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Abstract

We provide epistemic foundations for permissibility (Brandenburger, 1992), a
strategic-form solution concept for �nite games which coincides with the Dekel-
Fudenberg procedure, i.e., the elimination of all weakly dominated strategies, fol-
lowed by the iterated elimination of strictly dominated strategies. We show that
permissibility characterizes the behavioral implications of �cautious rationality and
common weak belief of cautious rationality�in the canonical, universal type struc-
ture for lexicographic beliefs. For arbitrary type structures, we show that the behav-
ioral implications of these epistemic assumptions are characterized by the solution
concept of full weak best response set, a weak dominance analogue of best response
set (Pearce, 1984).
Keywords: Pemissibility, Dekel-Fudenberg Procedure, In�nitely More Likely,

Lexicographic Probability Systems, Rationality.

1 Introduction

Permissibility (Brandenburger, 1992) is a solution concept for �nite games in strategic
form, and it is based on an iterative procedure. The central feature of this procedure
is that the beliefs of each player over his relevant space of uncertainty are represented
by lexicographic probability systems (henceforth, LPS�s); that is, each player has a �nite
sequence of probability measures on the set of co-players�strategies, and he uses them
lexicographically to determine his preferences over his own strategies (see Blume et al.,
1991). A strategy survives a step of the permissibility procedure if it is a lexicographic
best reply to an LPS that satis�es two conditions: (i) each strategy of the co-players
is assigned strictly positive probability by some component measure of the LPS; (ii)
the �rst component measure of the LPS assigns probability one only to those strategies
which have survived the previous steps of the procedure. Brandenburger (1992) proved
that permissibility coincides with the Dekel-Fudenberg procedure (Dekel and Fudenberg,
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1990), i.e., the elimination of all weakly dominated strategies followed by the iterated
elimination of strictly dominated strategies.
The aim of this paper is to provide epistemic foundations for permissibility. We base

our analysis on two key notions: cautious rationality and weak belief. Cautious rationality
is the combination of lexicographic expected utility maximization and a cautious attitude
of the player towards the primitive, payo¤-relevant uncertainty. Speci�cally, each payo¤-
relevant event is assigned strictly positive probability by some component measure of the
player�s LPS, i.e., it is considered possible under some theory of the world that the player
entertains.
We say that a player weakly believes an event E if he deems E �in�nitely more likely�

than its complement. Loosely speaking, a player deems an event E in�nitely more likely
than F if he strictly prefers to bet on E rather than on F regardless of the size of the
winning prizes for the two bets (given the same losing outcome). This preference-based
notion of �in�nitely more likely�is due to Lo (1999), and it is weaker than the one put
forward by Blume et al. (1991). In particular, the �rst is monotone, whereas the second
is not. Since the set of permissible strategies can be formally de�ned as the ouptut
of an in�nite iteration of a monotone operator between subsets of strategy pro�les (see
De�nition 4 below), the �in�nitely more likely�relation due to Lo (1999) is suitable for the
epistemic analysis of permissibility. Indeed, as we will show, an event E is weakly believed
if and only if it is assigned probability one by the �rst component measure of the LPS
representing the preference relation.1 By contrast, Brandenburger et al. (2008) adopt the
(non-monotone) notion of �in�nitely more likely than�of Blume et al. (1991) for their
epistemic analysis of iterated admissibility, and they leave the epistemic foundations for
permissibility as an open question (see Brandenburger et al., 2008, p. 333).
With this, we show that the permissibility set characterizes the behavioral implications

of cautious rationality and common weak belief of cautious rationality in the canonical,
universal type structure for LPS�s. The canonical type structure represents all hierarchies
of lexicographic beliefs on strategies, without imposing extraneous restrictions on play-
ers�beliefs. For arbitrary type structures, we show that the behavioral implications of
cautious rationality and common weak belief of cautious rationality are characterized by
the solution concept of full weak best response set, a weak dominance analogue of best
response set� a concept, due to Pearce (1984), based on strict dominance.
The epistemic foundations of the Dekel-Fudenberg procedure have been studied also

by Asheim and Dufwenberg (2003), Hu (2007) and Perea (2012). We elaborate on the
comparison between our analysis and the aforementioned papers in Section 5. Here we
just note that our notion of cautious rationality and a strengthening of weak belief allow a
transparent comparison with a possible epistemic foundation for iterated admissibility�
see Section 5 and Catonini and De Vito (2018).
The paper is structured as follows. Section 2 introduces LPS�s and weak belief. Section

3 presents the solution concepts: permissibility and (full) weak best response sets. Section
4 introduces the formalism of type structures and carries on the epistemic analysis of
the solution concepts. Section 5 discusses the relationship with other analyses of the
Dekel-Fudenberg procedure in the literature, and with our epistemic analysis of iterated
admissibility. Appendix A illustrates the preference-based foundation of weak belief.

1This LPS-based notion of weak belief is called ��rst-order knowledge� in Brandenburger (1992). It
should be noted that Brandenburger did not provide a preference-based foundation of this concept.
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Appendix B collects the proofs omitted from Section 3 and Appendix C those omitted
from Section 4.

2 Lexicographic beliefs and weak belief

2.1 Lexicographic probability systems

Throughout, �x a Polish space X. The space X is endowed with the Borel �-�eld, the
elements of which are called events. We let M (X) denote the set of Borel probability
measures onX, and we endowM (X) with the weak* topology, so that it becomes a Polish
space. We endow the product of Polish spaces with the product topology and endow a
subset of a Polish space with the subspace topology. We let N (X) (resp. Nn (X)) denote
the set of all �nite (resp. length-n) sequences of Borel probability measures on X, that
is,

N (X) = [n2NNn (X)

= [n2N (M (X))n .

Each � = (�1; :::; �n) 2 N (X) is called lexicographic probability system (LPS).
The set N (X) is endowed with the direct sum topology, so that N (X) is a Polish space.
For every Borel probability measure � on a Polish space X, the support of �, denoted

by Supp�, is the smallest closed set C � X such that � (C) = 1. The support of an
LPS � = (�1; :::; �n) 2 N (X) is thus de�ned as Supp� = [l�nSupp�l. So, an LPS
� = (�1; :::; �n) 2 N (X) is of full-support if [l�nSupp�l = X. We write N+

n (X) for
the set of all full-support, length-n LPS�s and N+ (X) for the set of full-support LPS�s.
Suppose we are given Polish spaces X and Y , and a Borel map f : X ! Y . The mapef :M (X)!M (Y ), de�ned byef (�) (E) = �

�
f�1 (E)

�
,

where � 2 M (X) and E � Y is an event, is called the image (or pushforward) measure
map of f . For each n 2 N, the map bf(n) : Nn (X)! Nn (Y ) is de�ned by

(�1; :::; �n) 7! bf(n) �(�1; :::; �n)� = � ef ��k��
k�n

.

Thus the map bf : N (X)! N (Y ) de�ned bybf (�) = bf(n) (�) , � 2 Nn (X) ,

is called the image LPS map of f , and it is Borel measurable.2

Furthermore, given Polish spaces X and Y , we let ProjX denote the canonical pro-
jection from X � Y onto X. De�ne the marginal measure of � 2 M (X � Y ) on X as
margX� = gProjX (�). Consequently, the marginal of � 2 N (X � Y ) on X is de�ned
by margX� = dProjX (�). Finally, we let IdX denote the identity map on X, that is,
IdX (x) = x for all x 2 X.

2For details and proofs related to Borel measurability and continuity of the involved maps, the reader
can consult Catonini and De Vito (2016).
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2.2 Weak belief

The notion of weak belief captures the idea that an event (i.e., a Borel set) E � X is
�in�nitely more likely�than its complement.
Following Lo (1999), we say that a player deems event E in�nitely more likely than

event F if she prefers to bet on E rather than on F no matter the prizes for the two
bets. We formalize this preference-based notion in Appendix A, where we introduce the
appropriate language. Here, we provide the equivalent de�nition of �in�nitely more likely�
in terms of the LPS that represents the player�s preferences. This equivalence is formally
proved in Appendix A.
Given an LPS � = (�1; :::; �n) 2 N (X) and an event E � X, let

I� (E) = inf
�
l 2 f1; :::; ng

���l (E) > 0	 .
De�nition 1 Fix two disjoint events E;F � X with E 6= ;. Say that E is in�nitely
more likely than F under � if I� (E) < I� (F ).

It is straightforward to see that �in�nitely more likely�is monotone.

Remark 1 If E is in�nitely more likely than F under � and G is an event such that
E � G, then G is in�nitely more likely than F under �.

Now we provide the LPS-based notion of weak belief.

De�nition 2 Fix a Polish space X and a non-empty event E � X. We say that E is
weakly believed under � = (�1; :::; �n) 2 N (X) if �1 (E) = 1.

As anticipated, weak belief of E corresponds to the desired in�nitely more likely
relation between E and its complement.

Proposition 1 A non-empty event E � X is weakly believed under � if and only if E is
in�nitely more likely than XnE under �.

Proof : Suppose that E � X is weakly believed under � = (�1; :::; �n). Thus �1(E) = 1.
This means that I� (E) = 1 < I� (XnE). Conversely, suppose that E is in�nitely more
likely than XnE under �. Thus I� (E) < I� (XnE). Then I� (XnE) > 1, which implies
�1(XnE) = 0, and so �1(E) = 1. �

Weak belief satis�es the following properties that will be useful in our analysis.

Property 1: (Marginalization) If E is a non-empty event in X � Y which is weakly
believed under � 2 N (X � Y ) and ProjX (E) is Borel, then ProjX (E) is weakly believed
under margX�.
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Property 2: (Conjunction and Disjunction) Fix non-empty events E1; E2; ::: in X. Sup-
pose that, for each k, Ek is weakly believed under � 2 N (X). Thus \kEk and [kEk are
weakly believed under �.

Property 3: (Monotonicity) Fix a non-empty event E � X which is weakly believed
under � 2 N (X). If event F � X is such that E � F , then F is weakly believed under
�.

A stronger notion than weak belief is that of certain belief : A non-empty event
E � X is certainly believed under � = (�1; :::; �n) 2 N (X) if �l (E) = 1 for each
l = 1; :::; n. In other words, E is certainly believed under � if its complement, viz. XnE,
is deemed subjectively impossible by the decision maker.3 By constrast, weak belief in
E does not rule out the possibility that XnE occurs, i.e., �l (XnE) > 0 for some l > 1.
Certain belief also satis�es Properties 1-3 above, and it concides with weak belief when
preferences conform to subjective expected-utility theory.

3 Permissibility and Weak Best Response Sets

Throughout, we consider �nite two-player games. A �nite two-player game is a struc-
ture G = hI; (Si; �i)i2Ii, where I is a two-player set and, for every i 2 I, Si is the (�nite)
set of strategies with jSij � 2 and �i : S ! R is the payo¤ function.4 Each strategy set Si
is given the obvious topology, i.e., the discrete topology. For notational convenience, given
a mixed strategy pro�le � 2

Q
i2IM(Si), we will denote player i�s expected utility simply

by �i(�i; ��i), i.e., �i(�i; ��i) =
P

(si;s�i)2Si�S�i �i(si)��i(s�i)�i(si; s�i). Similarly, given
a pure strategy si 2 Si and a probability measure �i 2 M(Si), we will denote player i�s
expected utility by �i(si; �i) =

P
s�i2S�i �i(si; s�i)�i(s�i).

5 With an abuse of notation,
we will also identify the pure strategy si 2 Si with the mixed strategy �i 2 M(Si) such
that �i(si) = 1.
For any two vectors x = (xl)

n
l=1 ; y = (yl)

n
l=1 2 Rn, we write x �L y if either (1) xl = yl

for every l � n, or (2) there exists m � n such that xm > ym and xl = yl for every l < m.
In the remainder of this section, we �x a �nite two-player game G = hI; (Si; �i)i2Ii.

De�nition 3 A strategy si 2 Si is optimal under �i = (�1i ; :::; �ni ) 2 N (S�i) if�
�i(si; �

l
i)
�n
l=1
�L

�
�i(s

0
i; �

l
i)
�n
l=1
, 8s0i 2 Si.

We say that si is a lexicographic best reply to �i if it is optimal under �i.

Fix a player i 2 I, and a set Q�i � S�i. We let ri(�i) denote the set of player i�s
strategies which are optimal under �i 2 N (S�i), while W+(Q�i) denotes the set of all
full-support LPS�s �i such that �

1
i (Q�i) = 1. Note that W+(S�i) = N+(S�i).

3In the language of decision theory, XnE is a Savage-null event� see Appendix A.
4Our notation is standard. Given a list X1; :::; Xn of sets, we write X =

Q
l=1;:::;nXl and x =

(x1; :::; xn) 2 X. Moreover, given a player i, we denote by �i the co-players. Here, we restrict our set-up
to the two-player case; the analysis can be trivially extended to more than two players.

5We abuse notation by writing �i(si) (or �i(s�i)) instead of �i(fsig) (or �i(fs�ig)).
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Let Q be the collection of all subsets of S with the cross-product form Q =
Q
i2I Qi,

where Qi � Si for every i. We now introduce an operator � : Q ! Q as follows. For each
Q 2 Q, de�ne the following sets:

�i(Q�i) =
�
si 2 Si : 9�i 2 W+(Q�i); si 2 ri(�i)

	
,

�(Q) =
Y
i2I

�i(Q�i).

In words, �(Q) is the set of strategies that are lexicographic best replies to some full
support LPS under which Q�i is weakly believed. Note that �(;) = ;.

Remark 2 The operator � is monotone: For every pair of subsets E;F 2 Q, if E � F
then �(E) � �(F ). This follows from the monotonicity property of weak belief (Property
3).

We de�ne the k-th iteration of � (the k-fold composition of � with itself) recursively
as follows. For each Q 2 Q, de�ne �0(Q) = Q for convenience; then for each k � 1,

�k(Q) = �(�k�1(Q)).

Note that, by the monotonicity of �, the sequence of subsets (�k(S))1k=1 is weakly decreas-
ing, i.e., �k+1(S) � �k(S) for each k � 1. Therefore de�ne

�1(S) =
\
k�1

�k(S).

Since each strategy set Si is �nite, there exists M 2 N such that �1(S) = �M(S) 6= ;.

De�nition 4 (Brandenburger, 1992) A strategy pro�le s 2 S is permissible if s 2
�1(S).

It is possible to provide a characterization of the set �1(S) in terms of dominated
strategies. The following de�nitions are standard.

De�nition 5 Fix a set Q 2 Q. A strategy si 2 Si is weakly dominated with respect
to Q if there exists a mixed strategy �i 2 M(Si) with �i (Qi) = 1 such that �i(�i; s�i) �
�i(si; s�i) for every s�i 2 Q�i and �i(�i; s0�i) > �i(si; s

0
�i) for some s

0
�i 2 Q�i. If strategy

si 2 Si is weakly dominated with respect to S, we simply say that si is weakly dominated.

De�nition 6 Fix a set Q 2 Q. A strategy si 2 Si is strictly dominated with respect
to Q if there exists a mixed strategy �i 2 M(Si) such that �i(�i; s0�i) > �i(si; s

0
�i) for

every s0�i 2 Q�i. If strategy si 2 Si is strictly dominated with respect to S, we simply say
that si is strictly dominated.
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We write NWDi(Q) (resp., NDi(Q)) for the set of player i�s strategies which are not
weakly (resp., strictly) dominated with respect to Q 2 Q. We also write NWD(Q) =Q
i2I NWDi(Q) and ND(Q) =

Q
i2I NDi(Q).

As we did for the operator �, we now de�ne the k-th iteration of the operator ND :
Q ! Q in a recursive way. For each Q 2 Q, de�ne ND0(Q) = Q; then, for each k � 1, let

NDk(Q) = ND(NDk�1(Q)).

The Dekel-Fudenberg procedure (Dekel and Fudenberg, 1990) is an iterative pro-
cedure in which one round of elimination of all weakly dominated strategies is followed
by iterated elimination of strictly dominated strategies. The set of strategies surviving
the Dekel-Fudenberg procedure is de�ned as

ND1(NWD(S)) =
\
k�1

NDk�1(NWD(S)).

By �niteness of each strategy set Si, it follows that ND1(NWD(S)) 6= ;.
The following result is due to Brandenburger (1992).

Proposition 2 For each k � 1, it holds that

�k(S) = NDk�1(NWD(S)).

Therefore, a strategy pro�le is permissible if and only if it survives the Dekel-Fudenberg
procedure.

It is also possible to provide an alternative characterization of permissible strategies
in terms of an analogue of best response set (Pearce, 1984).

De�nition 7 Fix a set Q 2 Q.
(i) Q is a weak best response set (WBRS) if for each i 2 I and each si 2 Qi, there

exists �i 2 W+(Q�i) such that si 2 ri(�i).
(ii) Q is a full WBRS if for each i 2 I and each si 2 Qi, there exists �i 2 W+(Q�i)

such that si 2 ri(�i) and ri(�i) � Qi.

In words, a WBRS is a collection of strategy pro�les with the property that every
strategy of every player is a lexicographic best reply to some full-support LPS under
which the set of the opponent�s strategies is weakly believed. A WBRS is full if, in
addition, all lexicographic best replies to each such LPS also belong to the set.

Proposition 3 The set �1(S) is the unique full WBRS such that Q � �1(S) for every
WBRS Q 2 Q.

7



Corollary 1 A strategy pro�le s 2 S is permissible if and only if s 2 Q for some WBRS
Q 2 Q.

WBRS�s can be characterized in terms of dominated strategies (cf. Brandenburger et
al., 2008). To this end, we need an additional de�nition. Say that a strategy s0i 2 Si
supports si 2 Si if there exists a mixed strategy �i with s0i 2 Supp�i and �i(�i; s�i) =
�i(si; s�i) for all s�i 2 S�i. We let su (si) denote the set of all s0i 2 Si that support
si. So, the set su (si) consists of all strategies for player i that are part of some convex
combination equivalent to si.

Proposition 4 A set Q 2 Q is a WBRS if and only if, for each i 2 I,
(i) each si 2 Qi is not weakly dominated, and
(ii) each si 2 Qi is not strictly dominated with respect to Si �Q�i.
A set Q 2 Q is a full WBRS if and only if it is a WBRS such that, for each i 2 I,
(iii) su (si) � Qi for every si 2 Qi.

4 Epistemic analysis

This section provides an epistemic foundation of permissible strategies and full weak best
response sets in �nite games. We consider epistemic type structures where types map
to LPS�s. We formalize (lexicographic) rationality, cautious rationality, weak belief of
cautious rationality, etc., as events in a type structure. We show that full WBRS�s capture
the behavioral implications of cautious rationality and common weak belief of cautious
rationality across all type structures. Moreover, permissibility captures the behavioral
implications of cautious rationality and common weak belief of cautious rationality in the
so-called universal type structure.

4.1 Lexicographic type structures

Hierarchies of beliefs are an essential element of epistemic analysis, as they will be used
to formally de�ne the notion of cautious rationality and common weak belief in cautious
rationality. A hierarchy of beliefs speci�es a player�s belief over the space of primitive
uncertainty (e.g., the set S�i of strategies of player i�s opponent), his belief over the
opponent�s beliefs, and so on. We adopt the formalism of type structures to model belief
hiearchies.
In the remainder of this subsection, �x a �nite two-player game G = hI; (Si; �i)i2Ii.

De�nition 8 An (Si)i2I-based lexicographic type structure is a structure T = hSi; Ti; �iii2I ,
where

1. for each i 2 I, Ti is a Polish space;
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2. for each i 2 I, the function �i : Ti ! N (S�i � T�i) is measurable.

We call each space Ti type space and we call each �i belief map. Members of type
spaces, viz. ti 2 Ti, are called types. Each element (si; ti)i2I 2 S � T is called state (of
the world).

De�nition 8 is a natural generalization of the standard de�nition of type structures
with beliefs represented by probability measures, i.e., length-1 LPS (cf. Heifetz and
Samet, 1998). The formalism of lexicographic type structures was �rst introduced by
Brandenburger et al. (2008),6 and later analyzed in Catonini and De Vito (2016, 2018).
In what follows, we will omit the quali�er �lexicographic,� and simply speak of type
structures.
Type structures generate a collection of hierarchies of beliefs for each player. For

instance, type ti�s �rst-order belief is an LPS on S�i, and is given by margS�i�i(ti). A
standard inductive procedure (see Catonini and De Vito, 2016, for details) shows how
it is possible to provide an explicit description of a hierarchy induced by a type. This
raises the question as to whether there exists a type structure which generates all possible
hierarchies of beliefs, so that every type structure can be mapped into it in a unique belief-
preserving way. In Catonini and De Vito (2016), we show that such type structure can
be constructed by taking the set of types to be the collection of all possible hierarchies of
beliefs that satisfy a coherence condition; this is the so called canonical type structure for
LPS�s, and every type structure can be viewed as a �sub-structure�of it.7 The details of
the construction are not relevant for the statements and proofs of our results. Instead, we
will make use of two properties of the canonical type structure, namely belief-completeness
and universality, as we review next.

De�nition 9 Let T = hSi; Ti; �iii2I and T 0 = hSi; T 0i ; �0iii2I be two (Si)i2I-based type
structures. For each i 2 I, let 'i : Ti ! T 0i be a measurable map such that

�0i � 'i = \�
IdS�i ; '�i

�
� �i. (4.1)

Then the function ('i)i2I : T ! T 0 is called type morphism (from T to T 0).

The notion of type morphism captures the idea that a type structure T is �contained
in�another type structure T 0 if T can be mapped into T 0 in a way that preserves the
beliefs associated with types. Condition (4.1) in the de�nition of type morphism expresses

consistency between the function 'i : Ti ! T 0i and the induced function
\�

IdS�i ; '�i
�
:

N (S�i � T�i)! N
�
S�i � T 0�i

�
. That is, the following diagram commutes:

Ti
�i���! N (S�i � T�i)??y'i ??y \(IdS�i ;'�i)

T 0i
�0i���! N (S�i � T 0�i)

.

6The de�nition of lexicographic type structure in Brandenburger et al. (2008) requires that each belief
be represented by a mutually singular LPS, i.e., an LPS in which, roughly speaking, the supports of the
component measures are disjoint.

7This is in line with analogous results on hierarchies of both ordinary probabilities and conditional
probability systems (cf. Mertens and Zamir, 1985, and Battigalli and Siniscalchi, 1999).
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The notion of type morphism does not make any reference to hierarchies of LPS�s. But,
as one should expect, the important property of type morphisms is that they preserve the
explicit description of belief hierarchies (for details, see Catonini and De Vito, 2016).

De�nition 10 An (Si)i2I-based type structure T = hSi; Ti; �iii2I is

� belief-complete if each belief map �i is onto;

� universal if for every other (Si)i2I-based type structure T 0 = hSi; T 0i ; �
0
iii2I there is

a unique type morphism from T 0 to T

The canonical type structure for LPS�s is an instance of a belief-complete and univer-
sal type structure. In particular, every isomorphic copy of the canonical type structure
is universal and belief-complete.8 So, universality implies belief-completeness. The con-
verse is not true: There exist belief-complete type structures which are not necessarily
universal� see Friedenberg and Keisler (2011) and Catonini and De Vito (2018) for ex-
amples.

4.2 Cautious rationality and common weak belief of cautious
rationality

We now formalize the epistemic conditions of interest as restrictions on strategy-type
pairs in a type structure associated with the game. Fix a �nite two-player game G =
hI; (Si; �i)i2Ii and a type structure T = hSi; Ti; �iii2I .

De�nition 11 Fix a player i 2 I. A type ti 2 Ti is cautious (in T ) if margS�i�i(ti) 2
N+ (S�i).

In words, this notion of �cautiousness�requires that the �rst-order belief of a type be
a full-support LPS. It is therefore a condition that can be expressed in terms of primitives
of the model (i.e., hierarchies of beliefs), and it requires that every payo¤-relevant event,
viz. fs�ig�T�i, be assigned strictly positive probability by at least one of the component
measures of the LPS �i(ti).

9 We let Ci denote the set of all cautious types for each player
i 2 I. We show in Appendix C that this and all the other sets we will refer to are Borel.
For strategy-type pairs we de�ne the following notions.

8Alternatively put, the canonical type structure for LPS�s is the unique universal type structure up
to type isomorphism (i.e., a bijective type morphism whose inverse is measurable).

9Cautiousness is satis�ed by full-support types, i.e., types ti 2 Ti for which �i(ti) 2 N+ (S�i � T�i).
However, as illustrated in Catonini and De Vito (2018), the notion of full-support for types crucially
depends on topological features of type structures which are unrelated to belief hierarchies. By contrast,
the weaker notion of cautiousness does not hinge on the topology on types, and it is su¢ cient to capture
cautious behavior.
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De�nition 12 Fix a strategy-type pair (si; ti) 2 Si � Ti.

1. Say (si; ti) is rational (in T ) if si is optimal under margS�i�i(ti).

2. Say (si; ti) is cautiously rational (in T ) if it is rational and ti is cautious.

We let Ri be the set of all rational strategy-type pairs. Then, we let R1i denote the
set all cautiously rational strategy-type pairs (si; ti) 2 Si � Ti, that is, R1i = Ri \ Ci.
Say that type ti weakly believes a non-empty event E�i � S�i � T�i if E�i is weakly

believed under �i(ti). For each player i 2 I, letWBi : 2
S�i�T�i ! 2Si�Ti be the operator

de�ned by
WBi (E�i) = f(si; ti) 2 Si � Ti jti weakly believes E�ig ,

for every event E�i � S�i � T�i. (If E�i is not Borel, letWBi (E�i) = ;.).
For each m > 1, de�ne Rmi recursively by

Rm+1i = Rmi \WBi
�
Rm�i

�
.

We write R0i = Si � Ti and R1i = \m2NRmi for each i 2 I. If (si; ti)i2I 2
Q
i2I R

m+1
i ,

we say that there is cautious rationality and mth-order weak belief of cautious
rationality (RcmWBRc) at this state. If (si; ti)i2I 2

Q
i2I R

1
i , we say that there is cau-

tious rationality and common weak belief of cautious rationality (RcCWBRc)
at this state. Note that, for each m > 1,

Rm+1i = R1i \
�
\l�mWBi

�
Rl�i

��
,

and each Rmi is Borel in Si � Ti (see Appendix C).
We point out that RcCWBRc is preserved under type morphism between type struc-

tures. Speci�cally, suppose there is a type morphism ('i)i2I from T to T �. So, if there is
RcCWBRc at (si; ti)i2I in T , then there is also RcCWBRc at (si; 'i(ti))i2I in T �, provided
that a measurability condition on ('i)i2I is satis�ed.
To state this formally, recall that a Borel map f : X ! Y between separable metrizable

spaces is bimeasurable if f (E) is Borel in Y provided E is Borel in X. In particular, if
X is a �nite, discrete topological space, then f is bimeasurable, since its range is a �nite
(so Borel) subset of Y .

Lemma 1 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be type structures such that
there exists a bimeasurable type morphism ('i)i2I : T ! T � from T to T �. The following
statements hold:
(i) for each m � 1, if (si; ti)i2I 2

Q
i2I R

m
i , then (si; 'i(ti))i2I 2

Q
i2I R

�;m
i ;

(ii) if (si; ti)i2I 2
Q
i2I R

1
i , then (si; 'i(ti))i2I 2

Q
i2I R

�;1
i .

We will make use of Lemma 1 in the proof of one of the main results, which are
presented in the next section.
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4.3 Main results

We now state and prove the main results of this paper. For notational convenience, for
each m = 0; 1; :::, let Sm = �m(S) and, for each i 2 I, Smi = ProjSi�m(S). Moreover, we
let S1 = �1(S) and, for each i 2 I, S1i = ProjSi�

1(S).

Theorem 1 Fix a �nite two-player game G = hI; (Si; �i)i2Ii.
(i) Let T = hSi; Ti; �iii2I be a type structure associated with G. Then

Q
i2I ProjSi (R

1
i )

is a full WBRS.
(ii) If Q 2 Q is a full WBRS, then there exists a type structure T � = hSi; T �i ; ��i ii2I

such that Q =
Q
i2I ProjSi (R

�;1
i ).

Theorem 2 Fix a �nite two-player game G = hI; (Si; �i)i2Ii and an associated belief-
complete type structure T = hSi; Ti; �iii2I . The following statements hold:
(i) for each m � 0,

Q
i2I ProjSi (R

m
i ) =

Q
i2I S

m
i ;

(ii) if T is universal, then
Q
i2I R

1
i 6= ; and

Q
i2I ProjSi (R

1
i ) =

Q
i2I S

1
i .

The proofs of Theorem 1 and Theorem 2 will make use of the following results.

Lemma 2 Fix a �nite two-player game G = hI; (Si; �i)i2Ii and an associated type struc-
ture T = hSi; Ti; �iii2I . The following statements hold:
(i) for each m � 1,

Q
i2I ProjSi (R

m
i ) �

Q
i2I S

m
i ;

(ii)
Q
i2I ProjSi (R

1
i ) �

Q
i2I S

1
i .

Say that a type structure T = hSi; Ti; �iii2I is �nite if each type space Ti is a �nite
set, and it is endowed with the discrete topology.

Lemma 3 Fix a �nite two-player game G = hI; (Si; �i)i2Ii and a full WBRS Q 2 Q.
There exists a �nite type structure T � = hSi; T �i ; ��i ii2I such that

Q
i2I ProjSi (R

�;1
i ) =Q

i2I Qi.

Proof of Theorem 1: Part (i): The conclusion is immediate if
Q
i2I ProjSi (R

1
i ) = ;.

So we will assume that this set is non-empty. Let si 2 ProjSi (R1i ), so that (si; ti) 2 R1i for
some ti 2 Ti. Thus (si; ti) 2 R1i , so we have to show that ProjS�i

�
R1�i

�
is weakly believed

under margS�i�i(ti). Since R
1
�i; R

2
�i; ::: are weakly believed under �i(ti), it follows from

the conjuction property of weak belief (Property 2) that R1�i is weakly believed under
�i(ti). Using the marginalization property (Property 1), ProjS�i

�
R1�i

�
is weakly believed

under margS�i�i(ti), as required.
Suppose now that s0i is optimal under margS�i�i(ti). Then (s

0
i; ti) 2 R1i , and since

ProjS�i
�
R1�i

�
is weakly believed under margS�i�i(ti) (as shown above), we have (s

0
i; ti) 2

R1i . This shows that s
0
i 2 ProjSi (R1i ), and concludes the proof of part (i).

Part (ii): Follows from Lemma 3. �

12



Proof of Theorem 2: Part (i): The statement is trivially true for m = 0.
Fix m � 1, and suppose that the statement has been shown to hold for m � 1. We

show that the statement is true for m.
Fix a player i 2 I. Lemma 2.(i) gives that ProjSi (Rmi ) � Smi . Conversely, let si 2 Smi .

So there is �i = (�1i ; :::; �
n
i ) 2 N+ (S�i) such that �1i

�
Sm�1�i

�
= 1, and si is a lexicographic

best reply to �i. We now show the existence of an LPS �i = (�
1
i ; :::; �

n
i ) 2 N (S�i � T�i)

such that
(a) margS�i�i = �i; and
(b) (Rk�i)

m�1
k=0 are weakly believed under �i.

To this end, note that, by the induction hypothesis, for each s�i 2 Sm�1�i there exists
ts�i 2 T�i such that

�
s�i; ts�i

�
2 Rm�1�i . So, for each s�i 2 Sm�1�i we �x some ts�i 2 T�i

for which
�
s�i; ts�i

�
2 Rm�1�i . We also �x an arbitrary t

0
�i 2 T�i, and we de�ne the map

 m�1�i : S�i ! S�i � T�i as

 m�1�i (s�i) =

�
(s�i; ts�i), if s�i 2 Sm�1�i ,
(s�i; t

0
�i), if si 2 S�inSm�1�i .

(Of course, the map  m�1�i is continuous, since strategy sets are endowed with the discrete

topology.) De�ne �i 2 N (S�i � T�i) by �i = b m�1�i (�i). It readily follows that �i satis�es
property (a), since ProjS�i �  

m�1
�i = IdS�i. Property (b) also holds, in that

�1i
�
Rm�1�i

�
= �1i

�
( m�1�i )

�1 �Rm�1�i
��
� �1i

�
Sm�1�i

�
= 1, (4.2)

where the inequality follows by construction of  m�1�i (i.e.,  m�1�i
�
Sm�1�i

�
� Rm�1�i and

so Sm�1�i � ( m�1�i )
�1 �Rm�1�i

�
). Therefore, Rm�1�i is weakly believed under �i. By the

monotonicity property of weak belief (Property 3), it follows that, for each k < m � 1,
Rk�i is weakly believed under �i. By belief-completeness, there exists ti 2 Ti such that
�i (ti) = �i. This implies (si; ti) 2 Rmi , hence si 2 ProjSi (Rmi ).
Part (ii): Fix a player i 2 I. Lemma 2.(ii) gives that ProjSi (R1i ) � S1i . Conversely,

�rst note that, since S1 is a full WBRS (Proposition 3), Lemma 3 entails the existence
of a �nite type structure T � = hSi; T �i ; ��i ii2I such that ProjSi (R

�;1
i ) = S1i for each

i 2 I. Hence, for every si 2 S1i , there exists t
�
i 2 T �i such that (si; t

�
i ) 2 R�;1i . Since

T is universal, there exists a type morphism, viz. ('�i )i2I , from T � to T . Moreover,
since T � is �nite, the map ('�i )i2I is bimeasurable. It thus follows from Lemma 1 that
(si; '

�
i (ti)) 2 R1i . This shows that S1i � ProjSi (R1i ) 6= ;, as required. �

5 Discussion

5.1 Transparency of cautiousness

Fix a type structure T = hSi; Ti; �iii2I . Say that T is a cautious type structure if
all the types of all players are cautious. In a cautious type structure, not only all the
types are cautious, but there is common certain belief of this. In other words, there is
transparency of cautiousness. We let C1 �

Q
i2I Si�Ti denote the event corresponding

to transparency of cautiousness in T , and we let C1i denote its projection on Si � Ti.
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The �nite type structure T � = hSi; T �i ; ��i ii2I we construct for Lemma 3 is cautious. Since
cautiousness is preserved by type morphisms (cf. Lemma 1) and the image of T � in
the universal type structure T via bimeasurable type morphism ('i)i2I is a self-evident
event (cf. Battigalli and Friedenberg, 2012, Appendix A), we have

Q
i2I 'i(T

�
i ) � C1.

This implies that the proof of Theorem 2 can be easily adapted to provide an alternative
justi�cation of permissibility that makes the transparency of cautiousness fully explicit.
We can substitute the event �cautious rationality� with �rationality and transparency
of cautiousness� in T , that is, we can de�ne R1i as the set Rci \ C1i instead of just Rci .
Then, Theorem 2 holds verbatim with the new de�nition of R1. In words, permissibility
characterizes the behavioral implications of rationality, transparency of cautiousness, and
common weak belief thereof.

5.2 Comparison with Börgers (1994) and Hu (2007)

In the standard subjective expected utility framework, Börgers (1994) introduced the
solution concept of perfect p-rationalizability, and showed its equivalence with the Dekel-
Fudenberg procedure when p! 1. Say that a player has p-belief of event E if he assigns
probability at least p to E. Perfect p-rationalizability is implied by the following assump-
tions:
(1) players�beliefs have full support on each opponents�strategy sets, and they max-

imize their expected payo¤s with respect to their beliefs; and
(2) players have common p-belief of (1).
Börgers (1994) did not provide an explicit formulation of such assumptions in an

epistemic framework. A formal characterization is given in Hu (2007, Section 5) and
reviewed by Dekel and Siniscalchi (2015, Section 12.5). Speci�cally, Theorem 12.11 in
Dekel and Siniscalchi (2015) states that, for a given �nite game G = hI; (Si; �i)i2Ii,
there is a � 2 (0; 1) such that, for p � �, the Dekel-Fudenberg procedure characterizes the
behavioral implications of the above epistemic assumptions in the canonical type structure
with beliefs represented by probability measures.10 As stressed by Dekel and Siniscalchi
(2015), this epistemic foundation of the Dekel-Fudenberg procedure depends crucially on
�, which in turn depends on the game G. By contrast, Theorem 2 provides one common
epistemic condition� across all games� that yield the Dekel-Fudenberg procedure. We
view this as a desirable feature, because the epistemic assumption of RcCWBRc is not
tailored to a speci�c game G.
The comparison between permissibility and perfect p-rationalizability (and their epis-

temic foundations) can be also understood by providing an analogue of weak belief in
terms of nonstandard probability measures. As shown in Blume et al. (1991a, Section
6; see also Halpern, 2010), a preference relation admitting an LPS representation can be
also described by an F-valued probability measure, where F is a non-Archimedean ordered
�eld that is a strict extension of the set of real numbers R. Furthermore, as claimed in
Halpern (2010, Section 7) and formally shown in Appendix A, weak belief of event E � X

10In fact, Dekel and Siniscalchi (2015) state the result for belief-complete type structures, with the
additional technical assumption of compact type spaces and continuous belief maps. A result due to
Friedenberg (2010) shows that, in such a case, every belief-complete type structure is, in a very speci�c
sense, �equivalent�to the canonical type structure� see Theorem 3.1 and Proposition 4.1 in Friedenberg
(2010) for a precise statement.
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under LPS � admits the following analogue in terms of nonstandard probabilities: Let �
be the nonstandard probability representing the same preference relation as �; then E is
weakly believed under � if st (� (E)) = 1. (Here, st (x) denotes the closest standard real
to x 2 F, called �the standard part of x.�)
With this, we can now see how p-belief of E can be thought of as a �approximation�

of weak belief of E in terms of standard probabilities, as long as p is su¢ ciently close
to 1. Full-support probability measures are su¢ cient to describe cautious behavior, and
so the avoidance of weakly dominated strategies (Pearce, 1984, Lemma 4). But weak
belief coincides with certain belief when preferences conform to subjective expected-utility
theory. So, for p ! 1, the notion of p-belief of E re�ects the same idea as that of weak
belief, that is, not-E can be assigned strictly positive but in�nitesimal probability.

5.3 Comparison with Asheim and Dufwenberg (2003)

Asheim and Dufwenberg (2003) use an epistemic formalism related to, but di¤erent from,
the one we have adopted in this paper. In their framework, each type ti 2 Ti is associated
with a preference relation on the set of acts on S�i � T�i, and such preferences need
not satisfy completeness or Archimedean continuity. Asheim and Dufwenberg restrict
attention to �nite type structures, and they provide the following epistemic foundation
for the permissibility set (later analyzed also by Perea, 2012): There exists a type structure
where permissibility characterizes the behavioral implications of �caution, rationality, and
common certain belief of caution and primary belief in rationality.� Caution coincides
with full-support, and primary belief,11 when preferences are complete and thus can be
represented by an LPS, corresponds to weak belief. We now recast their analysis in the
current framework of lexicographic type structures.
Fix a type structure T = hSi; Ti; �iii2I . Say that type ti certainly believes a non-empty

event E�i � S�i � T�i if E�i is certainly believed under �i(ti). For each player i 2 I, let
Bi : 2

S�i�T�i ! 2Si�Ti be the operator de�ned by

Bi (E�i) = f(si; ti) 2 Si � Ti jti certainly believes E�ig ,

for every event E�i � S�i � T�i; if E�i is not Borel, then Bi (E�i) = ;.12
We de�ne the event �caution�as follows: for each i 2 I,

�Ci =
�
(si; ti) 2 Si � Tij�i(ti) 2 N+ (S�i � T�i)

	
.

For each player i 2 I, let D0
i = �Ci\WBi (R�i), and, recursively, let Dm

i = Bi(D
m�1
�i ).

We let �R1i = Ri \ �Ci, and, for each m > 1, de�ne �Rmi recursively by

�Rmi =
�Rm�1i \Dm�1

i .

We write �R1i = \m2N �Rmi for each i 2 I. Note that, for each m > 1,

�Rmi =
�R1i \

�
\m�1l=1 D

l
i

�
.

11This notion is simply called �belief� in Asheim and Dufwenberg (2003); the terminology �primary
belief�is used by Perea (2012).
12A straightforward modi�cation of the proofs in Appendix C shows that the set Bi (E�i) is Borel in

Si � Ti for every event E�i � S�i � T�i.
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The set
Q
i2I
�R1i corresponds to the set of all states in which there is �caution, rationality,

and common certain belief of caution and primary belief in rationality.�
In the canonical type structure, this event does not yield the permissibility set. This

is because �R1i does not impose weak belief of rationality of the opponent. Hence, it is
possible to show that ProjSi

�R1i = ProjSi�
1(S).

Instead, the event
Q
i2I R̂

1
i where

R̂1i =
�R1i \

�
\1l=0Dl

i

�
= �R1i \WBi (R�i) ; i 2 I,

captures the permissibility set in the canonical type structure. However, it is not true
that the event

R̂ni = �R1i \
�
\n�1l=0 D

l
i

�
captures the strategies of player i that survives n steps of permissibility. This is because
D1
i already imposes certain belief of the event that the opponent weakly believes in the

rationality of player i. We now exhibit an example which shows the existence of a strategy
si 2 Si which survives the �rst two steps of permissibility, but si 62 ProjSiR̂2i in every type
structure, including the canonical one.

1n2 ` c r
u 1; 1 0; 1 1; 0
m 0; 0 1; 1 1; 0
d 0; 0 0; 0 0; 1
b 2; 0 0; 1 0; 0

In this two-player game, there is a unique permissible strategy pro�le, which results
from the �rst three steps of the procedure:

�1(S) = fu;m; bg � fc; rg ,
�2(S) = fu;mg � fcg ,
�3(S) = fmg � fcg .

We now show that, although u survives the �rst two steps of the procedure, we cannot
have u 2 ProjS1R̂21, independently of the type structure. To this end, �x any (s1; t1) 2 R̂21
and write �1(t1) = (�

1
1; :::; �

n
1 ). Note that, by de�nition,

R̂21 = R1 \ �C1 \WB1 (R2) \B1( �C2 \WB2 (R1));

hence
�11(R2 \ �C2 \WB2 (R1)) = 1.

Next note that:
(a) every strategy-type pair (s2; t2) 2 R2 \ �C2 must satisfy s2 6= `, and
(b) s2 6= r for every (s2; t2) 2 R2 \WB2 (R1).
Indeed, ` is weakly dominated, so it cannot optimal under a full-support �rst-order

belief of a type t2. Property (b) holds because r is not a lexicographic best reply to any
�rst-order belief under which fu;m; bg is weakly believed. Since (s1; t1) 2 R1, this implies
that s1 = m and so u =2 ProjS1R̂21.
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Since ProjS1R̂
2
1 is strictly included in ProjS1�

2(S) = fu;mg, one may hope that
ProjS1R̂

1
1 = ProjS1�

2(S). But this is not generally true either. To see this, �x a
belief-complete type structure for the game above. Then ProjS2R2 = f`; c; rg because
R2 does not require full-support. So, we can construct a full-support LPS �1 = (�

1
1; �

2
1) 2

N+(S1�T1) such that �11 (f`g � T2) � 1=2 and �11 (R2) = 1. Then, by belief completeness,
there exists t1 2 T1 such that �1(t1) = �1, and it can be easily seen that

(b; t1) 2 R̂11 = R1 \ �C1 \WB1 (R2) ,

although b 62 ProjS1�2(S). So ProjS1R̂11 strictly includes ProjS1�2(S). This is because R̂1i
does not impose weak or certain belief in caution.
To summarize,

Q
i2I
�R1i captures the permissibility set in an ad-hoc type structure, but

not in the canonical one. This can be corrected with small amendment (event
Q
i2I R̂

1
i ),

but the iterative construction of the event still does not correspond to the steps of permis-
sibility. The reference point of Asheim and Dufwenberg is actually not permissibility but
the Dekel-Fudenberg procedure.13 This explains the use of two di¤erent notions of belief,
which mirrors the conceptual di¤erence between the �rst step of the procedure (based on
weak dominance) and the further steps (based on strict dominance).
Di¤erently from Asheim and Dufwenberg (2003), we provide epistemic conditions in

the canonical type structure for each step of permissibility by using only the notion of
weak belief. Moreover, we answer the following �inverse question�: Given a type structure,
what are the behavioral implications of RcCWBRc? We conjecture that full weak best
response sets also characterize the behavioral implications of

Q
i2I R̂

1
i across all type

structures. This analogue of Theorem 1 shall not mislead: Event RcCWBRc is larger
than

Q
i2I R̂

1
i , possibly also in terms of projections on strategy sets.

5.4 Cautious belief and iterated admissibility

The use of weak belief in place of certain belief also sheds light on the conceptual di¤er-
ence between permissibility and iterated admissibility (i.e., maximal iterated elimination
of weakly dominated strategies). In Catonini and De Vito (2018), we show that iterated
admissibility characterizes the behavioral implications of cautious rationality and com-
mon cautious belief of cautious rationality. Cautious belief strengthens weak belief by
introducing a cautious attitude towards the believed event. An event E � S�i � T�i
is cautiously believed under the LPS �i = (�1; :::; �n) if (i) there is m � n such that
�l(E) = 1 for each l = 1; :::;m, and (ii) for every s�i 2 ProjS�iE, �j(fs�ig � T�i) > 0
for some j � m. Requirement (i) coincides with weak belief. Requirement (ii) means
that player i considers every payo¤-relevant subset of E in�nitely more likely than not-E.
Player i is then cautious towards the believed event in the same way player i is cautious
in general: before entertaining the possibility that E does not occur, player i cautiously
takes into consideration all the possible payo¤-relevant implications of E. So, the concep-
tual di¤erence between permissibility and iterated admissibility lies in the presence or not
of this cautious attitude towards opponents�rationality and beliefs in rationality of all
orders. In permissibility, when players weakly believe in the opponents�rationality, they

13It should be noted that Asheim and Dufwenberg use the Dekel-Fudenberg procedure as a primitive
de�nition for the concept of permissible strategies� see Asheim and Dufwenberg (2003, De�nition C.1).
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can ignore some payo¤-relevant implications of it, and only consider them together with
other payo¤-relevant events that are not necessarily compatible with the opponents�ratio-
nality. In iterated admissibility, players cautiously believe in the opponents�rationality by
considering all its payo¤-relevant implications before considering any other payo¤-relevant
event.

Appendix A: The Decision-theoretic Framework

Fix a lexicographic type structure T = hSi; Ti; �iii2I , where each strategy set Si is �nite.
To ease notation, it will be convenient to set 
 = S�i�T�i and to drop i�s subscript from
LPS�s �i on 
.
An act on 
 is a Borel measurable function f : 
 ! [0; 1]. We let ACT(
) denote

the set of all acts on 
. A Decision Maker has preferences over elements of ACT(
). For
x 2 [0; 1], write �!x for the constant act associated with x, i.e., �!x (!) = x for all ! 2 
.
Each constant act is identi�ed with the associated outcome in a natural way. In what
follows, we assume that the outcome space [0; 1] is in utils, i.e., material consequences are
replaced by their von Neumann-Morgenstern utility. Given a Borel set E � 
 and acts
f; g 2ACT(
), de�ne (fE; g
nE) 2ACT(
) as follows:

(fE; g
nE)(!) =

�
f(!), if ! 2 E,
g(!), if ! 2 
nE.

Let % be a preference relation on ACT(
) and write � (resp. �) for strict preference
(resp. indi¤erence). The preference relation % satis�es the following axioms:

Axiom 1 Order: % is a complete, transitive, re�exive binary relation on ACT(
).

Axiom 2 Independence: For all f; g; h 2ACT(
) and � 2 (0; 1],

f � g implies �f + (1� �)h � �g + (1� �)h, and

f � g implies �f + (1� �)h � �g + (1� �)h.

Moreover, let %E denote the conditional preference given E, that is, f %E g if and
only if (fE; h
nE) % (gE; h
nE) for some h 2ACT(
). Standard results (see Blume et al.,
1991a, for a proof) show that, under Axioms 1 and 2, (fE; h
nE) % (gE; h
nE) holds for
all h 2ACT(
) if it holds for some h.
Throughout, we maintain the assumption that � is a Lexicographic Expected Utility

representation of %, i.e., %=%�. (This makes sense, since each Lexicographic Expected
Utility representation satis�es Axioms 1 and 2.) Now we can introduce the notions of
more likely and in�nitely more likely.

De�nition A.1 Fix � = (�1; :::; �n) 2 N (
) and events E;F � 
 with E 6= ;. Say that
E is more likely than F under %� if for all x; y 2 [0; 1] with x > y,

(�!x E;�!y 
nE) %� (�!x F ;�!y 
nF ).
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Say that E is deemed in�nitely more likely than F under %� (Lo, 1999), and write
E ��� F , if for all x; y; z 2 [0; 1] with x > y,

(�!x E;�!y 
nE) �� (�!z F ;�!y 
nF ).

In words, E is more likely than F if the Decision Maker prefers to bet on E rather
than on F given the same prizes for the two bets; this choice theoretic notion is due to
Savage (1972). On the other hand, E is in�nitely more likely than F if the Decision Maker
strictly prefers to bet on E rather than on F , and increasing the prize by any extent for
the second bet does not induce his strict preference to change.
Recall that an event E � 
 is Savage-null under % if f �E g for all f; g 2ACT(
).

Say that E is non-null under % if it is not Savage-null under %. Thus, note that if
E ��� F , then E is non-null under %�, while F may, but need not, be Savage-null under
%�. When %� has a subjective expected utility representation, E ��� F implies that F
is Savage-null.
The likelihood relation ��� possesses some natural properties. First, it is irre�exive,

asymmetric and transitive. Moreover, it is monotone; that is, if E ��� F , then

(P1) E is in�nitely more likely than any Borel subset of F ; and

(P2) any Borel superset of E is in�nitely more likely than F .

The �nal step to motivate the analysis of Section 2.2 is to characterize the likelihood
order��� between pairwise disjoint events in terms of LPS�s representing %� as in De�ni-
tion 1. Recall from Section 2.2 that, given an LPS � = (�1; :::; �n) 2 N (
) and non-empty
event E � 
, we let

I� (E) = inf
�
l 2 f1; :::; ng

���l (E) > 0	 .
Proposition A.1 Fix � = (�1; :::; �n) 2 N (
) and events E;F � 
 with E 6= ;.

1. E is more likely than F under %� if and only if�
�l (E)

�n
l=1
�L

�
�l (F )

�n
l=1
.

2. E ��� F if and only if I� (E) < I� (F ).

Proof : The proof of part 1 is left to the reader. We prove part 2. To this end, we �rst
record the following fact: Fix x; y; z 2 [0; 1] with x > y. We have that

(�!x E;�!y 
nE) �� (�!z F ;�!y 
nF )()
�
(x� y)�l (E)

�n
l=1

>L
�
(z � y)�l (F )

�n
l=1
. (A.1)

To see this, note that (�!x E;�!y 
nE) �� (�!z F ;�!y 
nF ) holds if and only if�Z
E

xd�l +

Z

nE

yd�l
�n
l=1

>L

�Z
F

zd�l +

Z

nF

yd�l
�n
l=1

,
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that is, if and only if�
x�l (E) + y�l (
nE)

�n
l=1

>L
�
z�l (F ) + y�l (
nF )

�n
l=1
,

and so if and only if
�
(x� y)�l (E)

�n
l=1

>L
�
(z � y)�l (F )

�n
l=1
.

Suppose that I� (E) < I� (F ). Then, for every x; y; z 2 [0; 1] with x > y,�
(x� y)�l (E)

�n
l=1

>L
�
(z � y)�l (F )

�n
l=1
.

By (A.1), it follows that (�!x E;�!y 
nE) �� (�!z F ;�!y 
nF ). Hence E ��� F .
Suppose that I� (E) � I� (F ). Then, for every x; y; z 2 [0; 1] with x > y and x <

z � �I�(F ) (F ), �
(z � y)�l (F )

�n
l=1

>L
�
(x� y)�l (E)

�n
l=1
.

By (A.1), it follows that (�!z F ;�!y 
nF ) �� (�!x E;�!y 
nE). So, it is not true that E ��� F .�

We conclude this section by providing an additional perspective on weak belief in
terms of in�nitesimal nonstandard real numbers. As is well known (see Blume et al.
1991a, Section 6), a preference relation admitting a Lexicographic Expected Utility repre-
sentation can be equivalently described by an F-valued probability measure on 
, where
F is a non-Archimedean ordered �eld which is a strict extension of the set of real numbers
R. For instance, the LPS � = (�1; �2) can be represented by a nonstandard real valued
probability measure � = (1� ")�1+ "�2, where " > 0 is an in�nitesimal nonstandard real
such that for each real number x > 0 and each n 2 N, it is the case that x > n".
Given nonstandard reals x and y, say that x is in�nitely greater than y if x > ny

for each n 2 N. The notion of in�nitely more likely in De�nition 1 corresponds exactly to
the �in�nitely greater�relation between the nonstandard probability values that provide
an equivalent representation of preferences. With this, we now show that weak belief can
be given a nonstandard characterization as follows. Fix a non-empty event E � 
. Then
E is weakly believed under F-valued probability measure � if and only if

� (E) > n� (
nE)

for every n 2 N, which is equivalent to say that

� (
nE) < 1

1 + n

for every n 2 N. For each non-standard real x, let st (x) denote its standard part. So, in
light of the above, event E is weakly believed under � if and only if st (� (
nE)) = 0, or,
equivalently, st (� (E)) = 1 (cf. Halpern, 2010).

Appendix B: Proofs for Section 3

Proof of Proposition 3: Note that a set Q is a WBRS if Q � �(Q). The set of
permissible strategies �1(S) is a WBRS, since �1(S) = �(�1(S)). It is immediate to see
that �1(S) is a full WBRS. Fix some WBRS Q 2 Q. Using the monotonicity property
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of � (Remark 2) and the fact that Q � �(Q), an easy induction argument shows that
Q � �k(Q) � �k(S) for all k � 1. Therefore, Q � �1(S). �

For the proof of Proposition 4, we �rst note the following facts pertaining the set
su (si) for some si 2 Si.

Remark B.1 Fix si 2 Si and �i 2 M(S�i). If si 2 ri(�i), then su (si) � ri(�i) (cf.
Brandenburger et al., 2012, Lemma 5.2). Speci�cally, if si is the unique best reply to �i,
then ri(�i) = su (si) = fsig.

Remark B.2 Fix si 2 Si. If si is not weakly dominated, then there exists a full-support
�i 2 M(S�i) such that si 2 ri(�i) and ri(�i) = su (si). This result is Lemma D.4 in
Brandenburger et al. (2008), which is restated here in terms of the intended interpretation
of the geometric notions in game theory (see Brandenburger et al., 2008, p.343).

We break the proof of Proposition 4 in two lemmas.

Lemma B.1 A set Q 2 Q is a WBRS if and only if, for each i 2 I,
(i) each si 2 Qi is not weakly dominated, and
(ii) each si 2 Qi is not strictly dominated with respect to Si �Q�i.

Proof: Fix a player i 2 I. If si 2 Qi is not weakly dominated, then by Lemma 4 in Pearce
(1984) there exists �2i 2 M(S�i) such that Supp�2i = S�i and �i(si; �2i ) � �i(s

0
i; �

2
i ) for

every s0i 2 Si. Moreover, if si 2 Qi is not strictly dominated with respect to Si�Q�i, then
Lemma 3 in Pearce (1984) yields the existence of �1i 2M(S�i) such that �1i (Q�i) = 1 and
�i(si; �

1
i ) � �i(s

0
i; �

1
i ) for every s

0
i 2 Si. Let �i = (�1i ; �2i ). We clearly have �i 2 W+(Q�i)

and si 2 ri(�i), hence si 2 �i(Q�i). Since i 2 I and si are arbitrary, this shows that
Q � �(Q), i.e., Q is a WBRS.
Conversely, �x a WBRS Q 2 Q. Then, for each si 2 Qi, we can take the �rst

component probability of the LPS �i 2 W+(Q�i) for which si 2 ri(�i), so to claim the
existence of �1i 2 M(S�i) such that �1i (Q�i) = 1 and �i(si; �1i ) � �i(s

0
i; �

1
i ) for every

s0i 2 Si. By Lemma 3 in Pearce (1984), it follows that si 2 Qi is not strictly dominated
with respect to Si � Q�i. Moreover, by Proposition 1 in Blume et al. (1991b), there
exists �i 2 M (S�i), with Supp�i = S�i, which is preference equivalent to �i. Thus,
�i(si; �i) � �i(s

0
i; �i) for every s

0
i 2 Si. Then, using again Lemma 4 in Pearce (1984), we

can conclude that each si 2 Qi is not weakly dominated. �

Lemma B.2 Fix a WBRS Q and si 2 Qi. Then su (si) � Qi if and only if there exists
�i 2 W+(Q�i) such that si 2 ri(�i) and ri(�i) � Qi.

Proof: Suppose su (si) � Qi. Lemma B.1 entails that si is not weakly dominated.
So, by Remark B.2, there exists a full-support �2i 2 M(S�i) such that si 2 ri(�

2
i ) and

ri(�
2
i ) = su (si). Moreover, by Lemma B.1, si is not strictly dominated with respect to

Si � Q�i. Hence, there exists �1i 2 M(S�i) such that si 2 ri(�
1
i ) and �

1
i (Q�i) = 1. Let

�i = (�1i ; �
2
i ). We clearly have si 2 ri(�i) and �i 2 W+(Q�i). We now claim that, if

s0i 2 ri(�i) then s0i 2 ri(�2i ); this will imply ri(�i) � Qi, since ri(�2i ) = su (si) � Qi.
So, let s0i 2 ri(�i); it is enough to consider two cases:
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(a) �i(s0i; �
1
i ) = �i(s

00
i ; �

1
i ) for all s

00
i 2 Si, and �i(s0i; �2i ) � �i(s

00
i ; �

2
i ) for all s

00
i 2 Si. Of

course, this implies s0i 2 ri(�2i ).
(b) �i(s0i; �

1
i ) > �i(s

00
i ; �

1
i ) for all s

00
i 2 Si. In this case, s0i is the unique best reply to

�1i , and so it must be s
0
i = si. Since si 2 ri(�2i ), this proves the claim.

Conversely, if si 2 ri(�i) for some �i 2 W+(Q�i), then, by Proposition 1 in Blume et
al. (1991b), there exists �i 2M (S�i), with Supp�i = S�i, which is preference equivalent
to �i, and such that si 2 ri(�i). By Remark B.1, it follows that su (si) � ri(�i). Clearly, if
s0i 2 ri(�i), then s0i 2 ri(�i), because �i and �i are preference equivalent. Since ri(�i) � Qi,
this implies su (si) � Qi, as required.

Proof of Proposition 4: Immediate from Lemma B.1 and Lemma B.2. �

Appendix C: Proofs for Section 4

We �rst show that, for a given type structure T = hSi; Ti; �iii2I , the sets Rmi , m > 1, as
de�ned in the main text, are Borel subsets of Si � Ti.

Lemma C.1 Fix a non-empty event E � S�i�T�i. Then the set of all � 2 N (S�i�T�i)
under which E is weakly believed is Borel in N (S�i � T�i).

Proof : By Theorem 17.24 in Kechris (1995), it follows that, for a given event E �
S�i � T�i, the set of probability measures � satisfying � (E) = p for p 2 Q \ [0; 1] is
measurable in M(S�i � T�i). So the set of all � 2 M(S�i � T�i) satisfying � (E) = 1
is Borel inM(S�i � T�i). Now, �x n 2 N. By the above argument and by de�nition of
Nn(S�i � T�i), it turns out that the set

U1n =
�
� 2 Nn(S�i � T�i)

���1 (E) = 1	
=

�
� 2M(S�i � T�i)

���1 (E) = 1	� (M(S�i � T�i))
n�1

is Borel in Nn(S�i � T�i). The set of all � 2 N (S�i � T�i) under which E is weakly
believed is given by [n2NU1n, so Borel in N (S�i � T�i). �

By the measurability of each belief map in a type structures, we have the following.

Corollary C.1 For every i 2 I, if E � S�i � T�i is a non-empty event, then WBi(E)
is a Borel subset of Si � Ti.

We let Ci denote the set of all � 2 N (S�i � T�i) such that margS�i� 2 N+ (S�i).

Lemma C.2 The set Ci is Borel in N (S�i � T�i).

Proof : Note that � = (�1; :::; �n) 2 Ci if and only if, for each s�i 2 S�i, there is l � n
such that �l(fs�ig � T�i) > 0. Let

Cni = \s�i2S�i
�
Nn(S�i � T�i)n

�
\l�n

�
� 2 Nn(S�i � T�i)

���l (fs�ig � T�i) = 0
	��

.

Each set
�
� 2 Nn(S�i � T�i)

���l (fs�ig � T�i) = 0
	
is Borel by Theorem 17.24 in Kechris

(1995). Therefore Ci = \n2NCni is Borel. �
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Lemma C.3 Fix si 2 Si. The set of all � 2 N (S�i� T�i) such that si is a lexicographic
best reply to margS�i� is Borel in N (S�i � T�i).

To prove Lemma C.3, we need the following auxiliary result:

Lemma C.4 Fix a type structure T = hSi; Ti; �iii2I and si; s0i 2 Si. Let OWsi;s0i and O
S
si;s0i

be subsets of M(S�i � T�i) de�ned as follows:

OWsi;s0i =
�
� 2M(S�i � T�i)

���i(si;margS�i�) � �i(s
0
i;margS�i�)

	
,

OSsi;s0i =
�
� 2M(S�i � T�i)

���i(si;margS�i�) > �i(s
0
i;margS�i�)

	
.

Then OWsi;s0i and O
S
si;s0i

are closed and open in M(S�i � T�i), respectively.

Proof : First recall that the map gProjS�i :M(S�i � T�i)!M (S�i) de�ned by

� 7! margS�i�, � 2M(S�i � T�i),

is continuous. Moreover, for each esi 2 Si, the function �i(esi; �) : M (S�i) ! R is also
continuous. De�ne the real valued map fsi;s0i :M (S�i)! R as

fsi;s0i
�
margS�i�

�
= �i(si;margS�i�)� �i(s

0
i;margS�i�), � 2M(
).

The map fsi;s0i is clearly continuous, and the set O
W
si;s0i

can be written as

OWsi;s0i =
�gProjS�i��1 �margS�i� 2M (S�i)

��fsi;s0i �margS�i�� � 0	
=

�gProjS�i��1 �f�1si;s0i ([0;+1))�
=

�
fsi;s0i � gProjS�i��1 ([0;+1)) ,

i.e., OWsi;s0i is the inverse image of the set [0;+1), closed in R, under the continuous map
fsi;s0i � gProjS�i, hence OWsi;s0i is closed in M(
). An analogous argument shows that set
OSsi;s0i

can be written as

OSsi;s0i =
�
fsi;s0i � gProjS�i��1 ((0;+1)) ,

hence OSsi;s0i is open inM(S�i � T�i). �

Proof of Lemma C.3.14 Let U sin be the set of all � 2 Nn(S�i � T�i) for which si is
a lexicographic best reply to margS�i�. By Lemma C.3, the sets O

W
si;s0i

and OSsi;s0i are,
respectively, closed and open in M(
), hence the set OEsi;s0i = OWsi;s0i

nOSsi;s0i is closed in
M(S�i � T�i). The set U sin can be expressed as

U sin =
T
s0i 6=si

0@ �
OSsi;s0i

�Nn�1(
)
�
[
�
OEsi;s0i

�OSsi;s0i
�Nn�2(
)

�
[

::: [
�
OEsi;s0i

�OEsi;s0i
� :::�OWsi;s0i

� 1A ;

14The proof closely follows the lines of the proof of Lemma A.6 in Dekel et al. (2016).
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and this shows that U sin is Borel in N (S�i � T�i). The set of all � 2 N (S�i � T�i) for
which si is a lexicographic best reply to margS�i� can be written as [n2NU sin , hence it is
Borel. �

Corollary C.2 Fix a type structure T = hSi; Ti; �iii2I . For every i 2 I, the set R1i is
Borel in Si � Ti.

Proof : By Lemma C.2 and measurability of �i, it follows that Ci = Si���1i (Ci) is Borel
in Si � Ti. Write Ri as

Ri = [si2Si
�
fsig � ��1i (Lsi)

�
,

where Lsi stands for the set of all �i 2 N (S�i � T�i) such that si is a lexicographic best
reply to margS�i�i. By Lemma C.3 and measurability of �i, it follows that Ri is Borel in
Si � Ti. Since R1i = Ri \ Ci the conclusion follows. �

We can now state and prove the desired result.

Lemma C.5 For each i 2 I and m � 1, Rmi is Borel in Si � Ti.

Proof: For each i 2 I, by Corollary C.2, the set R1i is Borel in Si � Ti. By Corollary
C.1, the set WBi

�
Rm�i

�
is Borel in Si � Ti provided that Rm�i is Borel. Since R

m+1
i =

Rmi \WBi
�
Rm�i

�
, the conclusion follows from an easy induction on m. �

For the proof of Lemma 1 we need two auxiliary results. The �rst (Lemma C.6) states
that cautious rationality is preserved under type morphisms between type structures. The
second (Lemma C.7) states an analogous result for the operatorWBi, provided that the
type morphisms are bimeasurable.

Lemma C.6 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be type structures such that
there exists a type morphism ('i)i2I : T ! T � from T to T �. Fix a type ti 2 Ti. Then
(i) ti is cautious if and only if 'i (ti) is cautious.
(ii) A strategy-type pair (si; ti) is rational in T if and only (si; 'i (ti)) is rational in

T �.

Proof : Part (i): Let �i (ti) =
�
�1i (ti); :::; �

n
i (ti)

�
be LPS associated with ti. Fix s�i 2 S�i.

For each l � n, by de�nition of type morphism, we have

��;li ('i (ti))
�
fs�ig � T ��i

�
= �li (ti)

��
IdS�i ; '�i

��1 �fs�ig � T ��i
��
= �li (ti) (fs�ig � T�i) .

Therefore there exists l � n such that �li (ti) (fs�ig � T�i) > 0 if and only if �
�;l
i ('i (ti))

�
fs�ig � T ��i

�
>

0. It follows that margS�i�i (ti) 2 N+ (S�i) if and only if margS�i�
�
i ('i (ti)) 2 N+ (S�i).

Part (ii) follows from the observation that type morphisms preserve the marginal LPS
on strategies (i.e., �rst-order beliefs). �

Lemma C.7 Let T = hSi; Ti; �iii2I and T � = hSi; T �i ; ��i ii2I be type structures such that
there exists a bimeasurable type morphism ('i)i2I : T ! T � from T to T �. Then, for each
non-empty event E�i � S�i�T�i, it holds that (IdSi ; 'i) (WBi (E�i)) �WB�i

��
IdS�i ; '�i

�
(E�i)

�
.
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Proof : Fix (si; ti) 2WBi (E�i), and write �i(ti) = (�1; :::; �n) and �
�
i ('i(ti)) = (�

�
1; :::; �

�
n).

By bimeasurability of ('i)i2I , the set
�
IdS�i ; '�i

�
(E�i) is Borel in S�i � T ��i. Since E�i

is weakly believed under �i(ti), we obtain

��1(
�
IdS�i ; '�i

�
(E�i)) = �1(

�
IdS�i ; '�i

��1 �
IdS�i ; '�i

�
(E�i))

� �1(E�i) = 1,

where the �rst equality follows from the fact that ('i)i2I is a type morphism (eq. (4.1)).
Therefore,

�
IdS�i ; '�i

�
(E�i) is weakly believed under �

�
i ('i(ti)), i.e.,

(si; 'i(ti)) 2WB�i
��
IdS�i ; '�i

�
(E�i)

�
.

�

Proof of Lemma 1: The proof of part (i) is by induction on m. For m = 1 the
result follows from Lemma C.6. Suppose that the result holds for some m � 1; we
show that it also holds for m + 1. Fix a player i 2 I, and let (si; ti) 2 Rm+1i . So
(si; ti) 2 Rmi , and, by the induction hypothesis, (si; 'i(ti)) 2 R�;mi . Hence, in order to
show that (si; 'i(ti)) 2 R�;m+1i , it is enough to show that (si; 'i(ti)) 2 WB�i

�
R�;m�i

�
,

i.e., R�;m�i is weakly believed under ��i ('i(ti)). To this end, �rst note that, by the in-
duction hypothesis,

�
IdS�i ; '�i

� �
Rm�i

�
� R�;m�i . Moreover, by bimeasurability of ('i)i2I ,

the set
�
IdS�i ; '�i

� �
Rm�i

�
is Borel in S�i � T�i. Therefore, Lemma C.7 yields that�

IdS�i ; '�i
� �
Rm�i

�
is weakly believed under ��i ('i(ti)). The conclusion of the proof of

part (i) follows from the monotonicity property of weak belief (Property 3).
Part (ii) follows immediately from part (i). �

Finally, we provide the proofs of the two lemmas of Section 4.3.

Proof of Lemma 2: The proof of part (i) is by induction on m.
(m = 1) Fix i 2 I. Let si 2 ProjSi (R1i ), so that (si; ti) 2 R1i for some ti 2 Ti. Then si

is optimal under margS�i�i(ti) 2 N+(S�i), that is, si 2 S1i . So ProjSi (R1i ) � S1i for each
i 2 I.
(m � 2) Suppose that the statement has been shown to hold for all l = 1; :::;m � 1.

We show that the statement is true for l = m.
Fix a player i 2 I, and let si 2 ProjSi (Rmi ), so that (si; ti) 2 Rmi for some ti 2 Ti. It

follows from the de�nition of Rmi that (si; ti) 2 Rm�1i , so, by the induction hypothesis,
si 2 Sm�1i . Also, Rm�1�i is weakly believed under �i (ti) = (�

1
i ; :::; �

n
i ), hence

margS�i�
1
i

�
Sm�1�i

�
� margS�i�

1
i

�
ProjS�i

�
Rm�1�i

��
� �1i

�
Rm�1�i

�
= 1,

where the �rst inequality follows from the induction hypothesis. Hence si 2 Sm�1i is
optimal under margS�i�i(ti) 2 N+(S�i) with margS�i�

1
i

�
Sm�1�i

�
= 1, that is, si 2 Smi . So

ProjSi (R
m
i ) � Smi for each i 2 I.

This concludes the proof of part (i). Part (ii) follows immediately from part (i). �

Proof of Lemma 3: If Q 2 Q is a full WBRS, then, for each si 2 Qi, there exists
�si 2 W+(Q�i) � N+(S�i) such that si 2 ri(�si) and ri(�si) � Qi. So, we �x some �si
satisfying the above conditions for every si 2 Qi, and we construct a �nite type structure
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T � = hSi; T �i ; ��i ii2I as follows. For each player i 2 I, let T �i be a homeomorphic copy of
Qi. So, for every si 2 Qi, we will denote the corresponding type as t�si. For each i 2 I,
let  i : Qi ! (Si � T �i ) be the continuous map that associates each strategy si 2 Qi with
the pair (si; t�si). Thus, we de�ne each belief map �

�
i : T

�
i ! N (S�i � T ��i) by

��i (t
�
si
) = b �i(�si), si 2 Qi.

Finiteness of each type set T �i guarantees that each belief map is measurable (in fact,
continuous). Note that, for each si 2 Qi, margS�i�

�
i (t

�
si
) = �si.

We show that T � satis�es the required properties. We prove, by induction on m � 1,
that the following properties hold for each i 2 I:
(a) if si 2 Qi then (si; t�si) 2 R

�;m
i ; and

(b) if (s0i; t
�
si
) 2 R�;mi then s0i 2 Qi.

Part (a) yields Qi � ProjSi (R
�;1
i ), while part (b) yields ProjSi (R

�;1
i ) � Qi.

(m = 1) If si 2 Qi, then (si; t�si) 2 R�;1i because si is optimal under margS�i�
�
i (t

�
si
) 2

N+(S�i). For property (b): If (s0i; t
�
si
) 2 R�;1i , then s

0
i is optimal under margS�i�

�
i (t

�
si
) 2

N+(S�i), and, since Q is a full WBRS, then s0i 2 Qi.
(m � 2) Assume that property (a) holds for m � 1. Equivalently, property (a) says

that  i (Qi) � R�;mi for each i 2 I, and so

8i 2 I, Qi �  �1i (R�;mi ) . (C.1)

Let si 2 Qi. Then, by the induction hypothesis, (si; t�si) 2 R
�;m
i , so we need to show that

R�;m�i is weakly believed under �
�
i (t

�
si
), i.e., the �rst component probability of ��i (t

�
si
), viz.e �i(�1si), assigns probability 1 to R�;m�i . To see this, note thate �i(�1si) �R�;m�i � = �1si

�
 �1�i

�
R�;m�i

��
� �1si(Q�i) = 1,

where the second inequality follows from (C.1). Therefore (si; t�si) 2 R
�;m+1
i .

Assume now that property (b) holds for m � 1. If (s0i; t
�
si
) 2 R�;m+1i then (s0i; t

�
si
) 2

R�;mi , and so, by the induction hypothesis, s0i 2 Qi. �
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