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Univariate time series modeling

Y,....Y,

In the univariate case a series is modeled only in terms of its own
past values and some disturbances.

Vo= SV Y )
Lag operator .

L(Yz) — Yt—l
r (Yz) — Yz—z
L(Y)=Y_

(1-L)Y,=Y,-Y,_ =AY,
g 1S a white noise process

(E(¢,)=0, var(g)=0., cov(s,&,)=0 Vi#)).
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Stationarity

Def. A stochastic process is said to be strictly stationary if its
properties are unaffected by a change of time origin, in other
words, the joint probability distribution at any set of times is not
affected by an arbitrary shift along the time axis.

Def. A process {Y,} is defined to be weakly stationary if for all t it
holds that

E{Y,} = p <o,
var{Y} = E{(Y, - u)"} = 7, <0,
covil,, Yy =E{(Y, - )Y, — )} =7, k=123...

7, =coviy.,Y ,} 1s k-th order autocovariance.
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Stationarity. Example

Ex. Y =Y _ +¢& —random walk,
K=gt+gt_1+Yt_2=gt+gt_1+...,

var(Y) = ot = process is non stationary,
AY =0 +¢, —random walk with drift.
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Stationarity

Def. A stochastic process is said to be strictly stationary if its
properties are unaffected by a change of time origin, in other
words, the joint probability distribution at any set of times is not
affected by an arbitrary shift along the time axis.

COV(Y,Y,,) does not depend upon t.

Def. A process {Y,} is defined to be weakly stationary if for all t it
holds that

7. =coviy,Y } 1s k-th order autocovariance.
Def. Autocorrelation function (ACF):
_coviy, Y by,
P = =

var{Y, Yo
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Autocorrelation function. Examples

Ex.1. AR(1) process: Y =0+6Y,_ +¢,

> p, =60 <.

Ex2. AR(2) process: Y =o0+6Y_,+06,Y_,+¢,.

> By assuming stationarity, the unconditional mean is
u=0/(1-6-60,).

v, =1 —u,

Vi=0y,+0,y.,+¢,

VY =0V Yt Oy 5t YE,

E(yy)=0E(y. )+0E(Y, )+ EE),

B 2
Yo _017/1+027/2+05
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Autocorrelation function. Examples

Vi=0y,.,+0,y,,+¢

VeV =0y Y+ 0y Y+ Y€,

E(y, . y)=0E, Y. )+ 0E(y, Y. )+ E(, &)
7 =67, +60,7,

ViV =0V, 50+ 0,5, 50,5+ V58,

E(Y, ,0)=0E, v, )+OEW, 1y, )+ E(,,¢),
y, =0y, +0,7,
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Autocorrelation function. Examples

Yo :‘917/1+‘927/2+ng>
7, =6y, + 6y,
7> =07, + 0,7,

/\.

(1_7/2)0-59

Y0

A+ )A =7 =7 )A+y, = 7,)
Stationarity conditions for AR(2):
ity <l
Vo= )1 < 19
<1

V>
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Autocorrelation function. Examples

-

<7/1 :9170+9271>:>
7> =0y, +0,y,

(p,=0,+0,p,
] AT 0P _ Yule—Walker equations for AR(2),
P, =0p +0,
2 0
= , = —+ 6 ,
P -6, P> -6, 2

Pr =00 +0,p,, k=34,...
This is a second order difference equation.

The ACF will be damped exponential.<
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Autocorrelation function. Examples

Ex3. MA() process:Y =u+¢ +acg, .

> 7 :(l‘l'az)o-gza

¥, =aoc.,
V,=y;=...=0
L,

LR TR
o, =p,=...=0.<
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General ARMA processes

Y=Y —u,

AR(p) process:

V. =0y_,+0,y, ,+...+0y,_ +&,
MA(q) process:

Y =& +oE ...t

ARMA(p,q) model:
V. =0y +0,y,,+...+0y,  +&+aE  +ta g,
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Lag polynomials

Lag operator :

LY)=Y_,

L'(Y)=Y_,

AR():y, =6y, ,+¢, < (1-60L)y, =¢,
AR(p):y, =0y, +0,y, ,+...+0y,_ +¢& <
O(L)y, = ¢,

O(L)=1-6L—-6,L°—...-0 "
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