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Problem statement
The question:

under what conditions does the final (for a long
time) phase dynamics of systems of one-
dimensional  dissipative  reaction-diffusion
equations with convection be successfully
described by some ODE In R" ?



Talk plan

A Abstract semilinear equations

A Inertial manifolds and the finite-dimensionality of
limit dynamics on attractor

A Parabolic systems: Dirichlet conditions

A Parabolic systems: Neumann conditions

A Parabolic systems: periodic conditions




Some necessary backgrounds!



Abstract semilinear parabolic equations

First we consider abstract dissipative semilinear parabolic equations
ol =—Au + F(u) (%)
(SPE) in an infinite-dimensional separable Hilbert space (X, |-[). We assume
that an unbounded positive definite linear operator A with domain of
definition D(A) has compact resolvent. We put X% =D(A*) with a.>0; then

we have |u, =A%, X°=X, and X=D(A). Let a nonlinear function

F eC2(X% X)NLip(X% X) for some a €[0,1); then equation (*) generates
a smooth compact resolving semiflow {®}~o in the phase space X .

D. Henry, “Geometric theory of semilinear parabolic equations”, Lect. Notes
In Math., 840, Springer, 1981.



The dissipativity of SPES

The dissipativity of SPE means that

sup lim ||Dwf| <r
t—-+oo

for some r >0 uniformly in u from bounded subsets Q< X%. In

this case, there exists a compact global attractor <1c X%

consisting of all bounded complete trajectories {u(t)} = X* teR.
In fact, thanks to the smoothing effect of parabolic equation we

have ¢4 = X1,

A.V. Babin and M.I. Vishik, “Attractors of evolution equations”,
North-Holland, 1992.



Inertial manifolds

We say that SPE (*) is asymptotically finite-dimensional
If there exists an inertial manifold (IM) for it, 1.e., a smooth

finite-dimensional surface M X, containing an attractor and
exponentially attracting all trajectories at a large time. The
restriction of (%) to s is an ODE in R", n=dim %, which

completely describes the final dynamics of the evolutionary
system.

G. Sell and Y. You, “Dynamics of Evolutionary Equations”,
Springer, 2002.



The finite-dimensionality of limit dynamics

A less rigorous approach to the problem of finite-dimensionality of
the SPE limit dynamics was proposed in [1].
We say that the dynamics of (*) on the attractor is finite-

dimensional = SPE (*) has FDA property, if

for some ODE dx=g(x) in R" with geLip(R",R") and resolving
flow {®;}.x, there exists an invariant compact set k< R" such that the

dynamical systems ®; on <2 and ®; on K are Lipschitz conjugate for
t>0.

The properties of the dynamics to be asymptotically finite-
dimensional or finite-dimensional on the attractor have not still been

separated. o



The FDA criteria
Let G(u)=F(u)—Au is the vector field of SPE (*) .We list a few different
criteria for the dynamics to be finite-dimensional on the attractor.

(i) The vector field G is Lipschitz on attractor -A:

|GW)-GW)|, <Cqlu-v],
(i)  The phase semiflow on A expands to the Lipschitz flow:
| @ () —D@(v)| <Calu—v|, U ter.
(ili)  The attractor is the Lipschitz grapf: there is exist the finite-dimensional
projector P € EndX“ such that
|Pu—Pv| >Cslu—v| foruveeA.

(iv)  The spherical projection A% = {W e X% w= ﬁ}
(94

where u,ve<L, u=v, is pre-compact in X“. The positive constants C; (1<1<3) and k
depend here from =A only.

A.V. Romanov, Sb. Mathematics, 191:3, 2000.
A.V. Romanov, lzv. Math., 65:5 (2001). 9



The FDA condition

A sufficient condition of FDA property: attractor contained in
some smooth finite-dimensional manifold M c X¢.

Remark. The manifold M not assumed to be Invariant In this
condition!

A.V. Romanov, lzv. Math., 65:5 (2001).

10



The more constructive FDA conditions

The analytical conditions for the dynamics to be finite-
dimensional on the attractor originate from the decomposition

G(u)=G(v) = (To(u,v) =T (U, v))(u-V) (1)

of differences of the vector field G(u)=F(u)—Au on A, where

To(u,v) eEndX* and T(u,v)eEnd(X% X) are unbounded linear
operators similar to normal ones. In details:

T(u,v) = S™u, v)H(u, v)S(u, V), (23)

where operators H(u,v)are normal in X , and

MoV, <v. [SUW<v, [S7Huv)|<y, [eSuv|<y,  (2b)

with some y=1v(=A4) > 0. We denote by 6,S(u,v) derivative in zero of the

smooth function

S(Dyu, D) :[0,0) > X.. .



The more constructive FDA conditions - 1

We write
I'y={zeC:Rez=a}, I'a,§)={zeC:a-(<Rez<a+¢&}
for a> & >0 and assume that, for some d >0, 8 €[0,1], the ‘‘combined spectrum”’
Z=Uyyo(Tu,v), uveA
Is localized in the domain
Q(d,0) ={x+iyeC:|y|<dx’}, x>0.

Let f=a/2 for 0<O<a/2,andlet f=(a+6)/3 for /2 <O<1. We assume that
the set C\X contains strips I'(a,,,<, ), whereas a,,, &, > as v —+o. It is known
[1] that under the condition

al =o(&,) (v +o) 3)
and restrictions (2) on the operators Ty(u,Vv), T(u,v), the dynamics of SPE (*) on the

attractor is finite. If A" =A, then XcQ(d,a) and relation (3) becomes

a205/3

272 =0(&,) . For the existence of an inertial manifold in this situation, the more

rigid (for « >0) condition a =0(&,) is required.

[1] A.V. Romanov, Izv. Math., 65:5 (2001). 12



Parabolic systems

Now we consider systems of equations of the form
OiU = Oy U + (X, U,Uy), x e (0,1), (%)
with u=(u,...,u,) and with one of the following boundary

conditions:

(Dirichlet), u(0)=u(1)=0; (D)
(Neumann), uy(0)=u.(1)=0; (N)
(periodicity), u(0)=u(1), uy0)=uy1). (P)

Let J =[0,1] for the cases (D) and (N), and let J =R|modZ for the

case (P). We believe that
f eC®(JIxR2M RM).
In the case of the Dirichlet conditions, f(x,0, p)=0 for x=0,1 and
pekR.

13



Parabolic systems - 1

We put X =L24J;R™ and write system (*#) in the form () with
Au=u-0Jy,u and F(u)=u+ f(x,u,u,). As the phase space, we take X
with o e(3/4,1); in this case, then X%cC¥J), X2 =C2()).

Further, 1 =Id in R™M orin X and
G(u) =0u + f(x,u,uy)

Is the vector field of (**). We assume that system (**) is X%-

dissipative and has global attractor <2 < X1. For example [1], it is true in
the cases (D) or (P) and m=1 under the conditions:

f(x,u,0)signu — —co for |u| — oo uniformlyin xeJ;

[T+ T+ ful <MU)L+ P2, [Fp| <MU)(A+[p).

[1] A.V. Babin and M.I. Vishik, “Attractors of evolution equations”,
North-Holland, 1992.

14



Parabolic systems: two approaches

The final dynamics of systems (**) with spatial homogeneous
nonlinearity f(u,u,) was studied in papers [1, 2]. It was shown [1] that, under
conditions (D) and (N), such systems admit a smooth inertial manifold. In the
periodic case, the existence of a smooth IM was established [2] under the
condition that the (mxm) matrix f, is diagonal with a unique nonzero

element.

The results obtained in [1, 2] are based on a change of the phase variable
U which ‘‘decreases’’ the dependence of the nonlinearity f on u,.

In my talk the variable is changed for linearized system (**). In this
case, we only obtain that the dynamics is finite-dimensional on the attractor but
do not obtain the existence of IM.

At the same time, the spatially inhomogeneous case f = f(x,u,uy) IS
also considered. It is also discovered that the limit dynamics is finite-
dimensional for one type of systems (**) — (P).

[1] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 16:6 (2017).

[2] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 17:1 (2018).
15



Decomposition of the vector field on an attractor

Following the format of (1), we put
b(X;U, V) = j; fo(x 55007, by(x,u,v) = j; £,(%5,5,)dT,
for u,ve<A, s(x) =tu(X)+(1—-7)v(x), xeJ, and
G(u) —G(V) = R(u,v)h = 0,,h + bg(X; u, v)h +b(x; u, v)h,
for h=u—v. Proceeding as in [1], to the differential expression
Rh = h,, + Bg(X)h + B(x)h, ,
where B(X) = b(x;u,v) and By(x) =by(x;u,v), we apply (for fixed u,v) an analog of the
Liouville transformation h=Umn, where the nonsingular matrix function U(x), X e J, is the
solution of the Cauchy problem

U, = —% B(x)U, U©0)=1.

Since U,y = —% (B,(X)U + B(X)U,) = —% B,(x)U +% B2(x)U , we have

Rh=RUn=Uny+2U,ny +U,m+ By(X)Un+BX)(Um+Uny)
=Uny—BMUn,—5 B,()Un+2 BA)Un -+ Box)Un + Bx)Uny + BX)(~5 B)Un)

=Unye+ (Bo(X) — 5 B(¥) — 4 BH))Un =U(U “h),, +Qh. (4)

[1] D.A. Kamaev, Russ. Math. Surv., 47:5 (1992). 16



Dirichlet conditions

In the transition from h to n, conditions (D) are preserved. If we
set Hgn=-90xmn, N0O)=n()=0, then Hy=Hy in X. Let be
T(u,v)=UHU1 and Tyu,v)h=Q(x)h in decomposition (1) of
differences of the vector field (**) on the attractor. For the combined
spectrum X ={n%v?, ve N}, we have

0=0, B=a/2<1/2, a,=7m(v?+v+1/2), &, =n(v+1/2)
and af =0(&,), v > . We can show that the norms of the operators
To(u,v) €e End X ¢ and

U(u,v), U (u,v), oU u,v) e End X
are uniformly bounded by u,v e<A. Then by [1] the dynamics (**) — (D)

IS finite-dimensional on the attractor.
17

[1] A.V. Romanov, lzv. Math., 65:5 (2001).



Neumann conditions

Conditions (N) are not preserved when we pass from h to n, but this case can be
reduced to the preceding one by using the technique of [1]. We will embed system (:*) — (N)
in a large system of special structure. Namely, we differentiate Eqgs. (**) with respect to X,
put w=u,, and obtain the system of 2m equations

U = Uy, + T (X, U, W),
W = Wiy + T (X U, W) + Fi (6 U, ww + (X, U, w)wy
with boundary conditions
u,(0) =uy(1) =0, w(0) =w(1) =1.
The embedding operator is u — (u,u,) = (u,w). With a suitable choice of phase space, this
system will also be dissipative. Since the first part of the new system does not contain u, , we

can apply the Liouville transformation only in variable w, then boundary conditions (N) — (D)
are preserved in the whole. Based on the preceding considerations, we can conclude that the
limit dynamics of original system (**) — (N) is finite-dimensional.

[1] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 16:6 (2017).

18



The dynamics on attractor: (D) and (N) conditions
Thus, we have the following assertion.

THEOREM 1. If problem (*x)— (D) or (**)— (N) 1is
dissipative in X% with a.€(3/4,1), then the phase dynamics on the
attractor A4 — X1 is finite-dimensional.

19



Periodic conditions

We pass to the case of periodic problem (*%) — (P). In this situation, the
space X% with ae(3/4,1) is the Banach algebra and B(0)=B(1),
B,(0) = B,(1) . We put V =U 1, then we have

n=Vh, n,=Vh+Vh, V,=3VB, V(0)=E, V,(0)=1B(0),
Vx(1) = 3V(1)B(0).

n(0)=h(0), n(1)=V(L)h(D),
nx(0) = 3 BO)N(0) +h,(0), nx(1) = SV(L)BO)h(L) +V(1)h(L).

As we see, periodic conditions (P) for h turn into the conditions
n(1) =V(1)n(0), Nx(1) =V(1)nx(0). (5)

and, generally speaking, the monodromy operator V(1) = I .

20



The main lemma

LEMMA 1. If periodic problem (**) — (P) is dissipative in X% with

o €(3/4,1) and the operator V(1)in R™ is normal, then the phase dynamics on the
attractor is finite-dimensional.

PROOF. Let ¢;eR™ and pj=[ujle", 0je(-nn], be orthonormal
eigenvectors and eigenvalues of the operator V(1) with 1<j<m. We put
Ho=Hg(u,v) =wl -0, for boundary conditions (5) with some ®w>0 and

T =UHU L. The eigenfunctions and eigenvalues of the operator Hy have the form
wi j(X) =M g2 o, xel, keZ, 1<j<m,
Ak, j =o0—(In|uj|+i0; + 2nki)? = o+ (2nk + 0 —iln |u ;)2 (6)
Here Inpj=In|uj|+i6;. The quantities pj=p;(u,v)=0 continuously depend on
u,veeA, and hence, by compactness of <2, we have 0<c <|uj|<c, for some
¢ =¢ («A), 1=1,2. Thus, the quantities |In|uj|| in (6) are uniformly bounded. If
S =diag (e "™, then the system of functions Sy j is complete and orthonormal in

X =1%J;R™), and the operators H(u,v) = SH,S1 are normal in X .
21



The main lemma - 1

Returning to expression (4), we put T(u,v)=US™HSU! and
To(u,v) =l +Q(u,v) In decomposition (1) of differences of the vector
field (**) on the attractor. The unbounded operators T(u,v) in X are

similar to the normal ones. We choose the parameter o >0 so as to ensure
the inclusion £ < €(d,0) with 6=1/2 and an appropriate d >0. Since

3/4<a <1, we have B=(a+0)/3<1/2. Moreover, it follows from (6)
that the set C\X contains the strips I'(ay, &) with

ay ~ 4n’k?, &, ~4n’k,
and therefore, akﬁ =0(&, ). We can show that the norms of the operators
To=Tp(u,v) e End X * and
U U1LsS st o(SUD eEndX

are uniformly bounded by u,v €<A. Then by [1] dynamics (**) — (P) on

the attractor 1s finite-dimensional.
22

[11 A.V. Romanov, lzv. Math., 65:5 (2001).



The dynamics on attractor: periodic conditions

THEOREM 2. Let system (*x) — (P) is dissipative in X% with
o €(3/4,1). Then the phase dynamics on the attractor is finite-dimensional
If the matrix f(x,u,uy) Is diagonal for uecoA;

PROOF. By Lemma 1, it suffices to prove the normality of the
monodromy operator V(1) . We have
B(x) = B(x;u,v) = E fp(X: S, Sx)dT
for u,ved, s(X)=1u(X)+(1—1)v(X), xeR. The matrix B(X) is diagonal,
and hence, V(x) =diag, x e R, for the solution of the Cauchy problem
V,=1VB, V(0)=1.

2
So the operator V(1) is self-adjoint and the theorem is proved.

23



What may be done in future

The problem: to characterize the widest possible class of
periodic problems (**) for which the dynamics on the attractor is
finite-dimensional.

The counterexample [1] shows that for such systems this
property of phase dynamics is not always satisfied.

[1] A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 17:1 (2018).
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