8 Supplemental Appendix

8.1 On SPE and self-enforcing agreements

Consider the following game.

AB| W | E AB| L|C]|R
N |66 —|—] U |90]05]0,3
S |o,0]22 M |0,5/90]/0,3

D |o0,7]0,7]1,8

All plans are justifiable, hence they are all rationalizable. The subgame
has one pure equilibrium, (D, R), and no mixed equilibrium: for Ann to be
indifferent between U and M, Bob must randomize over {L, C'}, but when he
is indifferent between them, he prefers R; for Ann to be indifferent between
U and D or M and D, Bob must randomize over, respectively, {L, R} and
{C, R}, but R dominates L over {U, D} and C over {M, D}. So, the game
has only one SPE, inducing outcome (S, E).

The SPE outcome (5, F) is implementable, but differently from the game
in the Introduction, only with an agreement that features also the off-the-path
threat R by Bob. For instance, the reduced agreement on the realization-strict
Nash (S, E.R) is self-enforcing by Theorem 2. Instead, the path agreement on
z = (S, F) is not self-enforcing because Ann may rationally deviate and then
play U or M, hence Bob could best reply with any action, and not just with
R. Formally, we have S¥, = S}, = {S,N.U,N.M} and Sy, = Sp, =
{E.L,E.C, E.R}.

Note moreover that if Ann believes in the SPE path, it is not rational
for her to deviate and then play D. Thus, if Bob interprets the deviation of
Ann as an attempt to increase her payoff with respect to the equilibrium (as
implicitly assumed by strategic stability and related refinements, see Section
6), the fact that R is the best reply to D which is the best reply to R itself is
of no value: R is a credible reaction of Bob only by virtue of other beliefs he

may have.



Players can also implement the outcome (N, W), and differently from the
game in the Introduction, only with an agreement that does not feature a
threat played with positive probability in an equilibrium of the subgame (here,
just D). For instance, the reduced agreement with ¢4 = {N.U N.M} and
e% = {W} is self-enforcing: we have S! = {N.U N.M,N.D} x {W}, thus
S* = Sl = S((N,W)).

To conclude, note that there is no conceptual difference behind the reasons

for self-enforceability of the SPE and of the Pareto-superior Nash outcome.

8.2 Another form of agreement incompleteness

Consider the following game.

4,9,5 A\B w e
To n |3,90]08,2

Ann 5,0,1 s 0,3,0 | 1,5,2
L (O T

Bob — (Cleo —a — Bob

ld !

C\B l c T A\B | w e
t 5,4,115,6,0| 5,0,0 n 13,90]0,8,2
b 5,4,0 [ 5,0,115,10,1 s 0,3,0 | 1,5,2

All plans are justifiable, hence they are all rationalizable. Players want to
implement outcome (0). As suggested in Section 4, we first look for the sets
S* = 5% x S§ x S& € S = S that induce (0) and satisfy Self-Enforceability
and Self-Justifiability. Ann’s Self-Enforceability requires Bob not to play d
and Cleo not to play u. Then, Bob’s Self-Justifiability requires that Cleo may
play ¢, and Cleo’s Self-Justifiability requires that Bob may play e in a subgame
he allows. Hence, calling S7; and S% the binary sets of plans of Bob where the

last move is w and e respectively, the required sets S* coincide with those that



satisfy
Sh={o}, SpCSpUSE, S;NSEy#0, SiC{ta,ba},tacS.

Does any of these sets satisfy Forward Induction? No. Under belief in S¢, it
is irrational for Bob to play d.l, because both plans in S% guarantee a higher
payoff. Yet, it is rational to play d.c, because t.a € S¢. Therefore, Forward
Induction requires Cleo to play b and not ¢, a contradiction. Thus, there is no
SES that implements (o).

So, we look for a tight agreement e where €° satisfies the conditions above
and alternative plans of Ann and Bob, €| and e}, are introduced to reach
all histories (for T2) and restrict their behavior after deviations to i and d.
First, observe that we need €2 = {t.a}. If b.a € €2, then, regardless of
ek, we have d.r € pp(A%) N Sp((i,d)), but d.l € py(A%). So, for Bob, T3
imposes d.l € e N Sp((i,d)) # 0, but then t.a & po(A%), a violation of
T3. Still, without restrictions on e}, we have d.c € pg(A%) N Sp((i,d)), so
again d.l & e N Sp((i,d)) # 0 and t.a € po(AE). Hence, we must obtain
d.c € pg(A%). So, we must impose 7.5.s € €. If Ann guarantees to play n in
a specific subgame, then we have p;(A%) C S%; hence, T3 imposes ¢} C S¥,

a contradiction of the conditions on €%. So, the only remaining option is

ey = {in.n,in.s,i.s.n}. Then, on the one hand there is puz € A% with
pp(ins|(i)) = pgli.sn|(i)) = 1/2 and pg(pg) = S%; on the other hand,
for every pup € A%, there is sg € pg(ug) N (SHUSE) that gives to Bob an

expected payoff of at least 6.5, so d.c & pg(A%) N SE((i,d)) = 0.

ey ={o}, ep=SpUSE ec={ta};

ey ={inn,insisn}y, ep={dl dcdr}.

The vagueness of Ann about in which subgame she is going to play n is a
kind of agreement incompleteness that, like here, can be necessary to imple-
ment an outcome. It can be interpreted as Ann doing the following speech: “I

guarantee that I will be prepared to play n in at least one contingency, but I



cannot guarantee that I will be prepared to play n in both.”

This kind of strategic uncertainty also arises naturally from strategic rea-
soning. The example on page 50 in Battigalli [6] (provided by Gul and Reny)
shows that already the set of justifiable plans of a player is not a Cartesian
product of sets of actions at different information sets. This is the reason why
(selective) rationalizability is defined as an elimination procedure of plans and
not of actions at different information sets, and agreements are defined in

terms of plans as well.

8.3 Proofs for Sections 5 and 6

For any h € H\ {h°}, let p(h) € H be the immediate predecessor of h.

Proof of Proposition 8

Fix an outcome set P C Z that is implementable under priority to ratio-
nality. Then, by Theorem 3, P is implemented by an agreement e = (€;);es
which is tight under priority to rationality. The proof is constructive. Let M
be the smallest m such that S™ = S (it exists by finiteness of the game).
For each i € I and n =0, ..., k;, let

el ={s; € 5 :3s; €el',Vh € H(s;) N H(S®),s(h) = s;i(h)};

foreachn =k;+1,...k,+M+1,lete} = Sfi+M+1_”. Assume without loss of
generality that e C e/* for each n = 0, ..., k; + M,*7 so that & = (&;)c; is an
agreement. [ am going to show that € is tight under priority to the agreement.
Indicate with T1¢, T2% and T3 the conditions of tightness under priority to
the agreement (i.e., with S; in place of S;°).

First, I show that € satisfies T1* (which is identical to T1). Fix i € I and
p; that strongly believes 2°;. For each j € I and s; € €, there is s} € &)
such that s’(h) = s;(h) for all h € H(S*) N H(s}), and vice versa. Hence, (i)

C(S; x€%,) N¢(S™®) = ¢(S; x €2;) N¢(S>), and there exists u) that strongly

Tif el = E?H for some n, é’?“ can simply be eliminated from the chain.
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believes €”; such that (i) p;(S_;(2)|h) = pi(S_; z)|h) for all h € H(S*) and
z € ((S*). Note that C(pz( ;) <€), Clpi(pl) x €,) C ¢(S*).*® Then: by
(1), Clps(s) x €%5) = C(pi(pi) x 223); by (i), Clpa() % €23) = Clpipi) x 225).

So, we obtain
Clpi(m) x 22) = Clp; (i) x %) = Clpi(pi) x €2;) € ¢(e°) = ¢(°),

where the inclusion holds by T1 and the last equality by construction.
Moreover, € satisfies T2% by e/t = S, Tt remains to show that e

satisfies T3%. I will show later that*’

p(ATINS, = {s5; € S : 3] € p,(AY) N 5%, Vh € H(s) N H(S®), (k) = s:(h)} .
(2)

Now, fix h € H(p;(A%) N'S;). Suppose first that either h = h° or p(h) €
H(S*). Then, by (2), h € H(p;(AS) N S®). By T3, there is n such that
0 #ern Si(h) C p;(A%) N S®. Then, by definition of €, € N S;(h) # 0, and
for each s; € €} N S;(h) C S5°, there is s, € el such that s}(h) = s;(h) for all
h e H(s;)N H(S"o) thus s, € el N S;(h). So, s; € p;,(AS) N SX. But then, by
(2), si € p;(AS) N S;.

Suppose now that p(h) ¢ H(S*). Fix the unique A’ < h such that b’ ¢
H(S*) but p(h') € H(S*). As shown, there is n such that () # €' N S;(h') C
p;(A9)NS;. So, it suffices to show that e'NS;(h) # 0. Fix s; € p,(AS)NS;NS;(h)
and s; € erNS;(A) C p;,(A9)NS;. By (2), s;, 8, € S°. Fix p,, p) that strongly
believe ((S7);xi)e2o such that s; € p;(,;) and s; € p,;(s1;). Since b’ ¢ H(S*),
p(i) € H(S™), and I € H(S(®), we have &' ¢ H(S), so j(S_i(H)|p(h)) =
0. Then, I can construct uj that strongly believes ((S]);xi)5 20 such that
1! (-|h) = pi(-|h) for each h # I and p(-|h) = p;(-|h) for each h = h'. So,
there is s € p;(u!) C S9° such that s (h) = s;(ﬁ) for each h % K with
h € H(s;) and s/(h) = s;(h) for each h = I’ with h € H(s}). Hence, s! € "

18To see this, fix f1; that strongly believes ((89)j2i)q20 with fi;(-|h) = p;(-|R) for all
h S A‘H(Egz) SO C(pz(:uz) X 671) - C(pz(:u‘z) X egz) By pz(ﬁz) g SLOO and égi g Si.é7
Clpi(;) x @2;) € ¢(S%). Hence, ((p;(p;) x €2;) € ((S™) as well.

90f course, the intersection with S; is superﬂuous here. It will be substituted with S°
in the next proof.



and s € S;(h).

Finally I prove (2). First I prove “C”. For each j # i, n = 0, ..., k;, and
sj € €}, there is s’ € €7 such that s(h) = s;(h) for all h € H(S>) N H(s)).
Moreover, by T2, H(e?) D H(S5°) 2 H(S*). Hence, for each y; € Af (which
strongly believes ((S});.i)o2, by construction of €) I can construct u; € Af
that strongly believes ((.S7);xi)i2, (Which is possible because efj C 5%°) such
that p(S_i(2)|h) = p;(S—i(2)|h) for all h € H(S*) and z € ((S*°). Then, for
every s; € p;(p;) NS; C S, there is s; € p;(u}) C S such that si(h) = s;(h)
for all h € H(s}) N H(S*).

Now I prove “D”. Fix s; € 52°, p € A¢, and s; € p,;(uh) NS with s(h) =
si(h) for all h € H(s;)NH(S>). Fix p; that strongly believes ((.S7);.i);2, such
that s; € p;(1f). Foreach j #i,n=0,....k;, s; € e} C S, h € H(s;)\H(S>)
with p(h) € H(S*), and s} € S3° N S](h), fix p;, 1 that strongly believe
(S )2 such that s, € py(11;) and s € p,(15). By (S, (Wp(h) = 0, 1
can construct 7 that strongly believes ((Sq)k;ﬁj)q ° o such that p(:|h) = p;(-|h)
for each I # h, and i (- h) = (- |h) for each h = h. So, there is st € p;(py) C
S%° such Ehat s;’(ﬁ) = 5j (h) for each h i h with h € H(s;) and s;’(ﬁ) =5 (h)
for each h = h with h € H(s}). Hence, s € €. With all such s7’s, I can
construct u; € Af such that p,(S_;(2)|h) = pi(S—i(z)|h) for all h € H(S*>)
and z € ((5%), and 1;(S_;(2)|h) = p!(S_i(2)|h) for all " € H(S?)\H(S*>)
with p(h') € H(S*), h = I/, and z = h. Hence, s; € p,(AS). R

Proof of Proposition 9. For each P C Z which is implementable under
priority to the path, a tight agreement e that implements P under priority
to rationality can be constructed exactly like in the proof of Proposition 8,
substituting T1,T2,T3 with T17,T2?, T3 (the requirements of tightness under
priority to the path, that is, with S2° in place of S*°), T1%/T2*T3% with
T1,T2,T3, S with S, §% with S2°, and ((S})ier)iZo with ((S}.)icr)i2,- W

Proposition 10 Let zZ = (a',...,a’) be a path that can be upset by a convine-

ing deviation. The path agreement on Z is not credible.



Proof. Fix a two-players (i and j) static game G with action sets A;
and A; and payoff function vy : A; x A; — R, k = i,j. Let bF and ¢* be
the first- and second-ranked stage-outcomes of G for player k = i,j. A path
7z = (a,..,a’) of Nash equilibria of the T-fold repetition of G' can be upset by
a convincing deviation if there exist 7 € {1,...,7 — 1} and @; # @] such that,

letting T := T — 7,

T
vi(@;, @) + vi(c) + (T = Dos(b') < > vi(@) < vi@, ay) + To(v'); (1)
t=r1

To;(b') > a]erilae{(bz }U](bl + (T — 1), (V). (J)

Condition I says that player ¢ benefits from a unilateral deviation at 7 only
if followed by her preferred subpath.’® Condition J says that player j cannot
benefit from a unilateral deviation from that subpath even if followed by her
preferred subpath.®!

Now I prove the proposition. Let e; = (5;(Z)) and e; = (S;(Z)). Let
b= (@, .. (a,a}) and z := (@, .., (@,a}), b, ..., b'). Suppose that S1(z) # 0,
otherwise S? @ Then, for each k = 1, j, there exists [, that strongly believes
S and S_x(Z) such that p,(7,) N Sk(Z) # 0.

Fix n € N and suppose that S '(z) # 0. Fix s; € S; with 7,(s;|h°) # 0.
Since fi; strongly believes S$° and S;(Z), s; € S5°(Z). Fix yu; that strongly
believes (S7)o2, with s; € p;(u;). Since fi; strongly believes S;(%), for each
h ¢ H(Si(z)) with p(h) < Z, [1;(Si(h)[p(h)) = 0. Thus, there exists u; that
strongly believes (S?)7~7 such that (i) 1(-|h°) = 7z,(-|n°), (ii), p}(Si(2 )|h) =1,
and (iii) (k) = p;(-|h) for all h € H(S;(Z)) with h A Z and h # T. Then,
there exists s € p; (1) € S} such that: by p;(fi;) N S;(Z) # 0, 11;(Si(2)|h°) =
1, and (i), s € S;(Z) € S;(h); by (ii) and (J), s € S;(2); by (iii) and

J J

0Tn the example of Section 5, i = Ann, j = Bob, (@',a®) = (FR,W), (W, FR)), b’ =
(FR,W), ¢ = (W,W), 7 =1,a; = W, thus T — 1 = 0. Formally, the first inequality in
(I) is not satisfied (equality holds), but this is immaterial because b’ and ¢’ entail the same
action for Bob, against which the best reply of Ann induces b°.

1 This implies that i’s preferred stage-outcome is Nash, reason why Osborne (1991) refers
to coordination games.



55,85 € Sj(Z), si(h) = s;(h) for all h € H(S;(z)) with h . With these s%’s,
I can construct p,; that strongly believes (Sq)q o such that y,;(S;(2)|h%) = 1,

and 11,(S;(2)|R°) = F,(S;(2)|h°) for all Z # h. Thus, by p;(1;) N Si(%) # 0,
7:(S;(Z)|°) = 1, and (1), 0 # p;(11;)NSi(2) € SiH1(2). So, by induction, there
exists y1; that strongly believes (S7)72, and S;(Z) such that () # p,(11;)NSi(z) C
Sio(z). On the other hand, for every s, that strongly believes S;(Z), by (I)
p; (1) N S; (/ﬁ) C Si(2), so S}e(ﬁ) C S;(2). The two things combined imply that
for every p1; that strongly believes S}, and S;(Z), ,uJ(S,(z)m) = 1. So, by (J),
S? (h) C S;(z). Since S;(z) C S;(h), for every y; that strongly believes S7.
and S;(Z), 1;(S;(2)|h%) = 1, so by (I) p;(1;)(Z) = 0. Hence S} .(z) = 0. So,
=0. =

8.4 On the definition of Selective Rationalizability.

Consider the following, alternative definition of Selective Rationalizability.

Definition 16 Let ((S"

™)ic1)o_, denote the Rationalizability procedure. Con-

sider the following procedure.
(Step 0) For each i € I, let §Ee = S¢°.
(Step n>0) For each i € I and s; € S;, let s; € §Z”€ if and only if there is
w; € AY such that:
S1 si € pilny):
S2 u,; strongly believes S fm" all j #1i and g < n;

S8 p,; strongly believes §]q for all j #1 and q € N.

Finally, let §Z°2 = mﬁzogi,e' The profiles in §§° are called selectively-

rationalizable.

This is the definition of Selective Rationalizability provided and charac-

terized epistemically in [18]. It differs from the definition used in this paper



because of requirement S3 in place of the requirement that s; € S°. Here I

argue that the two definitions are equivalent for the analysis of agreements.
The two definitions are equivalent for the same agreement whenever the

agreed-upon plans are chosen only according to what they prescribe at the

rationalizable histories (H(S>)).

Proposition 11 Fiz an agreement e = (e;);e; such that, for each i € I,
n=0,..k,s €el, and s; € S, if si(h) = s;(h) for allh € H(S®)NH(s}),

[ [

then s; € e'. Then, Seoo = 5.

Proof. By induction.
Induction hypothesis: for each m < n, §g” S, moreover, unless

Sl = §n+l — () for each i € I and h ¢ H(S™) with p(h) € H(5%), there
exists a map niﬁ’n : Si(h) — S;(h) such that:

a) for each 5; € S;(h)\S>(h), 77?7”(51») =35
b) for each 5; € S®(h),

(i) 7, (5:)(h) =5,(h) for all h € H(3;) with h = h,
(ii) n},(5) € Si for all m < n with S/"(h) # 0,
(iii) if e? N S;(h) # O for some ¢ = 0, ..., ki, nfn(@) € el

Basis step: S? = SO S, and the required maps exist by property of e
(in particular, (iii) can always be satisfied).

Inductive step. For §§“ = 571 since by the induction hypothesis

Sn+1

§§"” = 5" for each m < n, it suffices to show that for every ¢ € I and s; € Si',,

there is 1i; € A{ that strongly believes ((S7%);zi)m—o and ((ST");zi)e_ such

J,e J
that s; € p;(1;). So, fix p; € Af that strongly believes ((S7%);xi)m—o and
p; that strongly believes ((S7");xi)m=o such that s; € p;(u;) N p;(11;). By the
induction hypothesis, I can construct p; such that z;(-|h) = w,(-|h) for all
h e H(S%) and (s ilh) = pi(( ) (s_lh) for all B ¢ H(S%) with

p(h) € H(S®), h = h, and s_; € X];ém? (S_i(h)). By (iii), 1; € AS. By



(i), 11; strongly believes ((S}%)j2i)m=o and, by (a), also ((S7")jzi)m=o- By (i),
si € pi(Hs)- B B

Now fix h & H(S>) with p(h) € H(S>). If SIH(h) = 0, let 7,y = nl,..
Else, we need to update nzn (5;) for each 5; € S°(h). Fix i, that strongly be-
lieves ((.S7") 4 )pe—o such that 5; € p;(7;). Unless Srtl — §ntl — (), there exists
5 €SP (R) = Si(h) with §; € ef for all ¢ = 0, ..., k; such that e?NS;(R) # 0,
otherwise, for any j # i, there would not be any ji; € A§ that strongly be-
lieves SI'H! = §ZL: . Fix 7i; € A? that strongly believes ((S7%);.:)r—o such
that 5; € p;(fi;). Since fi; strongly believes S%;, . = S%, by the induction
hypothesis I can construct u, such that p,(-|h) = 7i;(-|h) for all h # h and
p1;(5—ilh) = F((<jem", ) "H(s_)|h) for all h = b and s_; € Xz, (S_i(R)).
By (iii), u; € Af. By (ii), g strongly believes ((S7%);4i)m_o- By (i), there
is s; € p;(1;) such that s;(h) = 5;(h) for all h € H(s;) with h % h (thus
s; € Si(h)) and s;(h) = 3;(h) for all h € H(3;) with h = h. So, nEnH(Ei) =3
satisfies (i). If s; € S7°, then s; € S7'F, satisfying (i), and by the property
of e, s; € e" for every m such that 5; € e, satisfying (iii). So, it only re-
mains to show that s; € S®. Since 5; € 5°, there is also pi; that strongly
believes ((S}");xi)m=o such that 5; € p;(1i;). Thus, I can construct also j; that
strongly believes ((S]");xi)m—o such that y,(:|h) = 7i;(-|h) for all h # h and
w;(-1h) =1;(-|h) for all h = h, so clearly s; € p,(p;) € S*°. A

The intuition is the following: under an agreement in this class, all ratio-
nalizable plans can always be justified at the non-rationalizable histories under
both definitions, while the two definitions do not differ in terms of beliefs they
allow at the rationalizable histories. This class of agreements suffices for the
implementation of all implementable outcome sets, for the following reason.
Restricting behavior at the non-rationalizable histories cannot have a direct ef-
fect on the induced paths, which are always rationalizable. It can only have an
indirect effect via a player’s beliefs by combining an co-player’s agreed behav-
ior at rationalizable and non-rationalizable histories in a particular way. But
given that the behavior of the co-player before and after our player leaves the
rationalizable histories can always be “disentangled” (because the co-player

gets surprised by finding herself at the non-rationalizable histories and has to

10



come up with new beliefs), this indirect effect can also be obtained directly
by only restricting her behavior at the rationalizable histories. This can be

proven formally with the same arguments of the proof of Proposition 8.

Proposition 12 Fiz a self-enforcing agreement e* = (ef);c;. Then, there
exists an agreement € = (€;);c; that satisfies the condition in Definition 11
such that ((S2°) = ((52).

Proof. By Theorem 2, there exists a tight agreement e = (e;);c; such that
C(Sx) = ((S°). Define an agreement € = (€;);cs by letting, for each i € I
and n =0, ..., k;,

el ={s; € 5°:3s; €el,Vh € H(S®)N H(s;),si(h) =s;(h)}.

I show that also € is tight, so that ((52°) = ((€°) = ((e%) = ((5°) = ¢(5%).
T2 is obvious.

To see T1, follow the proof for Proposition 8 that & satisfies T1* (which
coincides with T1).

To see T3, fixi € I, pu; € AS, and h € H(p,(11;) N .S>®), and follow the proof
for Proposition 8 that € satisfies T3 (which coincides with T3 by p,(Af) =
p;(AS) N S in that proof). M

The same is true if self-enforceability is defined using Definition 16 (and it

can be proven in the same way). Therefore, we have the following.

Corollary 5 The implementable outcome sets under the two definitions of

Selective Rationalizability coincide.

This would not be true if agreements were allowed to feature non ratio-
nalizable plans. In this case, some e} could reach a history h ¢ H(S°) with
some plan s; ¢ Sj", although h € H(S]"), so that no s; € S5°N S;(h) # 0 is
compatible with the belief in e!'. This can imply the elimination of a move
by j at a rationalizable history (possibly dominant within the rationalizable
paths!) under Definition 7, whereas the agreement would not be credible at all

under Definition 16.
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