
Seminar Theoretical Computer science. April 2nd, 2018.

If L is a language over an alphabet Σ, then Lc represents the complement Σ∗ \ L. Let coNP = {Lc : L ∈ NP}.

The class coNP

Exercise 1. Prove that if NP 6= coNP then P 6= NP.

Exercise 2. Show that if NP ⊆ coNP then NP = coNP.

Exercise 3. Suppose L1, L2 ∈NP∩coNP. Show that L1⊕L2 = {x : x is in exactly one of L1, L2} is in NP∩coNP.

Exercise 4. We say that a language L is coNP-complete if (1) L ∈ coNP and (2) A ≤p L for all A ∈ coNP.
Show that 3SATc is coNP-complete.

The class PSPACE

Exercise 5. Show that if A ∈ PSPACE, then A∗ ∈ PSPACE.

Exercise 6. Two Boolean formulas are equivalent if they describe the same Boolean function. For example, the
formulas x1 ∧ x2 and x1 ∧ x1 ∧ x2 are equivalent. A Boolean formula is minimal if there exists no equivalent
formula for which the number of ∧ and ∨ symbols is strictly smaller. For example, the formula x1 ∧ x1 ∧ x2 is
not minimal, but x1 ∧ x2 is. Let MinFormula be the set of minimal Boolean formulas.

• Show that MinFormula ∈ PSPACE.

• Explain why this argument fails to show that MinFormula ∈ coNP: If φ 6∈ MinFormula, then φ has a
smaller equivalent formula. A non-deterministic Turing machine can verify that φ ∈ MinFormula.

Exercise 7. Show that if TQBF ∈ NP, then NP = coNP.

Exercise 8. The cat-and-mouse game is played by two players “Cat” and “Mouse” on an arbitrary graph. At a
given moment of time, each player occupies a vertex of a connected graph. Players move in turns. At his turn,
a player must move to a vertex that is adjacent to the current position.

A special vertex of the graph is called Hole. Cat wins if the two players ever occupy the same node. Mouse
wins if it reaches the Hole before the preceding happens. The game is draw if a situation repeats (a situation is
determined by the player’s positions and the player’s turn to move).

The problem Happy Cat:

Input: A graph (V,E), vertices c,m, h ∈ V (initial positions of Cat, Mouse and the Hole).
Question: Does Cat have a winning strategy if Cat moves first?

Prove that this problem is in P.

PSPACE-completeness

Exercise 9. The problem in-space acceptance:

Input: A Turing machine M and an input x.
Question: Does M accept x without ever leaving the first |x|+ 1 cells on the tape?

Prove that the problem in-space acceptance is in PSPACE. Prove that the problem is PSPACE-complete.

Exercise 10. Consider TQBF problem restricted to monotone formulas (no negations). Show (at least) one of
the two: monotone-TQBF is in P; monotone-TQBF is PSPACE-complete.

Exercise 11. In this problem a graph (V,E) is given by a Boolean circuit φ. This means that V equals the set
of m-bit strings for some m, and that two vertices x and y are connected if and only if φ(x, y) = 1. Prove that
the following problem is PSPACE-complete.

The problem succinct connectivity:

Input: A graph G represented by a circuit and two nodes s and t.
Question: Is there a path from s to t in G?

1

Solutions

Exercise 1. Recall that L ∈ P if and only if Lc ∈ P. We prove the contrapositive of the statement: if P = NP
then NP = coNP. Assume P = NP. We need to show that L ∈ NP ⇔ L ∈ coNP.

L ∈ NP = P ⇐⇒ Lc ∈ P = NP ⇐⇒ L ∈ coNP.

Exercise 3. We prove that L1⊕L2 ∈ NP. The proof that the language belongs to coNP is similar. For i ∈ {1, 2},
let Vi be a verifier for language Li, and let Ci be a verifier for the languages Lc

i . Certificates for x ∈ L1 ⊕ L2

consist of 3 parts:

• The number i ∈ {1, 2} that indicates whether x ∈ L1 \ L2 or x ∈ L2 \ L1.

• A certificate for the verifier Vi to prove that x ∈ Li.

• A certificate for the verifier C3−i to prove that x 6∈ L3−i.

It is now easy to construct a verifier that satisfies the conditions.

Exercise 5. The following algorithm InAstar(x) decides A∗. It works recursively in |x|. If |x| = 0, then accept.
Otherwise, for all k = 1, . . . , |x| check whether the prefix x1x2 · · ·xk belongs to A using a polynomial space
algorithm, and whether the suffix xk+1 · · ·x|x| belongs to A∗, using a recursive call InAstar(xk+1 · · ·x|x|). If this
is true for some k, then accept, otherwise reject.

To see that this algorithm runs in polynomial space, note that each recursive call decreases the length of x
by at least 1. Hence, the depth of the recursion stack is at most |x|. Because each recursive call requires at most
polynomial space, storing the whole recursion stack requires polynomial space.

Second solution. The following nondeterministic algorithm decides A∗: nondeterministically guess a splitting of x,
accept if each part belongs to A, and otherwise, reject. This shows that A∗ ∈ NPSPACE. Now the statement
follows from Savitch’s theorem.

Exercise 7. Assume L ∈ NP. We show that L ∈ coNP. By NP-completeness of SAT, there exists a reduction
from L to SAT. For any string w, this reductions maps a string w to a Boolean formula φw. Thus

w ∈ L ⇐⇒ φw ∈ SAT ⇐⇒ ∃x1∃x2 . . . ∃xm [φw(x1, . . . , xm)] ∈ TQBF.

Thus
w ∈ Lc ⇐⇒ ∀x1∀x2 . . . ∀xm [NOT (φ(x1, . . . , xm))] ∈ TQBF.

We have shown that Lc reduces to TQBF ∈ NP. Thus Lc ∈ NP and hence L ∈ coNP. Because this is true for
every L ∈ NP, we conclude that NP ⊆ coNP. By exercise 2 this implies NP = coNP.

Exercise 8. Each configuration of the game is described by a triple (C,M, p) ∈ V × V × {Cat, Mouse}, where C
is the position of the Cat, M is the position of the Mouse, and p ∈ {Cat, Mouse} is the player that moves next.
Note that the total number of configurations is 2|V |2, which is polynomial in the input length.

The idea of the algorithm is to use dynamic programming to compute a set W of all configurations for which
Cat has a winning strategy. Initially, W contains all positions (C,M, p) for which C = T . Then we update W
by performing the following actions simultaneously:

• Add all configurations (C,M, Cat) for which there exists a vertex C ′ ∈ V such that (C,C ′) ∈ E and
(C ′,M, Mouse) ∈ W .

• Add all configurations (C,M, Mouse) such that for all edges (M,M ′) ∈ E, the configuration (C,M ′, Cat)
belongs to W .

(In fact it does not matter whether we perform the actions simultaneously or subsequently, but in the former case
the analysis is a bit easier.) We repeat this update until no new configurations are added to W . The algorithm
accepts if (c,m, Cat) ∈ W and rejects otherwise.

2

This algorithm terminates in polynomial time, because we update W at most 2|V |2 times. It remains to
prove that W contains precisely the configurations in which Cat has a winning strategy. This is rather obvious,
but we present the formal details for the interested reader. (This does not change the final value of W .)

We need some definitions. The length of a winning strategy for Cat for a configuration (C, T, p), is the
maximal number of moves that are needed such that Cat and Mouse arrive in the same vertex, starting in the
configuration (we count the total number of moves, i.e., the sum of the moves of Cat and Mouse). The catching
time of a configuration is the minimal length of a winning strategy for Cat for the configuration. If a configuration
has no winning strategy, its catching time is infinite. In the following claim, the 0th update of W corresponds
to the initialization of W . Let k ≥ 0.

In the kth update of W we add precisely those configurations to W that have catching time k.

We prove the claim by induction on k. The claim is true for k = 0, because the configurations with catching
time 0 are precisely the configurations (C,M, p) with C = M , i.e., the elements of W at its initialization.

Now assume the claim is true for all k = 0, 1, . . . ,K. We prove that it is also true for k = K + 1. A
configuration of type (C,M, Cat) has catching time K + 1 if and only if K equals the minimal catching time of
(C ′,M, Mouse) for a neighbor C ′ of C. By the induction hypothesis, this is true if and only if the Kth update
is the first update in which a configuration (C ′,M, Mouse) for some neighbor C ′ is added. Finally, this is true if
and only if (C,M, Cat) is added during the K + 1th update.

A configuration (C,M, Mouse) has catching time K + 1 if and only if K equals to the maximal catching time
of the configurations (C,M ′, Cat) for all neighbors M ′ of M . By the induction hypothesis, this is true if and
only if the last such configuration is added during the Kth update. And by construction this is true if and only
if the (C,M, Mouse) is added during the K + 1th update.

Exercise 9. To show that this problem is in PSPACE, consider the following algorithm with inputs M and x. The
algorithm simulates M on input x and as soon as M reaches the (|x| + 2)nd cell, the simulation is terminated
and the input is rejected. Otherwise, if the simulation halts, the input is accepted if the simulation accepts and
rejected otherwise.

There is one remaining case left: the simulation might get stuck in an infinite loop. How can we adapt our
algorithm? As discussed previously, the simulation goes in an infinite loop if and only if it makes more than
`(|Q||Γ|)` computation steps, where ` = |x| + 1 and M = (Q,Γ, δ, s). Hence, while simulating, we count the
number of simulated steps and we reject the input after exceeding the previously mentioned number of steps.
We have shown that in-space acceptance is in PSPACE.

Now we prove that the problem in-space acceptance is PSPACE-complete. We reduce TQBF to this
problem. To every quantified Boolean formula ψ we associate a machine Mψ that deletes the input string, writes
down ψ, runs the algorithm to check whether ψ is true using a linear amount of space (see Example 8.3 in Sipser’s
book p332), and accepts if and only if ψ is true. We choose xψ to be any string of length C(1 + |ψ|), where C
is large enough so that C(1 + n) exceeds the space needed by the algorithm that checks whether ψ is true. The
reduction maps ψ to the pair (Mψ, xψ)

We show that this is indeed a reduction. The description of Mψ is polynomial in the length of ψ. By
construction xψ has polynomial size. By construction Mψ uses at most space |xψ| and accepts xψ if and only if
ψ is true.

Exercise 10. We show that monotone-TQBF is in P. To determine whether the formula is true, we consider
the formula game from Sipser’s book p342. Recall that the ∃-player wants to make the formula equal to 1 and
the ∀-player wants to make the formula 0. An optimal strategy for the ∃-player is to always play 1, because the
formula is monotone, thus changing a variable from 0 to 1 can never decrease the value of the Boolean function,
and this is true regardless of the variables assigned by the ∀-player. (This means that the ∃-player has an optimal
strategy that is blind.) For the same reason, the ∀-player’s optimal strategy is to always play 0. Fixing the values
in this way, we can determine the winner by evaluating the Boolean function. Hence, we can determine whether
the formula is true.

3

