Seminar Theoretical Computer science. April 9th, 2018.

Exercise 1. What is the error in the following fallacious argument that P = NP? Assume that P = NP, then
SAT € P and so for some k, SAT € TIME(n*). Therefore NP-completeness of SAT implies P = NP C TIME(n*),
But by the time hierarchy theorem, TIME(n**1) contains a language not in TIME(n*), which contradicts
P C TIME(n*). Therefore P # NP.

Exercise 2. Show that PSPACE(n3) € NPSPACE(n).
Exercise 3. Let AS be the complement of language A. Show that P4 = P4 and NP4 = NPA°.

Exercise 4. Define the USAT problem to be
{(¢) : ¢ is a Boolean formula that has a single satisfying assignment }

Show that USAT e PSAT,
Exercise 5. Show that if PSAT = NP then NP = coNP.

Exercise 6. Let MIN-FORMULA be the language defined in the previous seminar. Show that the complement
of this language is in NPSAT,

Exercise 7. Show that PTQBF — NpTQBF,

Exercise 8. Imagine you are given two oracles and one of them is the set TQBF. You don’t know which one.
Design an algorithm that can access the two oracles A and B and that decides TQBF in polynomial time.

Solutions

Ezercise 2. By the hierarchy theorems we have that PSPACE(n?®) ¢ PSPACE(n?)
and by Savitch theorem NPSPACE(n) C PSPACE(n?).

Ezercise 3. This follows almost directly from the definition of oracle computations: the oracle machines can
simply negate the answers from their queries.

Ezercise 4. In fact, USAT <, SAT. Indeed: ¢ € USAT if and only if the formula with variables x and y given
by
p(x) N oly) N “wFy”

is satisfiable. To rewrite the last part using A, V and negation operators, note that

vty <= Vai#zyu <= \ (@Arn)V @A)
=1 i=1

Ezercise 5. Note that A € P < A € P, because in a decider we can flip accept and reject states. For the same
reason this is true for P2. Hence,

AENP = AcPT — AcpPSAT o A°cNP <+= A c coNP.

Ezercise 6. We need to show that the following problem is in NPSAT,
The problem NOT MIN-FORMULA:

Input: A Boolean formula ¢.
Question: Does there exist a shorther equivalent formula ¢?

The non-deterministic machine guesses the formula ¢ and then uses the SAT-oracle to check whether ¢ = ¢,
i.e., whether the formula (¢ A1) V (¢ A1) is satisfiable.

Ezercise 7. This is proven in Sipser’s book Theorem 9.20 p378.

Ezercise 8. Given a quantified Boolean formula

Y = Iy Vy2FysVya . .. QmYm [0(Y1, Y2, - - Ym)] -

the algorithm asks both oracles whether 1 is true. If both oracles give the same answer, then the algorithm
accepts or rejects accordingly. Otherwise, we need to discover which of the oracles correclty decides TQBF.
The idea is that we let both oracles play the formula game against each other. See Sipser’s book for a description
of this game. The correct oracle will win the game. We explain in detail how this done. Recall that the players
need to create an assignment x1,...,z,. The I-player uses the oracle that believes the formula is true. The
V-player uses the other oracle.

Each time the exists player needs to assign the next variable z;, he will ask his oracle both for b = 0 and
b = 1 whether the formula

VYidit1 - - QmYmd(T1, T2, - Tim1, 0, Vit 15+, Ym)

is true or false. If for both values, it answered “false”, then v is rejected; in this case we say that the oracle
replied inconsistently. Otherwise, let x; = b for a value b for which the answer was “true”.
If the V-player needs to assign a next variable x;, she asks her oracle both for b = 0 and b = 1 whether

VY i1 - Quymd (@1, T2, ..o, Tie1, 0, Yig1, - -, Ym)

is true or false. If for both values it answered “true”, then the formula 1 is accepted (again, we say that the
oracle replied inconsistently). Otherwise, she sets z; = b for a value b for which the answer was “false”.

After x1,...,x,, are assigned, we evaluate ¢(z1,...,Ty). We accept ¢ if the value equals 1 and otherwise
we reject.

Why does this algorithm work? If the oracles both give the same answer on input ¢, then the algorithm is
correct. Otherwise, precisely one oracle claims that v is true.

In case v is true, the 3-player uses the correct oracle (representing TQBF). By construction, he plays a
winning strategy, and thus never replies inconsistently. Either the V-player plays inconsistently or the game

terminates with ¢(z1,...,2,) = 1. In both cases v is accepted.
Now assume that v is false. Thus the V-player uses the correct oracle. Either the 3-player plays inconsistently
or the game terminates with ¢(z1, ..., x,) =0. In both cases 1 is rejected. Hence, our algorithm decides TQBF.

