exive,

asymmetric and transitive. Moreover, if E ��� F , then

(P1) E is in�nitely more likely than every Borel subset of F ; and

(P2) every Borel superset of E is in�nitely more likely than F .

We already referred to (P2) as monotonicity property in Section 4.2 (see Remark 2).
The next step is to characterize the likelihood order ��� between pairwise disjoint

events in terms of LPS�s representing %�. This will lead us to the LPS-based De�nition
11 of Section 4.2. Recall that, given an LPS � = (�1; :::; �n) 2 N (
) and non-empty
event E � 
,

I� (E) = inf
�
l 2 f1; :::; ng

���l (E) > 0	 .
Proposition A.2 Fix � = (�1; :::; �n) 2 N (
) and disjoint events E;F � 
 with E 6= ;.

1. E is more likely than F under %� if and only if�
�l (E)

�n
l=1
�L

�
�l (F )

�n
l=1
.

2. E �� F if and only if I� (E) < I� (F ).

Proof : The proof of part 1 is left to the reader. Part 2: The statement is clearly true
if F is Savage-null under %�, so that, by Proposition A.1, I� (F ) = inf ; = +1. So, in
what follows, let F be non-null under %�. Set p = I� (E) and q = I� (F ) for convenience.
28Lo introduces such de�nition for a wide class of preferences, including the Lexicographic Expected

Utility model.
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(Necessity) Arguing contrapositively, suppose that p � q. We consider two cases:
(a) p > q. Let x = z = 1 and y = 0. We clearly have (

�!
1 F ;

�!
0 
nF ) �� (

�!
1 E;

�!
0 
nE), so

E �� F fails.
(b) p = q. Observe that, since E and F are disjoint, �q (E) ; �q (F ) 2 (0; 1). Let

x = �q (F ), z = 1 and y = 0. For all l < q, it holds thatZ
(�!x E;

�!
0 
nE)d�

l =

Z
(
�!
1 F ;

�!
0 
nF )d�

l = 0,

while Z
(
�!
1 F ;

�!
0 
nF )d�

q = �q (F ) > �q (F ) � �q (E) =
Z
(�!x E;

�!
0 
nE)d�

q,

where the strict inequality follows from the observation above. Again, this shows that
E ��� F fails.
(Su¢ ciency) Let p < q, and pick any x; y; z 2 [0; 1] with x > y. For all l < p, it holds

that Z
(�!x E;�!y 
nE)d�l =

Z
(�!z F ;�!y 
nF )d�l = y.

Next note that, since (x� y)�p (E) > 0,

x�p (E) + y�p (
nE) > y�p (
nF ) = y,

that is, Z
(�!x E;�!y 
nE)d�p >

Z
(�!z F ;�!y 
nF )d�p.

This shows that (�!x E;�!y 
nE) �� (�!z F ;�!y 
nF ), as required. �

Next the notion of Cautious Belief in terms of the likelihood order ���.

De�nition A.4 Fix � = (�1; :::; �n) 2 N (
). A non-empty event E � 
 is cautiously
believed under %� if it satis�es the following condition:
(*) for every relevant part Es�i of E, Es�i ��� 
nE.

That is, the event E is cautiously believed under %� if every relevant part of E is
deemed in�nitely more likely than 
nE. Since E can be written as a �nite, disjoint
union of all its relevant parts, it follows from monotonicity of ��� (Property P2) that E
is deemed in�nitely more likely than 
nE, i.e., E ��� 
nE. However, the opposite is
not true. Indeed, Cautious Belief of E is stronger than requiring that E ��� 
nE,29 as
it captures cautious behavior. We can indeed formulate the following preference-based
counterpart of Remark 3 in Section 4.2.

Remark A.1 Fix � = (�1; :::; �n) 2 N (
). The preference relation %� exhibits cautious-
ness if and only if 
 is cautiously believed under %� :

We now state and prove the characterization result for Cautious Belief. For the reader�s
convenience, we restate the LPS-based de�nition of Cautious Belief given in the main text,
but in terms of relevant parts.

29If E ��� 
nE, we say that E is weakly believed under %�. As is shown in Catonini and De Vito
(2018), weak belief in E implies that �1 (E) = 1 for every (�1; :::; �n) 2 N (
) which represents %�.
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De�nition A.5 Fix � = (�1; :::; �n) 2 N (
). A non-empty event E � 
 is cautiously
believed under � at level m � n if:

(i) �l (E) = 1 for all l � m;

(ii) for every relevant part Es�i of E, �
l
�
Es�i

�
> 0 for some l � m.

Theorem A.2 Fix � = (�1; :::; �n) 2 N (
) and a non-empty event E � 
. Then E is
cautiously believed under %� if and only if E is cautiously believed under �.

Proof : The proof is immediate if 
nE is Savage-null under %�, so, in what follows, let

nE be non-null under %�.
(Necessity) Since every relevant part Es�i of E satis�es Es�i ��� 
nE, Proposition

A.2 yields I�
�
Es�i

�
< I� (
nE). Hence, I� (
nE) > 1. Let m = I� (
nE) � 1. Then,

I�
�
Es�i

�
� m. Therefore condition (ii) of De�nition A.5 is satis�ed. Moreover, for every

k � m, �k(
nE) = 0, hence �k(E) = 1. Thus, condition (i) of De�nition A.5 is satis�ed.
(Su¢ ciency) If E is cautiously believed under � at level m, then condition (i) of

De�nition A.5 implies I� (
nE) > m. By this, condition (ii) yields that each Es�i satis�es
I�
�
Es�i

�
< I� (
nE), hence, by Proposition A.2, Es�i ��� 
nE. �

We now provide a brief comparison between the notion of �in�nitely more likely�in
De�nition A.3 and the one of Blume et al. (1991a). Speci�cally, Blume et al. (1991a)
examine a partial order ��

S on events of 
 which is stronger than ���.

De�nition A.6 Fix � = (�1; :::; �n) 2 N (
) and disjoint events E;F � 
 with E 6= ;.
Then, E ��

S F if

1 E is non-null under %�, and

2 for all f; g 2 ACT (
), f ��E g implies f �
�
E[F g.

Condition 2 in De�nition A.6 states that, when comparing two acts f and g that give
the same consequences in states not belonging to E[F , if f ��E g, then the consequences
in F �do not matter�for the strict preference f �� g.30 In particular, if F = 
nE, then
condition 2 corresponds to �Strict Determination,�which is part of the preference-based
de�nition of (Weak) Assumption.
It is easy to check that if E ��

S F then E �� F . The reverse implication is true
provided both E and F are singleton sets. The key di¤erence is represented by the
following property:

30The de�nition of the partial order ��
S is taken from Asheim and Sovik 2006 (p. 65). De�nition 5.1

in Blume et al. (1991a) states that E ��
S F if condition 2 in De�nition A.6 is replaced by the following

condition:
f �E g implies

�
f
nF ; hF

�
�E[F

�
g
nF ; h

0
F

�
for all h; h0 2 ACT(
). (Condition 1 is automatically satis�ed in De�nition 5.1 of Blume et al. 1991a,
since the authors consider a �nite state space without Savage-null events.) It is easy to check the
equivalence between the two de�nitions.
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Proposition A.3 Fix � = (�1; :::; �n) 2 N (
) and non-empty, pairwise disjoint events
E;F � 
, with E non-null under %�. The following property holds:
(**) Let E1 � 
 be a non-empty event such that E1 � E and E1 is non-null under

%�. If E ��
S F , then E1 �

�
S F .

In words, Proposition A.3 states that ��
S requires that each non-null Borel subset

E1 � E be in�nitely more likely than F . The cost is the non-monotonicity of the order
��

S. That is, if E;F;G � 
 are non-empty, pairwise disjoint events with E �
�
S F , it may

not be the case that E [G��
S F .

31 This can be best seen by considering the example of
Section 1.3, which shows that ��

S fails monotonicity as well as disjunction (cf. Blume et
al. 1991a, p. 70).

Example A.1: Let �a = (�1a; �
2
a) be the LPS as summarized in the following table.

�1a t0b t00b
u 1=2 1=2
d 0 0

�2a t0b t00b
u 0 1=2
d 0 1=2

Consider the event E = f(u; t0b)g [ f(u; t00b )g, and take acts

f = (
�!
2=3E;

�!
0 
nE),

g =
��!
1 f(u;t0b);(d;t00b )g;

�!
1=3
nf(u;t0b);(d;t00b )g

�
.

Note that E ��
S 
nE fails, because f ��E g while g �� f . However, it is immediate to

check that f(u; t0b)g �
�
S 
nE and f(u; t00b )g �

�
S 
nE.

Additional perspective on the comparison between ��� and ��
S can be provided by

considering the alternative representation of LPS�s in terms of in�nitesimal non-standard
real numbers. As is well known (see Blume et al. 1991a, Section 6), a preference relation
admitting a Lexicographic Expected Utility representation can be equivalently described
by an F-valued probability measure on 
, where F is a non-Archimedean ordered �eld
which is a strict extension of the set of real numbers R. For instance, the LPS �a = (�1a; �2a)
of Example A.1 can be represented by the non-standard real valued probability measure
�:

� t0b t00b
u 1

2
� " 1

2

d 0 "

Here " > 0 is the in�nitesimal non-standard real such that for each real number x > 0
and each n 2 N, it is the case that x > n".
Given non-standard reals x and y, say that x is in�nitely greater than y if x >

ny for each n 2 N. So, as far as the probability measure � is concerned, it can be
easily seen that �(f(u; t0b)g [ f(u; t00b )g) is in�nitely greater than �(f(d; t00b )g). Note that
f(u; t0b)g [ f(u; t00b )g �� f(d; t00b )g. This is not a coincidence: the notion of in�nitely more
31Yet, it can be easily shown that E [ G ��

S F provided G is Savage-null under %�. In other words,
the union of E with a non-null event can reduce the likelihood ranking of an event, while the union with
a Savage-null event, paradoxically, cannot.
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likely in De�nition A.3 corresponds exactly to the �in�nitely greater�relation between the
non-standard probability values that provide an equivalent representation of preferences.32

In light of Proposition A.3, the �in�nitely more likely�notion of Blume et al. (1991a) is
instead stronger than the �in�nitely greater�relation: given events E;F � 
, if E ��

S F ,
then �(E) is in�nitely greater than �(F ) (and so every non-null Borel subset of E); but
the reverse implication does not hold. Indeed, it is not true that f(u; t0b)g [ f(u; t00b )g �

�
S

f(d; t00b )g (see Example A.1).

Comment on Assumption. We conclude this section with the following remark. In
the case of a �nite space of uncertainty without Savage-null events, when preferences can
be represented by a mutually singular LPS �, the following statements are equivalent:
(a) E ��

S 
nE;
(b) for every ! 2 E, f!g ��

S 
nE;
(c) E is assumed under ��.
But, as far as an in�nite space 
 is concerned, Assumption needs to be stronger than

(a) in order to provide an epistemic justi�cation of IA (cf. BFK�s Supplemental Appen-
dix). Therefore, BFK let Assumption coincide with the following �in�nite-analogue�of
(b):
(b�) for every relatively open subset O of E, O ��

S 
nE.
Condition (b�) is stronger than (a), because (a) only implies that the non-null Borel

subsets of E be in�nitely more likely than 
nE. Therefore, under (a), it is important
to specify a class of Borel subsets of E which must be non-null in order to capture IA.
To obtain (b�), BFK impose the requirement that every relatively open subset of E be
non-null (see their �Nontriviality�axiom).

Appendix B: Proofs for Section 4

We begin with the proof of Proposition 1.

Proof of Proposition 1: By de�nition, if (si; ti) 2 Rci , then si is a lexicographic best
reply to margS�i�i(ti) 2 N+(S�i). Proposition 1 in Blume et al. (1991b) states that for
every �i 2 N+ (S�i) and every lexicographic best reply s0i to �i, there exists a probability
measure �i 2M (S�i) such that Supp�i = S�i and �i(s0i; �i) � �i(s00i ; �i) for every s00i 2 Si.
Thus, si is admissible. �

We next prove Proposition 2. To this end, we �nd it convenient to state and prove an
auxiliary result, which is the analogue of Lemma B.1 in BFK.

Lemma B.1 Fix a type ti 2 Ti with �i (ti) = (�1i ; :::; �
n
i ) and a non-empty event E �

S�i � T�i. Then, E is cautiously believed under �i (ti) if and only if there exists m � n
such that �i (ti) satis�es condition (i) of De�nition 12 plus the following condition:
(ii�) E �

�
[l�mSuppmargS�i�li

�
� T�i.

32We thank an anonymous referee for this observation.
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Proof : Suppose that E is cautiously believed under �i (ti) = (�1i ; :::; �
n
i ) at level m. We

show that �i (ti) satis�es condition (ii�). For every s�i 2ProjS�i (E), we have

(fs�ig � T�i) \ E 6= ;.

Hence, by condition (ii) of De�nition 12, there exists k � m such that �ki (fs�ig � T�i) >
0. Thus, s�i 2 SuppmargS�i�ki . So we obtain

E � ProjS�i (E)� T�i
�

�
[l�mSuppmargS�i�

l
i

�
� T�i.

Conversely, suppose that conditions (i) and (ii�) hold. We show that condition (ii)
of De�nition 12 holds. Fix s�i 2 S�i such that Es�i = (fs�ig � T�i) \ E 6= ;. By
condition (ii�), Es�i �

�
[l�mSuppmargS�i�li

�
� T�i. Hence there exists k � m such that

s�i 2 SuppmargS�i�ki . So �ki (fs�ig � T�i) > 0. Moreover, by condition (i), �ki (E) = 1.
Theredore �ki

�
Es�i

�
> 0, as desired. �

Proof of Proposition 2: Part 1: Let �i = (�1i ; :::; �
n
i ) and suppose that, for each k, Ek is

cautiously believed under �i at some level mk. LetmK = min fmk jk = 1; 2; :::g. We show
that E = \kEk is cautiously believed at level mK . For each k, it holds that �li (Ek) = 1
for all l � mK . By the �-additivity property of probability measures, it follows that
�li (E) = 1 for all l � mK . Fix an elementary cylinder C = fs�ig � T�i with E \ C 6= ;.
Obviously, EmK

\ C 6= ;. Since EmK
is cautiously believed at level mK , by condition (ii)

of De�nition 12 we have �li (EmK
\ C) > 0 for some l � mK . Since �li (E) = 1, we obtain

0 < �li (EmK
\ C) = �li (EmK

\ C \ E) � �li (E \ C) .

Now, let mK = max fmk jk = 1; 2; :::g. We show that E = [kEk is cautiously believed
at level mK . For each l � mK , 1 = �li (EmK

) � �li (E). For each elementary cylinder
C = fs�ig � T�i with E \ C 6= ;, there is k such that Ek \ C 6= ;. By condition (ii) of
De�nition 12, it follows that 0 < �li (Ek \ C) � �li (E \ C) for some l � mk � mK .
Part 2: Suppose that condition (i) of De�nition 12 and condition (ii�) are satis�ed.

Then condition (ii�) implies

E � Proj�1S�i
�
ProjS�i (E)

�
= Proj�1S�i

��
[l�mSuppmargS�i�

l
i

��
=

�
[l�mSuppmargS�i�

l
i

�
� T�i,

i.e., condition (ii�) in Lemma B.1 holds. Hence E is cautiously believed under �i (ti).
For the converse, suppose that E is cautiously believed under �i (ti) = (�

1
i ; :::; �

n
i ) at

level m. By Lemma B.1, it follows that

ProjS�i (E) � ProjS�i
��
[l�mSuppmargS�i�

l
i

�
� T�i

�
= [l�mSuppmargS�i�

l
i.

To show that this set inclusion holds with equality, let s�i =2ProjS�i (E). Then (fs�ig � T�i)\
E = ;. By condition (i) of De�nition 12, �li (E) = 1 for each l � m, so

�li (fs�ig � T�i) = margS�i�
l
i (fs�ig) = 0.

This implies s�i =2 SuppmargS�i�li. �
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Appendix C: Proofs for Section 5

In this section we provide the proofs of Lemmas 1-3, as well as the proofs of Theorem 2
and Theorem 3.

Proof of Lemma 1: Let M � 1 be the smallest natural number such that
Q
i2I S

1
i =Q

i2I S
M
i .

33 By Lemma E.1 in BFK, for every n 2 f1; :::;M + 1g and si 2 Sni , there exists
�nsi 2M(S�i) such that Supp�nsi = S

n�1
�i and

�i(si; �
n
si
) � �i(s0i; �nsi), 8s

0
i 2 Si.

We use this result to construct a �nite type structure T = hSi; Ti; �iii2I as follows.
For each i 2 I, let Ti = S1i , and de�ne each belief map �i : Ti ! N (S�i � T�i) as

follows. Let si 2 Ti. Fix an arbitrary �s�i 2 T�i and de�ne �1si 2M(S�i � T�i) as

�1si (f(s�i; �s�i)g) = �
1
si
(s�i) , 8s�i 2 S�i.

Let m = max
�
k �M + 1jsi 2 Ski

	
. (Note that if si 2 SMi , then m = M + 1, because

SMi = SM+1
i .) So, if m = 1, let �i(si) =

�
�1si
�
. Otherwise, for each k = 2; :::;m, de�ne

�ksi 2M(S�i � T�i) as

�ksi (f(s�i; s�i)g) = �
k
si
(s�i) , 8s�i 2 Sk�1�i ,

and let
�i(si) =

�
�msi ; :::; �

1
si

�
.

Finiteness of each type set guarantees that each belief map is Borel measurable (in fact,
continuous). This completes the de�nition of the type structure T .
We now show that T satis�es the required properties. To this end, we �nd it convenient

to de�ne, for each i 2 I and k = 1; :::;M , the following sets:

�Ski �Ti =
�
(si; s

0
i) 2 Ski � Tijsi = s0i

	
.

That is, each set �Ski �Ti is homeomorphic to the diagonal of S
k
i � Ski .34 Next note that,

for every si 2 S2i , all the component measures of �i(si) =
�
�msi ; :::; �

1
si

�
except for �1si are

concentrated on those �diagonal�sets, namely

Supp�ksi = �Sk�1�i �T�i, k = 2; :::;m,

which implies Supp�ksi � Supp�
k�1
si

for k � 3.
The rest of the proof is by induction.
Induction Hypothesis (n): For each i 2 I, ProjSiRni = Sni ; moreover, �Sni �Ti � R

n
i

if n �M , and �SMi �Ti � R
n
i if n > M .

33Note that, if S0 = S1, then M is 1 and not 0. This will simplify exposition.
34The diagonal of Ski � Ski is the set�

(si; s
0
i) 2 Ski � Ski jsi = s0i

	
.
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Basis Step (n = 1). Fix i 2 I and si 2 S1i . Type si is cautious, because

SuppmargS�i�
1
si
= Supp�1si = S�i,

and the strategy-type pair (si; si) is rational, in that

margS�i�i(si) =
�
�msi ; :::; �

1
si

�
.

This shows that (si; si) 2 R1i . Therefore �S1i�Ti � R
1
i , which implies that S

1
i � ProjSiR1i .

Conversely, Proposition 1 yields ProjSiR
1
i � S1i .

Inductive Step (n+1). For each i 2 I, we have to show the following: (1) ProjSiR
n+1
i =

Sn+1i ; (2) �Sn+1i �Ti � R
n+1
i if n+ 1 �M , and �SMi �Ti � R

n+1
i if n+ 1 > M .

Fix i 2 I and si 2 Sn+1i . Let k = min fn+ 1;M + 1g. Since (si; si) 2 �Sk�1i �Ti, by the

induction hypothesis it follows that (si; si) 2 Rni . We show that (si; si) 2 Bci
�
Rn�i

�
; this

will yield (si; si) 2 Rn+1i . Write �i(si) =
�
�msi ; :::; �

1
si

�
, where m � k because si 2 Ski and

so, by construction, �i(si) must have length at least k. To show that R
n
�i is cautiously

believed under �i(si), recall that Supp�
l
si
= �Sl�1�i �T�i

� �Sk�1�i �T�i for each l = k; :::;m.
Since �Sk�1�i �T�i � R

n
�i (induction hypothesis), it follows that condition (i) of De�nition

12 is satis�ed at level l = m � k + 1. Recall also that Supp�ksi = �Sk�1�i �T�i. By the

induction hypothesis, ProjS�iR
n
�i = S

k�1
�i = ProjS�i�Sk�1�i �T�i. Hence, �i(si) satis�es also

condition (ii�) of Proposition 2.2. Thus (si; si) 2 Bci
�
Rn�i

�
, as required. So, we have

shown that Sn+1i � ProjSiR
n+1
i . For part (2), note the following fact: If n + 1 � M ,

for every (si; si) 2 �Sn+1i �Ti we have si 2 S
n+1
i ; analogously, if n + 1 > M , for every

(si; si) 2 �SMi �Ti we have si 2 Sn+1i . Then, by proving that (si; si) 2 Rn+1i for each
si 2 Sn+1i , we have proven (2).
Conversely, pick any (si; s0i) 2 Rn+1i � Rni . Then, by the induction hypothesis, si 2 Sni .

Let �i(s
0
i) = (�

1; :::; �n). Since s0i cautiously believes R
n
�i at some level l, it follows from

Proposition 2.2 and the induction hypothesis that

[k�lSuppmargS�i�
k = Sn�i.

So, by Proposition 1 in Blume et al. (1991b), there exists � 2M(S�i) with Supp� = Sn�i
under which si is optimal. Therefore si 2 Sn+1i . This shows that ProjSiR

n+1
i � Sn+1i ,

establishing (1). �

Proof of Lemma 2: Fix a type ti 2 Ti, and let �i (ti) =
�
�1i (ti); :::; �

n
i (ti)

�
be the

associated LPS. Let O be a non-empty subset of S�i. If margS�i�i (ti) 2 N+ (S�i), then
there is l � n such that �li (ti) (O � T�i) > 0. It follows from the de�nition of type
morphism that margS�i�

�
i ('i (ti)) 2 N+ (S�i), since

��;li ('i (ti))
�
O � T ��i

�
= �li (ti)

��
IdS�i ; '�i

��1 �
O � T ��i

��
= �li (ti) (O � T�i) > 0.

An analogous argument shows that the reverse implication is also true. �

Proof of Lemma 3: Fix a type ti that cautiously believes E�i. Let t�i = 'i (ti). Note
that bimeasurability of ('i)i2I implies that

�
IdS�i ; '�i

�
(E�i) is an event in S�i�T�i. We
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show that t�i cautiously believes
�
IdS�i ; '�i

�
(E�i), that is, �

�
i (t

�
i ) satis�es conditions (i)

and (ii) of De�nition 12.
First, note that

E�i �
�
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

�
.

Hence, by de�nition of type morphism, it follows that, for all l � n,

�li (ti) (E�i) � �li (ti)
��
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

��
= ��;li (t

�
i )
��
IdS�i ; '�i

�
(E�i)

�
:

Since E�i is cautiously believed under �i (ti) =
�
�1i (ti) ; :::; �

n
i (ti)

�
, it follows from con-

dition (i) of De�nition 12 that there exists m � n such that �li (ti) (E�i) = 1 for all
l � m. Therefore, we have that ��;li (t

�
i )
��
IdS�i ; '�i

�
(E�i)

�
= 1 for all l � m. Hence

��i (t
�
i ) satis�es condition (i) of De�nition 12.
Consider now an elementary cylinder C = fs�ig � T ��i satisfying

�
IdS�i ; '�i

�
(E�i) \

C 6= ;. First, note that

(fs�ig � T�i) \ E�i � (fs�ig � T�i) \
��
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

��
=

��
IdS�i ; '�i

��1
(C)

�
\
��
IdS�i ; '�i

��1 ��
IdS�i ; '�i

�
(E�i)

��
=

�
IdS�i ; '�i

��1 �
C \

�
IdS�i ; '�i

�
(E�i)

�
.

Hence, by de�nition of type morphism, it follows that, for all l � n,

�li (ti) ((fs�ig � T�i) \ E�i) � �li (ti)
��
IdS�i ; '�i

��1 �
C \

�
IdS�i ; '�i

�
(E�i)

��
= ��;li (t

�
i )
�
C \

�
IdS�i ; '�i

�
(E�i)

�
.

SinceE�i is cautiously believed under �i (ti) at levelm � n, and sinceC\
�
IdS�i ; '�i

�
(E�i) 6=

; implies (fs�ig � T�i) \ E�i 6= ;, by condition (ii) of De�nition 12 there exists k � m
such that �ki (ti) ((fs�ig � T�i) \ E�i) > 0. Therefore, we have that

��;ki (t�i )
�
C \

�
IdS�i ; '�i

�
(E�i)

�
> 0.

Thus, ��i (t
�
i ) satis�es condition (ii) of De�nition 12. �

Proof of Theorem 2: Part (i): Fix a type structure T = hSi; Ti; �iii2I . If
Q
i2I ProjSiR

1
i =

;, the result is immediate. So in what follows we will assume that this set is non-empty.
For each i 2 I and si 2 ProjSiR1i , there exists ti 2 Ti such that (si; ti) 2 R1i . Since
(si; ti) 2 R1i , it follows that si is a lexicographic best reply to margS�i�i(ti) 2 N+(S�i).
Therefore, by Proposition 1, si is admissible, hence condition (a) of De�nition 3 is satis-
�ed. Next note that, for each k � 1, type ti cautiously believes Rk�i. So, it follows from
Proposition 2.1 that R1�i is cautiously believed under �i(ti) = (�1; :::; �n) at some level
m. Moreover, Proposition 2.2 entails [l�mSuppmarg�l = ProjS�iR1�i. Since si is a lexico-
graphic best reply to margS�i�i(ti), Proposition 1 in Blume et al. (1991b) yields the exis-
tence of some � 2M(S�i) under which si is optimal and such that Supp� = ProjS�iR

1
�i.

This shows that si is admissible with respect to Si � ProjS�iR1�i, establishing condition
(b) of De�nition 3. Finally, by Corollary A1 in Brandenburger and Friedenberg (2010),
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every s0i that supports si is a lexicographic best reply to margS�i�i(ti) as well. It follows
that (s0i; ti) 2 R1i , and this in turn implies that s0i 2 ProjSiR1i , establishing condition (c)
of De�nition 3.
Part (ii): Let Qi � Q�i be a non-empty SAS. Fix i 2 I and si 2 Qi. By conditions

(a) and (b) of De�nition 3, there exist �2si ; �
1
si
2 M(S�i) such that Supp�2si = S�i and

Supp�1si = Q�i, and such that si is optimal under �
2
si
and �1si. Hence, si is a lexicographic

best reply to (�1si ; �
2
si
) 2 N+(S�i). Moreover, as in BFK (p. 328), we can choose �2si and

�1si in such a way that every strategy s
0
i is optimal under �

2
si
and �1si if and only if s

0
i is

supported by si. Now we construct a �nite type structure T = hSi; Ti; �iii2I as follows.
For each i 2 I, let Ti = Qi. For every si 2 Ti, de�ne �1si ; �

2
si
2M(S�i � T�i) as

�1si (f(s�i; s�i)g) = �1si(s�i);8s�i 2 Q�i,
�2si (fs�i; �s�ig) = �2si(s�i);8s�i 2 S�i,

where �s�i 2 T�i is arbitrarily chosen.35 Let �i(si) = (�1si ; �
2
si
). Finiteness of each type set

guarantees that each belief map is measurable (in fact, continuous). This completes the
de�nition of the type structure T .
We now show that T satis�es the required properties. Note that each type si 2 Ti

is cautious because Supp�2si = S�i; hence T is a cautious type structure. For every
i 2 I and si 2 Qi, (si; si) is cautiously rational by construction; for every s0i 6= Qi,
condition (c) of De�nition 3 implies that s0i does not support si, so by construction the
pair (s0i; si) is not rational. Hence, ProjSiR

1
i = Qi. Now, suppose by way of induction

that for each i 2 I and si 2 Qi, (si; si) 2 Rmi . We show that type si cautiously be-
lieves Rm�i, establishing that (si; si) 2 Rm+1i ; this will yield (si; si) 2 R1i . Note that
Supp�1si = f(s�i; s�i) : s�i 2 Q�ig � Rm�i, where the inclusion follows from the induc-
tion hypothesis. Moreover, since Suppmarg�1si = Supp�

1
si
= Q�i, Proposition 2.2 entails

that Rm�i is cautiously believed under �i(si) at level 1. Therefore, we conclude that
ProjSiR

1
i = Qi. �

Proof of Theorem 3: The desired type structure T =hSi; Ti; �iii2I is constructed as
follows. For each i 2 I, let Ti be the Baire space NN00 ,36 so that each ti 2 Ti is an in�nite
sequence of non-negative integers. The set N0 is endowed with the discrete topology, and
NN00 is endowed with the product topology. The basic open sets are sets of the form

Ok =
�
(n1; n2; :::) 2 NN00 j(n1; :::; nk) = (o1; :::; ok)

	
for each k 2 N0 and (o1; :::; ok) 2 (N0)k. With this topology, a basic open set is also closed,
so sets of the form Ok constitute a clopen basis. The space NN00 is Polish and uncountable,
but not compact.
For each i 2 I, we partition Ti into a countable family of non-empty Borel subsets.

For each k � 0, let
Tki =

�
(n1; n2; :::) 2 NN00 jn1 = k

	
.

35Since Supp�2si = S�i, we can also construct �2si in such a way that Supp�
2
si = S�i � T�i. Then,

we would obtain a type structure T where all types are not only cautious, but also associated with a
full-support LPS.
36Here N0 denotes the set f0; 1; 2; :::g, i.e., N0 = N [ f0g. The Baire space is sometimes de�ned as

the set NN of all in�nite sequences of natural numbers. This di¤erence is immaterial for all the relevant
topological properties we are going to use in this proof.
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Each Tki is a subbasic clopen subset of Ti; moreover, each T
k
i is homeomorphic to the

Baire space. It is clear that Ti = [k�0Tki , and all the Tki �s are pairwise disjoint.
The next step is to construct the belief maps in such a way that, for each k � 0,

ti 2 Tki and si 2 Si, the pair (si; ti) does not belong to Rk+1i . For each i 2 I, we construct
a countable partition of N (S�i � T�i) that �mirrors�the above partition of Ti. This is
done as follows: For each i 2 I, let

�0i = N (S�i � T�i)�C0i ,

where C0i is the set of all LPS�s �i 2 N (S�i�T�i) such that margS�i�i 2 N+ (S�i). Since
jSij � 2 for each i 2 I, it follows that �0i 6= ;.
Next, let

�1i =
�
�i 2 C0i

���1i (S�i � T0�i) > 0	 ,
and, for each k � 2,

�ki = \m2f1;:::;k�1g
�
�i 2 C0i

���1i (S�i � Tm�1�i ) = 0
	
\
�
�i 2 C0i

���1i (S�i � Tk�1�i ) > 0
	
.

In words: �1i is the set of all LPS�s on S�i � T�i such that the marginal on S�i has full
support and the �rst component measure assigns strictly positive probability to S�i�T0�i;
�2i is the set of all LPS�s on S�i � T�i such that the marginal on S�i has full support
and the �rst component measure assigns probability 0 to S�i �T0�i, and strictly positive
probability to S�i � T1�i; and so on.
It is immediate to check that N (S�i� T�i) = [k�0�ki and all the �ki �s are non-empty,

pairwise disjoint sets; so the countable family of all �ki �s is a partition of N (S�i � T�i).

Claim C.1 For each k � 0, �ki is a Borel subset of N (S�i � T�i).

Proof: Since C0i is Borel (Lemma D.4), so is �0i . For each k � 1, let

Pki =
�
�i 2 C0i

���1i (S�i � Tk�1�i ) > 0
	
.

Note that �1i = P
1
i , and for each k � 2, �ki is the intersection of Pki with the complements

of P1i ; :::;P
k�1
i . Thus, to show that each �ki is Borel in N (S�i � T�i), it is su¢ cient to

show that each Pki is Borel in N (S�i � T�i). Let

Mk
i =

�
� 2M (S�i � T�i)

���(S�i � Tk�1�i ) > 0
	
.

By Theorem 17.24 in Kechris (1995), if X is a Polish space, then the Borel �-�eld on
M (X) is generated by sets of the form f� 2M (X) : � (E) � pg, where E 2 �X and
p 2 Q\ [0; 1]. Hence, for every E 2 �X , the set f� 2M (X) : � (E) > 0g is Borel, since
it can be written as \n2N

�
� 2M (X) : � (E) � 1

n

	
. This implies that Mk

i is Borel in
M (S�i � T�i). Moreover, for each n 2 N, the canonical projection map

Proj1;n : Nn(S�i � T�i) ! M (S�i � T�i) ,
(�1i ; :::; �

n
i ) 7! �1i ,

is continuous, hence the set Proj�11;n
�
Mk
i

�
is Borel in Nn(S�i � T�i). So, the conclusion

follows from the observation that Pki can be written as

Pki =
�
[n2NProj�11;n

�
Mk
i

��
\ C0i .
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�

Recall now that every Borel subset of a Polish space is a Lusin space, when endowed
with the relative topology. Moreover, every Lusin space is also analytic (see Cohn 2003,
Proposition 8.6.13). Thus, by Claim C.1, each �ki is analytic. Since each T

k
i is homeo-

morphic to the Baire space, it follows from Corollary 8.2.8 in Cohn (2003; see also Kechris
1995, p. 85) that there exist surjective continuous maps

�
[k]
i : Tki ! �ki , 8k � 0.

For each i 2 I, let �i be the union of the �
[k]
i �s, i.e., �i = [k�0�

[k]
i : Ti ! N (S�i � T�i).

The map is well de�ned because the Tki �s are pairwise disjoint. By Fact D.1, �i is a
continuous (and so Borel) surjective map. This completes the de�nition of the type
structure T =hSi; Ti; �iii2I .
We now show that T satis�es the required properties.

Claim C.2 For each i 2 I,

(Si � Tki ) \Rk+1i = ;, 8k � 0.

Proof: By induction on k � 0.
(Base step: k = 0) Fix i 2 I and (si; ti) 2 Si � Ti with ti 2 T0i . We clearly have that

(si; ti) 62 R1i because �i(ti) 2 �0i , hence ti is not cautious. Therefore (Si � T0i ) \R1i = ;.
(Inductive step: k � 1) Suppose we have already shown that (Si�Tk�1i )\Rki = ; for

each i 2 I. Fix i 2 I and (si; ti) 2 Si � Ti with ti 2 Tki . Thus �i(ti) = (�1i ; :::; �ni ) 2 �ki ,
hence �1i (S�i �Tk�1�i ) > 0. Since, by the induction hypothesis, (S�i �Tk�1�i ) \Rk�i = ;, it
must be the case that �1i (R

k
�i) < 1. Therefore R

k
�i is not cautiously believed under �i(ti);

this implies (si; ti) 62 Bci(Rk�i). Thus (si; ti) 62 Rk+1i . �

To conclude the proof, pick any (si; ti) 2 Si � Ti. Thus there exists k � 0 such that
ti 2 T ki . By Claim C.2, it follows that (si; ti) 62 Rk+1i . Since R1i = \m�0Rmi , this shows
that R1i = ;, as required. �

Appendix D: Measurability of the relevant sets

The aim of this section is to show that, for a given type structure T = hSi; Ti; �iii2I ,
the sets Rmi , m > 1, are Borel subsets of Si � Ti. We do this by �rst showing that
Bci(E) � Si � Ti is Borel for every event E � S�i � T�i.

Lemma D.1 Fix a type structure T = hSi; Ti; �iii2I and non-empty event E � S�i�T�i.
Then the set of all � 2 N (S�i � T�i) under which E is cautiously believed is Borel in
N (S�i � T�i).

Proof : Recall that, for a given event E � S�i � T�i, the set of probability measures �
satisfying � (E) = p for p 2 Q \ [0; 1] is measurable inM(S�i � T�i). So the sets of all
� 2M(S�i� T�i) satisfying � (E) = 1 or � (E) = 0 are Borel inM(S�i� T�i). Now, �x
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n and m � n. By the above argument and by de�nition of Nn(S�i � T�i), it turns out
that the set

C1n;m = f� 2 Nn(S�i � T�i) j�m (E) = 1;8l � mg
= \l�m

�
� 2 Nn(S�i � T�i)

���l (E) = 1	
is Borel in Nn(S�i � T�i). Note that C1n;m is the set of all � 2 Nn(S�i � T�i) for which
condition (i) of De�nition 12 holds for level m.
By the same argument, it follows that, for every s�i 2 ProjS�i (E), the set

Cs�in:m =
�
� 2 Nn(S�i � T�i)

���l (fs�ig � T�i) = 0;8l � m	
= \l�m

�
� 2 Nn(S�i � T�i)

���l (fs�ig � T�i) = 0	
is Borel in Nn(S�i � T�i). Note that the set

C2n;m =
T

s�i2ProjS�i (E)

�
Nn(
)�Cs�in;m

�
is the (measurable) set of all � 2 Nn(S�i � T�i) satisfying condition (ii) of De�nition 12
for level m. De�ne Cn;m = C1n;m \ C2n;m; clearly, Cn;m is a Borel subset of Nn(S�i � T�i).
Hence, the set of all � 2 N (S�i � T�i) under which E is cautiously believed is given by
[n2N [m2N Cn;m, so it is Borel in N (S�i � T�i). �

By measurability of each belief map in a lexicographic type structure, we obtain the
following result.

Corollary D.1 Fix a type structure T = hSi; Ti; �iii2I . For every i 2 I, if E � S�i�T�i
is a non-empty event, then Bci(E) is a Borel subset of Si � Ti.

The next step is to show that, for a given type structure T = hSi; Ti; �iii2I , the set
Rci is a Borel subset of Si � Ti. We �rst report some auxiliary technical facts we shall be
using in the proofs that follow. Fix a countable collection of pairwise disjoint topological
spaces (Yn)n2N, and let Y = [n2NYn. For a given indexed family of mappings (fn)n2N,
where fn : Xn ! Yn, let f : X ! Y be the function de�ned as

f (x) = fn (x) , x 2 Xn.

The map f : X ! Y is called the union of the functions (fn)n2N, and is also denoted by
[n2Nfn.

Fact D.1 Fix two countable collections of pairwise disjoint topological spaces (Xn)n2N
and (Yn)n2N. Let X = [n2NXn and Y = [n2NYn. Let (fn)n2N be a countable family of
mappings fn : Xn ! Yn. If each map fn is continuous (resp. Borel measurable), then the
union map [n2Nfn : X ! Y is continuous (resp. Borel measurable).

Proof: Let O be open in Y . By de�nition of direct sum topology, the set O can be
written as O = [n2NOn, where each On = O \ Yn is open in Yn (see Engelking 1989, p.
74). Thus

([n2Nfn)�1 (O) = [n2Nf�1n (On) .
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So, if each fn is continuous (resp. Borel measurable), then each f�1n (On) is open (resp.
Borel), and this in turn implies that ([n2Nfn)�1 (O) is open (resp. Borel). �

Fact D.2 Let X and Y be Polish spaces, and �x a map f : X ! Y . If f is con-
tinuous (resp. Borel measurable), then bf : N (X) ! N (Y ) is continuous (resp. Borel
measurable).

Proof: Since bf is the union of the functions � bf(n)�
n2N
, where bf(n) : Nn (X) ! Nn (Y ),

by Fact D.1 it is enough to show that, for each n 2 N, bf(n) is continuous or Borel
measurable. By Theorem 15.14 in Aliprantis and Border (1999), the image measure mapef is continuous provided f is continuous. If f is assumed to be only Borel measurable, we
conclude that ef is Borel measurable by using two mathematical facts. First, the Borel �-
�eld onM (X) is generated by sets of the form f� 2M (X) : � (E) � pg, where E 2 �X
and p 2 Q\ [0; 1]. Second, each set ef�1 (f� 2M (Y ) : � (E) � pg), where E 2 �Y , can
be written as f� 2M (X) : � (f�1 (E)) � pg. Since each space Nn (X) is endowed with
the product topology, it follows from Proposition 2.3.6 in Engelking (1989) that the mapbf(n) is continuous provided f is continuous. The conclusion that bf(n) is Borel measurable
follows from Lemma 4.49 in Aliprantis and Border (1999). �

Lemma D.2 Fix a type structure T = hSi; Ti; �iii2I and si 2 Si. The set of all � 2
N (S�i�T�i) such that si is a lexicographic best reply to margS�i� is Borel in N (S�i�T�i).

To prove Lemma D.2, we need the following auxiliary result:

Lemma D.3 Fix a type structure T = hSi; Ti; �iii2I and si; s0i 2 Si. Let OWsi;s0i and O
S
si;s0i

be subsets of M(S�i � T�i) de�ned as follows:

OWsi;s0i =
�
� 2M(S�i � T�i)

���i(si;margS�i�) � �i(s0i;margS�i�)	 ,
OSsi;s0i =

�
� 2M(S�i � T�i)

���i(si;margS�i�) > �i(s0i;margS�i�)	 .
Then OWsi;s0i and O

S
si;s0i

are closed and open in M(S�i � T�i), respectively.

Proof : First recall that the map gProjS�i :M(S�i � T�i)!M (S�i) de�ned by

� 7! margS�i�, � 2M(S�i � T�i),

is continuous. Moreover, for each esi 2 Si, the function �i(esi; �) : M (S�i) ! R is also
continuous. De�ne the real valued map fsi;s0i :M (S�i)! R as

fsi;s0i
�
margS�i�

�
= �i(si;margS�i�)� �i(s

0
i;margS�i�), � 2M(
).

The map fsi;s0i is clearly continuous, and the set O
W
si;s0i

can be written as

OWsi;s0i =
�gProjS�i��1 �margS�i� 2M (S�i)

��fsi;s0i �margS�i�� � 0	
=

�gProjS�i��1 �f�1si;s0i ([0;+1))�
=

�
fsi;s0i � gProjS�i��1 ([0;+1)) ,
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i.e., OWsi;s0i is the inverse image of the set [0;+1), closed in R, under the continuous map
fsi;s0i � gProjS�i, hence OWsi;s0i is closed in M(
). An analogous argument shows that set
OSsi;s0i

can be written as

OSsi;s0i =
�
fsi;s0i � gProjS�i��1 ((0;+1)) ,

hence OSsi;s0i is open inM(S�i � T�i). �

Proof of Lemma D.2:37 Let U sin be the set of all � 2 Nn(S�i � T�i) for which si is
a lexicographic best reply to margS�i�. By Lemma D.3, the sets O

W
si;s0i

and OSsi;s0i are,
respectively, closed and open in M(
), hence the set OEsi;s0i = OWsi;s0i

nOSsi;s0i is closed in
M(S�i � T�i). The set U sin can be expressed as

U sin =
T
s0i 6=si

0@ �
OSsi;s0i

�Nn�1(
)
�
[
�
OEsi;s0i

�OSsi;s0i �Nn�2(
)
�
[

::: [
�
OEsi;s0i

�OEsi;s0i � :::�O
W
si;s0i

� 1A ;
and this shows that U sin is Borel in N (S�i � T�i). The set of all � 2 N (S�i � T�i) for
which si is a lexicographic best reply to margS�i� can be written as [n2NU sin , hence it is
Borel. �

Given a type structure T = hSi; Ti; �iii2I , we let C0i denote the set of all � 2 N (S�i�
T�i) such that margS�i� 2 N+ (S�i); that is,

C0i =
�
� 2 N (S�i � T�i)

��margS�i� 2 N+ (S�i)
	
.

Lemma D.4 Fix a type structure T = hSi; Ti; �iii2I . The set C0i is Borel in N (S�i�T�i).

Proof : Note that
C0i =

�dProjS�i��1 �N+ (S�i)
�
.

Since N+ (S�i) is Borel in N (S�i) (see Corollary C.1 in BFK) and the map dProjS�i :
N (S�i � T�i)! N (S�i) is continuous (Fact D.2), it follows that C0i is Borel in N (S�i �
T�i). �

Corollary D.2 Fix a type structure T = hSi; Ti; �iii2I . For every i 2 I, the set Rci is
Borel in Si � Ti.

Proof : It follows from Lemma D.4 and from the measurability of �i that the set Si �
��1i (C0i ) is Borel in Si � Ti. De�ne the set Ri as

Ri = [si2Si
�
fsig � ��1i (Lsi)

�
,

where Lsi stands for the set of all �i 2 N (S�i � T�i) such that si is a lexicographic best
reply to margS�i�i. By Lemma D.2 and measurability of �i, it follows that Ri is Borel in
Si � Ti. Since Rci = Ri \

�
Si � ��1i (C0i )

�
, the conclusion follows. �

37The proof closely follows the lines of the proof of Lemma A.6 in Dekel et al. (2016).
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We can now state and prove the desired result:

Lemma D.5 Fix a type structure T = hSi; Ti; �iii2I . Then, for each i 2 I and each
m > 1,

Rm+1i = R1i \
�
\l�mBci

�
Rl�i

��
,

and Rmi is Borel in Si � Ti.

Proof: The equality Rm+1i = R1i \
�
\l�mBci

�
Rl�i

��
is obvious. By Corollary D.2, it

follows that, for each i 2 I, the set R1i = Rci is Borel in Si� Ti. By Corollary D.1, the set
Bci
�
R1�i

�
is Borel in Si � Ti. The conclusion follows from an easy induction on m. �
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