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Abstract According to a classical theorem, every algebraic variety endowed with a
nontrivial rational action of a connected linear algebraic group is birationally isomor-
phic to a product of another algebraic variety and Ps with strictly positive s. We show
that the classical proof of this theorem actually works only in characteristic 0 and we
give a characteristic free proof of it. To this end we prove and use a characterization
of connected linear algebraic groups G with the property that every rational action of
G on an irreducible algebraic variety is birationally equivalent to a regular action of
G on an affine algebraic variety.
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1.Throughout this note k stands for an algebraically closed field of arbitrary character-
istic which serves as domain of definition for each of the algebraic varieties considered
below. Each algebraic variety is identifiedwith its set of k-rational points.Weuse freely
the standard notation and conventions of [7,11] and refer to [6–10] regarding the def-
initions and basic properties of rational and regular (morphic) actions of algebraic
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groups on algebraic varieties. Given a rational action of such a group G on an irre-
ducible algebraic variety X , we denote by πG,X : X ��� X --

-G a rational quotient of
this action; the latter means that X --

-G and πG,X are respectively an irreducible variety
and a dominant rational map such that π∗

G,X (k(X --
-G)) = k(X)G .

2. Up to a change of notation and terminology, the following statement appeared in
the classical paper [4, Theorem 1].

Theorem 1 Assume that a connected linear algebraic group G acts rationally and
nontrivially on an irreducible algebraic variety X, and let B be a Borel subgroup of
G. Then X is birationally isomorphic to Ps×X --

-B, where πB,X : X ��� X --
-B is a

rational quotient of the natural rational action of B on X and 0 < s � dim B.

In [4] no restriction on char k is imposed, but actually the brief argument given there
in support of Theorem 1 works only if char k = 0. We reproduce it below in order to
pinpoint where the restriction char k = 0 is implicitly used.

Proof (Argument from [4] supporting Theorem 1) Since G is generated by its Borel
subgroups and since all Borel subgroups are conjugate to each other, B acts on X
nontrivially. Since B is a connected solvable linear algebraic group, there is a chain
of connected subgroups

B = B0 ⊃ B1 ⊃ · · · ⊃ Bn = {e}

such that all Bi are normal in B and dim Bi = dim B − i . If d is the largest index i
such that the action of Bi on X is not trivial, then let

πBd ,X : X ��� X --
-Bd

def= Xd (1)

be a rational quotient of X with respect to Bd . By the cross-section theorem [8,
Theorem 10] we find that X is birationally equivalent to P1×Xd . The factor group
B/Bd acts on Xd and we can repeat the same argument. ��
3. The assumption char k = 0 is actually implicitly used in the penultimate phrase of
this argument. Indeed, it purports the following. Consider a section of πBd ,X , i.e., a
rationalmapσ : Xd ��� X such thatπBd ,X ◦σ = id. Since Bd+1 lies in the kernel of the
action of Bd on X , this action is reduced to that of the one-dimensional connected linear
algebraic group Bd/Bd+1. This action is nontrivial, hence the Bd/Bd+1-stabilizers of
points of a dense open subset of X are finite; in particular, the kernel K of this action
is finite. The action of Cd = (Bd/Bd+1)/K on X is faithful, and (1) is its rational
quotient.

Being a connected one-dimensional linear algebraic group, Cd is isomorphic to
either k× (the multiplicative group of k) or k+ (the additive group of k); see, e.g., [11,
Theorem 3.4.9].

If it is isomorphic to k×, then faithfulness of its action on X implies that this
action is locally free (i.e., Cd -stabilizers of points of a dense open subset of X are
trivial); see [6, Lemma 2.4]. Therefore, the dominant rational map γ : Cd×Xd ��� X ,
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(c, b) �→ c ·σ(b), is bijective over a dense open subset of X . If char k = 0, the latter
implies that γ is a birational isomorphism and hence X is birationally isomorphic to
P1×Xd because the group variety of Cd is rational. But if char k > 0, one can only
say that γ is either a birational isomorphism or purely inseparable. The following
example shows that the latter indeed may occur.

Example 1 Let char k = p > 0. Consider the locally free action of G = B = k×
on X = k \{0}, given by b ·x = bpx . We have n = 1, d = 0, C0 = G, and X0 is
a point. Therefore, C0×X0 is naturally identified with G. Let σ map X0 to 1. Then
γ ∗(k(X)) = k(t p) � k(t) = k(G), where t is the standard coordinate function on G.
Thus γ is not a birational isomorphism.

If Cd is isomorphic to k+, the same argument works if we know that the action of Cd

on X is locally free. If char k = 0, then local freeness indeed holds because in this
case there are no nontrivial finite subgroups in k+. However, if char k > 0, it may
happen that the action of Cd on X is not locally free; therefore, γ is not bijective over
a dense open subset of X , and a fortiori is not a birational isomorphism. The example
below is a generalization of the one the author first learned fromG.Kemper, whomwe
thank for it. It is based on the idea going back to [7, 7.1, Example 1◦] and Corollary
of Proposition 1 below.

Example 2 Let char k = p > 0 and let G = B = k+. Let x ∈ k[G] be the standard
coordinate function on G. Every homomorphism of algebraic groups f : G → G
defines a regular action of G on X = k2 by the formula

u ·(a, b) = (a+ub+ f (u), b), u ∈ G, (a, b) ∈ X. (2)

From (2) we infer that an element u ∈ G lies in the G-stabilizer of a point (a, b) ∈ X
if and only if u is a root of the polynomial f (x)+ bx . By [11, Lemma 3.3.5] there are
nonzero elements α1, . . . , αs ∈ k and an increasing sequence of nonnegative integers
n1, . . . , ns such that

f = α1x
pn1 + · · · + αs x

pns ; (3)

any αi and n j may occur in the right-hand side (3) for an appropriate f . One of the
roots of f is 0. Now take f with ns � 1. By (3) the polynomial ( f +bx)/x has
degree pns − 1 � 1 and does not vanish at 0 if b 
= 0 and b 
= −α1. Whence if these
inequalities hold, the G-stabilizer of (a, b) is nontrivial. Therefore, the action is not
locally free.

Moreover, if even the action of Cd on X is locally free, and hence γ is bijective over a
dense open subset of X , it may happen that γ is purely inseparable. The corresponding
example is similar to Example 1.

Example 3 Let char k = p > 0. Consider the locally free action of G = B = k+ on
X = k, given by b ·x = bp + x . Then n = 1, d = 0,C0 = G, X0 is a point,C0×X0 is
naturally identified with G, and if σ maps X0 to 0, then γ ∗(k(X)) = k(t p) � k(t) =
k(G), where t is the standard coordinate function on G. Thus γ is not a birational
isomorphism.
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4. Below we shall give a characteristic free proof of Theorem 1. For this, we need
the following characterization of connected linear algebraic groups G with the prop-
erty that every rational action of G on an irreducible algebraic variety is birationally
equivalent to a regular action of G on an affine algebraic variety.

Definition We say that a linear algebraic groupG has property (A) if for every rational
action of G on an irreducible algebraic variety X , there exist an irreducible affine
algebraic variety Y and a birational isomorphism

ϕ : X ��� Y (4)

such that the rational action of G on Y induced by ϕ is regular.

Theorem 2 Let G be a linear algebraic group and let G0 be the connected component
of the identity in G.

(i) If G0 is solvable, then G has property (A).
(ii) If G is connected and has property (A), then G is solvable.

Proof (i) Let G0 be solvable. Consider a rational action of G on an irreducible
algebraic variety X . By [8, Theorem 1], there exists an irreducible algebraic variety
X1 and a birational isomorphism

α1 : X ��� X1

such that the rational action of G on X1 induced by α1 is regular.
Let ν : X2 → X1 be the normalization of X1. Then the rational action of G on X2

induced by the birational isomorphism

α2 = ν−1 : X1 ��� X2

is regular, see [3, Theorem 2.25].
By [12,Lemma8], since X2 is a normal algebraic variety, it contains a nonemptyG0-

stable quasi-projective open subset U . Hence, by [12, Theorem 1], for some positive
integer n, there exist a regular action of G0 on the projective space Pn and a G0-
equivariant embedding of the algebraic variety U into Pn,

ι : U ↪→ Pn.

We may (and shall) assume that n is minimal possible with this property. Since
Aut Pn = PGLn , this action ofG0 onPn induces an action ofG0 on the dual projective
space P̌n. By the Borel fixed-point theorem [11, Theorem 6.2.6], the assumption that
G0 is a connected solvable linear algebraic group implies that in P̌n there is a fixed
point of this action. This means that Pn contains a G0-stable hyperplane H . Hence
Pn \H is a G0-stable affine open subset of Pn. Therefore, the minimality assumption
on n implies that ι(U ) ∩ (Pn \H) is a nonempty G0-stable open quasiaffine subset of
ι(U ). This proves that X2 contains a nonempty G0-stable open quasiaffine subset V .
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Normality of G0 in G then implies that g ·V for every element g ∈ G is a nonempty
G0-stable open quasiaffine subset of X2.

By [1, Lemma 5.11 and the footnote to its proof], there exists a finite subgroup F
of G that intersects every connected component of G. Put

X3 =
⋂

g∈F
g ·V .

Then X3 is G0- and F-stable and, therefore, G-stable. Let

α3 : X2 ��� X3

be the birational isomorphism inverse to the identity embedding X3 ↪→ X2. Thus we
have proved that X3 is a quiasiaffine algebraic variety such that the rational action of
G on X3 induced by α3 is regular.

Finally, by [9, Lemma 2] (see also [7, Theorem 1.6]) quasiaffiness of X3 implies
that there exist an irreducible affine algebraic variety X4 endowedwith a regular action
of G and a G-equivariant birational embedding

α4 : X3 ↪→ X4.

This shows that we may take Y = X4 and ϕ = α4◦α3◦α2◦α1.
(ii) Let the groupG be connected andhas property (A).Assume that it is non-solvable.
Then it contains a proper parabolic subgroup P; see [11, Proposition 6.2.5]. Let X
be G/P endowed with the natural action of G. We have dim X > 0. Let Y and ϕ be
respectively an irreducible affine algebraic variety endowed with a regular action of G
and a birational isomorphism (4), whose existence is ensured by property (A). Since
ϕ is G-equivariant and the action of G on X is transitive, ϕ is a morphism. Therefore,
completeness and irreducibility of X implies that ϕ(X) is a complete G-stable closed
irreducible subset in Y ; see [11, Proposition 6.1.2 (iii)]. Since Y is affine, this yields
that ϕ(X) is a point; see [11, Proposition 6.1.2 (vi)]. But dim ϕ(X) = dim X > 0
because ϕ is a birational isomorphism—a contradiction. ��
5. We also need the following statement, see [11, Proposition 14.2.2] and an earlier
result [5, Lemma 1.5].

Proposition 1 Let G = k+ and let X be an irreducible affine algebraic variety
endowed with a nontrivial regular action of G. Then there exists an irreducible affine
variety Y with the following properties:

(a) there is an isomorphism φ of G×Y onto an open subvariety of X;
(b) there is a morphism ψ : G×Y such that for all a, b ∈ k, y ∈ Y ,

ψ(a+b, y) = ψ(a, y) + ψ(b, y), a ·φ(b, y) = φ(ψ(a, y)+b, y).
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Corollary Maintain the notation of Proposition 1. Then the formula

a ·(b, y) = (ψ(a, y)+b, y), a, b ∈ G, y ∈ Y,

defines a regular action of G on G×Y such that

• the natural projection pr2 : G×Y → Y is its rational quotient;
• the isomorphism φ is G-equivariant.

In particular, Y and X --
-G are birationally isomorphic.

6. We now turn to a characteristic free proof of Theorem 1.

Proof (Characteristic free proof of Theorem 1) We retain the argument in [4], except
its part referring to the cross-section theorem of [8] that works, as we have explained,
only if char k = 0. This part is replaced by the following characteristic free argument.

By Theorem 2, we may assume that X is affine and the action of the one-dimen-
sional connected linear algebraic group H = Bd/Bd+1 on X is nontrivial and regular.
There are two possibilities: H is isomorphic to either k+ or k×.

Let H be isomorphic to k+. Then by Corollary of Proposition 1 the variety X
is H -equivariantly birationally isomorphic to the variety P1×Xd , on which H acts
rationally so that the second projection pr2 : P1×Xd → Xd is a rational quotient of
this action.

It remains to show that the same is true if H is isomorphic to k×. The group X(H)

of characters of H (i.e., algebraic homomorphisms H → k×) is isomorphic to Z. Let
χ be its generator. For every s ∈ Z, put

k(X)s = {
f ∈ k(X) : h · f = χ s(h) f for every h ∈ H

}; (5)

in particular, k(X)0 = k(X)H. Since H is a torus, the H -module k[X ] is semisimple
and its isotypic decomposition has the form

k[X ] =
⊕

s∈Z
k[X ]s, where k[X ]s = k(X)s ∩ k[X ] (6)

(see, e.g., [11, 3.2.13]); in particular, k[X ]0 = k[X ]H. Given (6), every element f ∈
k[X ] can be uniquely written as the following sum of the nonzero summands:

f = fi1 + · · · + fis , f j ∈ k[X ] j for all j. (7)

We call (7) the canonical decomposition of f . Nontriviality of the action of H on X
implies that k[X ]H 
= k[X ]. Therefore, the subgroup

 = {s ∈ Z : k(X)s 
= 0} (8)

of Z is nonzero, i.e.,  = nZ for some positive integer n.
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It follows from (8) that there are a1, . . . , am ∈ Z such that in canonical decompo-
sition (7) we have

i1 = na1, . . . , is = nas . (9)

Fix a nonzero element t ∈ k(X)n . From (5), (7), and (9) we deduce that

fir /t
ar ∈ k(X)G for every r. (10)

In turn, (7) and (10) yield that f = ∑s
r=1 t

ar ( fir /t
ar ) is an element of the subfield

k(X)H(t) of X . Hence k[X ] lies in this subfield. But k(X) is the field of fractions of
k[X ] because X is affine. This proves that

k(X) = k(X)H(t). (11)

The element t is transcendental over k(X)H. Indeed, if not, there is a relation∑m
i=0 ai t

ri = 0 for some integers 0 � r0 < r1 < · · · < rm and nonzero elements
ai ∈ k(X)H. From (5) we then deduce that

m∑

i=0

χnri (h)ai t
ri = 0 for every element h ∈ H.

This contradicts Artin’s theorem on independence of characters, because k× is the
subgroup of the multiplicative group k(X)× of k(X), and therefore, we may consider
the elements of X(H) as the homomorphisms H → k(X)×.

Given that t is transcendental over k(X)H, we conclude from (11) that X is H -
equivariantly birationally isomorphic to the variety P1×X --

-H , on which H acts
rationally via the first factor so that the second projection pr2 : P1×X --

-H → X --
-H is

a rational quotient of this action. This completes the proof. ��
7.Combining the given proof of Theorem 1with Rosenlicht’s theorem on the existence
of generic geometric quotient [10, Theorem], we obtain the following generalization
of the result of [2, Section 1] on “trivial quotient” (our attention was drawn to this
result by G. Kemper, whom we thank).

Theorem 3 Let X be an irreducible algebraic variety endowed with a regular action
of a solvable connected linear algebraic group G. Then for the restriction of this action
on a certain G-stable dense open subset U of X there exist

• the geometric quotient πG,U : U → U/G;
• an isomorphism ϕ : U → Ar,s×(U/G), where

Ar,s = {
(α1, . . . , αr+s) ∈ Ar+s : αi 
= 0 for every i � r

}
, r � 0, s � 0,

such that the natural projection Ar,s×(U/G) → U/G is the geometric quotient of
the regular action of G on Ar,s×(U/G) induced by ϕ.

Theorem 3 immediately implies the cross-section theorem.
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Corollary ([8, Theorem 10]) Let X be an irreducible algebraic variety endowed with
a regular action of a solvable connected linear algebraic group G. Let πG,X : X ���
X --

-G be a rational quotient of this action. Then there is a rational map σ : X --
-G ��� X

such that πG,X ◦σ = id.

Acknowledgment The author is indebted to the referee for thorough reading and remarks.
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