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Abstract

A large and increasing body of empirical evidence has established that fis-
cal adjustments based on government spending cuts are less costly in terms
of losses in output growth than those based on tax increases. We show that
the heterogeneous effects of tax-based and expenditure-based adjustments can
be explained by the difference in their propagation channels in the network
of industries. In theory, a tax-based adjustment plan is mainly a supply-side
shock which propagates downstream (from supplier industries to customer in-
dustries) while an expenditure based plan is a demand-side shock which propa-
gates upstream (from customer industries to supplier industries). In practice,
the empirical investigation of these channels on US data based on Spatial
Vector Autoregressions reveals that tax-based plans propagate through the
network with an average output multiplier of close to -2, while the propaga-
tion of expenditure-based plans does not lead to any statistically significant
contractionary effect on growth.
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1 Introduction

Macroeconomic theory has traditionally attributed the large impact of fiscal adjust-
ments on the real economy to the propagation mechanism that amplifies the initial
impulse. Such a propagation mechanism has been firstly identified with the Keyne-
sian Multiplier (see Diamond 1982 , and Christiano, Eichenbaum, and Rebelo 2011 ),
which concentrates on the demand-side effects, but propagation to the real economy
also depends on changes in the incentives of workers and firms, the supply side of the
economy (see for example Christiano, Eichenbaum, and Rebelo 2011 ). While the
propagation through the Keynesian Multiplier always implies stronger output effects
of expenditure based adjustments than tax based adjustments, the results can be
different in a model that includes supply-side effects. Alesina, Barbiero, et al. 2017
introduce the possibility of persistent adjustment plans in a standard New Keynesian
framework to show that when fiscal adjustments are close to permanent, spending
cuts are less recessionary than tax hikes.

The empirical literature on the macroeconomic effects of fiscal policies has noto-
riously found a wide range of estimates and is far from having reached a consensus
for fiscal multipliers. A new fact, however, is consistently confirmed by a number
of recent papers (e.g. Ramey 2018, Alesina, Favero, and Giavazzi 2015, Guajardo,
Leigh, and Pescatori 2014 ): fiscal consolidations implemented by raising taxes imply
larger output losses compared to consolidations relying on reductions in government
spending.

In this paper we explore a new propagation mechanism of fiscal policy related
to the work on the network effects of macroeconomic shocks (see Gabaix 2011, Ace-
moglu, Vasco M Carvalho, et al. 2012, Acemoglu, Akcigit, and Kerr 2016 and Ozdagli
and Weber 2017). This mechanism has the potential of explaining the new fact in the
empirical evidence and we investigate this possibility using US data over the period
1978-2014. A recent paper by Auerbach, Gorodnichenko, and Murphy 2019, using
micro-level data on local defense spending finds the potential for large fiscal spillovers
among entities that are strongly integrated economically. Differently from Auerbach,
Gorodnichenko, and Murphy 2019, our focus is more on fiscal consolidation.

Network analysis of the transmission of macroeconomic shocks is based on the in-
tuition that input-output linkages can neutralize the law of large numbers that makes
local shocks irrelevant for the global economy because local shocks that hit sectors
that are particularly important as suppliers to other sectors do translate into aggre-
gate fluctuations. Studying the propagation of adjustments through input-output
linkages produces some interesting theoretical implications. In fact, as shown by
Acemoglu, Akcigit, and Kerr 2016, theory predicts that supply-side shocks propa-
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gate downstream more powerfully than upstream: downstream customers of directly
hit sectors are affected more strongly than upstream suppliers. The converse is true
for demand shocks that propagate more powerfully upstream. The reason for this
asymmetric pattern lies in the fact that supply side shocks change the prices faced
by customer industries while demand side shocks have much minor effects on prices
and propagate upstream.

In the simplified benchmark model studied in much of the literature (Long Jr and
Plosser 1983 and Acemoglu, Vasco M Carvalho, et al. 2012), both production func-
tions and consumer preferences are Cobb-Douglas (so that income and substitution
effects cancel out), and the asymmetry in the propagation of demand and supply
shocks becomes extreme as there is no upstream effect from supply-side shocks and
no downstream effect from demand-side shocks.

Fiscal adjustments based on changing taxation work mainly as supply-side adjust-
ments while expenditure-based adjustments are one of the typical cases of demand-
side adjustments. As their propagation is totally different, the size of their final effect
on total output depends on different elements of the input-output matrix. The em-
pirical analysis of a network-based propagation mechanism of fiscal adjustment can
therefore be interesting to provide an assessment of the relevance of the theoretical
mechanism and of its capability to explain the new fact in the empirical literature.
This paper is organized as follows. We start by illustrating in Section 2 the theo-
retical mechanism of the network diffusion of a payroll-tax shock and a government
expenditure shock. In Section 3 we describe how an empirical specification consis-
tent with the theoretical mechanism can be identified and estimated, then we bring
it to the data to illustrate our main results and some robustness check. Section 7
concludes.
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2 A Theoretical Explanation

Our empirical identification strategy is essentially a linear regression whose structure
has a particular theoretical justification; in fact, it could be interpreted as an estima-
tion of a closed form solution of a macroeconomic model. In particular we adapt of
the benchmark model designed to analyze the network transmission of demand and
supply shocks (Long Jr and Plosser 1983 and Acemoglu, Vasco M Carvalho, et al.
2012), to capture the propagation of fiscal policy in the industrial network. In order
to not divert the reader attention from our empirical approach and results, we prefer
to be brief on the model technical details and we remand the interested reader to the
next subsections where a full derivation and break down of the model is carried out.
Consider a perfectly competitive economy with n sectors, where the market clearing
condition for the generic industry i is:

yi = ci +
n∑
j=1

xji +Gi (1)

ci is household’s consumption of good produced by industry i; xij is the quantity
of goods produced in industry j used as inputs by industry i; Gi are government
purchases which are funded by imposing either a lump sum or a distortionary payroll
tax:

n∑
j=1

piGi = T + τwl (2)

Each sector solves the following profit maximization problem:

max
li,{xij}nj=1

pi · yi − w(1 + τ)li −
n∑
j=1

pjxij

with:

yi = ezil
αli
i

n∏
j=1

x
αij
ij

All alpha’s are non negative, and we assume constant return to scale:

αli +
n∑
j=1

aij = 1

The FOC are:

aij =
pjxij
piyi

, αli =
w (1 + τ) li

piyi
(3)
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The economy is populated by measure one of agents, who maximize their utility1

subject to a budget constraint:

max
l,{ci}ni=1

(1− l)λ ·
n∏
j=1

cβii

s.t.
n∑
i=1

pici ≤ wl − T

with
n∑
i=1

βi = 1

The FOC are:
pici
βi

= k ∀i ∈ {1, ..., n} (4)

l = 1− λ

w
· k (5)

n∑
i=1

pici = wl − T (6)

Firms and households take all prices as given, and the market clearing conditions are
satisfied in the goods market and the labour market. Government actions are taken
as given and the wage is chosen as a numeraire (w = 1) .
Equations from 1 to 6 characterize the competitive equilibrium of the economy.
By log-differentiating the equations which characterize the equilibrium and after
cumbersome algebra (see next subsections for the detailed derivation), we obtain the
following closed form expression of a tax shock effect (we assume dG = 0: no change
in government spending):

d ln yi = αli ·
(
d ln (1− T )− d ln (1 + τ)

)
+

n∑
j=1

aij · d ln yj. (7)

Introducing the input-output matrix A, allows us to rewrite equation (7) in matrix
form:

d ln y
n×1

= αl
n×1
·
(
d ln (1− T )− d ln (1 + τ)

)
+ A

n×n
· d ln y

n×1
. (8)

1Following Acemoglu, Akcigit, and Kerr 2016 we consider the following simple functional form
assumption for (dis-)utility of labour: γ(l) = (1− l)λ
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The sectorial propagation of a tax adjustment that determines its global impact is
driven by the elements in the rows of the input-output matrix A, that describes
industrial purchases from other sectors (input suppliers). Therefore, the network
propagation mechanism of a tax shock is downstream (d ln ydown = A ·d ln y): down-
stream customers of directly hit sectors are affected while upstream suppliers are not.
In practice a tax increase behaves as a supply-side shock which affect the price of the
goods, this increase in the price is shifted upon other customer industries through
the input linkages (downward propagation).

On the other hand, a government spending shock, generates the following change
in the equilibrium level of yi:

d ln yi =
n∑
j=1

âji · d ln yj +
dG̃i

piyi
− βi

1 + λ
·

n∑
j=1

dG̃j

piyi
. (9)

where G̃i = piGi and âji =
xji
yi

= aji
pjyj
piyi

.

Introducing matrix Â, which is a transformation of the input-output matrix A, we
can rewrite equation (9) in a compact matrix form:

d ln y
n×1

= ÂT
n×n
· d ln y

n×1
+ Λ

n×n
· dG̃
n×1

, (10)

Equation (10) illustrates that, as the equilibrium price is not affected by the demand
side shocks, directly hit sectors adjust the demand of their inputs in absence of price
adjustments and shocks propagate upstream (d ln yup = Â′ · d ln y). The sectorial
propagation of an expenditure adjustment that determines its global impact is driven
by the elements in the columns of a transformed input-output matrix Â, which de-
scribe a sector’s sales to other industries. Basically, a spending cut, translates into
a reduction in a sector’s demand, whose reaction is to shrink the production of its
output by purchasing less input.

We are aware of the fact that this theoretical model generates an asymmetric
propagation of demand and supply shocks, thanks to the particular Cobb-Douglas
specification (for instance in Vasco M. Carvalho et al. 2016, they adopt a CES produc-
tion function which allows for both upstream and downstream propagation). Nev-
ertheless, we prefer to use Cobb-Douglas for two reasons: 1) it is consistent with
a dependent variable expressed in percent deviations; 2) it keeps the model easy.
Since we interpret the theoretical model only as a tool to break down and getting an
insight of a potential underlying economic mechanism, the plausibility of the model’s
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assumptions (such as Cobb-Douglas production function) do not undermine the logic
of our estimation strategy, which will be illustrated in section 3.

The next two subsections provide a detailed derivation of Equations 7 and 9.
Subsections 2.3 and 2.4 illustrate an example of a tax hike and a spending cut
respectively. Eventually, the last subsection (2.5) will go deeper on the choice of the
Cobb-Douglas production function.

2.1 The Effect of a Tax Shock (Detailed Derivation)

Consider an increase in payroll tax which is implemented by keeping the government
expenditure constant (dGi = 0) and therefore by reallocating taxation between the
non-distortionary and the distortionary component.
Take logs in the production function and totally differentiate by assuming no pro-
ductivity shocks to obtain:

d ln yi = αlid ln li +
n∑
j=1

aijd lnxij (11)

Totally differentiate the conditions for profit maximization:

d ln yi + d ln pi − d ln pj = d lnxij

d ln yi + d ln pi = d ln li + d ln (1 + τ)

as wages are chosen as numeraire.
Substitute these two equations into Equation 11:

d ln yi = αli (d ln yi + d ln pi − d ln (1 + τ)) +
n∑
j=1

aij (d ln yi + d ln pi − d ln pj) (12)

Using the household problem’s optimality conditions (Equations 4, 5 and (6) ),
we have:

k =
pi · ci
βi

= wl − T

Plugging into the previous equation the optimal labor supply and considering that
the wage is the numeraire, we obtain:

(1 + λ) · k = 1− T
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By log-differentiating the above equation, we obtain:

d ln pi + d ln ci = d ln(1− T ) (13)

and plugging (13) into (12) , yields:

d ln yi = αli
(
d ln yi−d ln ci+d ln(1−T )−d ln (1 + τ)

)
+

n∑
j=1

aij (d ln yi − d ln ci + d ln cj) .

Since αli +
∑n

j=1 aij = 1,, the d log yi terms cancel out. Rearranging:

d ln ci = αli
(
d ln(1− T )− d ln(1 + τ)

)
+

n∑
j=1

aijd ln cj,

in matrix form

d ln c = αld ln (1− T )− αld ln (1 + τ) + A · d ln c

d ln c = (I − A)−1 [αld ln (1− T )− αld ln (1 + τ)
]
.

Next, combining the market clearing conditions with the first order conditions we
obtain

yj = cj +
n∑
i=1

xij

yj
cj

= 1 +
n∑
i=1

aij
βiyi
βjci

which, given that G is constant, implies

d ln c = d ln y

and finally

d ln yi = αli ·
(
d ln (1− T )− d ln (1 + τ)

)
+

n∑
j=1

aij · d ln yj. (14)

Using the input-output matrix A, allows us to rewrite equation (14) in matrix form:

d ln y
n×1

= αl
n×1
·
(
d ln (1− T )− d ln (1 + τ)

)
+ A

n×n
· d ln y

n×1
. (15)

We therefore derived Equation 15 which is Equation 8 in the theoretical model
section.
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2.2 The Effect of a Spending Shock (Detailed Derivation)

We consider now the effect of a government expenditure shock which is fully financed
by lump-sum taxation, so for the sake of simplicity we set τ = 0. By solving the
following problem:

min
li,{xij}nj=1

w · li +
n∑
j=1

pj · xij

s.t. ezil
αli
i

n∏
j=1

x
αij
ij = 1

we derive the unit cost function of sector i:

Ci(p, w) = Bi · wα
l
i ·

n∏
j=1

p
aij
j

where

Bi =

(
1

αli

)αli
·
n∏
j=1

(
1

aij

)aij
.

Zero profit condition for producers, implies that the cost of producing one extra
unit of output (Ci(p, w)) coincides with the marginal revenue, the price pi. By log
differentiating the zero profit condition, we obtain:

ln pi = lnBi + αli lnw +
n∑
j=1

aij ln pj. (16)

Equation (16) illustrates that the vector of prices does not depend on government
purchases G, suggesting that equilibrium price is not affected by the demand side
shocks and instead, is fully determined by the supply side (notice that the equilibrium
price is instead affected by changes in the payroll tax τ , which we assumed here to
be zero for simplicity).

Log-differentiate the firms’ FOCs, and take into account the fact that in equilib-
rium prices do not change. Then we have:

d ln yi = d lnxij (17)

d ln yi = d ln li. (18)
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In particular notice that from Equation 17 we obtain:

dxij =
dyi
yi
· xij (19)

Since we assumed τ = 0, from the government budget constraint we have: T =∑n
i=1 piGi.

Using the fact that wage is the numeraire, from the household FOC we obtain:

pici =
βi

1 + λ
· (1−

n∑
j=1

pjGj),

by differentiating:

pi · dci = − βi
1 + λ

·
n∑
j=1

pj · dGj. (20)

By differentiating the resource constraint we have:

dyi = dci +
n∑
j=1

dxji + dGi (21)

Now recall that:

aij =
pjxij
piyi

=⇒ xij = aij
piyi
pj

Now rearrange Equation 21 and plug Equations: 17, 18, 19 and 20 into it:

dyi
yi

=
dci
yi

+
n∑
j=1

dxji
yi

+
dGi

yi

dyi
yi

= − 1

yi
· βi

1 + λ
·

n∑
j=1

pj · dGj

pi
+

n∑
j=1

xji ·
dyj
yj
· 1

yi
+
dGi

yi

dyi
yi

=
n∑
j=1

aji ·
pjyj
pi
· dyj
yj
· 1

yi
+
dGi

yi
− βi

1 + λ
·

n∑
j=1

pj · dGj

piyi
.

Now set: G̃i = piGi and âji =
xji
yi

= aji
pjyj
piyi

. We have:

d ln yi =
n∑
j=1

âji · d ln yj +
dG̃i

piyi
− βi

1 + λ
·

n∑
j=1

dG̃j

piyi
, (22)
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where matrix Â, is the transformation of the input-output matrix A. Setting:

Λ =



(
1− β1

1 + λ

)
· 1

p1 · y1

− β1

1 + λ
· 1

p1 · y1

. . . − β1

1 + λ
· 1

p1 · y1

− β2

1 + λ
· 1

p2 · y2

(
1− β2

1 + λ

)
· 1

p2 · y2

. . . − β2

1 + λ
· 1

p2 · y2

...
...

. . .
...

− βn
1 + λ

· 1

pn · yn
(
1− βn

1 + λ

)
· 1

pn · yn
. . . − βn

1 + λ
· 1

pn · yn


,

allows us to rewrite equation 22 in matrix notation:

d ln y
n×1

= ÂT
n×n
· d ln y

n×1
+ Λ

n×n
· dG̃
n×1

, (23)

Equation 23 coincides with Equation 10 of the Theoretical Model Section.

2.3 The Effect of Tax Adjustment: a Simple Illustration

Consider the simple case in which we have three industries. We describe the network
by triplets {i, j, k} where j is a supplier of industry i and k is a customer of industry
i. The network structure is the following simplified one: {2, 3, 1}, {1, 2, 3}, {3, 1, 2}.

Assume that u(c1, c2, c3, l) = γl
∏3

i=1 c
1/3
i . Sector’s i production function is yi =

ezil
αli
i x

αij
ij . Also set zi = 0 for ∀i

Market clearing condition for sector i is yi = ci + xki +Gi. Combining

aij =
pjxij
piyi

, αli =
w (1 + τ) li

piyi

and

pici
βi

=
pjcj
βj

to eliminate prices we get

aij =
cixij
cjyi

10



αli =
w (1 + τ) li

piyi

using the fact that
pici = βi (wl − T )

get

αli =
w (1 + τ) lici
βi (wl − T ) yi

w = 1, βi = β = 1/3, l = 1

αli =
3 (1 + τ) lici
(1− T ) yi

Substituting these expressions into the production function, we obtain

yi = l
αli
i x

αij
ij =

(
αli (1− T ) yi
3 (1 + τ) ci

)αli (αijcjyi
ci

)αij
Taking into account the fact that αli+αij = 1 for our example, simplify expression

above to

ci =

(
αli (1− T )

3 (1 + τ)

)αli
(αijcj)

αij =

(
αli
3

)αli
(αij)

αij

(
(1− T )

(1 + τ)

)αli
(cj)

αij

Let
(
αli
3

)αli
(αij)

αij = Ωij, then

ci = Ωij

(
1− T
1 + τ

)αli
c
αij
j , i = 1, 2, 3

Solving simultaneously the three equations, we obtain:

ci = Ω̃i

(
1− T
1 + τ

)ηi
where Ω̃i - some constant and

ηi =
αli + αljai,j + αlkaijajk

1− aijajkaki

11



Taking the log differential of expression for ci we get

d ln ci = ηi [d ln(1− T )− d ln(1 + τ)]

using the fact that
d ln c = d ln y

d ln yi = ηi [d ln(1− T )− d ln(1 + τ)]

so

d ln y1 =
αl1 + αl2a1,2 + αl3a12a23

1− a12a23a31

[d ln(1− T )− d ln(1 + τ)]

d ln y2 =
αl2 + αl3a2,3 + αl1a23a31

1− a23a31a12

[d ln(1− T )− d ln(1 + τ)]

d ln y3 =
αl3 + αl1a3,1 + αl2a31a12

1− a31a12a23

[d ln(1− T )− d ln(1 + τ)]

12



2.4 The Effect of an Expenditure Adjustment: a Simple Il-
lustration

Consider now the case of an Expenditure adjustments expressed in nominal terms
as dG̃1, dG̃2, dG̃3. As in the case of Tax adjustments we set β1 = β2 = β3 = 1/3. For
simplicity we assume that government expenditures are fully financed by lump-sum
taxation and we set payroll tax to zero τ = 0.

Utility function is u(c1, c2, c3, l) = γl
∏3

i=3 c
1/3
i .Unit cost function can be written

as:
Ci(p, w) = µiw

αlip
aij
j

where µi =
(
αli
aij

)aij
+
(
aij
αli

)αli
. In equilibrium we have

pi = Ci(p, w) = µiw
αlip

aij
j

Since w = 1we can solve the last equation for price

pi = γ
1

1−aijajkaki

where γ = µiµ
aij
j µ

aijajk
k . Taking into account the fact that prices do not respond

to expenditure adjustments, we consider nominal values, denoted by ˜.

dỹi = dc̃i + akidỹk + dG̃i

From the household optimization problem we have

c̃i =
1

(1 + λ)3
− G̃i + G̃j + G̃k

(1 + λ)3

By differentiating and combining it with resource constraint will leads to:

dỹi = −dG̃i + dG̃j + dG̃k

(1 + λ)3
+ akidỹk + dG̃i,∀i = 1, 2, 3

Solving this system of equations leads to

dỹi =
1

1− aijajkaki

{
dG̃i + akiajkdG̃j + akidG̃k

−1+aki+akiajk
(1+λ)3

[dG̃i + dG̃j + dG̃k]

}
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2.5 Spatial Variables and the Cobb-Douglas Production Func-
tion

Spatial variables are constructed consistently with the Cobb-Douglas production
functions.
We defined the spatial variables in this way:

∆yupi,t =
n∑
j 6=i

âji ·∆yj,t

∆ydownit =
n∑
j 6=i

aij ·∆yj,t.

Where ∆yj,t accounts for the percent growth rate of real value added of industry i
recorded in year t.
For example, for industry 1 we have:

∆yup1,t =
Sales1→2 ·∆y2,t + · · ·+ Sales1→n ·∆yn,t

Sales1

∆ydown1,t =
Sales2→1 ·∆y2,t + . . . Salesn→1 ·∆yn,t

Sales1

They can be interpreted as a weighted average of the real value added of other
industries, with weights given by the relative importance of every industry as a
customer or a supplier to industry i.
Since the idea is to construct a variable which captures the network effect, we might
wonder Why not expressing the spatial variables as the percent change of a linear
combination rather than a linear combination of a percent change. That is, we could
have expressed them in this alternative way:

∆yupi,t = ∆
( n∑

j 6=i

âji · Yj,t
)

∆ydowni,t = ∆
( n∑

j 6=i

aij · Yj,t
)
.

At this point we link a spatial variable to its corresponding dependent variable:

∆yi,t = βup ·∆yupi,t + βdown ·∆ydowni,t ,
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taking a logarithmic approximation yields:

∂

∂t
ln yi,t = βup · ∂

∂t
ln yupi,t + βdown · ∂

∂t
ln ydowni,t ,

by integrating both terms we get:

ln yi,t = βup · ln
( n∑

j 6=i

âji · Yjt
)

+ βdown · ln
( n∑

j 6=i

aij · Yjt
)

= ln

(( n∑
j 6=i

âji · Yjt
)βup

·
( n∑

j 6=i

aij · Yjt
)βdown)

,

we finally obtain:

yi,t =
( n∑

j 6=i

âji · Yjt
)βup

·
( n∑

j 6=i

aij · Yjt
)βdown

.

The last expression is telling us that the industries are linked among themselves
through a relationship which has nothing to do with a Cobb-Douglas production
function.

Consider now the definition we employ in the paper:

∆yi,t = βup ·∆yupi,t + βdown ·∆ydowni,t

= βup ·
( n∑

j 6=i

âji∆yj,t

)
+ βdown ·

( n∑
j 6=i

aij∆yj,t

)
,

substituting again the percent changes with the logarithmic approximation, we have:

∂

∂t
ln yit = βup ·

( n∑
j 6=i

âji ·
∂

∂t
ln yjt

)
+ βdown ·

( n∑
j 6=i

aij ·
∂

∂t
ln yj,t

)
,
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by integrating both terms we have:

ln yit = βup ·
( n∑

j 6=i

âji · ln yjt
)

+ βdown ·
( n∑

j 6=i

aij · ln yj,t
)

=
n∑
j 6=i

(βup · âji + βdown · aij)
φij

· ln yj,t

= ln

(
n∏
j 6=i

y
φij
jt

)
,

by removing the natural logarithm from both sides, we have:

yi,t =
n∏
j 6=i

y
φij
j,t

When we assume a linear relationship between the spatial variables and the de-
pendent variables (as done in a standard linear regression, also carried out in SAR
frameworks), and the latter is expressed in percentage change, we automatically
assume a multiplicative relationship between the absolute levels of the dependent
variables. This is consistent with the choice of a Cobb-Douglas production function.
In SAR frameworks, spatial variables are always expressed as a weighted average of
the dependent variables, and a linear regression of dependent variables over spatial
variables is carried out. Therefore, if we underpin a SAR model with a theoretical
model and data are expressed in percentage change (as we do in this paper), it seems
appropriate to adopt a Cobb-Douglas production function.
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3 From Theory to Empirics

3.1 Empirical Strategy

Suppose it would be possible to identify tax and expenditure fiscal corrections, τt,
and gt, exogenous for the estimation of their effect on output growth and orthogonal
to each other. In this case equations (7) and (9) from the previous section can
naturally be nested in the following panel specification to model the effect of fiscal
adjustments on the value added growth in each industry i:

∆yi,t = ci +

δ · τt + βdown ·
n∑
j 6=i

aij ·∆yj,t︸ ︷︷ ︸
∆ydowni,t

 · TBt+

+

γ · gt + βup ·
n∑
j 6=i

âji ·∆yj,t︸ ︷︷ ︸
∆yupi,t

 · EBt + εit (24)

where TBt is a dummy that takes a value of 1 when a tax-adjustment takes
place and zero otherwise while EBt is a dummy that takes a value of 1 when an
expenditure-based adjustment takes place and zero otherwise. In practice, to take
the above model to the data, two problems need to be solved. The first one is to
identify fiscal adjustments exogenous with respect to output fluctuations, the second
one is to deal with the fact that in practice τt, and gt are correlated as typically
government decides first the total amount of the needed adjustment and successively
their allocation in the two components. We solve the first problem by adopting
a narrative identification approach to fiscal adjustment plans (see the next section
for details), while we map correlated τt, and gt adjustments into mutually exclusive
components by adopting the following identification strategy.

τt = δTB0 · et · TBt + δEB0 · et · EBt + εt (25)

gt = ϑTB0 · et · TBt + ϑEB0 · et · EBt + υt (26)
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et = gt + τt (27)

where the TBt and EBt labels are attributed by considering the dominant component
of each adjustment plans. The estimated parameters in this system allow to track
the relative contribution of tax and spending measures to EB and TB plans and
to map correlated adjustments into mutually exclusive ones. As the TBt and EBt

variables are mutually exclusive, the following model can be estimated and simulated
to derive the impact of expenditure-based and tax-based fiscal adjustments

∆yi,t = ci +

δ · et + βdown ·
n∑
j 6=i

aij ·∆yj,t︸ ︷︷ ︸
∆ydowni,t

 · TBt+

+

γ · et + βup ·
n∑
j 6=i

âji ·∆yj,t︸ ︷︷ ︸
∆yupi,t

 · EBt + εit (28)

The TB adjustments, being mainly supply shocks, have a network effect that
goes through the connection of industry i with its supplier industries (changes in
suppliers’ output flows down to customer industry i: downstream propagation). This
is captured by including in the specification a spatial variable which is a weighted
average of value added growth in all other sectors (∆ydowni,t ); weights are given by the
elements of the rows of the input-output matrix A.

Symmetrically, the EB adjustments, being mainly demand shocks, have a net-
work effect that goes through the connection of industry i with its customer industries
(changes in customers’ output flows up to supplier industry i: upstream propaga-
tion). This is captured by including in the specification another spatial variable,
which is a weighted average of value added growth in all other sectors. Weights are
now given by the elements of the columns of the transformed input-output matrix
Â.
The net distinction between demand and supply shocks, provide a theoretical justi-
fication for the interaction of the shocks and the networks: downstream channel is
activated when a TB shock occurs and upstream channel is activated when an EB
shock occurs. This assumption will be tested in the robustness section (Section 6)
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when we switch the interactions: downstream channel is activated when EB occurs
and upstream channel is activated when TB occurs, thus going against what theory
predicts.
Furthermore, since the two network variables, ∆ydowni,t and ∆yupi,t exhibit a non-
negligible correlation level, keeping them separated by means of the interaction with
the shocks, turns out useful for ruling out multicollinearity problems.

This empirical framework combines the Spatial Autoregressions (SARs) (Ord
1975 , J. LeSage and Pace 2009) or more precisely spatial autoregressive panel data
models with fixed effects and the GVAR or global vector autoregression (Chudik and
Pesaran 2016) approach to identify direct and indirect effects of fiscal adjustments.
Difference between two approaches is that historically the spatial approach is more
about cross-section and GVAR is more about time dimension, even though now they
are very close to each other. Note that we use industry specific spatial variables and
we define them by excluding the value added growth of the sector modelled in each
equation. In practice this is carried out by removing the main diagonal from the
input-output matrix A and its transformation Â; these new matrices are denoted by
adding a 0 subscript to the original ones: A0 and Â0.

3.2 Interpretation of output effects

To interpret the output effects of fiscal stabilization in each industry and in the
economy described by equation (28), we have to take into account the role of the
effects in related industries. Following J. P. LeSage and Parent 2007 we define three
scalars to measure the average total, direct and indirect effect. Using vector notation
we rewrite equation (28) as follows:

∆yt = c +
(
δ · 1n · et + βdown · A0 ·∆yt

)
· TBt+

+
(
γ · 1n · et + βup · ÂT0 ·∆yt

)
· EBt + εt (29)

The sectorial effects of EB and TB adjustments can now be computed as:(
∂∆y

∂et
| TBt = 1

)
= (In − βdown · A0)−1 · 1n · δ = STB

(
βdown, A0

)
· 1n · δ,(

∂∆y

∂et
| EBt = 1

)
= (In − βup · ÂT0 )−1 · 1n · γ = SEB

(
βup, ÂT0

)
· 1n · γ.

Given estimates for γ, βdown, δ, βup the matrices SEB
(
βdown, A0

)
and STB

(
βup, Â′0

)
become observable, and therefore the average total, direct and indirect effect of fiscal
stabilization can be computed as follows:
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• Average direct effect: the weighted average of the diagonal elements of SEB

and STB with weights given by the sectorial contribution to total value added.

• Average total effect: the sum across the i-th row of SEB and STB represents the
total impact of expenditure-based and tax-based adjustments on value added
of industry i. We obtain the average total effect on total value added by taking
the weighted average of these effects with weights defined as in the computation
of the average direct effect.

• Average indirect effect : the difference between the average total effect and the
average direct effect.

3.3 Example: 3 Industries Economy

To illustrate the procedure consider a simple example with three industries for which
the relevant adjustment is exclusively a tax based one.

∆y1t

∆y2t

∆y3t


∆y

=

c1

c2

c3


c

+

1
1
1


13

· δ · et +

 0 a12 · β a13 · β
a21 · β 0 a23 · β
a31 · β a32 · β 0


A0

·

∆y1t

∆y2t

∆y3t


∆y

+

ε1tε2t
ε3t


ε

∂∆y

∂et
=

 1 −a12 · β −a13 · β
−a21 · β 1 −a23 · β
−a31 · β −a32 · β 1

−1

· 13 · δ

=

 1− β2 · a23a32 β · a12 + β2 · a32a13 β · a13 + β2 · a12a23

β · a21 + β2 · a23a31 1− β2 · a31a13 β · a23 + β2 · a21a13

β · a31 + β2 · a21a32 β · a32 + β2 · a31a12 1− β2 · a21a12

 · 13 ·
δ

d
,

where, d is the determinant of matrix (I3 − β · A0):

d = 1− β2 · (a12a21 + a13a31 + a32a23)− β3 · (a12a23a31 + a21a13a32) .

Given the above result, we provide the analytic form for the total, direct and
indirect effect of a tax shock of sector 1:

• 1−β2·a23a32

d
· δ =

[
1 + β2·(a13a31+a12a21)+β3·(a12a23a31+a21a13a32)

d

]
· δ gives the response

of value added in industry 1 to the TB adjustment if this industry were the only
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one affected by it, and it represents the tax shock “direct effect” on sector 1.
Notice that it can be interpreted as the summation of the tax coefficient δ plus
the network effect triggered by a tax shock which hits only sector 1 itself, called
feedback loop by J. LeSage and Pace 2009. We call the former “instantaneous
effect”, while the latter, “network direct effect”.
Furthermore, the average of the direct effects on all sectors of a tax shock,
provides the Average Direct Effect of a tax shock.

• β ·a12+β2·a32a13

d
· δ gives the response of value added in industry 1 to the TB

adjustment if industry 2 were the only one one affected by it.

• β ·a13+β2·a12a23

d
· δ gives the response of value added in industry 1 to the TB

adjustment if industry 3 were the only one affected by it.

• The summation of the previous two effects represent the “(network) indirect
effect” of industry 1; that is, the effect on industry 1 of a shock which hits all
the industries except for industry 1 itself.
The average of the (network) indirect effects of every industry accounts for the
Average Indirect Effect.

• The summation of all the direct and indirect effects is the “total effect” of a tax
shock for sector 1. The average of all the total shocks, represent the Average
Total Effect.

3.4 Total, Direct and Indirect Effect in Details

3.4.1 Determinant Decomposition

In this section we explain in details what the determinant d of matrix (1 − β · A0)
represents from an economic point of view.2

First of all, notice that the reciprocal of the determinant can be interpreted as the
convergence point of a geometric summation:

1

d
=
∞∑
i=1

(
β2 ·

(
a12a21 + a13a31 + a32a23

)
+ β3 ·

(
a12a23a31 + a21a13a32

))i
=
∞∑
i=1

Ki

where K = β2 · (a12a21 + a13a31 + a32a23

)
+ β3 ·

(
a12a23a31 + a21a13a32).

2 To ease notation we write simply β instead of βdown.
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Basically, suppose that a little change in a sector’s output occurs, then, such a
change triggers a cascade effect of other changes in other sectors and then come back
to it via the input-output network. If we imagined a kind of temporal-sequence in
transferring such a shock, we would see that at every step the change that occurs
is exactly K. Suppose that a unit change occurs, then this change is transferred
to other sectors and come back, by generating a total change of K, but then this
change is transferred again and comes back to its initial point thus generating a fur-
ther change of K2 and so on and so forth. The limit point of such a series is exactly
the reciprocal of the determinant of matrix I3 −T.

Notice that every element of K represents a particular sectors’ relationship, as it
is represented in the figure below:

Now, all these changes actually occurs simultaneously, therefore, every variation
is subject to an amplification due to the sectors’ interconnections. Such an amplifica-
tion is exactly expressed by the reciprocal of d, which can be seen as a “simultaneity
multiplier”.
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3.4.2 Shock Effect Decomposition

At this point, we can examine more carefully all the elements of S = (I − β ·A0)−1.
In particular we can make the following distinction:

1. Direct effect: the direct effect to sector i of a macro shock δ (DEδ,i), is the
change in sector i growth rate as if it would be the only sector in the economy
subject to that shock:

DEδ,i =
1

d
· Sii · δ.

Basically, the direct effects are collected on the main diagonal of the previous
matrix. For instance, the direct effect of a shock to sector 1 is:

DEδ,1 = δ +
β2 · (a31a13 + a21a12) + β3 · (a12a23a31 + a21a13a32)

d
δ.

Notice that the direct effect could be decomposed into two parts: the shock
itself (δ) plus the network effect that such a shock triggers, amplified by the
simultaneity multiplier. Notice in fact that the instantaneous effect of a direct
shock to only sector 1, is transferred on sector 2 and then goes back to sector
1, for a total change of β2 · a21a12. The same is true for sector 3 for a total
change of β2 · a31a13. Moreover, the shock, once transferred upon sectors 2 and
3, it can get back to sector 1 indirectly via the connections between sector 2
and sector 3, for a total change of β3a21a32a13 when the shock flows down to
sector 2 and β3a31a23a12 when the shock flows down to sector 3. This scheme
is represented also in the figure below:
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2. Indirect effect: The indirect effect to sector i of a macro shock δ, (IEδ,i), is
the summation of all the effects of shocks which hit other sectors and then are
transferred to sector i:

IEδ,i =
1

d
·
( n∑

j 6=i

Sij

)
· δ.

For instance, the indirect effect of a macro shock on sector 1 is:

IEδ,1 =
1

d
·
[
(β · a12 + β2 · a32a13) + (β · a13 + β2 · a12a23)

]
· δ

=
β · (a12 + a13) + β2 · (a32a13 + a12a23)

d
· δ

Consider now the generic element of matrix S, which we call Sij. Such an
element provides the specific impact of a shock which hits directly sector j
and then is transferred to sector i. Such an effect could be interpreted as an
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instantaneous effect which is then amplified via the simultaneity multiplier.
To better understand this point, consider for instance the following element:

S12 = β · a12 + β2 · a32a13.

This element provides the “instantaneous” effect of a shock which hits sector
2 but then is transferred upon sector 1 (for this reason we call it “indirect”).
Such a transfer occurs through the direct linkage between sector 2 and 1 (β ·a12,
sales of sector 2 to sector 1) and through the indirect connections via sector 3
(β2 · a32a13,that is, the sales of sector 2 to sector 3 and then the sales of sector
3 to sector 1). This propagation is shown in the figure below:

At this point we can show what the total, direct and indirect effects are defined:

1. The direct effect of a shock is not equal for every sector, since it depends on
the network interactions specific for that sector. For this reason, we computed
the effect on the economy, which is a weighted average of the single industries’
effects, where weights are collected into the n × 1 vector W (every industry
weight is the relative size of the sector with respect to GDP):

DEδ =
δ

d
· diag(S) ·W.

2. The total effect of a macro shock is by consequence the summation of the direct
and indirect effect. Formally:

TEδ,i =
δ

d
·
( n∑
j=1

Sij

)
.

Again, we report the formula for the total effect on the economy:

TEδ =
δ

d
· S ·W.
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3. The average indirect effect will be computed indirectly by taking the difference
between the total and the direct effect:

IEδ = TEδ −DEδ.

4. The same things will be replicated identically for the expenditure shock (EBt =
1):

ADEγ =
γ

|In − Γ|
· 1

n
· Tr(S(Γ)).

ATEγ =
γ

|In − Γ|
· 1

n
· 1′ · S(Γ) · 1.

AIEγ = ATEγ − ADEγ
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4 Data

4.1 Fiscal Shocks

4.1.1 Database of Exogenous Fiscal Adjustment Plans for US

We identify exogenous fiscal adjustment by adopting the narrative method (C. D.
Romer and D. H. Romer 2009, C. D. Romer and D. H. Romer 2010). This method
refers to presidential speeches, congressional debates, budget documents, congres-
sional reports, to identify the size, timing, and principal motivation for all major
postwar tax policy actions. Legislated changes are then classified into endogenous
(those induced by short-run counter-cyclical concerns and those taken because of
change in government spending) and exogenous (those that are responses to the
state of government debt or to concerns about long-run economic growth).

Following Alesina, Favero, and Giavazzi 2019 we also acknowledge that fiscal con-
solidation policy is actually implemented through multi-year plans that involve an
intertemporal and an intratemporal dimension. The intertemporal dimension is rele-
vant in that plans involve both measures that are implemented upon announcement
(the unanticipated component of the plan) and measures that are announced for the
future n years (the anticipated component of the plan); the intratemporal dimension
depends on the fact that adjustment plans are implemented with a mix of measures
on the expenditure side and on the revenue side.

We adopt the annual database on fiscal adjustment plans constructed by Alesina,
Favero, and Giavazzi 2015 and concentrate on US data only, by carrying out only
slight modifications to the original database. A detailed description of the data is
provided in the next subsection.

When fiscal policy is conducted through multi-year plans narrative exogenous
fiscal adjustments in each year are made of three components: the unexpected ad-
justments (announced upon implementation at time t ), the past announced adjust-
ments (implemented at time t but announced in the previous years) and the future
announced corrections.

We identify plans as sequences of fiscal corrections announced at time t to be
implemented between time t and time t+ k; we call k the anticipation horizon. We
define the unanticipated fiscal shocks at time t as the surprise change in the primary
surplus at time t:

eut = τut + gut

where τut is the surprise increase in taxes announced at time t and implemented
in the same year, and gut is the surprise reduction in government expenditure also
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announced at time t and implemented in the same year. We denote instead as τat,j
and gat,j the tax and expenditure changes announced by the fiscal authorities at date
t with an anticipation horizon of j years (i.e. to be implemented in year t + j). In
Pescatori et al. 2011’s database, fiscal plans almost never extend beyond a 3-years
horizon: thus we take j = 3 as the maximum anticipation horizon3. We therefore
define the observed anticipated shocks in period t as follows

τat,0 = τat−1,1

τat,j = τat−1,j+1 +
(
τat,j − τat−1,j+1

)
j > 1

gat,0 = gat−1,1

gat,j = gat−1,j+1 +
(
gat,j − gat−1,j+1

)
j > 1

eat,j = τat,j + gat,.j

Fiscal corrections in each year can be written as follows

et = eut + eat,0 +
horz∑
j=1

eat,j

Plans are labeled as tax-based or expenditure-based by adopting the following
rule:

if

(
τut + τat,0 +

horz∑
j=1

τat,j

)
>

(
gut + gat,0 +

horz∑
j=1

gat,j

)
(30)

then TBt = 1 and EBt = 0,

else TBt = 0 and EBt = 1, ∀t

By construction tax-based (TB) and expenditure-based (EB) plans are mutually
exclusive and the labelling is almost never marginal.

Insert Table I here

Table I represents the correlation matrix of fiscal adjustments. Taking into ac-
count rather high correlation between tax and expenditure adjustments (0.5962 for

3In the sample there are a few occurrences of policy shifts anticipated four and five years ahead.
Their number is too small to allow us to include them in our estimation.
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unanticipated component) as well as between anticipated and unanticipated compo-
nents (0.5702 for the tax component) it is important to consider fiscal adjustment
plans and not separate shocks.

The orthogonalization that we create using classification TB/EB is not the only
way, although it is the most reasonable in our view. Another option would be to
orthogonalize τ and g running the following regression τ = θ ∗ g + ετ and then use
g and ε̂τ .4 The advantage of using TB/EB classification relative to the alternative
is twofold. First, coefficient θ will capture only average connection between τ and
g, while our classification TB and EB allows for changes across time. Taking into
account correlation matrix, θ is positive and is around 0.6. So consideration of the
orthogonal tax adjustment τ −θ ∗g will bias results for TB years, since our TB plans
are indeed pure tax adjustments. In general, any alternative, that allows include
separately τ and g will complicate interpretation of results and will make impossible
to disentangle the effect of two components (see for details Giavazzi, Paradisi, 2013).

In Figure 1 we plotted the fiscal adjustments as a percentage of GDP. In particular
we plot aggregate tax component of fiscal plan(

τut + τat,0 +
horz∑
j=1

τat,j

)
(31)

and aggregate expenditure component of fiscal plan(
gut + gat,0 +

horz∑
j=1

gat,j

)
(32)

As in Alesina, Favero, and Giavazzi 2015, we scale all the measures by GDP on the
year prior to the consolidation in order to avoid potential endogeneity issues.

Figure 1 represents our fiscal shocks database. The solid line represents the
left hand side of inequality 30, that is, the total tax adjustment fiscal plans; the
dashed line instead, represents the left hand side of inequality 30, that is, the total
expenditure adjustment fiscal plans. The light gray areas represent the years when
a TB fiscal plan occurs (TBt = 1); we identify two TB periods: 1978-1981 and
1985-1988. The darker areas account for the years when an EB fiscal plan occurs
(EBt = 1); we identify two EB periods: 1990-1998 and 2011-2013.

4This example ignores intertemporal correlation
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Figure 1: Fiscal Adjustments Database

In Figure 2 we provide a decomposition of the fiscal adjustments to illustrate the
mixed nature of the plans. Notice that the TB plans are all pure tax hikes but year
1988, which is the result of a mixed fiscal plan (around 30% of the fiscal adjustment
plan comes from a spending cut). At the same time, EB plans are mainly made of
spending cuts rather than tax hikes, even though they exhibit a more heterogeneous
structure: on average, 18% of an EB fiscal adjustment comes from a tax increase).
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Figure 2: Tax and Expenditure Share

4.1.2 Details on Database of Exogenous Fiscal Adjustment Plans

For the purpose of this project we follow Alesina et al.(2015) and use the annual
fiscal adjustment plans data. Our focus is US. We adopt the same data employed
by Alesina et Al.(2015), however we do several modifications. The reason for such a
discrepancy can be explained by the fact that we deal in a different way with long-
run adjustments. In fact, Romer and Romer(2010) distinguish between deficit driven
and long-run growth driven adjustments. Long-run driven adjustments can be both
positive and negative. In order to take them into account we follow the rule: sum up
positive and negative components of long-run growth driven adjustments together
with deficit driven adjustments and include the sum into the database if and only if
it is non negative 5.

Moreover, it is worth to notice two years of Reagan presidency. The rule described
above leads to drop from the sample the deficit-driven adjustment implemented in
the US in years 1983-84 because it was smaller than the contemporaneous negative
long-run growth-driven adjustment.

5Modifications are light because positive long-run driven adjustments, that is tax increase due
to long-run growth reasons, are very uncommon.
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Slight modifications in years 1980 and 1981 are due to the same logic. In 1980
we include the positive long-run growth tax increases6. In 1981 following the rule
we consider the sum of the deficit - driven tax hike and long-run growth driven tax
decrease.

Other slight modifications, consistent with the previous reasoning, are in years
1985, 1986, 1990. We record initial announcement of the Social Security Amendment
1983 as in Alesina et al.(2015) in the announced part of the plan, however additionally
we record revisions to already announced adjustments for the years 1985, 1986, 1990
as a surprise component7. Revisions result in further austerity.

Overall, the differences between Alesina et al.(2015) database and our database
are minimal. Importantly, following Alesina et al.(2015), we scale all the measures by
GDP on the year prior to the consolidation in order to avoid potential endogeneity
issues8.

To illustrate the procedure of fiscal plan construction consider the case of 1990
OBRA (Omnibus Budget Reconciliation Act) - 1990, which is considered as ex-
clusively motivated by a deficit reduction motive and therefore exogenous for the
estimation of the output effect of fiscal corrections 9.

Insert Table XIV here

Table XIV illustrates how the plan is reclassified by DeVries et Al. and R&R
using different sources. OBRA - 1990 plans fiscal adjustment both on revenue and
expenditure side over the period 1991-1995. R&R concentrate only on the revenue
adjustment and lump in the first quarter of 1991 all the relevant adjustment (that
therefore adds up adjustment to be implemented in 1991 and 1992), the post 1992
adjustment are not included because of their small size. ”...almost all the revenue
provisions were effective January 1, 1991. Thus the first full fiscal year the changes
were scheduled to be in effect was fiscal 1992. We therefore use the estimated revenue
effect from the Budget for that year as our revenue estimate. That is, we estimate

6In 1980 the Crude Oil Windfall Profit Tax Act was signed. It is scheduled as a series of tax
increases. However, such reforms were not due to deficit driven reason but for long-run growth
reasons.

7Budgets 1985, 1987, 1989, 1991 provide revision estimates.
8Romer and Romer 2010 scale their fiscal shocks by the nominal GDP in the year at the time

of the change
9Difference in the table relative to Devries et al. 2013 is due to two facts. First the scaling is

done using the GDP of the year prior to consolidation. Second, to be consistent with Alesina et al.
only for the revenue part we use the CBO 1998 document Projecting Federal Tax Revenues and the
Effects of Changes in the tax Law, p.31 (the difference is very small and does not influence main
results of the paper)
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that there was a tax increase of $35.2 billion in 1991Q1...” Devries et al. 2013 after
the reclassification from fiscal to calendar year, use the implementation rather than
the announcement as a criterion to attribute shocks to each period10.

Table XV illustrates reclassification of shocks in to the fiscal adjustment plans
that identifies separately the announced and implemented shocks.

Insert Table XV here

4.2 Industrial Networks

4.2.1 I-O matrices

The generic element of the input-output matrix A is constructed as follows:

aij =
pj · xij
pi · yi

=
SALESj→i
SALESi

where xij is the quantity of good employed by sector i and supplied by industry j.
We used the industry-by-industry total requirement table of year 199711, provided by
the Bureau of Economic Analysis (BEA), to construct the empirical counterpart of
matrix A. In sub-section 4.2.4, we explain in depth all the steps required to construct
matrix A starting from the raw data.

For the sake of clarity, let’s assume the number of sectors, n, to be equal to 3;
thus, we have:

A =



a11 =
SALES1→1

SALES1

a12 =
SALES2→1

SALES1

a13 =
SALES3→1

SALES1

a21 =
SALES1→2

SALES2

a22 =
SALES2→2

SALES2

a23 =
SALES3→2

SALES2

a31 =
SALES1→3

SALES3

a32 =
SALES2→3

SALES3

a33 =
SALES3→3

SALES3


,

The elements of a generic row, i, represent the inputs that industry i employs in its

10R&R propose several measures of the tax adjustments, generated respectively by including or
not the retroactive components of the measures. There are no cases of retroactive components in
deficit driven adjustments, and the retroactive components of a long run do not affect our measure
of revenue adjustments.

11We assume the elements aij to be constant over time. The assumption is backed by empirical
evidence, witnessing stable industrial linkages. We address this issue thoroughly in sub-section
4.2.4.
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production. Basically, they reflect the transfers from suppliers of inputs to industry
i. For this reason it can be described as the downstream matrix: any change which
affects the supplying industries, should propagate downward to hit the customer
industry i (from suppliers to customers: downstream propagation).
On the contrary, if we take the Hadamard product of matrix A and a scaling matrix
Σ, we obtain the upstream matrix Â:

Â = A ◦ Σ =



SALES1→1

SALES1

SALES2→1

SALES1

SALES3→1

SALES1

SALES1→2

SALES2

SALES2→2

SALES2

SALES3→2

SALES2

SALES1→3

SALES3

SALES2→3

SALES3

SALES3→3

SALES3


◦



1
SALES1

SALES2

SALES1

SALES3

SALES2

SALES1

1
SALES2

SALES3

SALES3

SALES1

SALES3

SALES2

1



=



SALES1→1

SALES1

SALES2→1

SALES2

SALES3→1

SALES3

SALES1→2

SALES1

SALES2→2

SALES2

SALES3→2

SALES3

SALES1→3

SALES1

SALES2→3

SALES2

SALES3→3

SALES3


.

The generic column j of matrix Â contains the sales of sector j to sector i.
Basically, every column represents the transfers from sector j to its customers i. For
this reason matrix Â is said to be the upstream matrix: sector j is now the supplier
while the other industries are the customers.

4.2.2 Value Added

In our baseline specification the dependent variable ∆yit, is industry value added.
Value added is the difference between an industry’s or an establishment’s total out-
put and the cost of its intermediate inputs. It equals gross output (sales or receipts
and other operating income, plus inventory change) minus intermediate inputs (con-
sumption of goods and services purchased from other industries or imported). Value
added consists of compensation of employees, taxes on production and imports less
subsidies (formerly indirect business taxes and non tax payments), and gross oper-
ating surplus (formerly “other value added”).
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We employ annual data from the BEA database; in particular, we choose industry
value added at the disaggregation level of 15 sectors. Notice that 15 sectors is some-
how an optimal disaggregation level for our purpose: it allows us to break down
the US economy in its main industrial sectors, but at the same time it is not a too
“thin” decomposition, letting us capture fluctuations due to macroeconomic shocks
like fiscal adjustment plans. Not surprisingly, our results do not hold anymore as we
employ the BEA database with 65 industries. In fact, our results do hold for EB
plans in this case, but they do not hold for TB plans. This might be explained by
the fact that TB plans are on aggregate level, while EB plans are sector specific.

4.2.3 Spatial variables

The combination of value added and the I-O matrices allows us to construct two
spatial variables: the ∆Y up - the upstream spatial variable, which captures the
propagation of shocks from customers up to their suppliers - and the ∆Y down - the
downstream spatial variable, which captures the propagation of shocks from suppliers
down to their customers. Analytically we have:

∆ydowni,t =
n∑
j 6=i

aij ·∆yj,t

∆ydownt
n×1

=


0 a12 . . . a1n

a21 0 . . . a2n
...

...
. . .

...
an1 an2 . . . 0


n×n

·


∆y1,t

∆y2,t
...

∆yn,t


n×1

∆ydownt = A0 ·∆yt,

where ∆yj,t is the value added percent change of sector j in year t and A0 corre-
sponds to matrix A with zeros on its main diagonal. As anticipated in the Section
3, we exclude the main diagonal when constructing spatial variables: this strategy is
typically implemented to avoid endogeneity issues.
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On the other hand, the spatial upstream variable is constructed as follows:

∆yupi,t =
n∑
j 6=i

âji ·∆yj,t

∆yupt
n×1

=


0 â21 . . . ân1

â12 0 . . . ân2
...

...
. . .

...
â1n â2n . . . 0


n×n

·


∆y1,t

∆y2,t
...

∆yn,t


n×1

∆yupt = ÂT0 ·∆yt,

where ÂT0 corresponds to the transposed upstream matrix Â with zeros on its main
diagonal.
We also follow the SAR literature and we row-normalize both the downstream and
upstream weight-matrices. 12

4.2.4 Detailed derivations of the I-O matrix A

The Bureau of Economic Analysis (BEA) provides 4 requirement tables. In partic-
ular, we are interested in an industry by industry total requirement table.
The construction of the total requirement table is detailed over page 12-8 (page 8
of chapter 12) of the “Concepts and Methods of the U.S. Input-Output accounts”
- a guide released by the BEA, which provides a full explanation of the industrial
network data.
Consider a generic industry, say Z, whose total output is denoted with y. Since sup-
ply and demand must coincide, y is equal to F - final uses - plus x - demand from
other industries which use the output of industry Z as input:

y = F + x.

Now we define the coefficient matrix A as:

A =
x

y
,

that is, the share of industry Z output used as production input by the other indus-
tries.
Therefore, we have x = A · y, and plugging it into the previous equation we have:

y = F + A · y,
12Results with non-row-normalized data are robust and available in sub-section 6.3.
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whose close-form solution is:

y = (I − A)−1F = f(F ).

In the I-O terminology used by the BEA, function f , which links final uses with the
industry output, is called total requirement table. In economic theory we usually
refer to such a transformation as the Leontief Inverse matrix.
In order to construct such a table, the BEA starts from storing raw data into two
tables: the Make Table and the Use Table. The empirical counterpart of (I − A)−1

is constructed in several steps, illustrated by the BEA guide.

The first step consists of reshaping the Use table, which is a non-symmetric
commodity-by-industry table. The Use table shows the uses of commodities by in-
termediate and final users. Differently from the Make table, the rows in the Use
table present the commodities or products, and the columns display the industries
and final users that utilize them. The sum of the entries in a row is the output of
that commodity. The columns show the products consumed by each industry and the
three components of value added, compensation of employees, taxes on production
and imports less subsidies, and gross operating surplus. Value added is the difference
between an industry’s output and the cost of its intermediate inputs. Total value
added is equal to GDP. The sum of the entries in a column is that industry’s output.
We can derive the analytic form of the Use table, by introducing a specific terminol-
ogy:

• INPi
j = Commodity j used as input by industry i. This is the generic element

of the Use table.

• SALESj = Total output of industry j,

we rewrite the generic element of the Use table - assuming for simplicity that the
number of commodities and industries is three (n = 3) - in this way:

USE =


INP1

1 INP2
1 INP3

1

INP1
2 INP2

2 INP3
2

INP1
3 INP2

3 INP3
3

 .
At this point we can derive a commodity by industry direct requirement table by
dividing each industry’s input by its corresponding total industry output. We denote
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such a matrix with letter B and we can express its generic element using the previous
notation in this way:

Bij =
INPj

i

SALESj
,

where i denotes the row and j the column of matrix B. Therefore, the analytic form
of matrix B is :

B =



INP1
1

SALES1

INPUT2
1

SALES 2

INP3
1

SALES3

INP1
2

SALES1

INPUT2
2

SALES 2

INP3
2

SALES3

INP1
3

SALES1

INPUT2
3

SALES 2

INP3
3

SALES3


.

The BEA guide provides also a numerical example - with 3 industries (n = 3) - which
we report here for the sake of clarity:

1 2 3 Final demand Total Commodity Output

1 50 120 120 40 330
2 180 30 60 130 400
3 50 150 50 20 270

Scrap 1 3 1 0 5
VA 47 109 34 / 190

Total Industry Output 328 412 265 190 /

Consider the first row: 50 units of commodity 1 are used by industry 1, 120 are
used by industry 2 and 120 are used by industry 3; 40 units of commodity 1 are de-
manded as final product, therefore, the overall production of commodity 1 amounts
to 50 plus 120 plus 120 plus 40: 330 units.
At the same time, we can derive the direct requirement table by following the in-
structions explained above:
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1 2 3

1 0.152 0.291 0.453
2 0.549 0.073 0.226
3 0.152 0.364 0.189

Scrap 0.003 0.007 0.004
VA 0.143 0.265 0.128

Total 1 1 1

The first element of the first row is obtained by dividing 50 by 328, for instance.
The second element of the first row is obtained dividing 120 by 412 and so on and
so forth.
By removing scrap and value added from the above table, we obtain a symmet-
ric commodity-by-industry matrix, denoted with B, whose generic elements are de-
scribed above:

B =

0.152 0.291 0.453
0.549 0.073 0.226
0.152 0.364 0.189

 .
At this point put aside for a while the direct requirement matrix just derived, and

focus on the Make table, which shows the production of commodities by industries.
The rows present the industries, and the columns display the commodities that the
industries produce. Looking across a row, all the commodities produced by that
industry are identified, and the sum of the entries is that industry’s output. Looking
down a column, all the industries producing that commodity are identified, and the
sum of the entries is the output of that commodity.
As we did previously, we now introduce a useful notation, which allows to better
interpret what we are computing:

• Yj = Total production of commodity j.

• OUTi
j = Commodity j produced by industry i

• NSR−1
i = The inverse of the non-scrap ratio of industry i,
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The analytical form of the Make table is the following:

MAKE =


OUT1

1 OUT1
2 OUT1

3

OUT2
1 OUT2

2 OUT2
3

OUT3
1 OUT3

2 OUT3
3


At this point, we divide each row for the total commodity output to obtain the

market share matrix, which shows the proportion of commodity output produced by
each industry, whose analytic form is the following:

MS =



OUT1
1

Y1

OUT1
2

Y2

OUT3
1

Y3

OUT2
1

Y1

OUT2
2

Y2

OUT2
3

Y3

OUT3
1

Y1

OUT3
2

Y2

OUT3
3

Y3


Again, we show a sample Make table, with n = 3:

1 2 3 Scrap Total Industry Output

1 300 25 0 3 328
2 30 360 20 2 4412
3 0 15 250 0 265

Total Commodity Output 330 400 270 5 /

Consider the first column which corresponds to industry 1 output: industry 1
makes 300 of commodity 1, 30 of commodity 2 and it does not produce commodity
3. Overall, industry 1 makes 300 plus 30 plus 0, 330 of total commodity output.
Following the instructions described above, we derive the market share table:

1 2 3

1 0.909 0.063 0
2 0.091 0.900 0.074
3 0 0.038 0.926

Total Commodity Output 1 1 1
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The third step is to make adjustments for scrap. The I-O accounts include a com-
modity for scrap, which is a byproduct of industry production. No industry produces
scrap on demand; rather, it is the result of production to meet other demands. In
order to make the I-O model work correctly - that is, not requiring industry output
because of a demand for scrap inputs- we have to eliminate scrap as a secondary
product. At the same time, we must also keep industry output at the same level.
This adjustment is accomplished by calculating the ratio of non-scrap output to in-
dustry output for each industry and then applying these ratios to the market shares
matrix in order to account for total industry output. More precisely, the non-scrap
ratio is defined as follows:

(Non-scrap ratio)i =
Industry i output

Industry i output - scrap i
= NSRi

Therefore, using the numbers from the previous example, we have:

Tot.Ind.Out. Scrap ∆ Non-Scrap Ratio

1 328 3 325 0.991
2 412 2 410 0.995
3 265 0 265 1

The market shares matrix is adjusted for scrap by dividing each row coefficient by
the non-scrap ratio for that industry. In the resulting transformation matrix, called
W, the implicit commodity output of each industry has been increased.
We might write the generic element of the adjusted market share matrix W in this
way:

(Market share adjusted)ij = Wij =
OUTi

j ·NSR−1
i

Yj
,

whose analytical form is:

W =



OUT1
1 ·NSR−1

1

Y1

OUT1
2 ·NSR−1

1

Y2

OUT1
3 ·NSR−1

1

Y3

OUT2
1 ·NSR−1

2

Y1

OUT2
2 ·NSR−1

2

Y2

OUT2
3 ·NSR−1

2

Y3

OUT3
1 ·NSR−1

3

Y1

OUT3
2 ·NSR−1

3

Y2

OUT3
3 ·NSR−1

3

Y3


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The resulting transformation matrix W of our example is:

W =

0.917 0.063 0
0.091 0.904 0.074

0 0.038 0.926

 .
We now have all the elements to compute a symmetric direct requirement table.

Recall now that the transformation matrix is an industry by commodity table, while
the direct requirement table B is a commodity by industry table. Therefore, by mul-
tiplying them, we can construct a symmetric industry-by-industry direct requirement
table, denoted with WB.

WB =



OUT1
1 ·NSR−1

1

Y1

OUT1
2 ·NSR−1

1

Y2

OUT1
3 ·NSR−1

1

Y3

OUT2
1 ·NSR−1

2

Y1

OUT2
2 ·NSR−1

2

Y2

OUT2
3 ·NSR−1

2

Y3

OUT3
1 ·NSR−1

3

Y1

OUT3
2 ·NSR−1

3

Y2

OUT3
3 ·NSR−1

3

Y3


·



INP1
1

SALES1

INPUT2
1

SALES 2

INP3
1

SALES3

INP1
2

SALES1

INPUT2
2

SALES 2

INP3
2

SALES3

INP1
3

SALES1

INPUT2
3

SALES 2

INP3
3

SALES3



The generic element of matrix WB is the following:

WBij =
3∑
s=1

Wis ·Bsj

For instance let’s derive the analytic form of the second element of the first row:

WB12 =

OUT1
1 ·NSR−1

1

Y1

· INP2
1 +

OUT1
2 ·NSR−1

1

Y2

· INP2
2 +

OUT1
3 ·NSR−1

1

Y3

· INP2
3

SALES2

=
SALES1→2

SALES2

.
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Again, let’s derive another element: WB21:

WB21 =

OUT2
1 ·NSR−1

2

Y1

· INP1
1 +

OUT2
2 ·NSR−1

2

Y2

· INP1
2 +

OUT2
3 ·NSR−1

2

Y3

· INP1
3

SALES1

=
SALES2→1

SALES1

.

Therefore, the analytic form of matrix WB is:

WB =



SALES1→1

SALES1

SALES1→2

SALES2

SALES1→3

SALES3

SALES2→1

SALES1

SALES2→2

SALES2

SALES2→3

SALES3

SALES3→1

SALES1

SALES3→2

SALES2

SALES3→3

SALES3


.

Notice that this matrix coincide with our theoretical matrix A transposed. Recall in
fact that from the profit maximization problem we obtained:

aij =
pj · xij
pi · yi

=
SALESj→i
SALESi

where xij is the quantity of good employed by sector i and supplied by industry j
(as usual, i is the number of the row while j the number of the column):

A =



a11=
SALES1→1

SALES1

a12 =
SALES2→1

SALES1

a13 =
SALES3→1

SALES1

a21 =
SALES1→2

SALES2

a22 =
SALES2→2

SALES2

a23 =
SALES3→2

SALES2

a31 =
SALES1→3

SALES3

a32 =
SALES2→3

SALES3

a33 =
SALES3→3

SALES3


.

Therefore, the following identity is true:

A = (WB)T .
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The above identity is crucial, since it shows that there is a discrepancy between the
theoretical Input-Output matrix and the empirical one. We have to pay lot of at-
tention when working with these data in order not to forget to take the transpose of
the empirical matrix, in order to replicate what theory suggests.

At this point, we can finally derive the ultimate table, which is the one available for
downloading on the BEA website: the total requirement table industry-by-industry.
In the BEA guide they provide computations for obtaining the commodity-by-commodity
total requirement table (they do B times W rather than W times B), however at
page 24 of chapter 12 they show the formulas they employ to derive the industry-
by-industry total requirement table, which we indicate with TR:

TR = (I −WB)−1,

which shows the industry output required per dollar of each industry product deliv-
ered to final users.
At this point a little of matrix algebra turns out useful. Consider a n × n matrix
S = In − A. Since the transpose of an invertible matrix is also invertible, and
its inverse is the transpose of the inverse of the original matrix, we can write the
following:

(ST )−1 = (S−1)T .

Morevoer, the following identity holds:

ST = (I − A)T = I − AT ,

then:

TR = (I −WB)−1

= (I − AT )−1

= (ST )−1

= (S−1)T

=
(
(I − A)−1

)T
= HT

Matrix H = (I − A)−1 is exactly our theoretical Leontief inverse matrix: the
industry-by-industry total requirement table available for free-downloading on the
BEA website, coincide with the transposed Leontief inverse matrix. At this point,
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we are able to define a transformation which allows us to pass from the row data to
the empirical counterpart of the theoretical I-O matrix A:

A = f(TRBEA) = In −
[
(TRBEA)T

]−1

, (33)

where, A is therefore a function of the row data TRBEA, the 15 industry-by-industry
total requirement table. By taking the transpose of the original table the empirical
counterpart of matrix A is obtained.

The last issue to discuss is the following: the industry-by-industry total require-
ment table’s spreadsheet, contains 19 tables, one per each year since 1997 to 2015
(estimates are yearly updated). Which one to use?
We choose the mid sample table of table of 1997.
to check for the potential relevance of this choice we computed total requirement for
every industry and year, by simply summing up the columns of the total requirement
tables, and then we looked at the evolution of these values over time. Results are
shown in the figure below:

The values are substantially stable over time pointing to stable connections among
industries over time.

4.2.5 Industrial Network Breakdown

At this point the reader might wonder what is the effect of a fiscal adjustment on
every sector and what is its specific industrial propagation effect. For instance, think
about the possibility for a policy maker to devise a sector specific fiscal adjustment.
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Is it possible for Her to minimize the recessionary effect of it by choosing a sector
rather than another? Or at least to target sectors with common features which can
minimize the propagation effect? What are the sectors more vulnerable?

To answer these questions we need to analyze our network. We employ a slightly
modified version of the Bonacich Centrality measure, which involves somehow the
Leontief inverse matrix. This is not surprising, given what seen before: every element
of the Leontief inverse corresponds to the infinite sum of the propagation (feedback
effect). If a sector is weakly connected with all the others, also its feedback effect will
be small, by consequence we could consider the sector not central to the network.
The spatial coefficient represents the strength of the transmission channel: if smaller
than one in absolute value, convergence of the geometric sum is preserved:

Centrality = In + β · A+ β2 · A2 + ... = (In − β · A)−1.

We also remove “the one” from the main diagonal of the Leontief inverse, in order
to remove the direct effect: recall from Section 3, that the elements on the main
diagonal could be rewritten as “one” plus another term representing the feedback.
Therefore, our centrality measures have the form of:

Centrality = (In − β · A)−1 − In

Summing up the elements on row i, we obtain the effects triggered by all other
sectors on sector i. On the contrary, summing the elements on column i gives the
propagation effect triggered by sector i on all other sectors.

In particular, we construct four centrality measures:

Passive Customerness
n×1

= (In − β̂down · A)−1 − In) · 1n

Passive Supplierness
n×1

= (In − β̂up · ÂT )−1 − In) · 1n

Active Supplierness
n×1

= (In − β̂down · A)−1 − In)T · 1n

Active Customerness
n×1

= (In − β̂up · ÂT )−1 − In)T · 1n

where matrices A and Â account for the non-row-stochastic I-O matrices, and βdown

and βup represent the ML estimates of the spatial coefficients.

The four centrality measures represent respectively:
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• Passive Customerness : how much industry i is harmed by its suppliers (down-
stream propagation).

• Passive Supplierness : how much industry i is harmed by its customers (up-
stream propagation).

• Active Supplierness : how much industry i harms its customers (downstream
propagation).

• Active Customerness : how much industry i harms its suppliers (upstream prop-
agation).

The first two centrality measures are considered “passive” indicators, since they rep-
resent the effect of a change in customers/suppliers output on an industry. On the
contrary, the last two indicators account for an “active” measure, since they represent
the effect of a change in an industry’s output on all the other customers/suppliers.

Figure 3 shows in the left panel the Passive Customerness, while in the right one
the Passive Supplierness.

Figure 3: Passive Customerness and Supplierness
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To measure the overall centrality of the sector we also constructed a new measure,
which should describe the degree of interconnection (for this reason we named it
“Openness”) with the other sectors.

Passive Openness
n×1

= Passive Customerness + Passive Supplierness.

Figure 4 shows on the left panel the Passive Openness, while on the right one it
shows the overlap of the Passive Customerness and Passive Supplierness (both in
absolute values).

Figure 4: Passive Openness

Looking at the right panel, it is possible to notice that except for Mining and
Services, Customerness overcomes by far Supplierness. For this reason we have a
stronger downstream propagation of fiscal shocks than upstream, which can help
explain why tax based adjustments, have a stronger recessive effect.
Overall, Mining, Agriculture and Transportation seem to be the most damaged sec-
tors from a fiscal adjustment plan, making them the more vulnerable sectors; while
Retail, Government and Finance are the least affected ones.

Furthermore, it might seem reasonable that targeting more isolated sectors should
prevent the negative shock to spread around the economy. Figure 5 shows the Ac-
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tive Supplierness and Customerness in the left and right panel respectively. It is
interesting to notice that Manufacturing, Services and Finance account for the most
of the downstream propagation. The situation is even exacerbated for the Active
Customerness, where Manufacturing is responsible for the most of the transmission
through the upstream channel.

Figure 5: Active Customerness and Supplierness

Symmetrically, we construct the 6th indicator: the “Active Openness”, which is
reported in Figure 6:
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Figure 6: Active Customerness and Supplierness

We see that Manufacturing is absolutely an explosives’ fuse, which might trigger
a very strong propagation effect; also Services and Finance are sectors capable of
strongly propagating shocks towards the rest of the economy. On the other hand,
Agriculture and Education are the sectors less dangerous in terms of shock propa-
gation, by consequence it would be convenient for the policy maker to implement
sector specific shocks towards them, rather than hitting Manufacturing (even if tai-
lored fiscal policies might not be politically implementable for equality reasons).
Such a conclusion might be correct so as it might not. In fact, our estimates are
based on generic fiscal adjustments and not on specific sectors.
Vice-versa, since we constructed industry specific spending shocks, we might argue
that a federal government spending cut towards Agriculture, Other Services and
Mining could have less harmful effects in terms of upstream propagation, while we
would discourage the policy maker to cut Manufacturing spending (like the military
expenditure) to avoid very negative and strong spillovers.
To conclude this descriptive statistics section, we report two scatter-plots, one for
downstream and the other one for upstream, which plot the sectors into a plane:
on the horizontal axis it is reported the passive measure of propagation (passive
customerness and passive supplierness for downstream and upstream propagation
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mechanism respectively) indicated with the term “vulnerability”, while on the ver-
tical axis we report the active measure of propagation (active supplierness and active
customerness for downstream and upstream propagation mechanism respectively) in-
dicated with the term “harmfulness” (for this reason we named them V-H graph).
It is interesting to notice from both Figure 7 and 8 the existence of a negative rela-
tionship between sector’s harmfulness and vulnerability.

Figure 7: V-H graph - Downstream Propagation
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Figure 8: V-H graph - Upstream Propagation
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5 Empirical Results

We bring the following empirical model to the data:

∆yi,t = ci +
(
βdown ·∆ydowni,t + δu · eut + δa · eat,0 + δf · eft

)
· TBt+

+
(
βup ·∆yupi,t + γu · eui,t + γa · eai,t,0 + γf · efi,t

)
· EBt. (34)

equation (37) is a panel specification that allows to track the effect on output growth
of EB and TB based fiscal plans. We model the multi-period structure of fiscal plans
by allowing separate coefficients on the unexpected, announced and future compo-
nents of the fiscal adjustments. Total adjustments are separated into their three
components and each component is allowed to a have a different impact on output
growth. To keep the specification parsimonious the future announced component is
identified as the sum of future announcements at all horizons:

eft =
horz∑
j=1

eat,j.

TB adjustments do not have a heterogeneous effect sector by sector: a tax shock
impact on every industry is the same. However, since the purchases of government
goods and services differ across sectors, we assume EB adjustments to impact each
industry in an idiosyncratic way.
Such a heterogeneity is modelled following Acemoglu, Akcigit, and Kerr 2016 who
weigh the spending adjustments using the input-output matrix to construct industry
specific spending shocks. In particular, we pre-multiply each spending shock by the
elements of the last row of matrix Â0, as the nth row of the transformed input-output
matrix corresponds to government sector.
The generic element of the nth row of matrix Â0, indicated with ωj, is:

ωj =
Salesj→G
Salesj

, j 6= n

which is used to scale the EB adjustments to find their sectorial counterpart:

euj,t = ωj · eut

eaj,t,0 = ωj · eat,0
efj,t = ωj · eft
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We estimate the coefficients of the model following the procedure outlined by J.
LeSage and Pace 2009. In particular, we develop a Maximum Likelihood Estimator13

for our panel specification. In order to keep into account the different volatility of the
sectors, we make our MLE heteroscedasticity robust. For instance, the mining and
agriculture sector exhibit a huge and different volatility, relative to all the remaining
sectors.

Maximum Likelihood estimates14 are shown in Table II:

Insert Table II here

J. LeSage and Pace 2009 also recommends to estimate the coefficients of the
model via Bayesian MCMC when addressing heteroscedasticity. Table III reports
the estimates of the coefficients when adopting this alternative approach.15 Since
the posterior distribution of the spatial coefficients is unknown and non-normal, we
report the mean, the standard deviation, the t-statistic (even if these should be
treated with care, because of slight non-normal shape16 and quantiles (the most
reliable descriptive statistic):

Insert Table III here

Notice that the two estimation methods deliver almost identical results like in
J. P. LeSage 1997 in the standard homoscedastic SAR case.

After estimation we compute the output effect of fiscal policy by simulating a
combination of the unexpected and future component of a fiscal adjustment that
replicates the average in-sample TB and EB fiscal plans in US data of the size
of 1% of GDP. For TB plans, the unexpected component is 11.5% and the future
component is 88.5%. For EB plans the unexpected component is 19.8% and the
future component is 80.2%.

5.1 The Effect of Tax Based Adjustments

We report in Table IV the results of a Monte Carlo simulation of the output effects
of TB adjustments. The left part of Table IV, reports results obtained using MLE,
while the right side of Table IV shows the results obtained by drawing parameters
from the posterior distributions obtained via Bayesian MCMC:

13In sub-section 5.3.1, we provide a full analytic derivation of the estimator.
14In Table II we do not report fixed effects and variances. All the estimates are illustrated in the

additional tables sub-section (sub-section 8.1, Table XVI and Table XVII).
15See sub-section 5.3.1 for a detailed description of the estimation and simulation procedures.
16Histograms of the posteriors are reported in the Additional Figures Section (Section 9)
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Insert Table IV here

Note that MLE-MC simulation delivers again similar results to Bayesian MCMC
simulation. The average total effect of TB adjustment, is estimated at -2%.
Furthermore, we carry out a shock-effect decomposition, as we outlined in Section 3:
the average total effect is decomposed into the instantaneous, the network-direct and
network-indirect effects. The instantaneous effect is a combination of the estimated
coefficients on unexpected and future components of a TB plan, weighed by .115 and
.885 respectively:

φδ = .115 · δ̂u + .885 · δ̂f .
The Average Total Effect (ATE) is the sum of the instantaneous effect, the average
network direct effect (NDE) and the average network indirect effect (NIE). While the
total network effect (TNE) is the summation of the NDE and NIE. Table V reports
the breakdown of the TB adjustment effects, both in absolute and relative (to the
ATE) terms:

Insert Table V here

The relevant finding here is that the TNE contributes for more than 50 per cent
of the total output effect, suggesting the relevance of the industrial network in the
propagation of the TB fiscal adjustments.

5.2 The Effect of Expenditure Based Adjustments

This subsection is the analogue of the previous one for EB adjustments. Table VI is
the analogue of IV, and reports the results of the simulated effect of EB adjustments:

Insert Table VI here

Again, the two alternative methodologies deliver almost identical results.
As in the case of TB adjustments, the total effect is also decomposed into instan-
taneous (now with weights .198 and .802 respectively), network-direct and network
indirect effects. Table VII, which is the analogue of Table V, reports the breakdown
of the EB total effect:

Insert Table VII here

The magnitude of the effect is definitely smaller than the one of TB adjustments:
-0.71% against -2%. The effect is also slightly less statistically significant (0.08 per
cent versus 0.02 per cent). Overall, we find not only a smaller total effect of EB
plans on the economy, but also a significantly lesser importance of the network:
network propagation is accountable for 27% of the total effect when an EB plan
occurs, against 52% of a TB plan.

55



5.3 Estimation and Simulation Procedure in Details

5.3.1 MLE and MC simulation

In this sub-section we explain in details the procedure adopted to estimate via Max-
imum Likelihood the model

∆yi,t = ci +
(
βdown ·∆ydi,t + δu · eut + δa · eat,t + δf · eft

)
· TBt+

+
(
βup ·∆yui,t + γu · eui,t + γa · eai,t,t + γf · efi,t

)
· EBT .

First of all, by subsuming the fixed effects and the fiscal shocks in a matrix called X
and doing the same for their coefficients ( we group them into a vector named β),
we can use the following compact representation of our model:

(Ht)
−1 ·∆yt

n×1
= Xt

n×(n+6)
· β + εt

(Ht)
−1 = In − (βdown · A0 · TBt + βup · Â′0 · EBt)

εt ∼ N (0,Ω),∀t ∈ {1, ..., T}
Ω = diag(σ2

1, ..., σ
2
n)

εt ⊥ εt+i, ∀t ∈ {1, ..., T},∀i ∈ Z

LeSage&Pace (2009) shows how to implement the calculation of the Maximum Like-
lihood Estimator for such a model. However, our model specification differs slightly
from theirs (the standard SAR framework). In particular, we have a panel dataset
and the network is activated in different years according with some dummy variables:
TBt and EBt.
In order to derive the log-likelihood of our model at time t let’s start off by setting
(Ht)

−1 ·∆yt = Zt, we have that:

Zt = (Ht)
−1 ·∆yt ∼ N (Xtβ,Ω),

Therefore we have
∆yt ∼ N (HtXtβ,HtΩH

′
t)

The density function of the random vector ∆yt is:

f(∆yt
n×1
|Xt, ρ, β,Ω) =

1√
(2π)n · |HtΩH ′t|

exp

{
−1

2
·(∆yt−HtXtβ)′·(HtΩH

′
t)
−1·(∆yt−HtXtβ)

}
,
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with ρ = (βdown βup).
Given that:

(HtΩH
′
t)
−1 = (H ′t)

−1 · Ω−1 ·H−1
t

and
|HtΩH

′
t| = |Ht|2 · |Ω|

we have:

f(∆yt|·) = (2π)−n/2 · |Ht|−1 · |Ω|−1/2 · exp

{
− 1

2
(Zt −Xtβ)′ ·H ′t · (H ′t)−1 · Ω−1 ·H−1

t ·Ht · (Zt −Xtβ)

}
= (2π)−n/2 · |(In − βdownA0TBt − βupÂ′0EBt)

−1|−1 · |Ω|−1/2 exp

{
− 1

2
ε′tΩ

−1εt

}
= (2π)−n/2 · |In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| · |Ω|−1/2 exp

{
− 1

2
ε′tΩ

−1εt

}
,

with ρ1 = βdown, ρ2 = βup, A0 = W1 and Â′0 = W2 (to ease notation).
At this point we need to find the likelihood of the random vector ∆yt:

∆yt =
[
∆y1 . . . ∆yT

]′
.

Since our model is static and we have assumed

cov(εt, εt−k) = 0
n×n

,

we consider our variables ∆yt, to be iid. By consequence, the following holds:

f(∆yt
nT×1
|X1, . . . , XT , ρ, β,Ω) =

T∏
t=1

f(∆yt
n×1
|Xt, ρ, β,Ω) =

(
(2π)n|Ω|

)−T/2·
·
T∏
t=1

|In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| exp
{
− 1

2
·

T∑
t=1

ε′tΩ
−1εt

}
.

Now we divide the time series of length T in three different subperiods. In doing so,
consider the following new parameters:

• t1: set of years when a tax based fiscal adjustment occurs. Formally:

t1 := {1, ..., t, ..., T1|t such that TBt = 1}

We set:
Ht|t ∈ t1 = (In − ρ1 ·W1)−1 = Hτ
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• t2: set of years when an expenditure tax based fiscal adjustment occurs. For-
mally:

t2 := {1, ..., t, ..., T2|t such that EBt = 1}
We set:

Ht|t ∈ t2 = (In − ρ2 ·W2)−1 = Hγ

• t3: set of years when neither a tax based fiscal adjustment nor an expediture
based fiscal adjustment occurs. Formally:

t3 := {1, ..., t, ..., T3|t such that TBt = 0 ∧ EBt = 0}

We set:
Ht|t ∈ t3 = (In)−1 = In

Therefore, we have that t1, t2 and t3 account for a partition of the whole time series
and T = T1 + T2 + T3. By consequence we have:

T∏
t=1

|In − ρ1W1TBt − ρ2W2EBt| =
T∏
t=1

|H−1
t |

=
T∏
t=1

1

|Ht|

=

T1∏
t∈t1

1

|Ht|
·
T2∏
t∈t2

1

|Ht|
·
T3∏
t∈t3

1

|Ht|

= |Hτ |−T1 · |Hγ|−T2 · |In|−T3

= |In − ρ1 ·W1|T1 · |In − ρ2W2|T2

At this point, we rewrite the probability density function of our dependent variable
as:

f(∆yt|X1, . . . , XT , ρ, β,Ω) = (2π)−nT/2 · |Ω|−T/2·

· |In − ρ1 ·W1|T1 · |In − ρ2W2|T2 · exp

{
− 1

2
·

T∑
t=1

ε′t · Ω−1 · εt
}
.

Eventually, we express the log-likelihood of our dataset:

logL(ρ, β,Ω|∆y1, . . . ,∆yT , X1, . . . , XT ) = −nT
2

ln(2π)− T

2
· ln(|Ω|)+

+ T1 · ln(|In − ρ1 ·W1|) + T2 · ln(|In − ρ2W2|)−
1

2
·

T∑
t=1

ε′t · Ω−1 · εt.
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with:

εt = Zt −Xt · β = H−1
t ·∆yt −Xtβ = (In − ρ1W1TBt − ρ2W2EBt) ·∆yt −Xt · β.

Furthermore, we impose the condition λ−1
min < ρ̂1 < λ−1

max and µ−1
min < ρ̂2 < µ−1

max, where
λ and µ are the eigenvalues of the spatial matrices W1 and W2 respectively.17 Such
a condition guarantees that the Variance-Covariance Matrix of the ML estimator is
positive definite.
At this point we concentrate the log-likelihood by computing the partial derivatives
of it. Let’s start with deriving the concentrated estimator of β. In our model β
contains the n = 15 fixed effects plus the 6 coefficients in front of the fiscal shocks:
unexpected, announced and future for both taxes and expenditures.

∂ logL(ρ, β,Ω|·)
∂β

= −1

2
· ∂(
∑T

t=1 ε
′
t · Ω−1εt)

∂β
.

Note that:

T∑
t=1

ε′t · Ω−1εt =
[
ε′1 · · · ε′T

]
· Σ−1 ·

ε1
...
εT

 = ε′ · Σ−1 · ε,

where:

Σ
nt×nT

=


Ω 0

n×n
· · · 0

n×n
0
n×n

Ω · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · Ω


Also:

Σ−1 =


Ω 0

n×n
· · · 0

n×n
0
n×n

Ω · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · Ω


−1

=


Ω−1 0

n×n
· · · 0

n×n
0
n×n

Ω−1 · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · Ω−1

 .
Moreover: ε1

...
εT

 = ε = Z −X · β =

Z1
...
ZT

−
X1

...
XT

 · β,
17See Ord (1975)
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therefore,:

T∑
t=1

ε′t · Ω−1εt = (Z −X · β)′ · Σ−1 · (Z −X · β) =

= Z ′ · Σ−1 · Z − 2 · Z ′ · Σ−1 ·X · β + β′ ·X · Σ−1 ·X · β

At this point it can be verified that:

(FOC)
∂ logL(ρ, β,Ω|·)

∂β
= X ′ · Σ−1 · Z −X ′ · Σ−1 ·X · β = 0

β = (X ′Σ−1X)−1X ′Σ−1Z.

The above estimator is the GLS estimator. The result is not surprising, since we
have simply solved a standard squared deviation minimization problem.
Furthermore, we need to estimate the variance of the model to fully concentrate the
likelihood in order to simply solve a two variable maximization problem.

∂ logL(ρ, β,Ω|·)
∂Ω

= −T
2
· ∂(ln(|Ω|))

∂Ω
− 1

2
·

T∑
t=1

∂(ε′t · Ω−1 · εt)
∂Ω

=

= −T
2
· (Ω′)−1 − 1

2
·

T∑
t=1

(−Ω−1 · εt · ε′t · Ω−1)

=
1

2
· Ω−1 ·

[
(
T∑
t=1

εt · ε′t) · Ω−1 − T
]

= 0. (FOC)

From the FOC it follows that:

Ω =

∑T
t=1 εt · ε′t
T

=
1

T
·



∑T
t=1 ε

2
1,t

∑T
t=1 ε1,t · ε2,t · · ·

∑T
t=1 ε1,t · εn,t∑T

t=1 ε
2
2,t · · ·

∑T
t=1 ε2,t · εn,t

. . .
...∑T

t=1 ε
2
n,t


Since we assume Ω to be diagonal, we are only interested in the variances of the
sectors:

Ω = diag(σ2
1, . . . , σ

2
n)
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σ2
i =

1

T
·

T∑
t=1

ε2
i,t

In order to pass to Feasible GLS estimator, we need to use the OLS residuals:

ε̂i,t = Zi,t −Xi,t · (X ′X)−1X ′Z︸ ︷︷ ︸
βOLS

.

Since every equation has 7 parameters (the industry fixed effect plus the 6 fiscal
shocks coefficients) we have:

σ̂2
i =

1

T − 7
·

T∑
t=1

ε̂2
i,t,

and finally we have:
Ω̂ = diag(σ̂2

1, . . . , σ̂
2
n)

β̂ = (X ′Σ̂−1X)−1X ′Σ̂−1Z

At this point it is simply a matter of solving the following problem:

max
ρ1,ρ2

logL(ρ1, ρ2, Ω̂, β̂ | · ) s.t. ρ1 ∈ (λ−1
max, λ

−1
max) and ρ2 ∈ (µ−1

min, µ
−1
max)

Once estimated the coefficients of model

∆yi,t = ci +
(
βdown ·∆ydi,t + δu · eut + δa · eat,t + δf · eft

)
· TBt+

+
(
βup ·∆yui,t + γu · eui,t + γa · eai,t,t + γf · efi,t

)
· EBT .

we proceeded with computing the standard errors of the estimates. In order to
do that, we computed analytically the elements of the Fisher Information Matrix
(I). In fact recall that:

√
n · (θ̂0 − θ)

d−−→ N (0, I−1)

In order to derive the Fisher Information Matrix we firstly need to obtain the
total gradient of the log-likelihood function. Let’s start with the spatial coefficient
ρ1:

∂ logL(θ|∆y,X)

∂ρ1

= T1
1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1

−1

2

T∑
t=1

∂(Z ′tΩ
−1Zt)

∂ρ1

−2
∂(Z ′tΩ

−1Xtβ)

∂ρ1

.

61



By some matrix algebra, it is possible to show that:

∂(Z ′tΩ
−1Zt)

∂ρ1

= −TBt ·∆y′t · Ω−1 ·W1 ·∆yt − TBt ·∆y′t ·W ′
1Ω−1 ·∆yt

+ 2ρ1 · TB2
t ·∆y′t ·W1 · Ω−1 ·W1 ·∆y′t + 2ρ2 · TBt · EBt ·∆y′t ·W1 · Ω−1 ·W2 ·∆y′t

Since our fiscal adjustment plans are mutually exclusive, we have that TBt ·EBt = 0
for all t. Moreover, by rearranging the above expression, we get:

∂(Z ′tΩ
−1Zt)

∂ρ1

= −2 · TBt ·∆y′t · (In − ρ1 ·W ′
1) · Ω−1 ·W1 ·∆yt

After other matrix algebra, we get:

−2 · ∂(Zt · Ω−1Xtβ)

∂ρ1

= 2 · TBt ·∆y′t ·W ′
1 · Ω−1 ·Xt · β

Wrapping up all together, and employing the notation introduced earlier: (In −
ρ1W1)−1 = Hτ , we have:

∂ logL(θ|∆y,X)

∂ρ1

= T1
1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1

+

+

T1∑
t∈t1

[
∆y′t · (In − ρ1 ·W ′

1) · Ω−1 ·W1 ·∆yt −∆y′t ·W ′
1 · Ω−1 ·Xt · β

]
=

= T1
1

|In − ρ1W1|
· |In − ρ1W1| · Tr

(
(In − ρ1W1)−1 · (−W1)

)
+

+

T1∑
t∈t1

[(
(In − ρ1 ·W1) ·∆yt

)′ · Ω−1 ·W1 ·∆yt − β′ ·X ′t · Ω−1 ·W1 ·∆yt
]

= −T1 · Tr
(
Hτ ·W1

)
+

T1∑
t∈t1

[(
Zt −Xtβ

)′ · Ω−1 ·W1 ·∆yt
]

=

T1∑
t∈t1

(
ε′t · Ω−1 ·W1 ·∆yt

)
− T1 · Tr

(
Hτ ·W1

)
.

By simmetry we have that:

∂ logL(θ|∆y,X)

∂ρ2

=

T2∑
t∈t2

(
ε′t · Ω−1 ·W2 ·∆yt

)
− T2 · Tr

(
Hγ ·W2

)
,
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with Hγ = (In − ρ2W2)−1, from the previous notation.
As far as concern the derivative with respect to β, we have already seen when con-
centrating the log-likelihood that:

∂ logL(θ|∆y,X)

∂β
= X ′ · Σ−1 · Z −X ′ · Σ−1 ·X · β

= X ′ · Σ−1 · (Z −X · β) =

= X ′ · Σ−1 · ε =

=
T∑
t=1

X ′t · Ω−1 · εt.

Concerning the derivatives with respect to σ2
i , we need firstly to acknowledge that:

T∑
t=1

ε′t · Ω−1 · εt =
T∑
t=1

n∑
i=1

ε2
i,t

σ2
i

=
n∑
i=1

1

σ2
i

T∑
t=1

ε2
i,t,

and that:

ln(|Ω|) = ln(
n∏
i=1

σ2
i ) =

n∑
i=1

ln(σ2
i ).

Therefore, we have that:

∂ logL(θ|∆y,X)

∂σ2
i

= −T
2

∂ ln(|Ω|)
∂σ2

i

− 1

2
· ∂

∂σ2
i

T∑
t=1

ε′t · Ω−1 · εt

= − T

2 · σ2
i

+
1

2 · σ4
i

·
T∑
t=1

ε2
i,t.
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We now have all the elements to write down the gradient of the log-likelihood:

∇ logL(θ|∆y,X) =



∂ logL(θ|∆y,X)

∂ρ1

∂ logL(θ|∆y,X)

∂ρ2

∂ logL(θ|∆y,X)

∂β

∂ logL(θ|∆y,X)

∂σ2
1

...

∂ logL(θ|∆y,X)

∂σ2
n


38×1

=



∑T1

t∈t1

(
ε′t · Ω−1 ·W1 ·∆yt

)
− T1 · Tr

(
Hτ ·W1

)
∑T2

t∈t2

(
ε′t · Ω−1 ·W2 ·∆yt

)
− T2 · Tr

(
Hγ ·W2

)
∑T

t=1X
′
t · Ω−1 · εt

− T

2 · σ2
1

+
1

2 · σ4
1

·
∑T

t=1 ε
2
1,t

...

− T

2 · σ2
n

+
1

2 · σ4
n

·
∑T

t=1 ε
2
n,t


The gradient contains overall 38 elements, that is, we need to estimate 38 parameters.
By consequence, the Fisher Information Matrix will be a 38× 38 array.

Let’s start with the first row of the matrix: all the derivatives of
∂ logL(θ|∆y,X)

∂ρ1
with respect to all the parameters. To simplify notation I will refer with Hij to the
element of row i and column j of the Hessian matrix.

H1,1 =
∂2 logL(θ|∆y,X)

∂ρ2
1

=

T1∑
t∈t1

( ∂ε′t
∂ρ1

· Ω−1 ·W1 ·∆yt
)
− T1 ·

∂Tr
(
Hτ ·W1

)
∂ρ1

=

T1∑
t∈t1

(
(−∆y′t ·W ′

1) · Ω−1 ·W1 ·∆yt
)
− T1 · Tr

(∂Hτ

∂ρ1

·W1

)
=

= −
T1∑
t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
− T1 · Tr

(
(−Hτ · (−W1) ·Hτ ) ·W1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
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Symmetrically we have:

H2,2 =
∂2 logL(θ|∆y,X)

∂ρ2
2

=

= −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)
−

T2∑
t∈t2

(
∆y′t ·W ′

2 · Ω−1 ·W2 ·∆yt
)

Going back to the first row, we now calculate the cross derivative with respect to
ρ2. Before doing so, recall that, being the log-likelihood a continuously diffirentiable
function, the Schwarz’s theorem applies and the Hessian matrix is symmetric.

H1,2 = H2,1 =
∂2 logL(θ|∆y,X)

∂ρ1∂ρ2

= 0.

Going on with the calculation we have:

H1,3:1,23 =
∂2 logL(θ|∆y,X)

∂ρ1∂β
=

T1∑
t∈t1

(∂ε′t
∂β
· Ω−1 ·W1 ·∆yt

)
= −

T1∑
t∈t1

X ′t · Ω−1 ·W1 ·∆yt

= −X ′τ · (IT1 ⊗ Ω−1)
Σ−1
τ

· (IT1 ⊗W1) ·∆yτ

where H1,3:1,23 means all the elements of the first row, from column 3 up to column
23. Xτ and ∆yτ represent X and ∆y but for the only years when a tax based fiscal
adjustment occur:

Xτ =


X1
...
Xt
...

XT1


T1n×k

and ∆yτ =


∆y1

...
∆yt

...
∆yT1


T1n×k

with t ∈ t1,
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Symmetrically:

H2,3:2,23 =
∂2 logL(θ|∆y,X)

∂ρ2∂β
=

T2∑
t∈t2

(∂ε′t
∂β
· Ω−1 ·W2 ·∆yt

)
= −

T2∑
t∈t2

X ′t · Ω−1 ·W2 ·∆yt

= −X ′γ · (IT2 ⊗ Ω−1)
Σ−1
γ

· (IT2 ⊗W2) ·∆yγ,

with:

Xγ =


X1
...
Xt
...

XT2


T2n×k

and ∆yγ =


∆y1

...
∆yt

...
∆yT2


T2n×k

with t ∈ t2,

H3,3:23,23 =
∂2 logL(θ|∆y,X)

∂β2
=

∂

∂β2

( T∑
t=1

X ′t · Ω−1 · εt
)

=
T∑
t=1

X ′t · Ω−1 · ∂(Zt −Xt · β)

∂β2

=
T∑
t=1

X ′t · Ω−1 ·Xt

= −X ′ · Σ−1 ·X.

H3,24:23,38 =
∂2 logL(θ|∆y,X)

∂β∂σ2
=

T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· εt

The generic element of the above matrix is a k × 1 vector:

−σ−4
1 ·

T∑
t=1

X ′1,t · εi,t.
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Going on with the calculation:

Hi,i|i∈[24,38] =
∂2 logL(θ|∆y,X)

∂(σ2
i )

2
=
T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

ε2
i,t

)
.

H23+i,23+j|i,j∈[1,n] =
∂2 logL(θ|∆y,X)

∂σ2
i ∂σ

2
j

= 0 ∀i 6= j.

H1,24:1,38 =
∂2 logL(θ|∆y,X)

∂ρ1∂σ2
i

=
∂

∂σ2
i

( T1∑
t∈t1

ε′t · Ω−1 ·W1 ·∆yt
)

=
∂

∂σ2
i

( T1∑
t∈t1

Tr
(
ε′t · Ω−1 ·W1 ·∆yt

))
=

∂

∂σ2
i

(
Tr
(( T1∑

t∈t1

∆yt · ε′t
)
· Ω−1 ·W1

))
= Tr

(( T1∑
t∈t1

∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W1

)

Note that

∂Ω−1

∂σ2
i

=


0 · · · 0 · · · 0
...

. . .
...

...
0 · · · −σ−4

i · · · 0
...

...
. . .

...
0 · · · 0 · · · 0

 = diag(0, · · · , 0,−σ−4
i , 0, · · · , 0)

Symmetrically:

H2,24:2,38 =
∂2 logL(θ|∆y,X)

∂ρ2∂σ2
i

= Tr
(( T2∑

t∈t2

∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W2

)

At this point we have all the elements to construct the Hessian matrix of the log-
likelihood.
To sum up, first row:

• H1,1 = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−
∑T1

t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
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• H1,2 = 0

• H1,3:1,23 = −
∑T1

t∈t1 X
′
t · Ω−1 ·W1 ·∆yt

• H1,24:1,38 = Tr
((∑T1

t∈t1 ∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W1

)
.

Second row:

• H2,1 = 0

• H2,2 = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)
−
∑T2

t∈t2

(
∆y′t ·W ′

2 · Ω−1 ·W2 ·∆yt
)

• H2,3:2,23 = −
∑T2

t∈t2 X
′
t · Ω−1 ·W2 ·∆yt

• H2,24:2,38 = Tr
((∑T2

t∈t2 ∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W2

)
.

From row 3 to row 23:

• H3,1:23,1 = H′1,3:1,23

• H3,2:23,2 = H′2,3:2,23

• H3,3:23,23 =
∑T

t=1X
′
t · Ω−1 ·Xt

• H3,24:23,38 =
∑T

t=1 X
′
t ·
∂Ω−1

∂σ2
· εt

From row 24 to the last row (number 38):

• H24,1:38,1 = H′1,24:1,38

• H24,2:38,2 = H′2,24:2,38
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• H24,3:38,23 = H′3,24:23,38

• H23+i,23+j|i,j∈[1,n] =


T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

ε2
i,t

)
∀i = j ∈ [1, n]

0 ∀i 6= j

The last step we have to make to finally obtain the Fisher Information Matrix is
taking expectations of every element.
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E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

E
[
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
]

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

E
[
Tr
(
W1 ·∆yt ·∆y′t ·W ′

1 · Ω−1
)]

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 · E

[
∆yt ·∆y′t

]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 · E

[
Hτ ·Xt · β · ε′t ·H ′τ+

+Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · εt · ε′t ·H ′τ · εt · β′ ·X ′t ·H ′τ
]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · E[ε′t] ·H ′τ+

+Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · E[εt · ε′t] ·H ′τ + E[εt] · β′ ·X ′t ·H ′τ
]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

−
T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · Ω ·H ′τ

]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

−
T1∑
t∈t1

Tr
(
W1 ·Hτ ·Xt · β · β′ ·X ′t ·H ′τ ·W ′

1 · Ω−1 +W1 ·Hτ · Ω ·H ′τ ·W ′
1 · Ω−1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ · Ω
)
−

−
T1∑
t∈t1

Tr
(
β′ ·X ′t ·H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ ·Xt · β
)

=
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Setting M τ
1 = H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ we can rewrite the above identity as:

E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)
−

T1∑
t∈t1

β′ ·X ′t ·M τ
1 ·Xt · β =

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)
− β′ ·X ′τ ·

(
IT1 ⊗M τ

1

)
·Xτ · β.

Simmetrically:

E[H2,2] = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ +Mγ

1 · Ω
)
− β′ ·X ′γ ·

(
IT2 ⊗M

γ
1

)
·Xγ · β.

with Mγ
1 = H ′γ ·W ′

2 · Ω−1 ·W2 ·Hγ.

Going on with the calculation:

E[H1,3:1,23] = E
[
−

T1∑
t∈t1

X ′t · Ω−1 ·W1 ·∆yt
]

=

= −
T1∑
t∈t1

X ′t · Ω−1 ·W1 · E
[
Hτ ·Xt · β +Hτ · εt

]
=

= −
T1∑
t∈t1

X ′t · Ω−1 ·W1 ·Hτ ·Xt · β

= X ′τ · (IT1 ⊗M τ
2 ) ·Xτ · β

with M τ
2 = Ω−1 ·W1 ·Hτ .

Simmetrically:

E[H2,3:2,23] = X ′γ · (IT2 ⊗M
γ
2 ) ·Xγ · β

with Mγ
2 = Ω−1 ·W2 ·Hγ.
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Next step:

E[H1,24:1,38] = Tr
(( T1∑

t∈t1

E
[
∆yt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= Tr
(( T1∑

t∈t1

E
[
∆yt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= Tr
(( T1∑

t∈t1

Hτ · E
[
εt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= T1 · Tr
(
Hτ · Ω ·

∂Ω−1

∂σ2
i

·W1

)
=

= T1 · Tr
(

Ω · ∂Ω−1

∂σ2
i

·W1 ·Hτ

)
,

Notice that

Ω · ∂Ω−1

∂σ−2
i

= −σ2
i · Iii

where the generic element of matrix Iii is given by

ωs,t =

{
1 s = i, j = i

0 otherwise

Therefore

E[H1,23+i] = T1 · σ−2
i · Tr

(
Iii ·W1 ·Hτ

)
=

= T1 · σ−2
i ·

(
W1 ·Hτ

)
ii

Finally we have that:

E[H1,24:1:38] = T1 · diag
(

Ω−1 ·W1 ·Hτ

)
= T1 · diag(M τ

2 ).

Simmetrically:

E[H2,24:2:38] = T2 · diag
(

Ω−1 ·W2 ·Hγ

)
= T2 · diag(Mγ

2 ).
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Going on:

E[H3,3:23,23] = E[
T∑
t=1

X ′t · Ω−1 ·Xt] =
T∑
t=1

X ′t · Ω−1 ·Xt = X ′ · Σ−1 ·X

E[H3,24:23,38] = E[
T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· εt]

=
T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· E[εt]

= 0
k×n

E[H23+i,23+j|i,j∈[1,n]] =


T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

E[ε2
i,t]

)
∀i = j ∈ [1, n]

0 ∀i 6= j

=

−
T

2
· 1

σ4
i

∀i = j ∈ [1, n]

0 ∀i 6= j

= −T
2
·


σ−4

1 0 · · · 0
0 σ−4

2 · · · 0
...

...
. . .

...
o 0 · · · σ−4

n

 = −T
2
· V

We finally have all the elements of the Fisher Information Matrix for our panel (with
dummy variables) spatial model:

I =
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                −
T

1
·T
r( W 1

·H
τ
·W

1
·H

τ
+
M

τ 1
·Ω
) −

−
β
′
·X
′ τ
·( I T 1

⊗
M

τ 1

) ·X
τ
·β

0
( X′ τ
·(
I T

1
⊗
M

τ 2
)
·X

τ
·β
) ′

T
1
·d
ia
g
(M

τ 2
)′

0
−
T

2
·T
r( W 2

·H
γ
·W

2
·H

γ
+
M

γ 1
·Ω
) −

−
β
′
·X
′ γ
·( I T 2

⊗
M

γ 1

) ·X
γ
·β

( X′ γ
·(
I T

2
⊗
M

γ 2
)
·X

γ
·β
) ′

T
2
·d
ia
g
(M

γ 2
)′

X
′ τ
·(
I T

1
⊗
M

τ 2
)
·X

τ
·β

X
′ γ
·(
I T

2
⊗
M

γ 2
)
·X

γ
·β

X
′
·Σ
−

1
·X

0
k
×
n

T
1
·d
ia
g
(M

τ 2
)

T
2
·d
ia
g
(M

γ 2
)

0
n
×
k

−
T 2
·V

                
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We now have all the elements to introduce our simulation procedure: since the
ML estimator is asymptotically normally distributed around the true parameters, we
ran a Monte-Carlo experiment by drawing the coefficients (indicated with θ̃) from
the following distribution:

θ̃ ∼ N (θ̂MLE , I(θ̂MLE )).

The term I(θ̂MLE ) represents the estimated analytical Fisher Information Matrix.

At every draw we calculated the effect of tax and expenditure shock. Iterating this
procedure 10,000 times allowed us to obtain a distribution of a tax and expenditure
shock, thus closely mimicing the procedure adopted by Romer and Romer(2010),
when they construct the confidence bands of their impulse response functions.

5.3.2 Bayesian MCMC

The model’s parameters have also been estimated by the Bayesian MCMC, intro-
duced by LeSage(1997) to provide a heteroscedastic robust estimator of the pa-
rameters of the SAR models. A Bayesian framework has been introduced since a
Maximum Likelihood Heterscedasticity robust estimator was not possible to derive,
because of the single-dimensional nature of the data usually employed in spatial
econometrics problems. The reason to adopt such a methodology in our problem is
twofold: first, we provide an alternative estimation procedure (robustness); second,
we seek to improve the efficiency of the MLE estimates. In fact, LeSage(1997) shows
through an experiment that the Bayesian MCMC delivers slightly more significant
estimates than the ML estimator, within the homoscedastic framework. We therefore
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verify this fact, in our heteroscedastic, panel case:

At ·∆yt
n×1

= Xt
n×(n+6)

· β + εt

At = In − βdown · A0 · TBt + βup · Â′0 · EBt

εt ∼ N (0,Ω),∀t ∈ {1, ..., T}
Ω = σ2 · V with V = diag(v1, ..., vn)

εt ⊥ εt+i, ∀t ∈ {1, ..., T}, ∀i ∈ Z
π(β) ∝ constant

π(σ2) ∝ 1

σ2

π(
r

vi
)
iid∼ χ2

(r), ∀i ∈ {1, ..., n}

βdown ∼ Beta(d, d)

βup ∼ Beta(d, d).

Notice that we add prior information on the spatial coefficients: rather than letting
them vary from λ−1

min to 1, we draw it from a Beta whose support is (0,1). Such a
prior was introduced by LeSage and Parent(2007); basically we rule out the possi-
bility to have negative spatial coefficients, which is a reasonable assumption in our
case, where we expect the network to be positively correlated with the dependent
variable. Moreover, setting the parameter d to be close to 1, makes the Beta prior
to resemble a uniform(0,1) distribution, with the advantage of putting less density
on the boundaries: recall that when the spatial coefficients approach 1 (which coin-
cide with λ−1

max), matrix At becomes not invertible, and the model becomes unstable,
which we believe it is a very unlikely result.
Secondly, we model the heteroscedastic terms as done in LeSage(1997); however, un-
like him, we set the hyperparameter r to be equal to 3 rather than 4, as he suggests.
This is because reducing the magnitude of r implies more confidence on heteroscedas-
ticity, which is in line with our prior belief.
The Bayesian MCMC is developed independently, thus avoiding the “griddy Gibbs”
procedure adopted by LeSage and Pace to overcome the huge dimension problem
of standard spatial econometrics. Deriving all the formulae analytically allows to
obtain more precise results, as LeSage and Pace point out. We use the standard
“Metropolis within Gibbs” algorithm, and we obtain an approximation of the pos-
terior densities for every parameter of the model. Eventually, we draw from the
posteriors the parameters, like a usual MonteCarlo simulation and we use them to
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construct the empirical distribution of the average total, direct and indirect effects
of a tax and expenditure shock, as done before for the Maximum Likelihood Estima-
tion.
In particular, all the steps of the procedures are:

1. Set up initial values for the parameters: β(0), σ
2
(0), V(0), ρ1,(0), ρ2,(0).

2. Draw β(1) from the conditional posterior distribution:

P (β(0)|D, σ2
(0), V(0), ρ1,(0), ρ2,(0)) = N (c∗, L∗) ∝ L(θ|D) · N (c, L)

c∗ =
1

T
· (

T∑
t=1

X ′t · V −1
(0) ·Xt +

σ2
(0)

T
· L−1)−1 · ( 1

T
·

T∑
t=1

X ′t · V −1
(0) ·Ht ·∆yt +

σ2
(0)

T
· L−1 · c)

L∗ =
σ2

(0)

T
· (

T∑
t=1

X ′t · V −1
(0) ·Xt +

σ2
(0)

T
· L−1)−1

Notice that, setting the diagonal elements of matrix L (the prior varcov matrix)
to tend to infinity (we set them up equal to 1 billion), it is like assuming a
non informative prior distribution on parameter β. Notice in fact, that the
parameters of the distribution tend to be equal to the FGLS estimator and its
variance.

3. Draw σ2
(1) from the conditional posterior distribution:

P (σ2
(1)|D, β(1), V(0), ρ1,(0), ρ2,(0)) = Γ−1(

θ1

2
,
θ2

2
) ∝ L(θ|D) · Γ−1(a, b)

θ1 = nT + 2a θ2 =
T∑
t=1

ε′t · V −1
(0) · εt + 2b

In practice we draw σ2
(1) from

θ2

χθ1

Notice that, setting a and b (the prior parameters) equal to 0, is like putting a
Jefferey’s prior on σ2, which is exaclty what we do.
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4. Draw vi,(1) from the following conditional posterior distribution:

P (vi,(1)|D, σ2
(1), β(1), ρ1,(0), ρ2,(0)) = Γ−1(

q1

2
,
q2

2
) ∝ L(θ|D) · Γ−1(

r

2
,
r

2
)

q1 = r + T q2 =
1

σ2
(1)

·
T∑
t=1

ε2
i,t + r

In practice we draw vi,(1) from:
q2

χq1

As anticipated above in the paper, since we are confident on the heteroskedastic
behavior of industry value added, we set our prior hyperparameter r to be equal
to 3 rather than 4, as done by LeSage&Pace (2009).
Replicating this procedure n times, we get a first simulation of matrix V(1).

5. We now need to draw the spatial coefficients. However we cannot apply simple
Gibbs Sampling, since the conditional posterior distribution is not defined for
them. Therefore, we apply the Metropolis Hastings algorithm:

(a) Draw ρc1 (where the c superscript stands for “candidate”) from the pro-
posal distribution:

ρc1 = ρ1,(0) + c1 · N (0, 1)

(b) Run a bernoulli experiment to determine the updated value of ρ1:

ρ1,(1) =

{
ρc1 π (accept)

ρ1,(0) 1− π (reject)

Where π is equal to
π = min{1, ψMH1}

Setting: Aτ (ρ1) = In − ρ1 ·W1 we have:

ψMH1 =
|Aτ (ρc1)|
|Aτ (ρ1,(0))|

· exp
{
− 1

2σ2
(1)

·
T1∑
t∈t1

[
∆y′t ·

(
Aτ (ρ

c
1)′ · V −1

(1) · Aτ (ρ
c
1)−

− Aτ (ρ1,(0))
′ · V −1

(1) · Aτ (ρ1,(0))
)
·∆yt−

− 2β′ ·X ′t · V −1
(1)

(
Aτ (ρ

c
1)− Aτ (ρ1,(0))

)
·∆yt

]}
·

·

[
ρc1 · (1− ρc1)

ρ1,(0) · (1− ρ1,(0))

]d−1

· 1
(
0 ≤ ρc1 ≤ 1

)
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Basically, we compute the probability to accept the candidate value from
the proposal distribution, and then we update the value of ρ1 by running
the bernoulli experiment with such a probability of success. Notice that if
we draw a value of ρ1 outside the support of the beta prior, ψMH1 = 0 and
then π = 0 and we clearly reject the candidate value. Eventually, notice
that d is the parameter of the beta prior that we set equal to 1.1, on both
ρ1 and ρ2; this is to resemble a uniform(0,1) but with less density on its
boundary values.

(c) Once updated ρ1, we replicate the procedure for ρ2. Setting Aγ(ρ2) =
In − ρ2 ·W2 we have:

ψMH2 =
|Aγ(ρc2)|
|Aγ(ρ2,(0))|

· exp
{
− 1

2σ2
(1)

·
T2∑
t∈t2

[
∆y′t ·

(
Aγ(ρ

c
2)′ · V −1

(1) · Aγ(ρ
c
2)−

− Aγ(ρ2,(0))
′ · V −1

(1) · Aγ(ρ2,(0))
)
·∆yt−

− 2β′ ·X ′t · V −1
(1)

(
Aγ(ρ

c
2)− Aγ(ρ2,(0))

)
·∆yt

]}
·

·

[
ρc2 · (1− ρc2)

ρ2,(0) · (1− ρ2,(0))

]d−1

· 1
(
0 ≤ ρc2 ≤ 1

)
6. At this point we need to update the variance of the proposal distributions: if

the acceptance rate (number of acceptances over number of iterations of the
Markov Chain) of the first parameter ρ1 falls below 40% we need to reduce the
value of c1, the so called tuning parameter, which regulate the variance of the
proposal distribution. We reduce the variance in this way:

c′1 =
c1

1.1
.

In this way, we are able to draw values closer to the current value of ρ1, and
therefore, we expect to increase the acceptance rate. On the contrary, if the
acceptance rate rises above 60%, we need to increase the tuning parameter, in
order to draw values far from the current value, in this way we increase the
chance to explore low density parts of the distribution, thus reducing the prob-
ability of accepting the candidate value and, by consequence, the acceptance
rate:

c′1 = 1.1 · c1.

Clearly we replicate this procedure also for ρ2.
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7. Once updated all the values, we replicate procedure 2-6, 35,000 times.

8. We drop (Burn-in phase) the first 10% of the iterations, thus obtaining a
vector of 31,500 observations for each of the parameters, which account for the
simulated posterior distributions.

In order to obtain the distributions of the simulated fiscal plans, we simply draw
the value of the parameters from the posteriors, and we calculate the effects of a
simulated fiscal plan, as described in the paper.

6 Robustness

6.1 Inverted propagation channels

So far we have brought the theoretical mechanism to the data by considering TB
adjustments as supply shocks and EB adjustments as demand shocks. An obvious
way to assess the validity of the theoretical model is to conduct robustness analysis by
putting the theoretically “wrong” labels to EB and TB adjustments. What happens
empirically when a model is estimated in which TB adjustments propagate “wrongly”
upstream and EB adjustments propagate “wrongly” downstream?
As anticipated in Section 3, we conduct this experiment by “switching the dummies”:

∆yi,t = ci +
(
βup ·∆yupi,t + δu · eut + δa · eat,0 + δf · eft

)
· TBt+

+
(
βdown ·∆ydowni,t + γu · eut + γa · eat,0 + γf · eft

)
· EBt. (35)

Equation (35) is estimated via MLE and Bayesian MCMC, as done for the stan-
dard “theoretically correct” specification. Results are reported in Table VIII-IX:

Insert Table VIII-IX here

As before, the two methodologies yield same results. Notice that, unlike the standard
specification, βdown is now less significant than βup, suggesting that during TB year
the industrial network is more active than during EB years.

6.1.1 Tax Hikes in the Inverted Model

As done before, we carry out the analogue fiscal shock simulation. Tables X-XI
report the simulated output effects of a TB adjustment using the “inverted” model:
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Insert Table X-XI here

Table X and XI show that the share of the effect of a TB adjustment attributable to
the network does not change (still more than 50%), but the magnitude of the effect
is now reduced: from an average total effect of almost -2%, we move to -1.54%. The
statistical significance of the effect is also reduced.

6.1.2 Spending Cuts in the Inverted Model

Tables XII-XIII report the results for EB plans. They show that the share of total
network effect decreases from 27% to 21%, the magnitude of the total effect passes
from -0.71% to -0.59% and the statistical significance is now slightly lower:

Insert Table XII-XIII here

6.1.3 Vuong Test

In order to provide a more quantitative assessment of the relative performance of
the “theory-consistent” versus the “inverted” models, we carry out a Vuong test (see
Vuong 1989) for non-nested models. We obtain a pvalue of 24%, which does not lead
to the rejection of the null “superiority of the “theory-consistent” model against the
inverted”.

As the Vuong test suggests, there is still evidence of propagation of the fiscal
shocks in the industrial network when we force shocks to propagate in the theo-
retically wrong way. This is consistent with the fact that tax are not necessarily
pure supply shocks, and they also propagate upward in the supply chain. At the
same time, expenditure fiscal plans also propagate downward. This can be partially
explained by the more heterogeneous structure of EB fiscal plans (see again Figure
2): since there is a tax-component in EB plans, they still propagate through the
industrial network when we force them to move in the downward direction.

Overall we can conclude that there is stronger propagation when we apply the
theoretically correct model, even though we cannot totally statistically rule out the
inverted model.

6.2 Placebo

Ozdagli and Weber 2017 point out that a natural question that arises from the es-
timation of a SAR model, is the possibility that the estimation captures a spurious
correlation (between βdown, βup and the dependent variables), rather than a real un-
derlying economic network. To answer this question we apply a slightly modified
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(more conservative) version of the placebo test proposed by these authors(Ozdagli
and Weber 2017). Basically, the idea is to: 1) simulate new spatial matrices; 2) carry
out the same analysis done in our paper; 3) repeat step 2 several times; 4) compare
the results with the original one.
If the original results are driven by spurious correlation, we expect to obtain similar
results, in terms of statistical significance, to the placebo experiments. On the other
hand, if the network, really matters, the weight given by the original spatial matrix
should be the “real” one, and therefore should deliver superior results.

In practice, we simulated several new spatial matrices by: 1) permuting the ele-
ments of the rows of the original one; 2) permuting the elements of its columns; 3)
reshuffling all its elements; 4) drawing new components from a uniform with support
0-0.4 in two different ways.18 For each simulated spatial matrix, we carried out a
separate analysis, as we had done with the original data. We overall collected 500
placebo experiments, whose results have been summarized by a pair: the mean and
the asymptotic t-statistic of the average effect of the simulated fiscal plan distri-
butions. We compare every placebo experiment with the original result through a
scatter plot: the mean lies on the horizontal axis while the asymptotic t-stat lies on
the vertical axis. Results are shown in Figure 9.

18see next sub-section for further details.
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Figure 9: Pooled Placebo Test (500 simulations)

If the original spatial matrix is capturing a structural network, we expect the
original results to have a stronger effect both in absolute terms (strongly negative
mean) and statistical terms (strongly negative asymptotic t-statistic). We therefore
expect the original spatial matrix results’ to be located in the most south-west part
of the panel.
Notice, that in Figure 9, the red dot, which accounts for the original data simulation,
always stands in the bottom-left part of the panel, that is, it delivers stronger results
both in terms of mean and asymptotic t-statistic. In particular, the average indirect
effect is located in the most south-west position on the graphs.19

19The greatest dispersion of the placebo experiments in the EB plans, is due to the fact that
shocks are industry specific, and therefore are weighed by random elements of the simulated spatial
matrix.
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6.2.1 Details on Placebo

As anticipated above, we conducted several “Placebo” Tests, where we simulated the
spatial matrix in different ways:

1. Row Shuffling : we permutated the elements within the rows of the original
spatial matrix.

2. Column Shuffling : we permutated the elements within the columns of the
original spatial matrix.

3. Total Shuffling : we shuffled all the elements of the original matrix.

4. Half Randomization: we constructed an artificial spatial matrix by drawing its
elements from a Uniform distribution 0-0.4; since most of the elements of the
original matrix are containd in such an interval. However, matrix Â has been
constructed by adopting the original data transformation, starting from the
artificial matrix A.

5. Full Randomization: same as half randomization, but in this, case, we simu-
lated also matrix Â.

In our procedure, we conducted 100 simulations for each Placebo Test. At every
iteration we stored in a 3D array, the mean and the asymptotic t-statistics (mean
over standard deviation) for each component of the Average Effect of a fiscal shock
(total, direct and indirect for both taxes and expenditure shocks).
In a second stance, we plotted the results in a graph which has on the horizontal
axe the mean of the Average Effect, while on the vertical axe, the asymptotic t-
stats. Therefore, every siulation is summarized by a couple: the mean and asyptotic
t-stats of the average effect, which in our 2D graph, represents a point. The graphs
we obtain are therefore 6 scatter plots (each for shock type and component - e.g.
Average Direct Effect for and Expenditure Shock), where 100 points (shown in small
blue dots) represent the 100 simulations, plus the original result (shown with a big
red dot).
Since the average effects are negative, we expect to see the big red dot in the bottom
left part of the graph, while, we expect the see a blue cloud of small dots shifted
up and rightward: which means a weaker and less statistically significant shock
effect. From the figures below we got exactly this result in all the Placebo Tests we
conducted.
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Figure 10: Row Shuffle
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Figure 11: Column Shuffle
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Figure 12: Total Shuffle
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Figure 13: Half Randomization
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Figure 14: Full Randomization

Notice the following facts:

• The red dots always stand in the bottom left part of the graphs, as expected.

• The indirect effect, which is the one which reflects the network, always comes
out weakened when using simulated data.

• The higher volatility of the expenditure shock Placebo Test, is due to the fact
that the spending shocks’ weights are simulated too, and therefore increase the
degree of uncertainty with respect to tax shocks.

6.3 Non-Row Normalized Data

In this section we show that applying row-normalization - which is a standard practice
in spatial econometric frameworks - does not affect at all our results. First of all,
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notice that the row-normalization changes the interpretation of the elements of the
weight matrix, A (and by consequence, also of matrix Â). In particular, replicating
what done in Section 4.2.1 of the paper, we can show the economic interpretation for
each element of the weight matrix, which we denote here with Ã (the row-normalized
version of the I-O matrix, A). We have:

Ã =



ã11 =
SALES1→1

INPUT1

ã12 =
SALES2→1

INPUT1

ã13 =
SALES3→1

INPUT1

ã21 =
SALES1→2

INPUT2

ã22 =
SALES2→2

INPUT2

ã23 =
SALES3→2

INPUT2

ã31 =
SALES1→3

INPUT3

ã32 =
SALES2→3

INPUT3

ã33 =
SALES3→3

INPUT3


where

INPUTi = SALES1→i + SALES2→i + SALES3→i.

Since the coefficients change, also the interpretation of the network coefficient βdown

(βup for Â). However, working with non-row normalized spatial matrices, does not
affect our results.
We report in XVIII the results of the Monte Carlo simulation (starting from ML
estimates), conducted with non-row-normalized spatial matrices:

Insert Table XVIII here.

At the same time, running the inverted model using a non-row-normalized weight
matrix, delivers the following results, summarized in XIX:

Insert Table XIX here.

7 Conclusions

We have investigated how fiscal plans propagate through the industrial network in
the US economy, in order to explain a stronger output effect of TB adjustment plans
than EB adjustment plans. In particular, the average total effect of a 1% of GDP tax-
based adjustment plan is estimated to an average contraction of 2% in GDP while an
EB plan is estimated to lead to a much smaller contraction of 0.72% in GDP. These
estimates are very close to those found in a multi-country study of OECD economies
by Alesina, Favero, and Giavazzi 2015. The different network transmission mech-
anism of EB and TB adjustments offers an interesting new explanations for their
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estimated heterogeneous effects. Interestingly the industrial propagation network ef-
fect accounts for half of the total impact of TB based adjustment on output while in
case of EB adjustments the share of the propagation through the industrial network
is of about half of that observed for TB plans.
Our robustness analysis shows that forcing the TB adjustment to flow upstream
rather than downstream as predicted by the theory on the network effects of supply-
side adjustments produces a statistically weaker empirical model. Even stronger
evidence in the same direction is obtained when EB adjustments are forced to flow
downstream in the industrial network. Overall our results on the US economy il-
lustrate that the heterogenous impact of TB and EB adjustments on output growth
could be explained theoretically and empirically by the different network propagation
mechanism of demand and supply adjustments.
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8 Tables

Table I: Correlation matrix of Fiscal Adjustments

τut τat,0 τft gut gat,0 gft
τut 1 0.0413 0.5702 0.5962 -0.1260 0.1047
τat,0 0.0413 1 0.0376 0.0981 0.3606 0.3105

τft 0.5702 0.0376 1 -0.0469 0.0192 0.1805
gut 0.5962 0.0981 -0.0469 1 -0.0498 0.0140
gat,0 -0.1260 0.3606 0.0192 -0.0498 1 0.7816

gft 0.1047 0.3105 0.1805 0.0140 0.7816 1
∗: Where τut is the surprise increase in taxes announced at time t and implemented in

the same year, and gut is the surprise reduction in government expenditure announced
at time t and implemented in the same year. Instead τat,0 and gat,0 are anticipated tax

and expenditure changes announced by the fiscal authorities in advance and executed

at time t, while τ
f
t and g

f
t are anticipated tax and expenditure changes announced by

the fiscal authorities in advance to be executed in the future.

Table II: ML estimates for the baseline model.

MLE Std Dev Tstat∗ Pvalue

βdown 0.499 0.075 6.676 0.000
βup 0.259 0.083 3.135 0.001

δu -0.241 1.617 -0.149 0.441
γu -1.463 1.871 -0.782 0.217
δa -1.938 1.270 -1.526 0.064
γa 0.195 1.037 0.188 0.426
δf -1.063 0.544 -1.954 0.025
γf -0.283 0.468 -0.605 0.273
∗: The t-statistics can be interpreted as an asymptotic t-

statistics. In fact, keep in mind that the normality of the ML
estimator is an asymptotic result.

Table III: Bayesian MCMC estimates for the baseline model.

Mean Std Dev Tstat 1% 5% 10% 16% 50% 84% 90% 95% 99%

βdown 0.495 0.088 5.600 0.281 0.345 0.380 0.407 0.497 0.584 0.607 0.635 0.687
βup 0.279 0.090 3.105 0.072 0.131 0.163 0.189 0.280 0.369 0.395 0.426 0.483

δu -0.235 1.543 -0.152 -3.807 -2.751 -2.207 -1.776 -0.232 1.300 1.742 2.309 3.357
γu -1.384 1.744 -0.794 -5.456 -4.252 -3.629 -3.112 -1.374 0.334 0.842 1.477 2.680
δa -1.926 1.264 -1.524 -4.830 -4.009 -3.547 -3.180 -1.921 -0.676 -0.305 0.161 1.019
γa 0.241 0.997 0.242 -2.065 -1.388 -1.037 -0.754 0.241 1.223 1.512 1.868 2.575
δf -1.016 0.565 -1.800 -2.311 -1.936 -1.738 -1.578 -1.020 -0.455 -0.290 -0.077 0.310
γf -0.306 0.433 -0.705 -1.328 -1.017 -0.860 -0.737 -0.306 0.128 0.250 0.401 0.702

92



Table IV: The Output Effects of TB plan

ML Bayesian MCMC
Tax Tot Tax Dir Tax Ind Tax Tot Tax Dir Tax Ind

Point Estim. -1.959 -1.018 -0.941 - - -
Mean -2.046 -1.014 -1.032 -1.919 -0.971 -0.948

Std Dev 1.145 0.490 0.689 1.079 0.503 0.630
Pr(x < 0) 98.08% 98.08% 98.08% 97.41% 97.41% 97.41%

1% -5.361 -2.191 -3.237 -4.850 -2.158 -2.942
5% -4.095 -1.823 -2.328 -3.765 -1.793 -2.086
10% -3.522 -1.644 -1.907 -3.283 -1.607 -1.745
16% -3.121 -1.496 -1.643 -2.933 -1.468 -1.506
50% -1.937 -1.011 -0.917 -1.856 -0.969 -0.858
84% -0.941 -0.522 -0.404 -0.886 -0.469 -0.382
90% -0.685 -0.385 -0.283 -0.617 -0.330 -0.267
95% -0.371 -0.212 -0.151 -0.276 -0.147 -0.122
99% 0.182 0.110 0.071 0.387 0.205 0.185

Table V: The Output Effect of TB plans: a Decomposition

ML - MC Bayesian MCMC

Direct NIE Direct NIE

-1.014 (49.56%) -1.032 (50.44%) -0.971 (50.59%) -0.948 (49.41%)
φδ NDE - φδ NDE -

-0.968 (47.31%) -0.045 (2.20%) - -0.926 (48.25%) -0.045 (2.34%) -

- NTE - NTE
- -1.077 (52.64%) - -0.993 (51.75%)
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Table VI: The Output Effect of EB plans

ML Bayesian MCMC
Exp Tot Exp Dir Exp Ind Exp Tot Exp Dir Exp Ind

Point Estim. -0.772 -0.582 -0.190 - - -
Mean -0.711 -0.523 -0.188 -0.716 -0.519 -0.198

Std Dev 0.519 0.369 0.170 0.478 0.337 0.166
Pr(x < 0) 92.36% 92.36% 92.35% 94.06% 94.06% 94.06%

1% -2.025 -1.370 -0.742 -1.907 -1.310 -0.722
5% -1.594 -1.131 -0.513 -1.520 -1.076 -0.502
10% -1.383 -1.001 -0.405 -1.331 -0.955 -0.413

16% -1.220 -0.896 -0.339 -1.186 -0.857 -0.349
50% -0.690 -0.520 -0.157 -0.700 -0.515 -0.169
84% -0.195 -0.149 -0.036 -0.247 -0.182 -0.050

90% -0.068 -0.054 -0.012 -0.121 -0.089 -0.024
95% 0.102 0.081 0.020 0.038 0.028 0.008
99% 0.424 0.324 0.092 0.354 0.260 0.096

Table VII: The Output Effect of EB plans: a Decomposition

ML - MC Bayesian MCMC

Direct NIE Direct NIE

-0.523 (73.56%) -0.188 (26.44%) -0.519 (72.49%) -0.198 (27.51%)
φγ NDE - φγ NDE -

-0.517 (72.71%) -0.006 (0.85%) - -0.519 (72.49%) -0.000 (0.00%) -

- NTE - NTE
- -0.189 (27.29%) - -0.198 (27.51%)

Table VIII: Robustness: ML Estimates of ”Inverted” Model

MLE Std Dev Tstat Pvalue

βdown 0.146 0.082 1.782 0.037
βup 0.499 0.084 5.928 0.000

δu -0.090 1.625 -0.056 0.478
γu -1.105 1.871 -0.591 0.277
δa -1.355 1.297 -1.045 0.148
γa 0.683 1.044 0.654 0.257
δf -0.854 0.554 -1.540 0.062
γf -0.297 0.468 -0.636 0.262
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Table IX: Robustness:Bayesian MCMC Estimates of ”inverted” model

Mean Std Dev Tstat 1 % 5% 10% 16% 50 % 84% 9 % 95% 99%

βdown 0.179 0.080 2.211 0.013 0.048 0.074 0.097 0.175 0.261 0.284 0.317 0.376
βup 0.504 0.083 6.040 0.305 0.364 0.394 0.420 0.504 0.587 0.610 0.639 0.693

δu -0.130 1.551 -0.084 -3.768 -2.682 -2.117 -1.676 -0.117 1.399 1.850 2.403 3.472
γu -1.070 1.733 -0.617 -5.095 -3.923 -3.288 -2.794 -1.063 0.643 1.128 1.771 3.029
δa -1.325 1.210 -1.094 -4.141 -3.319 -2.862 -2.525 -1.327 -0.130 0.218 0.660 1.516
γa 0.671 0.979 0.685 -1.599 -0.944 -0.584 -0.300 0.676 1.644 1.919 2.284 2.955
δf -0.819 0.542 -1.510 -2.083 -1.710 -1.515 -1.360 -0.821 -0.279 -0.123 0.073 0.444
γf -0.315 0.434 -0.726 -1.340 -1.027 -0.870 -0.745 -0.314 0.114 0.238 0.394 0.690

Table X: The Output Effect of TB plans in the Inverted Model

ML Bayesian MCMC
Tax Total Tax Direct Tax Indirect Tax Total Tax Direct Tax Indirect

Point Estim. -1.528 -0.711 -0.817 - - -
Mean -1.652 -0.797 -0.855 -1.537 -0.768 -0.769

Std Dev 1.184 0.497 0.722 1.014 0.478 0.573
Pr(x < 0) 94.80% 94.80% 94.80% 94.60% 94.60% 94.60%

1% -5.159 -1.980 -3.285 -4.185 -1.881 -2.493
5% -3.797 -1.627 -2.222 -3.267 -1.553 -1.806
10% -3.189 -1.440 -1.765 -2.832 -1.382 -1.498
16% -2.733 -1.287 -1.473 -2.513 -1.247 -1.288
50% -1.516 -0.788 -0.711 -1.487 -0.766 -0.694
84% -0.545 -0.305 -0.228 -0.559 -0.289 -0.252
90% -0.287 -0.166 -0.118 -0.301 -0.154 -0.133
95% 0.019 0.011 0.009 0.036 0.019 0.016
99% 0.574 0.334 0.233 0.673 0.340 0.329

Table XI: The Output Effect of TB plans in the Inverted Model: a Deconmposition

ML - MC Bayesian MCMC

Direct Network Indirect Direct Network Indirect

-0.797 (48.25%) -0.855 (51.75%) -0.768 (49.97%) -0.769 (50.03%)
Instantaneous Network Direct - Instantaneous Network Direct -

-0.766 (96.11%) -0.031 (3.89%) - -0.740 (96.23%) -0.029 (3.77%) -

- Total Network Effect - Total Network Effect
- -0.886 (53.63%) - -0.798 (51.92%)
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Table XII: The Output Effect of EB plans in the Inverted Model

ML Bayesian MCMC
Exp Total Exp Direct Exp Indirect Exp Total Exp Direct Exp Indirect

Point Estim. -0.548 -0.458 -0.089 - - -
Mean -0.564 -0.462 -0.101 -0.588 -0.466 -0.122

Std Dev 0.455 0.364 0.114 0.429 0.333 0.120
Pr(x < 0) 89.77% 89.77% 87.14% 91.9 % 91.9% 91.9%

1% -1.711 -1.290 -0.474 -1.655 -1.255 -0.520
5% -1.326 -1.063 -0.319 -1.310 -1.019 -0.347
10% -1.147 -0.925 -0.252 -1.140 -0.893 -0.276
16% -1.014 -0.820 -0.202 -1.006 -0.798 -0.227
50% -0.555 -0.466 -0.073 -0.577 -0.467 -0.098
84% -0.111 -0.095 -0.005 -0.170 -0.137 -0.020
90% 0.006 0.005 0.005 -0.051 -0.041 -0.005
95% 0.158 0.141 0.024 0.104 0.081 0.016
99% 0.449 0.382 0.074 0.396 0.318 0.081

Table XIII: The Output Effect of EB plans in the Inverted Model: a Decomposition

ML - MC Bayesian MCMC

Direct Network Indirect Direct Network Indirect

-0.462 (81.91%) -0.101 (18.09%) -0.466 (79.25%) -0.122 (20.75%)
Instantaneous Network Direct - Instantaneous Network Direct -

-0.457 (98.92%) -0.005 (1.08%) - -0.464 (99.57%) -0.002 (0.43%) -

- Total Network Effect - Total Network Effect
- -0.106 (18.79%) - -0.124 (21.09%)
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Table XV: US OBRA-90 in percent of GDP

Revenue adjustments Expenditure adjustments

IMF τut τat,0 τat,1 τat,2 τat,5 IMF gut gat,0 gat,1 gat,2 gat,3 gat,4 gat,5

1990 0.00 0.080 0.080 0.00 0.305 0.190 0.00 0.075 0.027 0.075 0.075 0.00 0.305 0.300 0.318 0.477 0.239
1991 0.590 0.305 0.00 0.305 0.190 0.00 0.075 0.027 0.00 0.305 0.00 0.305 0.300 0.318 0.477 0.239 0.00
1992 0.00 0.190 0.00 0.190 0.00 0.075 0.027 0.00 0.00 0.300 0.00 0.300 0.318 0.477 0.239 0.00 0.00

Table XVI: descriptive statistics of estimated fixed effects for the baseline model. In the left panel of the table, you
can see estimates for industry fixed effects, while on the right panel, you can find the estimated variances for each of
the 15 sectors.

Fixed Effects Variances

MLE Std Dev t-stat p-value MLE Std Dev t-stat p-value

c1 1.260 2.327 0.542 0.294 σ2
1 200.129* 46.529 4.301 0.000

c2 4.522 2.903 1.558 0.060 σ2
2 311.043* 72.316 4.301 0.000

c3 1.535 0.845 1.817 0.035 σ2
3 25.436 5.914 4.301 0.000

c4 2.336 1.099 2.125 0.017 σ2
4 44.005 10.231 4.301 0.000

c5 0.802 0.619 1.296 0.097 σ2
5 13.415 3.119 4.301 0.000

c6 2.188 0.599 3.651 0.000 σ2
6 12.803 2.977 4.301 0.000

c7 1.464 0.519 2.822 0.002 σ2
7 9.530 2.216 4.301 0.000

c8 1.906 0.672 2.835 0.002 σ2
8 15.600 3.627 4.301 0.000

c9 2.783 0.673 4.136 0.000 σ2
9 15.274 3.551 4.301 0.000

c10 3.092 0.421 7.352 0.000 σ2
10 6.039 1.404 4.301 0.000

c11 4.648 0.587 7.924 0.000 σ2
11 11.614 2.700 4.301 0.000

c12 4.078 0.381 10.711 0.000 σ2
12 4.961 1.153 4.301 0.000

c13 3.141 0.464 6.770 0.000 σ2
13 7.424 1.726 4.301 0.000

c14 2.343 0.609 3.845 0.000 σ2
14 12.604 2.930 4.301 0.000

c15 1.923 0.308 6.253 0.000 σ2
15 3.041 0.707 4.301 0.000

∗: The first two sectors (Agriculture and Mining) have very high variances. This is consistent with the extreme volatile
nature of output in those two sectors.
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Table XVII: descriptive statistics of estimated fixed effects and variances for the inverted model.

Fixed Effects Variances

MLE Std Dev t-stat p-value MLE Std Dev t-stat p-value

c1 1.323 2.319 0.571 0.284 σ2
1 198.653 46.187 4.301 0.000

c2 4.553 2.905 1.567 0.059 σ2
2 311.541 72.432 4.301 0.000

c3 1.591 0.842 1.890 0.029 σ2
3 25.228 5.865 4.301 0.000

c4 2.220 1.098 2.021 0.022 σ2
4 43.972 10.224 4.301 0.000

c5 0.776 0.609 1.274 0.101 σ2
5 12.968 3.016 4.299 0.000

c6 2.324 0.593 3.918 0.000 σ2
6 12.446 2.894 4.301 0.000

c7 1.603 0.539 2.972 0.001 σ2
7 10.216 2.375 4.301 0.000

c8 1.890 0.674 2.804 0.003 σ2
8 15.690 3.648 4.301 0.000

c9 2.752 0.672 4.095 0.000 σ2
9 15.226 3.540 4.301 0.000

c10 3.201 0.423 7.560 0.000 σ2
10 6.101 1.419 4.301 0.000

c11 4.626 0.591 7.824 0.000 σ2
11 11.815 2.747 4.301 0.000

c12 4.175 0.390 10.699 0.000 σ2
12 5.197 1.208 4.301 0.000

c13 3.080 0.477 6.459 0.000 σ2
13 7.997 1.859 4.301 0.000

c14 2.279 0.609 3.743 0.000 σ2
14 12.583 2.926 4.301 0.000

c15 1.990 0.301 6.621 0.000 σ2
15 2.908 0.676 4.300 0.000
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Table XVIII: TB and EB adjustments average effects - Baseline model - Non-Row Normalized weight matrices

Tax Tot Tax Dir Tax Ind Exp Tot Exp Dir Exp Ind

Point Estim. -1.776 -0.962 -0.815 -0.886 -0.568 -0.317
Mean -1.856 -0.965 -0.891 -0.919 -0.573 -0.346

Std Dev 1.023 0.466 0.586 0.621 0.367 0.278
Pr(x < 0) 98.22% 98.22% 98.22% 94.13% 94.13% 94.12%

1% -4.706 -2.094 -2.768 -2.500 -1.426 -1.194
5% -3.678 -1.738 -2.006 -2.000 -1.178 -0.868
10% -3.198 -1.562 -1.678 -1.719 -1.040 -0.706
16% -2.817 -1.419 -1.414 -1.523 -0.937 -0.598
50% -1.777 -0.962 -0.798 -0.887 -0.572 -0.300
84% -0.870 -0.501 -0.351 -0.319 -0.208 -0.094
90% -0.631 -0.366 -0.243 -0.157 -0.104 -0.045
95% -0.344 -0.204 -0.135 0.049 0.033 0.013
99% 0.173 0.103 0.065 0.399 0.264 0.128

Table XIX: T Band EB adjustments average effects - Inverted model - Non-row Normalized weight matrices

Tax Tot Tax Dir Tax Ind Exp Tot Exp Dir Exp Ind

Point Estim. -0.528 -0.272 -0.256 -0.475 -0.413 -0.062
Mean -0.602 -0.298 -0.303 -0.484 -0.411 -0.073

Std Dev 0.945 0.483 0.482 0.444 0.370 0.099
Pr(x < 0) 73.08% 73.08% 73.08% 87.00% 87.00% 81.07%

1% -3.189 -1.423 -1.876 -1.599 -1.275 -0.427
5% -2.257 -1.097 -1.183 -1.243 -1.022 -0.265
10% -1.815 -0.919 -0.918 -1.059 -0.888 -0.199
16% -1.501 -0.777 -0.718 -0.914 -0.775 -0.156
50% -0.523 -0.295 -0.217 -0.467 -0.409 -0.046
84% 0.300 0.186 0.111 -0.052 -0.047 0.003
90% 0.539 0.325 0.196 0.070 0.063 0.013
95% 0.810 0.506 0.303 0.223 0.197 0.031
99% 1.269 0.811 0.519 0.492 0.450 0.084
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9 Additional Figures

Figure 15: Average Effects - Baseline Model

∆yi,t = ci + βdown ·∆ydowni,t +
(

+δu · eut + δa · eat,0 + δf · eft
)
· TBt+

+
(
γu · eui,t + γa · eai,t,0 + γf · efi,t

)
· EBt. (36)

∆yi,t = ci + βup ·∆yupi,t +
(

+δu · eut + δa · eat,0 + δf · eft
)
· TBt+

+
(
γu · eui,t + γa · eai,t,0 + γf · efi,t

)
· EBt. (37)
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Figure 16: Average Effects - Inverted Model
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