
8 Supplemental Appendix

8.1 On SPE and self-enforcing agreements

Consider the following game.

AnB W E AnB L C R

N 6; 6 �� �! U 9; 0 0; 5 0; 3

S 0; 0 2; 2 M 0; 5 9; 0 0; 3

D 0; 7 0; 7 1; 8

All plans are justi�able, hence they are all rationalizable. The subgame

has one pure equilibrium, (D;R), and no mixed equilibrium: for Ann to be

indi¤erent between U and M , Bob must randomize over fL;Cg, but when he
is indi¤erent between them, he prefers R; for Ann to be indi¤erent between

U and D or M and D, Bob must randomize over, respectively, fL;Rg and
fC;Rg, but R dominates L over fU;Dg and C over fM;Dg. So, the game
has only one SPE, inducing outcome (S;E).

The SPE outcome (S;E) is implementable, but di¤erently from the game

in the Introduction, only with an agreement that features also the o¤-the-path

threat R by Bob. For instance, the reduced agreement on the realization-strict

Nash (S;E:R) is self-enforcing by Theorem 2. Instead, the path agreement on

z = (S;E) is not self-enforcing because Ann may rationally deviate and then

play U or M , hence Bob could best reply with any action, and not just with

R. Formally, we have S1A;z = S1A;z = fS;N:U;N:Mg and S1B;z = S1B;z =

fE:L;E:C;E:Rg.
Note moreover that if Ann believes in the SPE path, it is not rational

for her to deviate and then play D. Thus, if Bob interprets the deviation of

Ann as an attempt to increase her payo¤ with respect to the equilibrium (as

implicitly assumed by strategic stability and related re�nements, see Section

6), the fact that R is the best reply to D which is the best reply to R itself is

of no value: R is a credible reaction of Bob only by virtue of other beliefs he

may have.
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Players can also implement the outcome (N;W ), and di¤erently from the

game in the Introduction, only with an agreement that does not feature a

threat played with positive probability in an equilibrium of the subgame (here,

just D). For instance, the reduced agreement with e0A = fN:U;N:Mg and
e0B = fWg is self-enforcing: we have S1e = fN:U;N:M;N:Dg � fWg, thus
S1e = S1e = S((N;W )).

To conclude, note that there is no conceptual di¤erence behind the reasons

for self-enforceability of the SPE and of the Pareto-superior Nash outcome.

8.2 Another form of agreement incompleteness

Consider the following game.

4; 9; 5 AnB w e

" o n 3; 9; 0 0; 8; 2

Ann 5; 0; 1 s 0; 3; 0 1; 5; 2

# i u " "
Bob �! Cleo � �a �! Bob

# d #
CnB l c r AnB w e

t 5; 4; 1 5; 6; 0 5; 0; 0 n 3; 9; 0 0; 8; 2

b 5; 4; 0 5; 0; 1 5; 10; 1 s 0; 3; 0 1; 5; 2

All plans are justi�able, hence they are all rationalizable. Players want to

implement outcome (o). As suggested in Section 4, we �rst look for the sets

S� = S�A � S�B � S�C � S1 = S that induce (o) and satisfy Self-Enforceability
and Self-Justi�ability. Ann�s Self-Enforceability requires Bob not to play d

and Cleo not to play u. Then, Bob�s Self-Justi�ability requires that Cleo may

play t, and Cleo�s Self-Justi�ability requires that Bob may play e in a subgame

he allows. Hence, calling SwB and S
e
B the binary sets of plans of Bob where the

last move is w and e respectively, the required sets S� coincide with those that
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satisfy

S�A = fog , S�B � SwB [ SeB, SeB \ S�B 6= ;, S�C � ft:a; b:ag , t:a 2 S�C :

Does any of these sets satisfy Forward Induction? No. Under belief in S�C , it

is irrational for Bob to play d:l, because both plans in SeB guarantee a higher

payo¤. Yet, it is rational to play d:c, because t:a 2 S�C . Therefore, Forward
Induction requires Cleo to play b and not t, a contradiction. Thus, there is no

SES that implements (o).

So, we look for a tight agreement e where e0 satis�es the conditions above

and alternative plans of Ann and Bob, e1A and e
1
B, are introduced to reach

all histories (for T2) and restrict their behavior after deviations to i and d.

First, observe that we need e0C = ft:ag. If b:a 2 e0C , then, regardless of

e1A, we have d:r 2 �B(�e
B) \ SB((i; d)), but d:l 62 �B(�e

B). So, for Bob, T3

imposes d:l 62 e1B \ SB((i; d)) 6= ;, but then t:a 62 �C(�
e
C), a violation of

T3. Still, without restrictions on e1A, we have d:c 2 �B(�e
B) \ SB((i; d)), so

again d:l 62 e1B \ SB((i; d)) 6= ; and t:a 62 �C(�e
C). Hence, we must obtain

d:c 62 �B(�e
B). So, we must impose i:s:s 62 e1A. If Ann guarantees to play n in

a speci�c subgame, then we have �i(�
e
B) � SwB ; hence, T3 imposes e0B � SwB ,

a contradiction of the conditions on e0B. So, the only remaining option is

e1A = fi:n:n; i:n:s; i:s:ng. Then, on the one hand there is �B 2 �e
B with

�B(i:n:sj(i)) = �B(i:s:nj(i)) = 1=2 and �B(�B) = SeB; on the other hand,

for every �B 2 �e
B, there is sB 2 �B(�B) \ (SwB [ SeB) that gives to Bob an

expected payo¤ of at least 6:5, so d:c 62 �B(�e
B) \ SB((i; d)) = ;.

e0A = fog ; e0B = S
w
B [ SeB; e0C = ft:ag ;

e1A = fi:n:n; i:n:s; i:s:ng ; e1B = fd:l; d:c; d:rg :

The vagueness of Ann about in which subgame she is going to play n is a

kind of agreement incompleteness that, like here, can be necessary to imple-

ment an outcome. It can be interpreted as Ann doing the following speech: �I

guarantee that I will be prepared to play n in at least one contingency, but I
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cannot guarantee that I will be prepared to play n in both.�

This kind of strategic uncertainty also arises naturally from strategic rea-

soning. The example on page 50 in Battigalli [6] (provided by Gul and Reny)

shows that already the set of justi�able plans of a player is not a Cartesian

product of sets of actions at di¤erent information sets. This is the reason why

(selective) rationalizability is de�ned as an elimination procedure of plans and

not of actions at di¤erent information sets, and agreements are de�ned in

terms of plans as well.

8.3 Proofs for Sections 5 and 6

For any h 2 Hn fh0g, let p(h) 2 H be the immediate predecessor of h.

Proof of Proposition 8
Fix an outcome set P � Z that is implementable under priority to ratio-

nality. Then, by Theorem 3, P is implemented by an agreement e = (ei)i2I

which is tight under priority to rationality. The proof is constructive. Let M

be the smallest m such that Sm = S1 (it exists by �niteness of the game).

For each i 2 I and n = 0; :::; ki, let

eni := fsi 2 S1i : 9s0i 2 eni ;8h 2 H(s0i) \H(S1); s0i(h) = si(h)g ;

for each n = ki+1; :::; ki+M +1, let eni = S
ki+M+1�n
i . Assume without loss of

generality that eni ( en+1i for each n = 0; :::; ki +M ,47 so that e = (ei)i2I is an

agreement. I am going to show that e is tight under priority to the agreement.

Indicate with T1a, T2a and T3a the conditions of tightness under priority to

the agreement (i.e., with Si in place of S1i ).

First, I show that e satis�es T1a (which is identical to T1). Fix i 2 I and
�i that strongly believes e

0
�i. For each j 2 I and sj 2 e0j , there is s0j 2 e0j

such that s0j(h) = sj(h) for all h 2 H(S1) \H(s0j), and vice versa. Hence, (i)
�(Si � e0�i) \ �(S1) = �(Si � e0�i) \ �(S1), and there exists �0i that strongly
47If eni = e

n+1
i for some n, en+1i can simply be eliminated from the chain.
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believes e0�i such that (ii) �i(S�i(z)jh) = �0i(S�i(z)jh) for all h 2 H(S1) and
z 2 �(S1). Note that �(�i(�i) � e0�i); �(�i(�0i) � e0�i) � �(S1).48 Then: by

(ii), �(�i(�i)� e0�i) = �(�i(�0i)� e0�i); by (i), �(�i(�0i)� e0�i) = �(�i(�0i)� e0�i).
So, we obtain

�(�i(�i)� e0�i) = �(�i(�0i)� e0�i) = �(�i(�0i)� e0�i) � �(e0) = �(e0),

where the inclusion holds by T1 and the last equality by construction.

Moreover, e satis�es T2a by eki+M+1
i = Si. It remains to show that e

satis�es T3a. I will show later that49

�i(�
e
i )\Si = fsi 2 S1i : 9s0i 2 �i(�e

i ) \ S1i ;8h 2 H(s0i) \H(S1); s0i(h) = si(h)g :
(2)

Now, �x h 2 H(�i(�e
i ) \ Si). Suppose �rst that either h = h0 or p(h) 2

H(S1). Then, by (2), h 2 H(�i(�
e
i ) \ S1i ). By T3, there is n such that

; 6= eni \ Si(h) � �i(�e
i ) \ S1i . Then, by de�nition of eni , eni \ Si(h) 6= ;, and

for each si 2 eni \ Si(h) � S1i , there is s0i 2 eni such that s0i(h) = si(h) for all
h 2 H(s0i) \H(S1), thus s0i 2 eni \ Si(h). So, s0i 2 �i(�e

i ) \ S1i . But then, by
(2), si 2 �i(�e

i ) \ Si.
Suppose now that p(h) 62 H(S1). Fix the unique h0 � h such that h0 62

H(S1) but p(h0) 2 H(S1). As shown, there is n such that ; 6= eni \ Si(h0) �
�i(�

e
i )\Si. So, it su¢ ces to show that eni \Si(h) 6= ;. Fix si 2 �i(�e

i )\Si\Si(h)
and s0i 2 eni \Si(h0) � �i(�e

i )\Si. By (2), si; s0i 2 S1i . Fix �i; �0i that strongly
believe ((Sqj )j 6=i)

1
q=0 such that si 2 �i(�i) and si 2 �i(�0i). Since h0 62 H(S1),

p(h0) 2 H(S1), and h0 2 H(S1i ), we have h0 62 H(S1�i), so �0i(S�i(h0)jp(h)) =
0. Then, I can construct �00i that strongly believes ((S

q
j )j 6=i)

1
q=0 such that

�00i (�jeh) = �0i(�jeh) for each eh 6� h0 and �00i (�jeh) = �i(�jeh) for each eh � h0. So,

there is s00i 2 �i(�
00
i ) � S1i such that s00i (eh) = s0i(

eh) for each eh 6� h0 witheh 2 H(si) and s00i (eh) = si(eh) for each eh � h0 with eh 2 H(s0i). Hence, s00i 2 eni
48To see this, �x e�i that strongly believes ((Sqj )j 6=i)1q=0 with e�i(�jh) = �i(�jh) for all

h 2 H(e0�i). So, �(�i(e�i) � e0�i) = �(�i(�i) � e0�i). By �i(e�i) � S1i and e0�i � S1�i,
�(�i(e�i)� e0�i) � �(S1). Hence, �(�i(�i)� e0�i) � �(S1) as well.
49Of course, the intersection with Si is super�uous here. It will be substituted with S1i

in the next proof.
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and s00i 2 Si(h).
Finally I prove (2). First I prove ���. For each j 6= i, n = 0; :::; kj, and

sj 2 enj , there is s0j 2 enj such that s0j(h) = sj(h) for all h 2 H(S1) \ H(s0j).
Moreover, by T2, H(ekjj ) � H(S1j ) � H(S1). Hence, for each �i 2 �e

i (which

strongly believes ((Sqj )j 6=i)
1
q=0 by construction of e) I can construct �

0
i 2 �e

i

that strongly believes ((Sqj )j 6=i)
1
q=0 (which is possible because e

kj
j � S1j ) such

that �0i(S�i(z)jh) = �i(S�i(z)jh) for all h 2 H(S1) and z 2 �(S1). Then, for
every si 2 �i(�i) \ Si � S1i , there is s0i 2 �i(�0i) � S1i such that s0i(h) = si(h)

for all h 2 H(s0i) \H(S1).
Now I prove ���. Fix si 2 S1i , �0i 2 �e

i , and s
0
i 2 �i(�0i)\S1i with s0i(h) =

si(h) for all h 2 H(s0i)\H(S1). Fix �00i that strongly believes ((S
q
j )j 6=i)

1
q=0 such

that si 2 �i(�00i ). For each j 6= i, n = 0; :::; kj, sj 2 enj � S1j , h 2 H(sj)nH(S1)
with p(h) 2 H(S1), and s0j 2 S1j \ Sj(h), �x �j; �0j that strongly believe
((Sqk)k 6=j)

1
q=0 such that sj 2 �j(�j) and s0j 2 �j(�0j). By �j(S�j(h)jp(h)) = 0, I

can construct �00j that strongly believes ((S
q
k)k 6=j)

1
q=0 such that �

00
j (�jeh) = �j(�jeh)

for each eh 6� h, and �00j (�jeh) = �0j(�jeh) for each eh � h. So, there is s00j 2 �j(�00j ) �
S1j such that s00j (eh) = sj(eh) for each eh 6� h with eh 2 H(sj) and s00j (eh) = s0j(eh)
for each eh � h with eh 2 H(s0j). Hence, s00j 2 enj . With all such s00j�s, I can
construct �i 2 �e

i such that �i(S�i(z)jh) = �0i(S�i(z)jh) for all h 2 H(S1)
and z 2 �(S1), and �i(S�i(z)jh) = �00i (S�i(z)jh) for all h0 2 H(S1i )nH(S1)
with p(h0) 2 H(S1), h � h0, and z � h. Hence, si 2 �i(�e

i ). �

Proof of Proposition 9. For each P � Z which is implementable under
priority to the path, a tight agreement e that implements P under priority

to rationality can be constructed exactly like in the proof of Proposition 8,

substituting T1,T2,T3 with T1p,T2p,T3p (the requirements of tightness under

priority to the path, that is, with S1z in place of S1), T1a,T2a,T3a with

T1,T2,T3, S with S1, S1 with S1z , and ((S
q
i )i2I)

1
q=0 with ((S

q
i;z)i2I)

1
q=0. �

Proposition 10 Let z = (a1; :::; aT ) be a path that can be upset by a convinc-
ing deviation. The path agreement on z is not credible.
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Proof. Fix a two-players (i and j) static game G with action sets Ai
and Aj and payo¤ function vk : Ai � Aj ! R, k = i; j. Let bk and ck be

the �rst- and second-ranked stage-outcomes of G for player k = i; j. A path

z = (a1; ::; aT ) of Nash equilibria of the T-fold repetition of G can be upset by

a convincing deviation if there exist � 2 f1; :::; T � 1g and bai 6= a�i such that,
letting T := T � � ,

vi(bai; a�j ) + vi(ci) + (T � 1)vi(bi) < TX
t=�

vi(a
t) < vi(bai; a�j ) + Tvi(bi); (I)

Tvj(b
i) > max

aj2Ajnfbijg
vj(b

i
i; aj) + (T � 1)vj(bj): (J)

Condition I says that player i bene�ts from a unilateral deviation at � only

if followed by her preferred subpath.50 Condition J says that player j cannot

bene�t from a unilateral deviation from that subpath even if followed by her

preferred subpath.51

Now I prove the proposition. Let ei = (Si(z)) and ej = (Sj(z)). Letbh := (a1; ::; (bai; a�j )) and z := (a1; ::; (bai; a�j ); bi; :::; bi). Suppose that S1e (z) 6= ;,
otherwise S2e = ;. Then, for each k = i; j, there exists �k that strongly believes
S1�k and S�k(z) such that �k(�k) \ Sk(z) 6= ;.
Fix n 2 N and suppose that Sn�1i (z) 6= ;. Fix sj 2 Sj with �i(sjjh0) 6= 0.

Since �i strongly believes S
1
j and Sj(z), sj 2 S1j (z). Fix �j that strongly

believes (Sqi )
1
q=0 with sj 2 �j(�j). Since �j strongly believes Si(z), for each

h 62 H(Si(z)) with p(h) � z, �j(Si(h)jp(h)) = 0. Thus, there exists �0j that

strongly believes (Sqi )
n�1
q=0 such that (i) �

0
j(�jh0) = �j(�jh0), (ii), �0j(Si(z)jbh) = 1,

and (iii) �0j(�jh) = �j(�jh) for all h 2 H(Sj(z)) with h 6� z and h 6� bh. Then,
there exists s0j 2 �j(�0j) � Snj such that: by �j(�j) \ Sj(z) 6= ;, �j(Si(z)jh0) =
1, and (i), s0j 2 Sj(z) � Sj(bh); by (ii) and (J), s0j 2 Sj(z); by (iii) and

50In the example of Section 5, i = Ann, j = Bob, (a1; a2) = ((FR;W ); (W;FR)), bi =
(FR;W ), ci = (W;W ), � = 1, bai = W , thus T � 1 = 0. Formally, the �rst inequality in
(I) is not satis�ed (equality holds), but this is immaterial because bi and ci entail the same
action for Bob, against which the best reply of Ann induces bi:
51This implies that i�s preferred stage-outcome is Nash, reason why Osborne (1991) refers

to coordination games.
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sj; s
0
j 2 Sj(z), s0j(h) = sj(h) for all h 2 H(Sj(z)) with h 6� bh. With these s0j�s,

I can construct �i that strongly believes (S
q
j )
n
q=0 such that �i(Sj(z)jh0) = 1,

and �i(Sj(ez)jh0) = �i(Sj(ez)jh0) for all ez 6� bh. Thus, by �i(�i) \ Si(z) 6= ;,
�i(Sj(z)jh0) = 1, and (I), ; 6= �i(�i)\Si(z) � Sn+1i (z). So, by induction, there

exists �i that strongly believes (S
q
j )
1
q=0 and Sj(z) such that ; 6= �i(�i)\Si(z) �

S1i;e(z). On the other hand, for every �i that strongly believes Sj(z), by (I)

�i(�i)\Si(bh) � Si(z), so S1i;e(bh) � Si(z). The two things combined imply that
for every �j that strongly believes S

1
i;e and Si(z), �j(Si(z)jbh) = 1. So, by (J),

S2j;e(
bh) � Sj(z). Since Sj(z) � Sj(bh), for every �i that strongly believes S2j;e

and Sj(z), �i(Sj(z)jh0) = 1, so by (I) �i(�i)(z) = ;. Hence S3i;e(z) = ;. So,
S4j;e = ;. �

8.4 On the de�nition of Selective Rationalizability.

Consider the following, alternative de�nition of Selective Rationalizability.

De�nition 16 Let ((Smi )i2I)
1
m=0 denote the Rationalizability procedure. Con-

sider the following procedure.

(Step 0) For each i 2 I, let bS0i;e = S1i .
(Step n>0) For each i 2 I and si 2 Si, let si 2 bSni;e if and only if there is

�i 2 �e
i such that:

S1 si 2 �i(�i);

S2 �i strongly believes bSqj;e for all j 6= i and q < n;
S3 �i strongly believes bSqj for all j 6= i and q 2 N.
Finally, let bS1i;e = \nn�0 bSi;e. The pro�les in bS1e are called selectively-

rationalizable.

This is the de�nition of Selective Rationalizability provided and charac-

terized epistemically in [18]. It di¤ers from the de�nition used in this paper
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because of requirement S3 in place of the requirement that si 2 S1i . Here I
argue that the two de�nitions are equivalent for the analysis of agreements.

The two de�nitions are equivalent for the same agreement whenever the

agreed-upon plans are chosen only according to what they prescribe at the

rationalizable histories (H(S1)).

Proposition 11 Fix an agreement e = (ei)i2I such that, for each i 2 I,

n = 0; :::; ki, si 2 eni , and s0i 2 S1i , if s0i(h) = si(h) for all h 2 H(S1)\H(s0i),
then s0i 2 eni . Then, bS1e = S1e .

Proof. By induction.
Induction hypothesis: for each m � n, bSme = Sme ; moreover, unlessbSn+1e = Sn+1e = ;, for each i 2 I and h 62 H(S1) with p(h) 2 H(S1), there

exists a map �hi;n : Si(h)! Si(h) such that:

a) for each si 2 Si(h)nS1i (h), �hi;n(si) = si;

b) for each si 2 S1i (h),

(i) �hi;n(si)(h) = si(h) for all h 2 H(si) with h � h,

(ii) �hi;n(si) 2 Smi;e for all m � n with Smi;e(h) 6= ;,

(iii) if eqi \ Si(h) 6= ; for some q = 0; :::; ki, �hi;n(si) 2 e
q
i .

Basis step: S0e = bS0e = S1, and the required maps exist by property of e
(in particular, (iii) can always be satis�ed).

Inductive step. For bSn+1e = Sn+1e , since by the induction hypothesisbSme = Sme for eachm � n, it su¢ ces to show that for every i 2 I and si 2 Sn+1i;e ,

there is b�i 2 �e
i that strongly believes ((S

m
j;e)j 6=i)

n
m=0 and ((S

m
j )j 6=i)

1
m=0 such

that si 2 �i(b�i). So, �x �i 2 �e
i that strongly believes ((S

m
j;e)j 6=i)

n
m=0 and

�0i that strongly believes ((S
m
j )j 6=i)

1
m=0 such that si 2 �i(�i) \ �i(�0i). By the

induction hypothesis, I can construct b�i such that b�i(�jh) = �i(�jh) for all
h 2 H(S1�i) and b�i(s�ijh) = �0i((�j 6=i�hj;n)�1(s�i)jh) for all h 62 H(S1�i) with
p(h) 2 H(S1), h � h, and s�i 2 �j 6=i�hj;n(S�i(h)). By (iii), b�i 2 �e

i . By
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(ii), b�i strongly believes ((Smj;e)j 6=i)nm=0 and, by (a), also ((Smj )j 6=i)1m=0. By (i),
si 2 �i(b�i).
Now �x h 62 H(S1) with p(h) 2 H(S1). If Sn+1i;e (h) = ;, let �hi;n+1 = �hi;n.

Else, we need to update �hi;n(si) for each si 2 S1i (h). Fix �i that strongly be-
lieves ((Smj )j 6=i)

1
m=0 such that si 2 �i(�i). Unless bSn+1e = Sn+1e = ;, there existsbsi 2 Sn+1i;e (h) =
bSn+1i;e (h) with bsi 2 eqi for all q = 0; :::; ki such that eqi\Si(h) 6= ;,

otherwise, for any j 6= i, there would not be any b�j 2 �e
j that strongly be-

lieves Sn+1i;e = bSn+1i;e . Fix b�i 2 �e
i that strongly believes ((S

m
j;e)j 6=i)

n
m=0 such

that bsi 2 �i(b�i). Since b�i strongly believes S0�i;e = S1�i, by the induction

hypothesis I can construct �i such that �i(�jh) = b�i(�jh) for all h 6� h and

�i(s�ijh) = �i((�j 6=i�hj;n)�1(s�i)jh) for all h � h and s�i 2 �j 6=i�hj;n(S�i(h)).
By (iii), �i 2 �e

i . By (ii), �i strongly believes ((S
m
j;e)j 6=i)

n�1
m=0. By (i), there

is si 2 �i(�i) such that si(h) = bsi(h) for all h 2 H(si) with h 6� h (thus

si 2 Si(h)) and si(h) = si(h) for all h 2 H(si) with h � h. So, �hi;n+1(si) = si
satis�es (i). If si 2 S1i , then si 2 Sn+1i;e , satisfying (ii), and by the property

of e, si 2 emi for every m such that bsi 2 emi , satisfying (iii). So, it only re-
mains to show that si 2 S1i . Since bsi 2 S1i , there is also b�i that strongly
believes ((Smj )j 6=i)

1
m=0 such that bsi 2 �i(b�i). Thus, I can construct also �i that

strongly believes ((Smj )j 6=i)
1
m=0 such that �i(�jh) = b�i(�jh) for all h 6� h and

�i(�jh) = �i(�jh) for all h � h, so clearly si 2 �i(�i) � S1i . �
The intuition is the following: under an agreement in this class, all ratio-

nalizable plans can always be justi�ed at the non-rationalizable histories under

both de�nitions, while the two de�nitions do not di¤er in terms of beliefs they

allow at the rationalizable histories. This class of agreements su¢ ces for the

implementation of all implementable outcome sets, for the following reason.

Restricting behavior at the non-rationalizable histories cannot have a direct ef-

fect on the induced paths, which are always rationalizable. It can only have an

indirect e¤ect via a player�s beliefs by combining an co-player�s agreed behav-

ior at rationalizable and non-rationalizable histories in a particular way. But

given that the behavior of the co-player before and after our player leaves the

rationalizable histories can always be �disentangled� (because the co-player

gets surprised by �nding herself at the non-rationalizable histories and has to
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come up with new beliefs), this indirect e¤ect can also be obtained directly

by only restricting her behavior at the rationalizable histories. This can be

proven formally with the same arguments of the proof of Proposition 8.

Proposition 12 Fix a self-enforcing agreement e� = (e�i )i2I . Then, there

exists an agreement e = (ei)i2I that satis�es the condition in De�nition 11

such that �(S1e ) = �(S
1
e� ).

Proof. By Theorem 2, there exists a tight agreement e = (ei)i2I such that
�(S1e� ) = �(S1e ). De�ne an agreement e = (ei)i2I by letting, for each i 2 I
and n = 0; :::; ki,

eni = fsi 2 S1i : 9s0i 2 eni ;8h 2 H(S1) \H(si); si(h) = s0i(h)g :

I show that also e is tight, so that �(S1e ) = �(e
0) = �(e0) = �(S1e ) = �(S

1
e� ).

T2 is obvious.

To see T1, follow the proof for Proposition 8 that e satis�es T1a (which

coincides with T1).

To see T3, �x i 2 I, �i 2 �e
i , and h 2 H(�i(�i)\S1i ), and follow the proof

for Proposition 8 that e satis�es T3a (which coincides with T3 by �i(�
e
i ) =

�i(�
e
i ) \ S1i in that proof). �
The same is true if self-enforceability is de�ned using De�nition 16 (and it

can be proven in the same way). Therefore, we have the following.

Corollary 5 The implementable outcome sets under the two de�nitions of
Selective Rationalizability coincide.

This would not be true if agreements were allowed to feature non ratio-

nalizable plans. In this case, some eni could reach a history h 62 H(S1i ) with
some plan si 62 Smi , although h 2 H(Smi ), so that no sj 2 S1j \ Sj(h) 6= ; is
compatible with the belief in eni . This can imply the elimination of a move

by j at a rationalizable history (possibly dominant within the rationalizable

paths!) under De�nition 7, whereas the agreement would not be credible at all

under De�nition 16.
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