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Abstract

A large and increasing body of empirical evidence has established that fis-
cal adjustments based on government spending cuts are less costly in terms
of losses in output growth than those based on tax increases. We show that
the propagation of fiscal adjustment plans through the industrial network can
in theory explain this evidence and that it does so in practice for the US
economy. The heterogenous effects of tax-based and expenditure-based ad-
justments might depend on the difference in their propagation channels in the
network of industries. A tax based adjustment plan is mainly a supply shock
which propagates downstream (from supplier industries to customer indus-
tries) while an expenditure based plan is a demand shock which propagates
upstream (from customer industries to supplier industries). Empirical investi-
gation of these channels on US data based on Spatial Vector Autoregressions
reveals that tax based plans propagate through the network with an average
output multiplier of close to -2, while the propagation of expenditure based
plans does not lead to any statistically significant effect on growth.
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1 Web Appendix

1.1 The effect of Tax and Expenditure Adjustments: a sim-
ple illustration

Consider the simple case in which we have three industries. We describe the network
by triplets {i, j, k} where j is a supplier of industry i and k is a customer of industry
i. The network structure is the following simplified one: {2, 3, 1}, {1, 2, 3}, {3, 1, 2}.

Assume that u(c1, c2, c3, l) = γl
∏3

i=1 c
1/3
i . Sector’s i production function is yi =

ezil
αli
i x

αij
ij . Also set zi = 0 for ∀i

Market clearing condition for sector i is yi = ci + xki +Gi. Combining

aij =
pjxij
piyi

, αli =
w (1 + τ) li

piyi

and

pici
βi

=
pjcj
βj

to eliminate prices we get

aij =
cixij
cjyi

αli =
w (1 + τ) li

piyi

using the fact that
pici = βi (wl − T )

get

αli =
w (1 + τ) lici
βi (wl − T ) yi

w = 1, βi = β = 1/3, l = 1

αli =
3 (1 + τ) lici
(1− T ) yi

Substituting these expressions into the production function, we obtain
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yi = l
αli
i x

αij
ij =

(
αli (1− T ) yi
3 (1 + τ) ci

)αli (αijcjyi
ci

)αij
Taking into account the fact that αli+αij = 1 for our example, simplify expression

above to

ci =

(
αli (1− T )

3 (1 + τ)

)αli
(αijcj)

αij =

(
αli
3

)αli
(αij)

αij

(
(1− T )

(1 + τ)

)αli
(cj)

αij

Let
(
αli
3

)αli
(αij)

αij = Ωij, then

ci = Ωij

(
1− T
1 + τ

)αli
c
αij
j , i = 1, 2, 3

Solving simultaneously the three equations, we obtain:

ci = Ω̃i

(
1− T
1 + τ

)ηi
where Ω̃i - some constant and

ηi =
αli + αljai,j + αlkaijajk

1− aijajkaki
Taking the log differential of expression for ci we get

d ln ci = ηi [d ln(1− T )− d ln(1 + τ)]

using the fact that
d ln c = d ln y

d ln yi = ηi [d ln(1− T )− d ln(1 + τ)]

so

d ln y1 =
αl1 + αl2a1,2 + αl3a12a23

1− a12a23a31

[d ln(1− T )− d ln(1 + τ)]

d ln y2 =
αl2 + αl3a2,3 + αl1a23a31

1− a23a31a12

[d ln(1− T )− d ln(1 + τ)]

d ln y3 =
αl3 + αl1a3,1 + αl2a31a12

1− a31a12a23

[d ln(1− T )− d ln(1 + τ)]
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Consider now the case of an Expenditure adjustments expressed in nominal terms
as dG̃1, dG̃2, dG̃3. As in the case of Tax adjustments we set β1 = β2 = β3 = 1/3. For
simplicity we assume that governement expenditures are fully financed by lump-sum
taxation and we set payroll tax to zero τ = 0.

Utility function is u(c1, c2, c3, l) = γl
∏3

i=3 c
1/3
i .Unit cost function can be written

as:
Ci(p, w) = µiw

αlip
aij
j

where µi =
(
αli
aij

)aij
+
(
aij
αli

)αli
. In equilibrium we have

pi = Ci(p, w) = µiw
αlip

aij
j

Since w = 1we can solve the last equation for price

pi = γ
1

1−aijajkaki

where γ = µiµ
aij
j µ

aijajk
k . Taking into account the fact that prices do not respond

to expenditre adjustments, we consider nominal values, denoted by ˜.

dỹi = dc̃i + akidỹk + dG̃i

From the household optimisation problem we have

c̃i =
1

(1 + λ)3
− G̃i + G̃j + G̃k

(1 + λ)3

Taking differential and combining it with resource constraint will leads to

dỹi = −dG̃i + dG̃j + dG̃k

(1 + λ)3
+ akidỹk + dG̃i,∀i = 1, 2, 3

Solving this system of equations leads to

dỹi =
1

1− aijajkaki

{
dG̃i + akiajkdG̃j + akidG̃k

−1+aki+akiajk
(1+λ)3

[dG̃i + dG̃j + dG̃k]

}
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1.2 Detailed derivations of the I-O matrix A

The Bureau of Economic Analysis (BEA) provides 4 requirement tables. In partic-
ular, we are interested in an industry by industry total requirememnt table.
The construction of the total equirement table is detailed over page 12-8 (page 8
of chapter 12) of the “Concepts and Methods of the U.S. Input-Output accounts”
- a guide released by the BEA, which provides a full explanation of the industrial
network data.
Consider a generic industry, say Z, whose total output is denoted with y. Since sup-
ply and demand must coincide, y is equal to F - final uses - plus x - demand from
other industries which use the output of industry Z as input:

y = F + x.

Now we define the coefficient matrix A as:

A =
x

y
,

that is, the share of industry Z output used as production input by the other indus-
tries.
Therefore, we have x = A · y, and plugging it into the previous equation we have:

y = F + A · y,

whose close-form solution is:

y = (I − A)−1F = f(F ).

In the I-O terminology used by the BEA, function f , which links final uses with the
industry output, is called total requirement table. In economic theory we usually
refer to such a transformation as the Leontief Inverse matrix.
In order to construct such a table, the BEA starts from storing raw data into two
tables: the Make Table and the Use Table. The empirical counterpart of (I − A)−1

is constructed in several steps, illustrated by the BEA guide.

The first step consists of reshaping the Use table, which is a non-symmetric
commodity-by-industry table. The Use table shows the uses of commodities by
intermediate and final users. Differently from the Make table, the rows in the Use
table present the commodities or products, and the columns display the industries
and final users that utilize them. The sum of the entries in a row is the output of
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that commodity. The columns show the products consumed by each industry and the
three components of value added, compensation of employees, taxes on production
and imports less subsidies, and gross operating surplus. Value added is the difference
between an industry’s output and the cost of its intermediate inputs. Total value
added is equal to GDP. The sum of the entries in a column is that industry’s output.
We can derive the analytic form of the Use table, by introducing a specific terminolgy:

• INPi
j = Commodity j used as input by industry i. This is the generic element

of the Use table.

• SALESj = Total output of industry j,

we rewrite the generic element of the Use table - assuming for simplicity that the
number of commodities and industries is three (n = 3) - in this way:

USE =


INP1

1 INP2
1 INP3

1

INP1
2 INP2

2 INP3
2

INP1
3 INP2

3 INP3
3

 .
At this point we can derive a commodity by industry direct requirement table by
dividing each industry’s input by its corresponding total industry output. We denote
such a matrix with letter B and we can express its generic element using the previous
notation in this way:

Bij =
INPj

i

SALESj
,

where i denotes the row and j the column of matrix B. Therefore, the analytic form
of matrix B is :

B =



INP1
1

SALES1

INPUT2
1

SALES 2

INP3
1

SALES3

INP1
2

SALES1

INPUT2
2

SALES 2

INP3
2

SALES3

INP1
3

SALES1

INPUT2
3

SALES 2

INP3
3

SALES3


.

The BEA guide provides also a numerical example - with 3 industries (n = 3) - which
we report here for the sake of clarity:
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1 2 3 Final demand Total Commodity Output

1 50 120 120 40 330
2 180 30 60 130 400
3 50 150 50 20 270

Scrap 1 3 1 0 5
VA 47 109 34 / 190

Total Industry Output 328 412 265 190 /

Consider the first row: 50 units of commodity 1 are used by industry 1, 120 are
used by industry 2 and 120 are used by industry 3; 40 units of commodity 1 are de-
manded as final product, therefore, the overall production of commodity 1 amounts
to 50 plus 120 plus 120 plus 40: 330 units.
At the same time, we can derive the direct requirement table by following the in-
structions explained above:

1 2 3

1 0.152 0.291 0.453
2 0.549 0.073 0.226
3 0.152 0.364 0.189

Scrap 0.003 0.007 0.004
VA 0.143 0.265 0.128

Total 1 1 1

The first element of the first row is obtained by dividing 50 by 328, for instance.
The second element of the first row is obtained dividing 120 by 412 and so on and
so forth.
By removing scrap and value added from the above table, we obtain a symmet-
ric commodity-by-industry matrix, denoted with B, whose generic elements are de-
scribed above:

B =


0.152 0.291 0.453
0.549 0.073 0.226
0.152 0.364 0.189

 .
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At this point put aside for a while the direct requirement matrix just derived, and

focus on the Make table, which shows the production of commodities by industries.
The rows present the industries, and the columns display the commodities that the
industries produce. Looking across a row, all the commodities produced by that
industry are identified, and the sum of the entries is that industry’s output. Looking
down a column, all the industries producing that commodity are identified, and the
sum of the entries is the output of that commodity.
As we did previously, we now introduce a useful notation, which allows to better
interpret what we are computing:

• Yj = Total production of commodity j.

• OUTi
j = Commodity j produced by industry i

• NSR−1
i = The inverse of the non-scrap ratio of industry i,

The analytical form of the Make table is the following:

MAKE =


OUT1

1 OUT1
2 OUT1

3

OUT2
1 OUT2

2 OUT2
3

OUT3
1 OUT3

2 OUT3
3


At this point, we divide each row for the total commodity output to obtain the

market share matrix, which shows the proportion of commodity output produced by
each industry, whose analytical form is the following:

MS =



OUT1
1

Y1

OUT1
2

Y2

OUT3
1

Y3

OUT2
1

Y1

OUT2
2

Y2

OUT2
3

Y3

OUT3
1

Y1

OUT3
2

Y2

OUT3
3

Y3


Again, we show a sample Make table, with n = 3:
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1 2 3 Scrap Total Industry Output

1 300 25 0 3 328
2 30 360 20 2 4412
3 0 15 250 0 265

Total Commodity Output 330 400 270 5 /

Consider the first column which corresponds to industry 1 output: industry 1
makes 300 of commodity 1, 30 of commodity 2 and it does not produce commodity
3. Overall, industry 1 makes 300 plus 30 plus 0, 330 of total commodity output.
Following the instructions described above, we derive the market share table:

1 2 3

1 0.909 0.063 0
2 0.091 0.900 0.074
3 0 0.038 0.926

Total Commodity Output 1 1 1

The third step is to make adjustments for scrap. The I-O accounts include a com-
modity for scrap, which is a byproduct of industry production. No industry produces
scrap on demand; rather, it is the result of production to meet other demands. In
order to make the I-O model work correctly - that is, not requiring industry output
because of a demand for scrap inputs- we have to eliminate scrap as a secondary
product. At the same time, we must also keep industry output at the same level.
This adjustment is accomplished by calculating the ratio of nonscrap output to in-
dustry output for each industry and then applying these ratios to the market shares
matrix in order to account for total industry output. More precisely, the non-scrap
ratio is defined as follows:

(Non-scrap ratio)i =
Industry i output

Industry i output - scrap i
= NSRi

Therefore, using the numbers from the previous example, we have:
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Tot.Ind.Out. Scrap ∆ Non-Scrap Ratio

1 328 3 325 0.991
2 412 2 410 0.995
3 265 0 265 1

The market shares matrix is adjusted for scrap by dividing each row coefficient by
the non-scrap ratio for that industry. In the resulting transformation matrix, called
W, the implicit commodity output of each industry has been increased.
We might write the generic element of the adjusted market share matrix W in this
way:

(Market share adjusted)ij = Wij =
OUTi

j ·NSR−1
i

Yj
,

whose analytical form is:

W =



OUT1
1 ·NSR−1

1

Y1

OUT1
2 ·NSR−1

1

Y2

OUT1
3 ·NSR−1

1

Y3

OUT2
1 ·NSR−1

2

Y1

OUT2
2 ·NSR−1

2

Y2

OUT2
3 ·NSR−1

2

Y3

OUT3
1 ·NSR−1

3

Y1

OUT3
2 ·NSR−1

3

Y2

OUT3
3 ·NSR−1

3

Y3


The resulting transformation matrix W of our example is:

W =


0.917 0.063 0
0.091 0.904 0.074

0 0.038 0.926

 .

We now have all the elements to compute a symmetric direct requirement table.
Recall now that the transformation matrix is an industry by commodity table, while
the direct requirement table B is a commodity by industry table. Therefore, by mul-
tiplying them, we can construct a symmetric industry-by-industry direct requirement
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table, denoted with WB.

WB =



OUT1
1 ·NSR−1

1

Y1

OUT1
2 ·NSR−1

1

Y2

OUT1
3 ·NSR−1

1

Y3

OUT2
1 ·NSR−1

2

Y1

OUT2
2 ·NSR−1

2

Y2

OUT2
3 ·NSR−1

2

Y3

OUT3
1 ·NSR−1

3

Y1

OUT3
2 ·NSR−1

3

Y2

OUT3
3 ·NSR−1

3

Y3


·



INP1
1

SALES1

INPUT2
1

SALES 2

INP3
1

SALES3

INP1
2

SALES1

INPUT2
2

SALES 2

INP3
2

SALES3

INP1
3

SALES1

INPUT2
3

SALES 2

INP3
3

SALES3



The generic element of matrix WB is the following:

WBij =
3∑
s=1

Wis ·Bsj

For instance let’s derive the analytic form of the second element of the first row:

WB12 =

OUT1
1 ·NSR−1

1

Y1

· INP2
1 +

OUT1
2 ·NSR−1

1

Y2

· INP2
2 +

OUT1
3 ·NSR−1

1

Y3

· INP2
3

SALES2

=
SALES1→2

SALES2

.

Again, let’s derive another element: WB21:

WB21 =

OUT2
1 ·NSR−1

2

Y1

· INP1
1 +

OUT2
2 ·NSR−1

2

Y2

· INP1
2 +

OUT2
3 ·NSR−1

2

Y3

· INP1
3

SALES1

=
SALES2→1

SALES1

.
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Therefore, the analytic form of matrix WB is:

WB =



SALES1→1

SALES1

SALES1→2

SALES2

SALES1→3

SALES3

SALES2→1

SALES1

SALES2→2

SALES2

SALES2→3

SALES3

SALES3→1

SALES1

SALES3→2

SALES2

SALES3→3

SALES3


.

Notice that this matrix coincide with our theoretical matrix A transposed. Recall
infact that from the profit maximization problem we obtained:

aij =
pj · xij
pi · yi

=
SALESj→i
SALESi

where xij is the quantity of good employed by sector i and supplied by industry j
(as usual, i is the number of the row while j the number of the column):

A =



a11=
SALES1→1

SALES1

a12 =
SALES2→1

SALES1

a13 =
SALES3→1

SALES1

a21 =
SALES1→2

SALES2

a22 =
SALES2→2

SALES2

a23 =
SALES3→2

SALES2

a31 =
SALES1→3

SALES3

a32 =
SALES2→3

SALES3

a33 =
SALES3→3

SALES3


.

Therefore, the following identity is true:

A = (WB)T .

The above identity is crucial, since it shows that there is a discrepancy between the
theoretical Input-Output matrix and the empirical one. We have to pay lot of at-
tention when working with these data in order not to forget to take the transpose of
the empirical matrix, in order to replicate what theory suggests.

At this point, we can finally derive the ultimate table, which is the one available for
downloading on the BEA website: the total requirement table industry-by-industry.
In the BEA guide they provide computations for obtaining the commodity-by-commodity
total requirement table (they do B times W rather than W times B), however at
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page 24 of chapter 12 they show the formulas they employ to derive the industry-
by-industry total requirement table, which we indicate with TR:

TR = (I −WB)−1,

which shows the industry output required per dollar of each industry product deliv-
ered to final users.
At this point a little of matrix algebra turns out useful. Consider a n × n matrix
S = In − A. Since the transpose of an invertible matrix is also invertible, and
its inverse is the transpose of the inverse of the original matrix, we can write the
following:

(ST )−1 = (S−1)T .

Morevoer, the following identity holds:

ST = (I − A)T = I − AT ,

then:

TR = (I −WB)−1

= (I − AT )−1

= (ST )−1

= (S−1)T

=
(
(I − A)−1

)T
= HT

Matrix H = (I − A)−1 is exaclty our theoretical Leontief inverse matrix: the
industry-by-industry total requirement table available for free-downloading on the
BEA website, coincide with the transposed Leontief inverse matrix. At this point,
we are able to define a transformation which allows us to pass from the row data to
the empirical counterpart of the theoretical I-O matrix A:

A = f(TRBEA) = In −
[
(TRBEA)T

]−1

, (1)

where, A is therefore a function of the row data TRBEA, the 15 industry-by-industry
total requirement table. By taking the transpose of the original table the empirical
counterpart of matrix A is obtained.
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The last issue to discuss is the following: the industry-by-industry total require-
ment table’s spreadsheet, contains 19 tables, one per each year since 1997 to 2015
(estimates are yearly updated). Which one to use?
We choose the midsample table of table of 1997.
to check for the potentialrelevance of this choice we computed total requirement for
every industry and year, by simply summing up the columns of the total requirement
tables, and then we looked at the evolution of these values over time. Results are
shown in the figure below:

The values are substantially stable over time pointing to stable connections among
industries over time.
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1.3 Spatial variables and the Cobb-Douglas production func-
tion

Apatial variables are constructed consistently with the Cobb-Douglas production
functions.
In Section 4 we defined the spatial varaibles in this way:

∆yupi,t =
n∑
j 6=i

âji ·∆yj,t

∆ydownit =
n∑
j 6=i

aij ·∆yj,t.

Where ∆yj,t accounts for the percent growth rate of real value added of industry i
recorded in year t.
For example the global variables of industry 1 are:

∆yup1,t =
Sales1→2 ·∆y2,t + · · ·+ Sales1→n ·∆yn,t

Sales1

∆ydown1,t =
Sales2→1 ·∆y2,t + · · ·+ Salesn→1 ·∆yn,t

Sales1

They can be interpreted as a weighted average of the real value added of other
industries, with weights given by the relative importance of every industry as a
customer (Y up) or a supplier (Y down) to industry i.
Why not expressing the global variables as the percent change of a linear combination
rather than a linear combination of percentages? We could have expressed the global
variables in this alternative way:

∆yupi,t = ∆
( n∑

j 6=i

âji · Yjt
)

∆ydowni,t = ∆
( n∑

j 6=i

aij · Yjt
)
.

At this point we might link every spatial variable to its corresponding dependent
variable:

∆yi,t = βup ·∆yupi,t + βdown ·∆ydowni,t ,
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taking a logarithmic approximation we have:

∂

∂yi,t
ln yi,t = βup · ∂

∂yi,t
ln yupi,t + βdown · ∂

∂yi,t
ln ydowni,t ,

by integrating both terms we have:

ln yi,t = βup · ln
( n∑

j 6=i

âji · Yjt
)

+ βdown · ln
( n∑

j 6=i

aij · Yjt
)

= ln

(( n∑
j 6=i

âji · Yjt
)βup

·
( n∑

j 6=i

aij · Yjt
)βdown)

,

by elevating both sides, we finally obtain:

yi,t =
( n∑

j 6=i

âji · Yjt
)βup

·
( n∑

j 6=i

aij · Yjt
)βdown

.

The last expression is telling us that the industries are linked among themselves
thorugh a relationship which has nothing to do with a Cobb-Douglas production
function.
Consider now the definition we employ in the paper:

∆yi,t = βup · δyupi,t + βdown · δydowni,t

= βup ·
( n∑

j 6=i

âji∆yj,t

)
+ βdown ·

( n∑
j 6=i

aij∆yj,t

)
,

substituting again the percent changes with the logarithmic approximation, we have:

∂

∂yi,t
ln yit = βup ·

( n∑
j 6=i

âji ·
∂

∂yj,t
ln yjt

)
+ βdown ·

( n∑
j 6=i

aij ·
∂

∂yj,t
ln yj,t

)
,

by integrating both terms we have:

ln yit = βup ·
( n∑

j 6=i

âji · ln yjt
)

+ βdown ·
( n∑

j 6=i

aij · ln yj,t
)

=
n∑
j 6=i

(βup · âji + βdown · aij)
φij

· ln yj,t

= ln

(
n∏
j 6=i

y
φij
jt

)
,
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by removing the natural logarithm from both sides, we have:

yi,t =
n∏
j 6=i

y
φij
j,t

The above expression closely reflects a Cobb-Douglas production function, thus pro-
viding a theoretical justification for the way we construct spatial variables.

1.4 Interpretation of the total, direct and indirect effects

In this section we explain in details what the determinant d of matix (1 − β · A0)
represents from an economic point of view.1

First of all, notice that the reciprocal of the determinant can be interpreted as the
convergence point of a geometric summation:

1

d
=
∞∑
i=1

(
β2 ·

(
a12a21 + a13a31 + a32a23

)
+ β3 ·

(
a12a23a31 + a21a13a32

))i
=
∞∑
i=1

Ki.

Where K = β2 · (a12a21 + a13a31 + a32a23

)
+ β3 ·

(
a12a23a31 + a21a13a32).

Basically, suppose that a little change in a sector’s output occurs, then, such a change
triggers a cascade effect of other changes in other sectors and then come back to it
via the input-output network. If we imagined a kind of temporal-sequentiality in
transferring such a shock, we would see that at every step the change that occurs is
exactly K: a unit change occurs, then this change is transferred to other sectors and
come back, by generating a total change of K, but then this change is transferred
again and comes back to its initial point thus generating a further change of K2 and
so on and so forth. The limit point of such a series is exactly the reciprocal of the
determinant of matrix I3 − T. Infact, notice that every element of K represents a
particular sectors’ relationship, as it is represented in the figure below:

1To ease notation we write simply β instead of βdown.
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Now, all these changes actually occurs simultaneously, therefore, every variation
is subject to an amplification due to the sectors’ interconnections. Such an amplifica-
tion is exactly expressed by the reciprocal of d, which can be seen as a “simultaneity
multiplier”.
At this point, we can examine more carefully all the elements of S = (I − β ·A0)−1.
In particular we can make the following distinction:

1. Direct effect: the direct effect to sector i of a macro shock δ (DEδ,i), is the
change in sector i growth rate as if it would be the only sector in the economy
subject to that shock:

DEδ,i =
1

d
· Sii · δ.

Basically, the direct effects are collected on the main diagonal of the previous
matrix. For instance, the direct effect of a shock to sector 1 is:

DEδ,1 = δ +
β2 · (a31a13 + a21a12) + β3 · (a12a23a31 + a21a13a32)

d
δ.

Notice that the direct effect could be decomposed into two parts: the shock
itself (δ) plus the network effect that such a shock triggers, amplified by the
simultaneity multiplier. Notice infact that the instantaneous effect of a direct
shock to only sector 1, is transferred on sector 2 and then goes back to sector
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1, for a total change of β2 · a21a12. The same is true for sector 3 for a total
change of β2 · a31a13. Moreover, the shock, once transferred upon sectors 2 and
3, it can get back to sector 1 inderectly via the connections between sector 2
and sector 3, for a total change of β3a21a32a13 when the shock flows down to
sector 2 and β3a31a23a12 when the shock flows down to sector 3. This scheme
is represented also in the figure below:

2. Indirect effect: The indirect effect to sector i of a macro shock δ, (IEδ,i), is
the summation of all the effects of shocks which hit other sectors and then are
transferred to sector i:

IEδ,i =
1

d
·
( n∑

j 6=i

Sij

)
· δ.

For instance, the indirect effect of a macro shock on sector 1 is:

IEδ,1 =
1

d
·
[
(β · a12 + β2 · a32a13) + (β · a13 + β2 · a12a23)

]
· δ

=
β · (a12 + a13) + β2 · (a32a13 + a12a23)

d
· δ

Consider now the generic element of matrix S, which we call Sij. Such an
element provides the specific impact of a shock which hits directly sector j
and then is transferred to sector i. Such an effect could be interpreted as an
instantaneous effect which is then amplified via the simultaneity multiplier.
To better understand this point, consider for instance the following element:

S12 = β · a12 + β2 · a32a13.
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This element provides the “instantaneous” effect of a shock which hits sector
2 but then is transferred upon sector 1 (for this reason we call it “indirect”).
Such a transfer occurs through the direct linkage between sector 2 and 1 (β ·a12,
sales of sector 2 to sector 1) and through the indirect connections via sector 3
(β2 · a32a13, that is, the sales of sector 2 to sector 3 and then the sales of sector
3 to sector 1). This propagation is shown in the figure below:

At this point we can show what the total, direct and indirect effects are defined:

1. The direct effect of a shock is not equal for every sector, since it depends on
the network interactions specific for that sector. For this reason, we computed
the effect on the economy, which is a weighted average of the single industries’
effects, where weights are collected into the n × 1 vector W (every industry
weight is the relative size of the sector with resepct to GDP):

DEδ =
δ

d
· diag(S) ·W.

2. The total effect of a macro shock is by consequence the summation of the direct
and indirect effect. Formally:

TEδ,i =
δ

d
·
( n∑
j=1

Sij

)
.

Again, we report the formula for the total effect on the economy:

TEδ =
δ

d
· S ·W.

3. The average indirect effect will be computed indirectly by taking the difference
between the total and the direct effect:

IEδ = TEδ −DEδ.
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4. The same things will be replicated identically for the expenditure shock (EBt =
1):

ADEγ =
γ

|In − Γ|
· 1

n
· Tr(S(Γ)).

ATEγ =
γ

|In − Γ|
· 1

n
· 1′ · S(Γ) · 1.

AIEγ = ATEγ − ADEγ
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1.5 Details on Database of Exogenous Fiscal Adjustment
Plans

For the purpose of this project we follow Alesina et al.(2015) and use the annual
fiscal adjustment plans data. Our focus is US. We adopt the same data employed
by Alesina et Al.(2015), however we do several modifications. The reason for such a
discrepancy can be explained by the fact that we deal in a different way with long-
run adjustments. In fact, Romer and Romer(2010) distinguish between deficit driven
and long-run growth driven adjustments. Long-run driven adjustments can be both
positive and negative. In order to take them into account we follow the rule: sum up
positive and negative components of long-run growth driven adjustments together
with deficit driven adjustments and include the sum into the database if and only if
it is non negative2.

Moreover, it is worth to notice two years of Reagan presidency. The rule described
above leads to drop from the sample the deficit-driven adjustment implemented in
the US in years 1983-84 because it was smaller than the contemporaneous negative
long-run growth-driven adjustment.

Slight modifications in years 1980 and 1981 are due to the same logic. In 1980
we include the positive long-run growth tax increases3. In 1981 following the rule
we consider the sum of the deficit - driven tax hike and long-run growth driven tax
decrease.

Other slight modifications, consistent with the previous reasoning, are in years
1985, 1986, 1990. We record initial announcement of the Social Security Amendment
1983 as in Alesina et al.(2015) in the announced part of the plan, however additionally
we record revisions to already announced adjustments for the years 1985, 1986, 1990
as a surprise component4. Revisions result in further austerity.

Overall, the differences between Alesina et al.(2015) dataset and our dataset are
minimal. Importantly, following Alesina et al.(2015), we scale all the measures by
GDP on the year prior to the consolidation in order to avoid potential endogeneity
issues5.

To illustrate the procedure of fiscal plan construction consider the case of 1990

2Modifications are light because positive long-run driven adjustments, that is tax increase due
to long-run growth reasons, are very uncommon.

3In 1980 the Crude Oil Windfall Profit Tax Act was signed. It is scheduled as a series of tax
increases. However, such reforms were not due to deficit driven reason but for long-run growth
reasons.

4Budgets 1985, 1987, 1989, 1991 provide revision estimates.
5Romer and Romer 2010 scale their fiscal shocks by the nominal GDP in the year at the time

of the change
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OBRA (Omnibus Budget Reconciliation Act) - 1990, which is considered as ex-
clusively motivated by a deficit reduction motive and therefore exogenous for the
estimation of the output effect of fiscal corrections6.

Insert Table I here

Table I illustrates how the plan is reclassified by DeVries et al and R&R using
different sources. OBRA - 1990 plans fiscal adjustment both on revenue and ex-
penditure side over the period 1991-1995. R&R concentrate only on the revenue
adjustment and lump in the first quarter of 1991 all the relevant adjustment (that
therefore adds up adjustment to be implemented in 1991 and 1992), the post 1992
adjustment are not included because of their small size. ”...almost all the revenue
provisions were effective January 1, 1991. Thus the first full fiscal year the changes
were scheduled to be in effect was fiscal 1992. We therefore use the estimated revenue
effect from the Budget for that year as our revenue estimate. That is, we estimate
that there was a tax increase of $35.2 billion in 1991Q1...” Devries et al. 2013 after
the reclassification from fiscal to calendar year, use the implementation rather than
the announcement as a criterion to attribute shocks to each period7.

Table II illustrates reclassification of shocks in to the fiscal adjustment plans that
identifies separately the announced and implemented shocks.

Insert Table II here

6Difference in the table relative to Devries et al. 2013 is due to two facts. First the scaling is
done using the GDP of the year prior to consolidation. Second, to be consistent with Alesina et al.
only for the revenue part we use the CBO 1998 document Projecting Federal Tax Revenues and the
Effects of Changes in the tax Law, p.31 (the difference is very small and does not influence main
results of the paper)

7R&R propose several measures of the tax adjustments, generated respectively by including or
not the retroactive components of the measures. There are no cases of retroactive components in
deficit driven adjustments, and the retroactive components of a long run do not affect our measure
of revenue adjustments.
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1.6 Estimation and Simulation Procedure in Details

In this Appendix section we explain in details the procedure adopted to estimate via
Maximum Likelihood the model

∆yi,t = ci +
(
βdown ·∆ydi,t + δu · eut + δa · eat,t + δf · eft

)
· TBt+

+
(
βup ·∆yui,t + γu · eui,t + γa · eai,t,t + γf · efi,t

)
· EBT .

First of all, by subsuming the fixed effects and the fiscal shocks in a matrix called X
and doing the same for their coefficients ( we group them into a vector named β),
we can use the following compact representation of our model:

(Ht)
−1 ·∆yt

n×1
= Xt

n×(n+6)
· β + εt

(Ht)
−1 = In − (βdown · A0 · TBt + βup · Â′0 · EBt)

εt ∼ N (0,Ω),∀t ∈ {1, ..., T}
Ω = diag(σ2

1, ..., σ
2
n)

εt ⊥ εt+i, ∀t ∈ {1, ..., T},∀i ∈ Z

LeSage&Pace (2009) shows how to implement the calculation of the Maximum Like-
lihood Estimator for such a model. However, our model specification differs slightly
from theirs (the standard SAR framework). In particular, we have a panel dataset
and the network is activated in different years according with some dummy variables:
TBt and EBt.
In order to derive the log-likelihood of our model at time t let’s start off by setting
(Ht)

−1 ·∆yt = Zt, we have that:

Zt = (Ht)
−1 ·∆yt ∼ N (Xtβ,Ω),

Therefore we have
∆yt ∼ N (HtXtβ,HtΩH

′
t)

The density function of the random vector ∆yt is:

f(∆yt
n×1
|Xt, ρ, β,Ω) =

1√
(2π)n · |HtΩH ′t|

exp

{
−1

2
·(∆yt−HtXtβ)′·(HtΩH

′
t)
−1·(∆yt−HtXtβ)

}
,
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with ρ = (βdown βup).
Given that:

(HtΩH
′
t)
−1 = (H ′t)

−1 · Ω−1 ·H−1
t

and
|HtΩH

′
t| = |Ht|2 · |Ω|

we have:

f(∆yt|·) = (2π)−n/2 · |Ht|−1 · |Ω|−1/2 · exp

{
− 1

2
(Zt −Xtβ)′ ·H ′t · (H ′t)−1 · Ω−1 ·H−1

t ·Ht · (Zt −Xtβ)

}
= (2π)−n/2 · |(In − βdownA0TBt − βupÂ′0EBt)

−1|−1 · |Ω|−1/2 exp

{
− 1

2
ε′tΩ

−1εt

}
= (2π)−n/2 · |In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| · |Ω|−1/2 exp

{
− 1

2
ε′tΩ

−1εt

}
,

with ρ1 = βdown, ρ2 = βup, A0 = W1 and Â′0 = W2 (to ease notation).
At this point we need to find the likelihood of the random vector ∆yt:

∆yt =
[
∆y1 . . . ∆yT

]′
.

Since our model is static and we have assumed

cov(εt, εt−k) = 0
n×n

,

we consider our variables ∆yt, to be iid. By consequence, the following holds:

f(∆yt
nT×1
|X1, . . . , XT , ρ, β,Ω) =

T∏
t=1

f(∆yt
n×1
|Xt, ρ, β,Ω) =

(
(2π)n|Ω|

)−T/2·
·
T∏
t=1

|In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| exp
{
− 1

2
·

T∑
t=1

ε′tΩ
−1εt

}
.

Now we divide the time series of length T in three different subperiods. In doing so,
consider the following new parameters:

• t1: set of years when a tax based fiscal adjustment occurs. Formally:

t1 := {1, ..., t, ..., T1|t such that TBt = 1}

We set:
Ht|t ∈ t1 = (In − ρ1 ·W1)−1 = Hτ
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• t2: set of years when an expenditure tax based fiscal adjustment occurs. For-
mally:

t2 := {1, ..., t, ..., T2|t such that EBt = 1}
We set:

Ht|t ∈ t2 = (In − ρ2 ·W2)−1 = Hγ

• t3: set of years when neither a tax based fiscal adjustment nor an expediture
based fiscal adjustment occurs. Formally:

t3 := {1, ..., t, ..., T3|t such that TBt = 0 ∧ EBt = 0}

We set:
Ht|t ∈ t3 = (In)−1 = In

Therefore, we have that t1, t2 and t3 account for a partition of the whole time series
and T = T1 + T2 + T3. By consequence we have:

T∏
t=1

|In − ρ1W1TBt − ρ2W2EBt| =
T∏
t=1

|H−1
t |

=
T∏
t=1

1

|Ht|

=

T1∏
t∈t1

1

|Ht|
·
T2∏
t∈t2

1

|Ht|
·
T3∏
t∈t3

1

|Ht|

= |Hτ |−T1 · |Hγ|−T2 · |In|−T3

= |In − ρ1 ·W1|T1 · |In − ρ2W2|T2

At this point, we rewrite the probability density function of our dependent variable
as:

f(∆yt|X1, . . . , XT , ρ, β,Ω) = (2π)−nT/2 · |Ω|−T/2·

· |In − ρ1 ·W1|T1 · |In − ρ2W2|T2 · exp

{
− 1

2
·

T∑
t=1

ε′t · Ω−1 · εt
}
.

Eventually, we express the log-likelihood of our dataset:

logL(ρ, β,Ω|∆y1, . . . ,∆yT , X1, . . . , XT ) = −nT
2

ln(2π)− T

2
· ln(|Ω|)+

+ T1 · ln(|In − ρ1 ·W1|) + T2 · ln(|In − ρ2W2|)−
1

2
·

T∑
t=1

ε′t · Ω−1 · εt.
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with:

εt = Zt −Xt · β = H−1
t ·∆yt −Xtβ = (In − ρ1W1TBt − ρ2W2EBt) ·∆yt −Xt · β.

Furthermore, we impose the condition λ−1
min < ρ̂1 < λ−1

max and µ−1
min < ρ̂2 < µ−1

max, where
λ and µ are the eigenvalues of the spatial matrices W1 and W2 respectively.8 Such
a condition guarantees that the Variance-Covariance Matrix of the ML estimator is
positive definite.
At this point we concentrate the log-likelihood by computing the partial derivatives
of it. Let’s start with deriving the concentrated estimator of β. In our model β
contains the n = 15 fixed effects plus the 6 coefficients in front of the fiscal shocks:
unexpected, announced and future for both taxes and expenditures.

∂ logL(ρ, β,Ω|·)
∂β

= −1

2
· ∂(
∑T

t=1 ε
′
t · Ω−1εt)

∂β
.

Note that:

T∑
t=1

ε′t · Ω−1εt =
[
ε′1 · · · ε′T

]
· Σ−1 ·

ε1
...
εT

 = ε′ · Σ−1 · ε,

where:

Σ
nt×nT

=


Ω 0

n×n
· · · 0

n×n
0
n×n

Ω · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · Ω


Also:

Σ−1 =


Ω 0

n×n
· · · 0

n×n
0
n×n

Ω · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · Ω


−1

=


Ω−1 0

n×n
· · · 0

n×n
0
n×n

Ω−1 · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · Ω−1

 .
Moreover: ε1

...
εT

 = ε = Z −X · β =

Z1
...
ZT

−
X1

...
XT

 · β,
8See Ord (1975)
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therefore,:

T∑
t=1

ε′t · Ω−1εt = (Z −X · β)′ · Σ−1 · (Z −X · β) =

= Z ′ · Σ−1 · Z − 2 · Z ′ · Σ−1 ·X · β + β′ ·X · Σ−1 ·X · β

At this point it can be verified that:

(FOC)
∂ logL(ρ, β,Ω|·)

∂β
= X ′ · Σ−1 · Z −X ′ · Σ−1 ·X · β = 0

β = (X ′Σ−1X)−1X ′Σ−1Z.

The above estimator is the GLS estimator. The result is not surprising, since we
have simply solved a standard squared deviation minimization problem.
Furthermore, we need to estimate the variance of the model to fully concentrate the
likelihood in order to simply solve a two variable maximization problem.

∂ logL(ρ, β,Ω|·)
∂Ω

= −T
2
· ∂(ln(|Ω|))

∂Ω
− 1

2
·

T∑
t=1

∂(ε′t · Ω−1 · εt)
∂Ω

=

= −T
2
· (Ω′)−1 − 1

2
·

T∑
t=1

(−Ω−1 · εt · ε′t · Ω−1)

=
1

2
· Ω−1 ·

[
(
T∑
t=1

εt · ε′t) · Ω−1 − T
]

= 0. (FOC)

From the FOC it follows that:

Ω =

∑T
t=1 εt · ε′t
T

=
1

T
·



∑T
t=1 ε

2
1,t

∑T
t=1 ε1,t · ε2,t · · ·

∑T
t=1 ε1,t · εn,t∑T

t=1 ε
2
2,t · · ·

∑T
t=1 ε2,t · εn,t

. . .
...∑T

t=1 ε
2
n,t


Since we assume Ω to be diagonal, we are only interested in the variances of the
sectors:

Ω = diag(σ2
1, . . . , σ

2
n)
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σ2
i =

1

T
·

T∑
t=1

ε2
i,t

In order to pass to Feasible GLS estimator, we need to use the OLS residuals:

ε̂i,t = Zi,t −Xi,t · (X ′X)−1X ′Z︸ ︷︷ ︸
βOLS

.

Since every equation has 7 parameters (the industry fixed effect plus the 6 fiscal
shocks coefficients) we have:

σ̂2
i =

1

T − 7
·

T∑
t=1

ε̂2
i,t,

and finally we have:
Ω̂ = diag(σ̂2

1, . . . , σ̂
2
n)

β̂ = (X ′Σ̂−1X)−1X ′Σ̂−1Z

At this point it is simply a matter of solving the following problem:

max
ρ1,ρ2

logL(ρ1, ρ2, Ω̂, β̂ | · ) s.t. ρ1 ∈ (λ−1
max, λ

−1
max) and ρ2 ∈ (µ−1

min, µ
−1
max)

Once estimated the coefficients of model

∆yi,t = ci +
(
βdown ·∆ydi,t + δu · eut + δa · eat,t + δf · eft

)
· TBt+

+
(
βup ·∆yui,t + γu · eui,t + γa · eai,t,t + γf · efi,t

)
· EBT .

we proceeded with computing the standard errors of the estimates. In order to
do that, we computed analitically the elements of the Fisher Information Matrix (I).
In fact recall that: √

n · (θ̂0 − θ)
d−−→ N (0, I−1)

In order to derive the Fisher Information Matrix we firstly need to obtain the
total gradient of the log-likelihood function. Let’s start with the spatial coefficient
ρ1:

∂ logL(θ|∆y,X)

∂ρ1

= T1
1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1

−1

2

T∑
t=1

∂(Z ′tΩ
−1Zt)

∂ρ1

−2
∂(Z ′tΩ

−1Xtβ)

∂ρ1

.
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By some matrix algebra, it is possible to show that:

∂(Z ′tΩ
−1Zt)

∂ρ1

= −TBt ·∆y′t · Ω−1 ·W1 ·∆yt − TBt ·∆y′t ·W ′
1Ω−1 ·∆yt

+ 2ρ1 · TB2
t ·∆y′t ·W1 · Ω−1 ·W1 ·∆y′t + 2ρ2 · TBt · EBt ·∆y′t ·W1 · Ω−1 ·W2 ·∆y′t

Since our fiscal adjustment plans are mutually exclusive, we have that TBt ·EBt = 0
for all t. Moreover, by rearranging the above expression, we get:

∂(Z ′tΩ
−1Zt)

∂ρ1

= −2 · TBt ·∆y′t · (In − ρ1 ·W ′
1) · Ω−1 ·W1 ·∆yt

After other matrix algebra, we get:

−2 · ∂(Zt · Ω−1Xtβ)

∂ρ1

= 2 · TBt ·∆y′t ·W ′
1 · Ω−1 ·Xt · β

Wrapping up all together, and employing the notation introduced earlier: (In −
ρ1W1)−1 = Hτ , we have:

∂ logL(θ|∆y,X)

∂ρ1

= T1
1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1

+

+

T1∑
t∈t1

[
∆y′t · (In − ρ1 ·W ′

1) · Ω−1 ·W1 ·∆yt −∆y′t ·W ′
1 · Ω−1 ·Xt · β

]
=

= T1
1

|In − ρ1W1|
· |In − ρ1W1| · Tr

(
(In − ρ1W1)−1 · (−W1)

)
+

+

T1∑
t∈t1

[(
(In − ρ1 ·W1) ·∆yt

)′ · Ω−1 ·W1 ·∆yt − β′ ·X ′t · Ω−1 ·W1 ·∆yt
]

= −T1 · Tr
(
Hτ ·W1

)
+

T1∑
t∈t1

[(
Zt −Xtβ

)′ · Ω−1 ·W1 ·∆yt
]

=

T1∑
t∈t1

(
ε′t · Ω−1 ·W1 ·∆yt

)
− T1 · Tr

(
Hτ ·W1

)
.

By simmetry we have that:

∂ logL(θ|∆y,X)

∂ρ2

=

T2∑
t∈t2

(
ε′t · Ω−1 ·W2 ·∆yt

)
− T2 · Tr

(
Hγ ·W2

)
,
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with Hγ = (In − ρ2W2)−1, from the previous notation.
As far as concern the derivative with respect to β, we have already seen when con-
centrating the log-likelihood that:

∂ logL(θ|∆y,X)

∂β
= X ′ · Σ−1 · Z −X ′ · Σ−1 ·X · β

= X ′ · Σ−1 · (Z −X · β) =

= X ′ · Σ−1 · ε =

=
T∑
t=1

X ′t · Ω−1 · εt.

Concerning the derivatives with respect to σ2
i , we need firstly to acknwoledge that:

T∑
t=1

ε′t · Ω−1 · εt =
T∑
t=1

n∑
i=1

ε2
i,t

σ2
i

=
n∑
i=1

1

σ2
i

T∑
t=1

ε2
i,t,

and that:

ln(|Ω|) = ln(
n∏
i=1

σ2
i ) =

n∑
i=1

ln(σ2
i ).

Therefore, we have that:

∂ logL(θ|∆y,X)

∂σ2
i

= −T
2

∂ ln(|Ω|)
∂σ2

i

− 1

2
· ∂

∂σ2
i

T∑
t=1

ε′t · Ω−1 · εt

= − T

2 · σ2
i

+
1

2 · σ4
i

·
T∑
t=1

ε2
i,t.
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We now have all the elements to write down the gradient of the log-likelihood:

∇ logL(θ|∆y,X) =



∂ logL(θ|∆y,X)

∂ρ1

∂ logL(θ|∆y,X)

∂ρ2

∂ logL(θ|∆y,X)

∂β

∂ logL(θ|∆y,X)

∂σ2
1

...

∂ logL(θ|∆y,X)

∂σ2
n


38×1

=



∑T1
t∈t1

(
ε′t · Ω−1 ·W1 ·∆yt

)
− T1 · Tr

(
Hτ ·W1

)
∑T2

t∈t2

(
ε′t · Ω−1 ·W2 ·∆yt

)
− T2 · Tr

(
Hγ ·W2

)
∑T

t=1X
′
t · Ω−1 · εt

− T

2 · σ2
1

+
1

2 · σ4
1

·
∑T

t=1 ε
2
1,t

...

− T

2 · σ2
n

+
1

2 · σ4
n

·
∑T

t=1 ε
2
n,t


The gradient contains overall 38 elements, that is, we need to estimate 38 parameters.
By consequence, the Fisher Information Matrix will be a 38× 38 array.

Let’s start with the first row of the matrix: all the derivatives of
∂ logL(θ|∆y,X)

∂ρ1
with resepct to all the parameters. To simplify notation I will refer with Hij to the
element of row i and column j of the Hessian matrix.

H1,1 =
∂2 logL(θ|∆y,X)

∂ρ2
1

=

T1∑
t∈t1

( ∂ε′t
∂ρ1

· Ω−1 ·W1 ·∆yt
)
− T1 ·

∂Tr
(
Hτ ·W1

)
∂ρ1

=

T1∑
t∈t1

(
(−∆y′t ·W ′

1) · Ω−1 ·W1 ·∆yt
)
− T1 · Tr

(∂Hτ

∂ρ1

·W1

)
=

= −
T1∑
t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
− T1 · Tr

(
(−Hτ · (−W1) ·Hτ ) ·W1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
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Simmetrically we have:

H2,2 =
∂2 logL(θ|∆y,X)

∂ρ2
2

=

= −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)
−

T2∑
t∈t2

(
∆y′t ·W ′

2 · Ω−1 ·W2 ·∆yt
)

Going back to the first row, we now calculate the cross derivative with respect to
ρ2. Before doing so, recall that, being the log-likelihood a continuously differentiable
function, the Schwarz’s theorem applies and the Hessian matrix is symmetric.

H1,2 = H2,1 =
∂2 logL(θ|∆y,X)

∂ρ1∂ρ2

= 0.

Going on with the calculation we have:

H1,3:1,23 =
∂2 logL(θ|∆y,X)

∂ρ1∂β
=

T1∑
t∈t1

(∂ε′t
∂β
· Ω−1 ·W1 ·∆yt

)
= −

T1∑
t∈t1

X ′t · Ω−1 ·W1 ·∆yt

= −X ′τ · (IT1 ⊗ Ω−1)
Σ−1
τ

· (IT1 ⊗W1) ·∆yτ

where H1,3:1,23 means all the elements of the first row, from column 3 up to column
23. Xτ and ∆yτ represent X and ∆y but for the only years when a tax based fiscal
adjustment occur:

Xτ =


X1
...
Xt
...

XT1


T1n×k

and ∆yτ =


∆y1

...
∆yt

...
∆yT1


T1n×k

with t ∈ t1,
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Symmetrically:

H2,3:2,23 =
∂2 logL(θ|∆y,X)

∂ρ2∂β
=

T2∑
t∈t2

(∂ε′t
∂β
· Ω−1 ·W2 ·∆yt

)
= −

T2∑
t∈t2

X ′t · Ω−1 ·W2 ·∆yt

= −X ′γ · (IT2 ⊗ Ω−1)
Σ−1
γ

· (IT2 ⊗W2) ·∆yγ,

with:

Xγ =


X1
...
Xt
...

XT2


T2n×k

and ∆yγ =


∆y1

...
∆yt

...
∆yT2


T2n×k

with t ∈ t2,

H3,3:23,23 =
∂2 logL(θ|∆y,X)

∂β2
=

∂

∂β2

( T∑
t=1

X ′t · Ω−1 · εt
)

=
T∑
t=1

X ′t · Ω−1 · ∂(Zt −Xt · β)

∂β2

=
T∑
t=1

X ′t · Ω−1 ·Xt

= −X ′ · Σ−1 ·X.

H3,24:23,38 =
∂2 logL(θ|∆y,X)

∂β∂σ2
=

T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· εt

The generic element of the above matrix is a k × 1 vector:

−σ−4
1 ·

T∑
t=1

X ′1,t · εi,t.
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Going on with the calculation:

Hi,i|i∈[24,38] =
∂2 logL(θ|∆y,X)

∂(σ2
i )

2
=
T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

ε2
i,t

)
.

H23+i,23+j|i,j∈[1,n] =
∂2 logL(θ|∆y,X)

∂σ2
i ∂σ

2
j

= 0 ∀i 6= j.

H1,24:1,38 =
∂2 logL(θ|∆y,X)

∂ρ1∂σ2
i

=
∂

∂σ2
i

( T1∑
t∈t1

ε′t · Ω−1 ·W1 ·∆yt
)

=
∂

∂σ2
i

( T1∑
t∈t1

Tr
(
ε′t · Ω−1 ·W1 ·∆yt

))
=

∂

∂σ2
i

(
Tr
(( T1∑

t∈t1

∆yt · ε′t
)
· Ω−1 ·W1

))
= Tr

(( T1∑
t∈t1

∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W1

)

Note that

∂Ω−1

∂σ2
i

=


0 · · · 0 · · · 0
...

. . .
...

...
0 · · · −σ−4

i · · · 0
...

...
. . .

...
0 · · · 0 · · · 0

 = diag(0, · · · , 0,−σ−4
i , 0, · · · , 0)

Simmetrically:

H2,24:2,38 =
∂2 logL(θ|∆y,X)

∂ρ2∂σ2
i

= Tr
(( T2∑

t∈t2

∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W2

)

At this point we have all the elements to construct the Hessian matrix of the log-
likelihood.
To sum up, first row:

• H1,1 = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−
∑T1

t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
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• H1,2 = 0

• H1,3:1,23 = −
∑T1

t∈t1 X
′
t · Ω−1 ·W1 ·∆yt

• H1,24:1,38 = Tr
((∑T1

t∈t1 ∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W1

)
.

Second row:

• H2,1 = 0

• H2,2 = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)
−
∑T2

t∈t2

(
∆y′t ·W ′

2 · Ω−1 ·W2 ·∆yt
)

• H2,3:2,23 = −
∑T2

t∈t2 X
′
t · Ω−1 ·W2 ·∆yt

• H2,24:2,38 = Tr
((∑T2

t∈t2 ∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W2

)
.

From row 3 to row 23:

• H3,1:23,1 = H′1,3:1,23

• H3,2:23,2 = H′2,3:2,23

• H3,3:23,23 =
∑T

t=1X
′
t · Ω−1 ·Xt

• H3,24:23,38 =
∑T

t=1 X
′
t ·
∂Ω−1

∂σ2
· εt

From row 24 to the last row (number 38):

• H24,1:38,1 = H′1,24:1,38

• H24,2:38,2 = H′2,24:2,38
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• H24,3:38,23 = H′3,24:23,38

• H23+i,23+j|i,j∈[1,n] =


T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

ε2
i,t

)
∀i = j ∈ [1, n]

0 ∀i 6= j

The last step we have to make to finally obtain the Fisher Information Matrix is
taking expectations of every element.
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E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

E
[
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
]

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

E
[
Tr
(
W1 ·∆yt ·∆y′t ·W ′

1 · Ω−1
)]

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 · E

[
∆yt ·∆y′t

]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 · E

[
Hτ ·Xt · β · ε′t ·H ′τ+

+Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · εt · ε′t ·H ′τ · εt · β′ ·X ′t ·H ′τ
]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · E[ε′t] ·H ′τ+

+Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · E[εt · ε′t] ·H ′τ + E[εt] · β′ ·X ′t ·H ′τ
]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

−
T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · Ω ·H ′τ

]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

−
T1∑
t∈t1

Tr
(
W1 ·Hτ ·Xt · β · β′ ·X ′t ·H ′τ ·W ′

1 · Ω−1 +W1 ·Hτ · Ω ·H ′τ ·W ′
1 · Ω−1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ · Ω
)
−

−
T1∑
t∈t1

Tr
(
β′ ·X ′t ·H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ ·Xt · β
)

=
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Setting M τ
1 = H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ we can rewrite the above identity as:

E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)
−

T1∑
t∈t1

β′ ·X ′t ·M τ
1 ·Xt · β =

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)
− β′ ·X ′τ ·

(
IT1 ⊗M τ

1

)
·Xτ · β.

Simmetrically:

E[H2,2] = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ +Mγ

1 · Ω
)
− β′ ·X ′γ ·

(
IT2 ⊗M

γ
1

)
·Xγ · β.

with Mγ
1 = H ′γ ·W ′

2 · Ω−1 ·W2 ·Hγ.

Going on with the calculation:

E[H1,3:1,23] = E
[
−

T1∑
t∈t1

X ′t · Ω−1 ·W1 ·∆yt
]

=

= −
T1∑
t∈t1

X ′t · Ω−1 ·W1 · E
[
Hτ ·Xt · β +Hτ · εt

]
=

= −
T1∑
t∈t1

X ′t · Ω−1 ·W1 ·Hτ ·Xt · β

= X ′τ · (IT1 ⊗M τ
2 ) ·Xτ · β

with M τ
2 = Ω−1 ·W1 ·Hτ .

Simmetrically:

E[H2,3:2,23] = X ′γ · (IT2 ⊗M
γ
2 ) ·Xγ · β

with Mγ
2 = Ω−1 ·W2 ·Hγ.
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Next step:

E[H1,24:1,38] = Tr
(( T1∑

t∈t1

E
[
∆yt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= Tr
(( T1∑

t∈t1

E
[
∆yt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= Tr
(( T1∑

t∈t1

Hτ · E
[
εt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= T1 · Tr
(
Hτ · Ω ·

∂Ω−1

∂σ2
i

·W1

)
=

= T1 · Tr
(

Ω · ∂Ω−1

∂σ2
i

·W1 ·Hτ

)
,

Notice that

Ω · ∂Ω−1

∂σ−2
i

= −σ2
i · Iii

where the generic element of matrix Iii is given by

ωs,t =

{
1 s = i, j = i

0 otherwise

Therefore

E[H1,23+i] = T1 · σ−2
i · Tr

(
Iii ·W1 ·Hτ

)
=

= T1 · σ−2
i ·

(
W1 ·Hτ

)
ii

Finally we have that:

E[H1,24:1:38] = T1 · diag
(

Ω−1 ·W1 ·Hτ

)
= T1 · diag(M τ

2 ).

Simmetrically:

E[H2,24:2:38] = T2 · diag
(

Ω−1 ·W2 ·Hγ

)
= T2 · diag(Mγ

2 ).
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Going on:

E[H3,3:23,23] = E[
T∑
t=1

X ′t · Ω−1 ·Xt] =
T∑
t=1

X ′t · Ω−1 ·Xt = X ′ · Σ−1 ·X

E[H3,24:23,38] = E[
T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· εt]

=
T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· E[εt]

= 0
k×n

E[H23+i,23+j|i,j∈[1,n]] =


T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

E[ε2
i,t]

)
∀i = j ∈ [1, n]

0 ∀i 6= j

=

 −
T

2
· 1

σ4
i

∀i = j ∈ [1, n]

0 ∀i 6= j

= −T
2
·


σ−4

1 0 · · · 0
0 σ−4

2 · · · 0
...

...
. . .

...
o 0 · · · σ−4

n

 = −T
2
· V

We finally have all the elements of the Fisher Information Matrix for our panel (with
dummy variables) spatial model:

I =
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                −
T

1
·T
r( W 1

·H
τ
·W

1
·H

τ
+
M

τ 1
·Ω
) −

−
β
′
·X
′ τ
·( I T 1

⊗
M

τ 1

) ·X
τ
·β

0
( X′ τ
·(
I T

1
⊗
M

τ 2
)
·X

τ
·β
) ′

T
1
·d
ia
g
(M

τ 2
)′

0
−
T

2
·T
r( W 2

·H
γ
·W

2
·H

γ
+
M

γ 1
·Ω
) −

−
β
′
·X
′ γ
·( I T 2

⊗
M

γ 1

) ·X
γ
·β

( X′ γ
·(
I T

2
⊗
M

γ 2
)
·X

γ
·β
) ′

T
2
·d
ia
g
(M

γ 2
)′

X
′ τ
·(
I T

1
⊗
M

τ 2
)
·X

τ
·β

X
′ γ
·(
I T

2
⊗
M

γ 2
)
·X

γ
·β

X
′
·Σ
−

1
·X

0
k
×
n

T
1
·d
ia
g
(M

τ 2
)

T
2
·d
ia
g
(M

γ 2
)

0
n
×
k

−
T 2
·V

                
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We now have all the elements to introduce our simulation procedure: since the
ML estimator is asymptotically normally distributed around the true parameters, we
ran a Monte-Carlo experiment by drawing the coefficients (indicated with θ̃) from
the following distribution:

θ̃ ∼ N (θ̂MLE , I(θ̂MLE )).

The term I(θ̂MLE ) represents the estimated analytical Fisher Information Matrix.

At every draw we calculated the effect of tax and expenditure shock. Iterating this
procedure 10,000 times allowed us to obtain a distribution of a tax and expenditure
shock, thus closely mimicing the procedure adopted by Romer and Romer(2010),
when they construct the confidence bands of their impulse response functions.

1.6.1 Bayesian MCMC

The model’s parameters have also been estimated by the Bayesian MCMC, intro-
duced by LeSage(1997) to provide a heteroscedastic robust estimator of the pa-
rameters of the SAR models. A Bayesian framework has been introduced since a
Maximum Likelihood Heterscedasticity robust estimator was not possible to derive,
because of the single-dimensional nature of the data usually employed in spatial
econometrics problems. The reason to adopt such a methodology in our problem is
twofold: first, we provide an alternative estimation procedure (robustness); second,
we seek to improve the efficiency of the MLE estimates. In fact, LeSage(1997) shows
through an experiment that the Bayesian MCMC delivers slightly more significant
estimates than the ML estimator, within the homoscedastic framework. We therefore
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verify this fact, in our heteroscedastic, panel case:

At ·∆yt
n×1

= Xt
n×(n+6)

· β + εt

At = In − βdown · A0 · TBt + βup · Â′0 · EBt

εt ∼ N (0,Ω),∀t ∈ {1, ..., T}
Ω = σ2 · V with V = diag(v1, ..., vn)

εt ⊥ εt+i, ∀t ∈ {1, ..., T}, ∀i ∈ Z
π(β) ∝ constant

π(σ2) ∝ 1

σ2

π(
r

vi
)
iid∼ χ2

(r), ∀i ∈ {1, ..., n}

βdown ∼ Beta(d, d)

βup ∼ Beta(d, d).

Notice that we add prior information on the spatial coefficients: rather than letting
them vary from λ−1

min to 1, we draw it from a Beta whose support is (0,1). Such a
prior was introduced by LeSage and Parent(2007); basically we rule out the possi-
bility to have negative spatial coefficients, which is a reasonable assumption in our
case, where we expect the network to be positively correlated with the dependent
variable. Moreover, setting the parameter d to be close to 1, makes the Beta prior
to resemble a uniform(0,1) distribution, with the advantage of putting less density
on the boundaries: recall that when the spatial coefficients approach 1 (which coin-
cide with λ−1

max), matrix At becomes not invertible, and the model becomes unstable,
which we believe it is a very unlikely result.
Secondly, we model the heteroscedastic terms as done in LeSage(1997); however, un-
like him, we set the hyperparameter r to be equal to 3 rather than 4, as he suggests.
This is because reducing the magnitude of r implies more confidence on heteroscedas-
ticity, which is in line with our prior belief.
The Bayesian MCMC is developed independently, thus avoiding the “griddy Gibbs”
procedure adopted by LeSage and Pace to overcome the huge dimension problem
of standard spatial econometrics. Deriving all the formulae analytically allows to
obtain more precise results, as LeSage and Pace point out. We use the standard
“Metropolis within Gibbs” algorithm, and we obtain an approximation of the pos-
terior densities for every parameter of the model. Eventually, we draw from the
posteriors the parameters, like a usual MonteCarlo simulation and we use them to
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construct the empirical distribution of the average total, direct and indirect effects
of a tax and expenditure shock, as done before for the Maximum Likelihood Estima-
tion.
In particular, all the steps of the procedures are:

1. Set up initial values for the parameters: β(0), σ
2
(0), V(0), ρ1,(0), ρ2,(0).

2. Draw β(1) from the conditional posterior distribution:

P (β(0)|D, σ2
(0), V(0), ρ1,(0), ρ2,(0)) = N (c∗, L∗) ∝ L(θ|D) · N (c, L)

c∗ =
1

T
· (

T∑
t=1

X ′t · V −1
(0) ·Xt +

σ2
(0)

T
· L−1)−1 · ( 1

T
·

T∑
t=1

X ′t · V −1
(0) ·Ht ·∆yt +

σ2
(0)

T
· L−1 · c)

L∗ =
σ2

(0)

T
· (

T∑
t=1

X ′t · V −1
(0) ·Xt +

σ2
(0)

T
· L−1)−1

Notice that, setting the diagonal elements of matrix L (the prior varcov matrix)
to tend to infinity (we set them up equal to 1 billion), it is like assuming a
non informative prior distribution on parameter β. Notice in fact, that the
parameters of the distribution tend to be equal to the FGLS estimator and its
variance.

3. Draw σ2
(1) from the conditional posterior distribution:

P (σ2
(1)|D, β(1), V(0), ρ1,(0), ρ2,(0)) = Γ−1(

θ1

2
,
θ2

2
) ∝ L(θ|D) · Γ−1(a, b)

θ1 = nT + 2a θ2 =
T∑
t=1

ε′t · V −1
(0) · εt + 2b

In practice we draw σ2
(1) from

θ2

χθ1

Notice that, setting a and b (the prior parameters) equal to 0, is like putting a
Jefferey’s prior on σ2, which is exaclty what we do.
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4. Draw vi,(1) from the following conditional posterior distribution:

P (vi,(1)|D, σ2
(1), β(1), ρ1,(0), ρ2,(0)) = Γ−1(

q1

2
,
q2

2
) ∝ L(θ|D) · Γ−1(

r

2
,
r

2
)

q1 = r + T q2 =
1

σ2
(1)

·
T∑
t=1

ε2
i,t + r

In practice we draw vi,(1) from:
q2

χq1

As anticipated above in the paper, since we are confident on the heteroskedastic
behavior of industry value added, we set our prior hyperparameter r to be equal
to 3 rather than 4, as done by LeSage&Pace (2009).
Replicating this procedure n times, we get a first simulation of matrix V(1).

5. We now need to draw the spatial coefficients. However we cannot apply simple
Gibbs Sampling, since the conditional posterior distribution is not defined for
them. Therefore, we apply the Metropolis Hastings algorithm:

(a) Draw ρc1 (where the c superscript stands for “candidate”) from the pro-
posal distribution:

ρc1 = ρ1,(0) + c1 · N (0, 1)

(b) Run a bernoulli experiment to determine the updated value of ρ1:

ρ1,(1) =

{
ρc1 π (accept)

ρ1,(0) 1− π (reject)

Where π is equal to
π = min{1, ψMH1}

Setting: Aτ (ρ1) = In − ρ1 ·W1 we have:

ψMH1 =
|Aτ (ρc1)|
|Aτ (ρ1,(0))|

· exp
{
− 1

2σ2
(1)

·
T1∑
t∈t1

[
∆y′t ·

(
Aτ (ρ

c
1)′ · V −1

(1) · Aτ (ρ
c
1)−

− Aτ (ρ1,(0))
′ · V −1

(1) · Aτ (ρ1,(0))
)
·∆yt−

− 2β′ ·X ′t · V −1
(1)

(
Aτ (ρ

c
1)− Aτ (ρ1,(0))

)
·∆yt

]}
·

·

[
ρc1 · (1− ρc1)

ρ1,(0) · (1− ρ1,(0))

]d−1

· 1
(
0 ≤ ρc1 ≤ 1

)
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Basically, we compute the probability to accept the candidate value from
the proposal distribution, and then we update the value of ρ1 by running
the bernoulli experiment with such a probability of success. Notice that if
we draw a value of ρ1 outside the support of the beta prior, ψMH1 = 0 and
then π = 0 and we clearly reject the candidate value. Eventually, notice
that d is the parameter of the beta prior that we set equal to 1.1, on both
ρ1 and ρ2; this is to resemble a uniform(0,1) but with less density on its
boundary values.

(c) Once updated ρ1, we replicate the procedure for ρ2. Setting Aγ(ρ2) =
In − ρ2 ·W2 we have:

ψMH2 =
|Aγ(ρc2)|
|Aγ(ρ2,(0))|

· exp
{
− 1

2σ2
(1)

·
T2∑
t∈t2

[
∆y′t ·

(
Aγ(ρ

c
2)′ · V −1

(1) · Aγ(ρ
c
2)−

− Aγ(ρ2,(0))
′ · V −1

(1) · Aγ(ρ2,(0))
)
·∆yt−

− 2β′ ·X ′t · V −1
(1)

(
Aγ(ρ

c
2)− Aγ(ρ2,(0))

)
·∆yt

]}
·

·

[
ρc2 · (1− ρc2)

ρ2,(0) · (1− ρ2,(0))

]d−1

· 1
(
0 ≤ ρc2 ≤ 1

)
6. At this point we need to update the variance of the proposal distributions: if

the acceptance rate (number of acceptances over number of iterations of the
Markov Chain) of the first parameter ρ1 falls below 40% we need to reduce the
value of c1, the so called tuning parameter, which regulate the variance of the
proposal distribution. We reduce the variance in this way:

c′1 =
c1

1.1
.

In this way, we are able to draw values closer to the current value of ρ1, and
therefore, we expect to increase the acceptance rate. On the contrary, if the
acceptance rate rises above 60%, we need to increase the tuning parameter, in
order to draw values far from the current value, in this way we increase the
chance to explore low density parts of the distribution, thus reducing the prob-
ability of accepting the candidate value and, by consequence, the acceptance
rate:

c′1 = 1.1 · c1.

Clearly we replicate this procedure also for ρ2.
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7. Once updated all the values, we replicate procedure 2-6, 35,000 times.

8. We drop (Burn-in phase) the first 10% of the iterations, thus obtaining a
vector of 31,500 observations for each of the parameters, which account for the
simulated posterior distributions.

In order to obtain the distributions of the simulated fiscal plans, we simply draw
the value of the parameters from the posteriors, and we calculate the effects of a
simulated fiscal plan, as described in the paper.
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1.7 Placebo

A reader might wonder whether the network effect we measure, is really created
by an existent network or, it could be a byproduct of our particular SAR model:
basically an undesired consequence of regressing the dependent variable on a convex
combination of itself, which always leads to at least a weak correlation between them.
If the spatial matrix we employ, which comes from real data, is really depiticing an
existing network, we might expect that running our same model but, by employing
a simulated spatial matrix, should deliver weaker results than what we measure by
employing the original spatial matrix.
Therefore, we conducted several “Placebo” Tests, where we simulated the spatial
matrix in different ways:

1. Row Shuffling : we permutated the elements within the rows of the original
spatial matrix.

2. Column Shuffling : we permutated the elements within the columns of the
original spatial matrix.

3. Total Shuffling : we shuffled all the elements of the original matrix.

4. Half Randomization: we constructed an artificial spatial matrix by drawing its
elements from a Uniform distribution 0-0.4; since most of the elements of the
original matrix are containd in such an interval. However, matrix Â has been
constructed by adopting the original data transformation, starting from the
artificial matrix A.

5. Full Randomization: same as half randomization, but in this, case, we simu-
lated also matrix Â.

In our procedure, we conducted 100 simulations for each Placebo Test. At every
iteration we stored in a 3D array, the mean and the asymptotic t-statistics (mean
over standard deviation) for each component of the Average Effect of a fiscal shock
(total, direct and indirect for both taxes and expenditure shocks).
In a second stance, we plotted the results in a graph which has on the horizontal
axe the mean of the Average Effect, while on the vertical axe, the asymptotic t-
stats. Therefore, every siulation is summarized by a couple: the mean and asyptotic
t-stats of the average effect, which in our 2D graph, represents a point. The graphs
we obtain are therefore 6 scatter plots (each for shock type and component - e.g.
Average Direct Effect for and Expenditure Shock), where 100 points (shown in small
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blue dots) represent the 100 simulations, plus the original result (shown with a big
red dot).
Since the average effects are negative, we expect to see the big red dot in the bottom
left part of the graph, while, we expect the see a blue cloud of small dots shifted
up and rightward: which means a weaker and less statistically significant shock
effect. From the figures below we got exactly this result in all the Placebo Tests we
conducted.

Figure 1: Row Shuffle
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Figure 2: Column Shuffle
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Figure 3: Total Shuffle
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Figure 4: Half Randomization
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Figure 5: Full Randomization

Notice the following facts:

• The red dots always stand in the bottom left part of the graphs, as expected.

• The indirect effect, which is the one which reflects the network, always comes
out weakened when using simulated data.

• The higher volatility of the expenditure shock Placebo Test, is due to the fact
that the spending shocks’ weights are simulated too, and therefore increase the
degree of uncertainty with respect to tax shocks.
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1.8 Non-Row Normalized Data

In this section we show that applying row-normalization - which is a standard practice
in spatial econometric frameworks - does not affect at all our results. First of all,
notice that the row-normalization changes the interpretation of the elements of the
weight matrix, A (and by consequence, also of matrix Â). In particular, replicating
what done in Section 4.2.1 of the paper, we can show the economic interpretation for
each element of the weight matrix, which we denote here with Ã (the row-normalized
version of the I-O matrix, A). We have:

Ã =



ã11 =
SALES1→1

INPUT1

ã12 =
SALES2→1

INPUT1

ã13 =
SALES3→1

INPUT1

ã21 =
SALES1→2

INPUT2

ã22 =
SALES2→2

INPUT2

ã23 =
SALES3→2

INPUT2

ã31 =
SALES1→3

INPUT3

ã32 =
SALES2→3

INPUT3

ã33 =
SALES3→3

INPUT3


where

INPUTi = SALES1→i + SALES2→i + SALES3→i.

Since the coefficients change, also the interpretation of the network coefficient βdown

(βup for Â). However, working with non-row normalized spatial matrices, does not
affect our results.
We report in V the results of the Monte Carlo simulation (starting from ML esti-
mates), conducted with non-row-normalized spatial matrices:

Insert Table V here.

At the same time, running the inverted model using a non-row-normalized weight
matrix, delivers the following results, summarized in VI:

Insert Table VI here.
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1.9 Additional Tables
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Table II: US OBRA-90 in percent of GDP

Revenue adjustments Expenditure adjustments

IMF τut τat,0 τat,1 τat,2 τat,5 IMF gut gat,0 gat,1 gat,2 gat,3 gat,4 gat,5

1990 0.00 0.080 0.080 0.00 0.305 0.190 0.00 0.075 0.027 0.075 0.075 0.00 0.305 0.300 0.318 0.477 0.239
1991 0.590 0.305 0.00 0.305 0.190 0.00 0.075 0.027 0.00 0.305 0.00 0.305 0.300 0.318 0.477 0.239 0.00
1992 0.00 0.190 0.00 0.190 0.00 0.075 0.027 0.00 0.00 0.300 0.00 0.300 0.318 0.477 0.239 0.00 0.00

Table III: descriptive statistics of estimated fixed effects for the baseline model. In the left panel of the table, you
can see estimates for industry fixed effects, while on the right panel, you can find the estimated variances for each of
the 15 sectors.

Fixed Effects Variances

MLE Std Dev t-stat p-value MLE Std Dev t-stat p-value

c1 1.260 2.327 0.542 0.294 σ2
1 200.129* 46.529 4.301 0.000

c2 4.522 2.903 1.558 0.060 σ2
2 311.043* 72.316 4.301 0.000

c3 1.535 0.845 1.817 0.035 σ2
3 25.436 5.914 4.301 0.000

c4 2.336 1.099 2.125 0.017 σ2
4 44.005 10.231 4.301 0.000

c5 0.802 0.619 1.296 0.097 σ2
5 13.415 3.119 4.301 0.000

c6 2.188 0.599 3.651 0.000 σ2
6 12.803 2.977 4.301 0.000

c7 1.464 0.519 2.822 0.002 σ2
7 9.530 2.216 4.301 0.000

c8 1.906 0.672 2.835 0.002 σ2
8 15.600 3.627 4.301 0.000

c9 2.783 0.673 4.136 0.000 σ2
9 15.274 3.551 4.301 0.000

c10 3.092 0.421 7.352 0.000 σ2
10 6.039 1.404 4.301 0.000

c11 4.648 0.587 7.924 0.000 σ2
11 11.614 2.700 4.301 0.000

c12 4.078 0.381 10.711 0.000 σ2
12 4.961 1.153 4.301 0.000

c13 3.141 0.464 6.770 0.000 σ2
13 7.424 1.726 4.301 0.000

c14 2.343 0.609 3.845 0.000 σ2
14 12.604 2.930 4.301 0.000

c15 1.923 0.308 6.253 0.000 σ2
15 3.041 0.707 4.301 0.000

∗: The first two sectors (Agriculture and Mining) have very high variances. This is consistent with the extreme volatile
nature of output in those two sectors.
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Table IV: descriptive statistics of estimated fixed effects and variances for the inverted model.

Fixed Effects Variances

MLE Std Dev t-stat p-value MLE Std Dev t-stat p-value

c1 1.323 2.319 0.571 0.284 σ2
1 198.653 46.187 4.301 0.000

c2 4.553 2.905 1.567 0.059 σ2
2 311.541 72.432 4.301 0.000

c3 1.591 0.842 1.890 0.029 σ2
3 25.228 5.865 4.301 0.000

c4 2.220 1.098 2.021 0.022 σ2
4 43.972 10.224 4.301 0.000

c5 0.776 0.609 1.274 0.101 σ2
5 12.968 3.016 4.299 0.000

c6 2.324 0.593 3.918 0.000 σ2
6 12.446 2.894 4.301 0.000

c7 1.603 0.539 2.972 0.001 σ2
7 10.216 2.375 4.301 0.000

c8 1.890 0.674 2.804 0.003 σ2
8 15.690 3.648 4.301 0.000

c9 2.752 0.672 4.095 0.000 σ2
9 15.226 3.540 4.301 0.000

c10 3.201 0.423 7.560 0.000 σ2
10 6.101 1.419 4.301 0.000

c11 4.626 0.591 7.824 0.000 σ2
11 11.815 2.747 4.301 0.000

c12 4.175 0.390 10.699 0.000 σ2
12 5.197 1.208 4.301 0.000

c13 3.080 0.477 6.459 0.000 σ2
13 7.997 1.859 4.301 0.000

c14 2.279 0.609 3.743 0.000 σ2
14 12.583 2.926 4.301 0.000

c15 1.990 0.301 6.621 0.000 σ2
15 2.908 0.676 4.300 0.000
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Table V: TB and EB adjustments average effects - Baseline model - Non-Row Normalized weight matrices

Tax Tot Tax Dir Tax Ind Exp Tot Exp Dir Exp Ind

Point Estim. -1.776 -0.962 -0.815 -0.886 -0.568 -0.317
Mean -1.856 -0.965 -0.891 -0.919 -0.573 -0.346

Std Dev 1.023 0.466 0.586 0.621 0.367 0.278
Pr(x < 0) 98.22% 98.22% 98.22% 94.13% 94.13% 94.12%

1% -4.706 -2.094 -2.768 -2.500 -1.426 -1.194
5% -3.678 -1.738 -2.006 -2.000 -1.178 -0.868
10% -3.198 -1.562 -1.678 -1.719 -1.040 -0.706
16% -2.817 -1.419 -1.414 -1.523 -0.937 -0.598
50% -1.777 -0.962 -0.798 -0.887 -0.572 -0.300
84% -0.870 -0.501 -0.351 -0.319 -0.208 -0.094
90% -0.631 -0.366 -0.243 -0.157 -0.104 -0.045
95% -0.344 -0.204 -0.135 0.049 0.033 0.013
99% 0.173 0.103 0.065 0.399 0.264 0.128

Table VI: T Band EB adjustments average effects - Inverted model - Non-row Normalized weight matrices

Tax Tot Tax Dir Tax Ind Exp Tot Exp Dir Exp Ind

Point Estim. -0.528 -0.272 -0.256 -0.475 -0.413 -0.062
Mean -0.602 -0.298 -0.303 -0.484 -0.411 -0.073

Std Dev 0.945 0.483 0.482 0.444 0.370 0.099
Pr(x < 0) 73.08% 73.08% 73.08% 87.00% 87.00% 81.07%

1% -3.189 -1.423 -1.876 -1.599 -1.275 -0.427
5% -2.257 -1.097 -1.183 -1.243 -1.022 -0.265
10% -1.815 -0.919 -0.918 -1.059 -0.888 -0.199
16% -1.501 -0.777 -0.718 -0.914 -0.775 -0.156
50% -0.523 -0.295 -0.217 -0.467 -0.409 -0.046
84% 0.300 0.186 0.111 -0.052 -0.047 0.003
90% 0.539 0.325 0.196 0.070 0.063 0.013
95% 0.810 0.506 0.303 0.223 0.197 0.031
99% 1.269 0.811 0.519 0.492 0.450 0.084

58



2 Additional Figures

Figure 6: Average Effects - Baseline Model
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Figure 7: Average Effects - Inverted Model
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