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Problem statement 

 

The question:  

 

under what conditions does the final (for a long 

time) phase dynamics of systems of one-

dimensional dissipative reaction-diffusion 

equations with convection be successfully 

described by some ODE in n  ?  
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 Talk plan 

 
▲  Abstract semilinear equations 

▲  Inertial manifolds and the finite-dimensionality of  

      limit dynamics on attractor 

▲  Parabolic systems: Dirichlet conditions 

▲  Parabolic systems: Neumann conditions 

▲  Parabolic systems: periodic conditions 
 



Some neсessary backgrounds! 
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Abstract semilinear parabolic equations 

 
First we consider abstract dissipative semilinear parabolic equations  

( )   tu Au F u                                          ( ) 

(SPE) in an infinite-dimensional separable Hilbert space ( , )X . We assume 

that an unbounded positive definite linear operator A  with domain of 

definition ( )D A  has compact resolvent. We put ( ) X D A  with 0  ; then 

we have 

u A u , 0 X X , and 1 ( ).X D A  Let a nonlinear function 

2( , ) Lip( , ) F C X X X X  for some [0,1) ; then equation ( ) generates 

a smooth compact resolving semiflow 0{ } t t  in the phase space X .  

 

D. Henry, “Geometric theory of semilinear parabolic equations”, Lect. Notes 

     in Math., 840,   Springer, 1981. 
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The dissipativity of SPEs 
 

The dissipativity of SPE means that  
 

sup lim



 t

t
u r  

for some 0r  uniformly in u  from bounded subsets  X . In 

this case, there exists a compact global attractor  X  

consisting of all bounded complete trajectories { ( )} , u t X t .  

In fact, thanks to the smoothing effect of parabolic equation we 

have 1 X . 

 

A.V. Babin and M.I. Vishik, “Attractors of evolution equations”, 

         North-Holland, 1992. 
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Inertial manifolds 
 

We say that SPE ( ) is asymptotically finite-dimensional 

if there exists an inertial manifold (IM) for it, i.e., a smooth 

finite-dimensional surface M X  , containing an attractor and 

exponentially attracting all trajectories at a large time. The 

restriction of ( ) to M  is an ODE in , dimn n  M, which 

completely describes the final dynamics of the evolutionary 

system.  

 

 G. Sell and Y. You, “Dynamics of Evolutionary Equations”, 

      Springer, 2002. 
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The finite-dimensionality of limit dynamics 
 

A less rigorous approach to the problem of finite-dimensionality of 

the SPE limit dynamics was proposed in [1].  

We say that the dynamics of ( ) on the attractor is finite-

dimensional = SPE ( ) has FDA property, if  

for some ODE ( ) t x g x  in n
 with Lip( , ) n ng  and resolving 

flow { }t t , there exists an invariant compact set K n  such that the 

dynamical systems t  on  and t on K  are Lipschitz conjugate for 

0.t   

 

The properties of the dynamics to be asymptotically finite-

dimensional or finite-dimensional on the attractor have not still been 

separated.   
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The FDA criteria 
 

Let ( ) ( ) G u F u Au  is the vector field of SPE ( ) .We list a few different 

criteria for the dynamics to be finite-dimensional on the attractor.  

(i) The vector field G
 
is Lipschitz on attractor : 

1( ) ( ) .G u G v C u v  
 

 

(ii) The phase semiflow on  expands to the Lipschitz flow: 

2( ) ( ) , .
k t

t tu v C u v e t    


 

(iii) The attractor is the Lipschitz grapf: there is exist the finite-dimensional 

projector EndP X   such that  

3Pu Pv C u v  
 

 for , u v . 

(iv) The spherical projection  : ,
u v

w X w
u v
 

    




 

where , u v , u v , is pre-compact in .X
 The positive constants (1 3)lC l   and k  

depend here from  only. 

A.V. Romanov, Sb. Mathematics, 191:3, 2000.  

A.V. Romanov, Izv. Math., 65:5 (2001). 
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 The FDA condition 
 

 

A sufficient condition of FDA property: attractor contained in 

some smooth finite-dimensional manifold  M X 
.  

 

Remark. The manifold M not assumed to be invariant in this 

condition! 

 

A.V. Romanov, Izv. Math., 65:5 (2001). 
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The more constructive FDA conditions  
 

The analytical conditions for the dynamics to be finite-

dimensional on the attractor originate from the decomposition   

0( ) ( ) ( ( , ) ( , ))( )   G u G v T u v T u v u v                             (1) 

of differences of the vector field ( ) ( ) G u F u Au  on , where 

0( , ) End T u v X  and ( , ) End( , )T u v X X  are unbounded linear 

operators similar to normal ones. In details:  
1( , ) ( , ) ( , ) ( , )T u v S u v H u v S u v ,                                (2a) 

where operators ( , )H u v are normal in X , and  

1
0( , ) , ( , ) , ( , ) , ( , ) ,


        tT u v S u v S u v S u v

       
(2b)  

with some    ( ) > 0. We denote by ( , )tS u v  derivative in zero of the 

smooth function  

( , ) :[0, )   t tS u v X . 



12 

The more constructive FDA conditions - 1 
 

We write 

{ :Re }, ( , ) { : Re }           a z z a a z a z a  

for 0  a  and assume that, for some 0, [0,1] d , the ‘‘combined spectrum’’ 

, ( ( , )), ,u v T u v u v    

is localized in the domain  

( , ) { : }, 0 .     d x iy y dx x  

Let / 2   for 0 / 2   , and let ( ) / 3     for / 2 1   . We assume that 

the set \  contains strips ( , )  a , whereas ,  a  as   . It is known 

[1] that under the condition  

( ) ( )
   a o                                                (3) 

and restrictions (2) on the operators 0( , ), ( , )T u v T u v , the dynamics of SPE ( ) on the 

attractor is finite. If  A A , then ( , )d   and relation (3) becomes 

2 /3 ( )
 a o . For the existence of an inertial manifold in this situation, the more 

rigid (for 0  ) condition ( )
 a o  is required. 

 

[1] A.V. Romanov, Izv. Math., 65:5 (2001). 
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Parabolic systems 
 

Now we consider systems of equations of the form  

( , , ), (0,1),    t xx xu u f x u u x                       ( )  

with 1( ,..., ) mu u u  and with one of the following boundary 

conditions:   

(Dirichlet),   (0) (1) 0; u u                            (D) 

 (Neumann),     (0) (1) 0x xu u  ;                           (N) 

 (periodicity),   (0) (1), (0) (1)x xu u u u  .                  (P) 
 

Let [0,1]J  for the cases (D) and (N), and let modJ  for the 

case (P). We believe that 
2( , )m mf C J  . 

In the case of the Dirichlet conditions, ( ,0, ) 0f x p   for 0,1x   and 

p . 
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Parabolic systems - 1 
 

We put 2( ; ) mX L J  and write system ( )  in the form ( ) with 

 xxAu u u  and ( ) ( , , )xF u u f x u u  . As the phase space, we take X  

with (3/ 4,1) ; in this case, then 1 1/ 2 2( ), ( )  X C J X C J . 

Further, IdI  in m  or in X  and 

( ) ( , , )xx xG u u f x u u    

is the vector field of ( ) . We assume that system ( )  is X  -

dissipative and has global attractor  1X . For example [1], it is true in 

the cases (D) or (P)  and 1m  under the conditions:  
 

( , ,0)signf x u u    for  u   uniformly in x J ; 

2( )(1 ), ( )(1 )x u pf f f M u p f M u p      . 

 

[1] A.V. Babin and M.I. Vishik, “Attractors of evolution equations”,  

      North-Holland, 1992. 
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Parabolic systems: two approaches 
 

The final dynamics of systems ( )  with spatial homogeneous 

nonlinearity ( , )xf u u  was studied in papers [1, 2]. It was shown [1] that, under 

conditions (D) and (N), such systems admit a smooth inertial manifold. In the 

periodic case, the existence of a smooth IM was established [2] under the 

condition that the ( )m m  matrix pf  is diagonal with a unique nonzero 

element.  

The results obtained in [1, 2] are based on a change of the phase variable 

u  which ‘‘decreases’’ the dependence of the nonlinearity f on xu . 

In my talk the variable is changed for linearized system ( ) . In this 

case, we only obtain that the dynamics is finite-dimensional on the attractor but 

do not obtain the existence of IM.  

At the same time, the spatially inhomogeneous case ( , , ) xf f x u u  is 

also considered. It is also discovered that the limit dynamics is finite-

dimensional for one type of systems ( )  – (P). 
 

[1] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 16:6 (2017).  

[2] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 17:1 (2018). 
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Decomposition of the vector field on an attractor 
 

Following the format of (1), we put  
1 1

0
0 0

( ; , ) ( , , ) , ( , , ) ( , , ) ,    p x u xb x u v f x s s d b x u v f x s s d  

for , u v , ( ) ( ) (1 ) ( ), ,s x u x v x x J      and 

0( ) ( ) ( , ) ( ; , ) ( ; , )     xx xG u G v R u v h h b x u v h b x u v h  

for  h u v . Proceeding as in [1], to the differential expression  

0( ) ( )  xx xRh h B x h B x h , 

where ( ) B x ( ; , )b x u v  and 0 0( ) ( ; , )B x b x u v , we apply (for fixed ,u v ) an analog of the 

Liouville transformation h U  , where the nonsingular matrix function ( ), ,U x x J  is the 

solution of the Cauchy problem  

1 ( ) , (0)
2

  xU B x U U I . 

Since 21 1 1( ( ) ( ) ) ( ) ( )
2 2 4

     xx x x xU B x U B x U B x U B x U , we have 

 

02 ( ) ( )( )xx x x xx x xRh RU U U U B x U B x U U           

2
0

1 1 1( ) ( ) ( ) ( ) ( ) ( )( ( ) )
2 4 2xx x x xU B x U B x U B x U B x U B x U B x B x U             

2 1
0

1 1( ( ) ( ) ( )) ( )
2 4xx x xxU B x B x B x U U U h Qh       .                                          (4) 

 

[1] D.A. Kamaev, Russ. Math. Surv., 47:5 (1992). 
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Dirichlet conditions 
 

In the transition from h  to  , conditions (D) are preserved. If we 

set 0 xxH    , (0) (1) 0    , then 0 0
 H H  in X . Let be 

1
0( , ) T u v UH U  and 0( , ) ( )T u v h Q x h  in decomposition (1) of 

differences of the vector field ( )  on the attractor. For the combined 

spectrum 2 2{ , }     , we have 

0  , / 2 1/ 2    ,   2 2( 1/ 2), ( 1/ 2)        a  

and ( ), .a o 
    We can show that the norms of the operators 

0( , ) End T u v X  and  

1 1( , ), ( , ), ( , ) End  tU u v U u v U u v X  

are uniformly bounded by , u v . Then by [1] the dynamics ( ) – (D) 

is finite-dimensional on the attractor.  
 

[1] A.V. Romanov, Izv. Math., 65:5 (2001). 
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Neumann conditions 
 

Conditions (N) are not preserved when we pass from h  to  , but this case can be 

reduced to the preceding one by using the technique of [1]. We will embed system ( ) – (N) 

in a large system of special structure. Namely, we differentiate Eqs. ( ) with respect to x , 

put xw u , and obtain the system of 2m  equations  

( , , ),t xxu u f x u w   

( , , ) ( , , ) ( , , )   t xx x u p xw w f x u w f x u w w f x u w w  

with boundary conditions 

(0) (1) 0, (0) (1) 1.x xu u w w     

The embedding operator is ( , ) ( , ).xu u u u w   With a suitable choice of phase space, this 

system will also be dissipative. Since the first part of the new system does not contain xu , we 

can apply the Liouville transformation only in variable w , then boundary conditions (N) – (D) 

are preserved in the whole. Based on the preceding considerations, we can conclude that the 

limit dynamics of original system ( )  – (N) is finite-dimensional.  

 

[1] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 16:6 (2017).  
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The dynamics on attractor: (D) and (N) conditions 
 

Thus, we have the following assertion. 

 

THEOREM 1. If problem ( ) – (D) or ( ) – (N) is 

dissipative in X  with (3/ 4,1) , then the phase dynamics on the 

attractor   1X  is finite-dimensional. 
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Periodic conditions 
 

We pass to the case of periodic problem ( )  – (P). In this situation, the 

space X  with (3/ 4,1)  is the Banach algebra and (0) (1)B B , 

(0) (1)x xB B . We put 1V U , then we have 
 

Vh ,   x x xV h Vh   ,  1
2

xV VB ,  (0) V E ,   1(0) (0)
2

xV B ,  

1(1) (1) (0)
2

xV V B , 

(0) (0), (1) (1) (1),h V h     

1 1(0) (0) (0) (0), (1) (1) (0) (1) (1) (1)
2 2x x x xB h h V B h V h      . 

 

As we see, periodic conditions (P) for h  turn into the conditions  

(1) (1) (0), (1) (1) (0)x xV V      .                                 (5) 

and, generally speaking, the monodromy operator (1) V I .  
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The main lemma 
 

LEMMA 1. If periodic problem ( )  – (P) is dissipative in X  with 

(3/ 4,1)  and the operator (1)V in m  is normal, then the phase dynamics on the 

attractor is finite-dimensional.  

PROOF. Let   m
j  and , ( , ],      ji

j j je  be orthonormal 

eigenvectors and eigenvalues of the operator (1)V  with 1 j m . We put 

0 0( , )  xxH H u v I  for boundary conditions (5) with some 0  and 

1
0

T UH U . The eigenfunctions and eigenvalues of the operator 0H  have the form 

ln 2
, ( ) , , , 1        jx kix

k j jx e e x J k j m , 

2 2
, (ln 2 ) (2 ln ) .           k j j j j ji ki k i                 (6) 

Here ln ln    j j ji . The quantities ( , ) 0   j j u v  continuously depend on 

, u v , and hence, by compactness of , we have 1 20    jc c  for some 

l lc c ( ), 1,2l . Thus, the quantities ln j  in (6) are uniformly bounded. If 

lndiag( )  jxS e , then the system of functions ,k jS  is complete and orthonormal in 

2( ; ) mX L J , and the operators 1
0( , ) H u v SH S  are normal in X .  
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The main lemma - 1 
 

Returning to expression (4), we put 1 1( , )  T u v US HSU  and 

0( , ) ( , ) T u v I Q u v  in decomposition (1) of differences of the vector 

field ( )  on the attractor. The unbounded operators ( , )T u v  in X  are 

similar to the normal ones. We choose the parameter 0  so as to ensure 

the inclusion ( , )d   with 1/ 2   and an appropriate 0d . Since 

3/ 4 1  , we have ( ) / 3 1/ 2    . Moreover, it follows from (6) 

that the set \  contains the strips ( , ) k ka  with 

2 2 24 , 4k ka k k   , 

and therefore, ( ).
  kka o  We can show that the norms of the operators 

0 0( , ) End  T T u v X  and  

1 1 1, , , , ( ) End   tU U S S SU X  

are uniformly bounded by , u v . Then by [1] dynamics ( )  – (P) on 

the attractor is finite-dimensional.  

 

[1] A.V. Romanov, Izv. Math., 65:5 (2001). 
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The dynamics on attractor: periodic conditions 
 

THEOREM 2. Let system ( )  – (P) is dissipative in X  with 

(3/ 4,1) . Then the phase dynamics on the attractor is finite-dimensional 

if the matrix ( , , )p xf x u u  is diagonal for cou ; 

 

PROOF. By Lemma 1, it suffices to prove the normality of the 

monodromy operator (1)V . We have 

1

0
( ) ( ; , ) ( , , )p xB x B x u v f x s s d    

for ,u v , ( ) ( ) (1 ) ( ),s x u x v x x     . The matrix ( )B x  is diagonal, 

and hence, ( ) diagV x , x , for the solution of the Cauchy problem 

1
2

xV VB ,    (0) V I . 

So the operator (1)V  is self-adjoint and the theorem is proved. 
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What may be done in future 
 

 

The problem: to characterize the widest possible class of 

periodic problems ( )  for which the dynamics on the attractor is 

finite-dimensional. 

The counterexample [1] shows that for such systems this 

property of phase dynamics is not always satisfied. 

 

[1] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 17:1 (2018). 
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