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I. Other equilibria with information aggregation

Beside the separating, partially separating, and pooling equilibria analyzed in the main

body, there may exist other equilibria with truthful reporting by the advisors and posi-

tive probability of asking for advice by the decision-maker. Here we analyze alternative

equilibrium behavior at the asking/not asking stage, while maintaining the solutions of

the decision and advising stages pinned down in Sections 3.1 and 3.2 of the main text.

Note preliminarily that an equilibrium in which only signal-type 0 asks with positive

probability and the advisors report truthfully does not exist under A2. There may exist,

however, the following equilibria:

- �Bad�partially separating I: signal-type 0 never asks for advice, signal-type 1 ran-

domizes between asking and not asking;

- �Bad� partially separating II: signal-type 0 always asks for advice, signal-type 1

randomizes between asking and not asking;

- �Fully mixed� equilibrium: both signal-types randomize between asking and not

asking.

Now we argue that, for any given � 2
�
�;b�� in Cases 1 and 2 or � 2 [b�;b�] in Case

3, each of these equilibria (if it exists) it is ex-ante worse than the pooling-on-asking

equilibrium (if it exists) or the �good�partially separating equilibrium for the same �.

First, take a �bad�partially separating equilibrium of type I. With respect to this

equilibrium, both signal-types ask with non lower probability in the �good� partially
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separating equilibrium (as well as in the separating equilibrium with truthful reporting

in Cases 1 and 2 if � � �).

Second, take a �bad�partially separating equilibrium of type II. Signal-type 0 asks

with higher probability than signal-type 1. If this still triggers truthful reporting by the

advisors, then pooling on asking triggers truthful reporting by the advisors too ((TR) is

a fortiori satis�ed), and it is an equilibrium by Proposition 3.

Finally, suppose that there exists a �fully mixed�equilibrium. If signal-type 0 asks

more frequently than signal-type 1, then pooling on asking must trigger truthful reporting

too, and it is an equilibrium. If signal-type 0 asks less frequently than signal-type 1,

the �fully mixed�equilibrium is worse than the �good�partially separating equilibrium

for the following reason. In order not to be inferior to the �good�partially separating

equilibrium, the �fully mixed�equilibrium must yield a higher probability of asking by

signal-type 0. This, coupled with a lower than 1 probability of asking by signal-type 1,

implies by Lemma 3 (part (i)) that the expected reputation of signal-type 0 after asking

is higher than in the �good�partially separating equilibrium. After not asking, if signal-

type 1 considers state 1 weakly more likely and hence decides 1, the expected reputation

of signal-type 0 is the same in the two equilibria. Else, we have p > qg + (1� q)b, so by

Lemma 3 (part (i)) the expected reputation of signal-type 0 after not asking is higher in

the �good�partially separating equilibrium. Hence, in both cases, in the �fully mixed

equilibrium�signal-type 0 would strictly prefer to ask, a contradiction.

II. Proofs for Section 4

Proof of Proposition 5. By inspection of �IU�s in the proof of Lemma 4, it is easy

to observe that the di¤erence in expected instrumental utility between asking and not

asking increases when p decreases.

For reputation, suppose �rst that, as p decreases, bS does not change. The di¤erence
in expected reputation between asking and not asking for signal-type 0, �R0, reads:

Pr(bSj! = 0)Pr(! = 0j� = 0)(w � x) + Pr(bSj! = 1)Pr(! = 1j� = 0)(v � y).
As (i) only Pr(!j� = 0) depends on p, (ii) Pr(! = 0j� = 0) decreases as p decreases,

and (iii) w � x < 0 < v � y, for a given �, �R0 increases as p decreases. Moreover, it
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is straightforward to observe that � and � weakly increase as p decreases. By Lemma

3, part (i), an increase in � = � when signal-type 1 always asks induces an increase

in expected reputation of signal-type 0 after asking. Thus, the di¤erence in the overall

expected payo¤ of signal-type 0 between asking and not asking under �, �, and � = 0

increases as p decreases. Then, since the di¤erence in expected instrumental utility is

positive by A1,1 for signal-type 0 to remain indi¤erent between asking and not asking as

p decreases, b�, b�, and � must increase.
Consider now a change in bS as p marginally decreases. Namely, suppose that for

some k � n and each vector of advices s with o(s) = k, some signal-type � switches from

considering ! = 0 to considering ! = 1 more likely. When � = 0, were she to still decide

0, the reasoning for the case in which bS does not change would hold. By switching to
d = 1, she improves her expected payo¤ after asking. When � = 1, this means that,

after s, signal-type 1 considers ! = 0 and ! = 1 equally likely. Then, if the prior is

updated with s but not with � = 1, ! = 0 results more likely than ! = 1. Thus, given

s, signal-type 0 prefers to be perceived as such rather than pooling with signal-type 1 on

d = 0. This observation is equivalent to Lemma 3, part (ii), as the probability of ! = 0

conditional on s is higher than 1=2 like the prior p. Hence, the switch of signal-type 1

to d = 1 increases the expected reputation of signal-type 0 after s. Thus, a change in bS
may only increase the di¤erence in the expected payo¤ of signal-type 0 between asking

and not asking, and this makes �, b� and b� increase even further.
Finally, consider a switch from � to b�. In Case 3, as Pr(! = 1j� = 1) approaches

hr + l(1 � r), � approaches 0. Thus, � = b� when Pr(! = 1j� = 1) = hr + l(1 � r), i.e.,
as we switch from Case 2 to Case 3.

Proof of Proposition 6. By (TR), �, if it is not 1, is de�ned implicitly by

Pr(! = 0jm1)j�=� = rh+ (1� r)l: (1)

An increase in rh+ (1� r)l allows an increase in Pr(! = 0jm1)j�=�, hence an increase in

�.

To see the e¤ect of an increase in the competence of the decision-maker ( = qg +

1Hence, when signal-type 0 is indi¤erent between asking and not asking, the di¤erence in expected
reputation is negative.
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(1� q)b), write Pr(! = 0jm1) as

[Pr(m1j� = 0)Pr(� = 0j! = 0) + Pr(m1j� = 1)Pr(� = 1j! = 0)] Pr(! = 0)
num:+ [Pr(m1j� = 0)Pr(� = 0j! = 1) + Pr(m1j� = 1)Pr(� = 1j! = 1)] Pr(! = 1) :

So we get

Pr(! = 0jm1)j�=� =
(� + 1� )p

(� + 1� )p+ (�(1� ) + )(1� p) :

As  goes up, when � < 1, (� +1� ) goes down and (�(1� ) + ) goes up. (Thus, as

expected, Pr(! = 0jm1)j�=� goes down). Then, to restore equality (1), � must go up, so

that, by  > 1=2 (informative signals), (� + 1� ) increases more than (�(1� ) + ).

Proof of Proposition 7.

1) Greater advisors�competence.

Higher prior competence of the advisors impacts on the decision-maker�s asking/not

asking incentives in two ways. The most straightforward e¤ect is a higher incentive to

ask for advice due to more valuable advisors�information.

The less obvious e¤ect is a possible discontinuous decrease in the expected reputation

of signal-type 0 from asking (hence, a lower incentive to ask). It can arise because, with

higher advisors�competence, there is a lower chance for signal-type 0 to separate and

reveal her signal after asking (for instance, in the extreme case of the advisors receiving

perfect signals, both signal-types will always take the same decision after asking). Suppose

we are in Case 2 and consider a situation in which a certain pro�le of advices makes signal-

type 1 believe that ! = 1 is just marginally more likely than ! = 0. Then, under this

pro�le of advices, the two signal-types separate with the decision, but a marginal increase

in the prior quality of the advisors will make signal-type 1 switch to d = 0. This induces

a discrete fall in signal-type 0�s expected reputation after asking, by the same argument

as in the proof of Proposition 5.

Consider now � = � and suppose that a marginal improvement in the prior quality of

advisors does not cause the second e¤ect. Then such an improvement makes signal-type

0 strictly prefer to ask, which is going to destroy the advisors�truthtelling.2 E¤ectively, �

2As argued, better advisors� competence also widens the set of beliefs about the state for which
they report truthfully, but since we consider a marginal improvement in competence, this e¤ect will be
marginal, whereas the change in the asking/not asking behavior of signal-type 0 is discrete (and actually
extreme).
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moves up and there is no equilibrium with information aggregation at the initial value of

�. In this case, higher advisors�competence harms through provoking excessive advice-

seeking.

Consider now � = b� and suppose we are exactly at the point where a marginal increase
in the advisors�competence is going to cause the second e¤ect. Then, such an increase

leads to a discrete fall in b�. At the initial value of b�, this results in the failure of not only
the second- or �rst-best equilibrium, but also of any hypothetical equilibrium su¢ ciently

close to the second- or �rst best (in terms of the probabilities of asking). Thus, the

fall in information aggregation will be discontinuous. In such a case, a higher advisors�

competence harms through provoking excessive advice-avoidance.

In both cases, while the improvement of advisors�competence is marginal, the fall in

information aggregation is discrete, meaning a reduction in the e¢ ciency of decisions.

2) Greater decision-maker�s competence.

Consider the pooling-on-asking equilibrium at b�. In this equilibrium, signal-type 0 is
indi¤erent between asking and not asking. Consider a marginal increase in the compe-

tence of the decision-maker. The increase in signal-type 0�s con�dence reduces her ex-

pected instrumental utility bene�t from asking and can obviously increase her expected

reputational gain from not asking. Then, signal-type 0 will strictly prefer not to ask when

both signal-types are always expected to ask. Therefore, the pooling equilibrium cannot

be sustained anymore at the old value of b�. The same applies to any hypothetical equi-
librium in the neighborhood of the pooling equilibrium, whenever signal-type 1 strictly

prefers to ask in the pooling equilibrium under the initial level of competence. Indeed,

by continuity, signal-type 1 would strictly prefer to ask in such an equilibrium, which

implies � � Pr(m1j� = 0)=Pr(m1j� = 1) � 1. But since, due to Lemma 3 (part (i)), the

expected reputation of signal type 0 from asking is increasing in �, deviation for � = 1

implies deviation for any � � 1.

Thus, the fall in information aggregation will be discrete. Since the increase in the

decision-maker�s competence is marginal, this implies a reduction in the e¢ ciency of

decisions.
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III. Robustness of results to di¤erent modeling as-

sumptions

This section complements Section 5 of the main body of the text.

III.A. Asking a subset of advisors

In this section, we consider equilibria in which only a proper subset of advisors is asked

and argue that they are qualitatively the same as the equilibria of the baseline model.

First, suppose there is an equilibrium in which signal-type 0, with positive probability,

asks a subset of advisors 
0 di¤erent from any subset approached by signal-type 1. Then,

due to A2, asking 
0 leads to herding by the advisors and, thus, it is equivalent to not

asking at all.

Pooling equilibria with a proper subset of advisors being asked are possible, although

they are obviously dominated by the pooling equilibrium in which all advisors are asked.

In any case, an analogue of Proposition 3 clearly holds with respect to any such pooling

equilibrium: Once � becomes too high, signal-type 0 would want to deviate to not asking.3

It is also clear that separating and partially-separating equilibria in which signal-

type 1 asks a proper subset of advisors are similar to their counterparts of the baseline

model: The trade-o¤s and, hence, the incentive compatibility constraints of both signal-

types remain qualitatively the same. Essentially, these equilibria are just equilibria of the

baseline game with a reduced number of advisors, with deviations to asking more advisors

being ruled out by picking appropriate o¤-the-path beliefs.4 Therefore, the analysis of

Section 3.4.1 of the main text holds for any given subset of advisors being asked.

In principle, asking a proper subset of advisors can extend the set of � where some

information aggregation is possible: Lowering the number of advisors that are asked can

reduce the incentive of signal-type 0 to ask and, thus, lower �. Thus, once we go below

� of the baseline model, we can still sustain some information aggregation by reducing

the equilibrium subset of asked advisors. However, it is rather obvious that, as � moves
3In addition, such equilibria, even though they formally exist, look implausible for su¢ ciently low

�, in the sense of Grossman and Perry (1986). As any signal-type would be happy to ask the full set
of advisors to improve her instrumental payo¤, such a deviation should naturally keep the advisors�
belief about the decision-maker�s signal unchanged, thus making the deviation indeed pro�table for both
signal-types.

4For example, we can impose that asking more than the equilibrium subset makes the advisors believe
that � = 0, which results in herding.
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down, information aggregation eventually deteriorates due a lower and lower number of

advisors being asked. Hence, our qualitative result that a too low weight on reputation

is detrimental to information aggregation still holds.

III.B. Decision-maker�s statements after asking for advice

Suppose that the decision-maker can make a non-veri�able statement about her signal

after asking for advice. We argue that this additional cheap talk stage does not change

substantially the results of the model.

Consider an equilibrium of the modi�ed game in which both signal-types ask with posi-

tive probability, make di¤erent and informative statements � 0 and � 00, and both statements

trigger truthful reporting (otherwise one would be clearly equivalent to not asking)

First, suppose that Pr(m1; � j� = 0)=Pr(m1; � j� = 1) < 1 for � = � 0; � 00. Hence,

signal-type 0 does not always ask. Since the two statements are di¤erent and signal-type

0 makes both less frequently than signal-type 1, by Lemma 3 (part (i)) signal-type 0

strictly prefers and makes only one of the two statements, say � 0. Then, signal-type 1

would strictly prefer � 0 to � 00 if she would consider state 0 more likely. Since sometimes

she states � 00, it must be that she considers state 1 more likely. Thus, signal-type 0 is

perceived as such after not asking (for signal-type 1 decides 1). Moreover, since she plays

both � 0 and not asking, she must be indi¤erent between the two. But then, since expected

reputation depends only on relative probabilities, there also exists (and aggregates more

information) our �good�partially separating equilibrium, where signal-type 0 asks with

probability Pr(m1; � 0j� = 0)=Pr(m1; � 0j� = 1) (instead of Pr(m1; � 0j� = 0) like here).

Second, suppose that after one statement, say � 0, Pr(m1; � 0j� = 0)=Pr(m1; � 0j� =

1) � 1. Then, also pooling on asking triggers truthful reporting and can be implemented

in equilibrium without statements.

When the pooling equilibrium of our baseline model exists, an equilibrium where

signal-type 0 always plays (m1; � 0) and signal-type 1 randomizes between (m1; � 0) and

(m1; � 00) may exist above b�. So, it is true that under some restrictive conditions on the
parameters the additional cheap talk stage extends the implementation of the �rst best

above b�. However, as shown, the introduction of the non-veri�able statements does not
a¤ect at all our results for the intermediate values of � we are interested in, and it only

con�rms the message that intermediate values � are generally optimal, while too high or
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too low values of � harm information aggregation.

III.C. Impossibility of not asking for advice

In some real-life contexts, it could be impossible to prevent an advisor from expressing

his opinion by not asking. In such cases, �not asking�essentially becomes unfeasible, and

the decision-maker can only make one of two non-veri�able statements about her signal

prior to receiving advice. Such a modi�cation does not a¤ect substantially the results.

First, the separating, partially separating, and pooling equilibria exist and have the same

characteristics as in the baseline model for the same values of �. To see this, simply

note that in any of these equilibria not asking is played only by signal-type 0. Then,

we can substitute not asking with statement � 0 without any e¤ect, because, due to A2,

the advisors will herd after � 0. Second, any novel equilibrium of the modi�ed game has

exactly the same features as pooling on asking with subsequent statements � 0 and � 00 in

the game with statements after asking. So, the argument and the conclusions of Section

III.B apply here as well.

III.D. Possibility of unobserved advice-seeking

Suppose now that the decision-maker was given the additional opportunity to ask for

advice without being observed by the observer. Obviously, this can happen only when

the observer is not the advisors. Both when the decision-maker �secretly�asks for advice

and when she does not ask for advice at all, the observer observes only the �nal decision.

Then, the reputation of the decision-maker must be the same in the two situations, given

the same decision.

It is straightforward to note that the separating, partially separating, pooling-on-

asking equilibria of the baseline model have equivalent counterparts in the modi�ed game.

If only signal-type 0 asks for advice secretly, she will not receive truthful advice, and

this sustains the separating and partially separating equilibria. To sustain the pooling

equilibrium with public asking, it is enough that when the advisors are asked for advice

secretly, they assign probability 1 to signal-type 0 of the decision-maker (and so does the

observer, when no advice-seeking is observed).

Suppose now instead that both signal-types ask for advice secretly, with probabilities

that induce the advisors to report truthfully. Then, by A1, the decision-maker strictly
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prefers to ask secretly rather than not asking. So, whenever the decision-maker does not

ask for advice publicly, it is clear to the observer that the decision-maker is asking for

advice secretly. Thus, the situation is analogous to the one where asking and not asking

are substituted by two di¤erent statements: asking publicly and asking �secretly�. The

only di¤erence is the following: After asking secretly, the observer does not learn the

advice that the decision-maker has received. Thus, for each of the two decisions and

states of the world, the reputation of the decision-maker will be the same regardless of

the unobserved vector of advices. This may eliminate separation at the decision stage in

some contingencies where the two signal-types of the decision-maker do consider di¤erent

states more likely (because a deviation does not entail being perceived as the opposite

signal-type anymore). However, as we have already mentioned in Section 3.1 of the main

text, di¤erent equilibrium choices at the decision stage do not a¤ect qualitatively the

results. Hence, all the observations of Section III.C apply here too.

III.E. Privately known decision-maker�s type. E¤ect of p.

Assume the decision-maker knows her competence-type. There will be now four privately

known competence-signal-types (call them just �types�), as each of the competence-types

fG;Bg can receive either � = 0 or � = 1: G0; G1; B0; B1.

For p � rh+ (1� r)l, pooling on asking generates truthful reporting by the advisors.

Hence reputation concerns do not matter as long as they are not so high that G0 prefers

to signal her competence-type by not asking5.

When p > rh+(1�r)l, the �rst best cannot be achieved and, similarly to the baseline

model, all informative equilibria will, roughly speaking, have the following feature: signal-

types 0 will refrain from asking more often than signal-types 1.

Let us focus, for simplicity, on equilibria in pure strategies. As an example, consider

the following equilibrium: G0 does not ask for advice, while G1, B0 and B1 ask, and the

advisors report truthfully.6 Such an equilibrium must exist for a range of parameters.

5Assuming the natural o¤-the-path belief that not asking followed by d = 0 makes the observer believe
that � = G.

6Another possible equilibrium is the one in which G0 and B0 always refrain from asking, while G1
and B1 always ask and receive truthful advice. From the point of view of the advisors, the strategy
of the decision-maker conveys the same information as in the separating equilibrium of the baseline
model. From the point of view of the decision-maker, since asking and not asking are unable to signal
the competence-type directly, the trade-o¤ is qualitatively the same as in the baseline model, and it is
solved through a similar single-crossing argument. (Of course, since the competence-types are privately
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Provided that p it is neither too high nor too low relative to the precision of the good

competence-type, g, the advisors�belief after being asked will be su¢ ciently close to 1/2

so that (TR) holds (if the proportion of bad competence-types is high enough, then p

should just not be too high).

Thus we will have the familiar trade-o¤ between having a higher instrumental utility

from asking and higher reputational payo¤ from not asking. Since G0 is most con�dent

about the state of all types, her expected instrumental utility from asking is smaller

compared to the other three. For simplicity (not crucial), we can assume that not asking

followed by d = 1 yields an (o¤-the-path) belief that the decision-maker is G1 (a version

of A3 for the privately known types setup). Then not asking always yields the belief that

� = G. Then, naturally, there will be thresholds �0 and �0 such the that the equilibrium

under consideration exists if and only if � 2 [�0; �0] Threshold �0 will be determined by

the incentive compatibility of G0: when � < �0, the reputation concerns are so low that

G0 will want to deviate to asking for advice. Threshold �0 will be determined by the

incentive compatibility of either B0 or G1 (the deviation incentive of B1 is obviously

weaker than that of B0): when � > �0, high reputation concerns will make either of these

types deviate to not asking.

As p grows, type G0 becomes more con�dent about the state and, thus, less tempted

to ask for advice. Therefore, a lower level of reputation concerns becomes enough for

her to refrain from asking, i.e., �0 decreases. Type B0 also becomes more con�dent that

! = 0, which makes her less willing to ask. Consequently, a lower level of reputation

concerns is needed to keep B0 asking. If �0 is determined by the incentive compatibility

of B0, this means that �0 goes down. If �0 is determined by the incentive compatibility

of G1, it must be that G1 believes that ! = 1 is more likely. Then, a higher p results

in higher willingness to ask by G1, meaning an increase in �0. It is clear, however, that

at some point �0 becomes determined by the incentive compatibility of B0, and, thus,

eventually goes down.

known, the relevant incentive compatibility constraints will not be exactly the same as in the baseline
model). Provided that G1 does not have a too strong belief in ! = 1, she will prefer pooling with B1
instead of not asking and choosing d = 1.
Finally, when p is su¢ ciently close to 1=2, there can potentially exist equilibria in which G-types

never ask and take the decisions corresponding to their signals (the behavior of B-types is likely to vary
depending on the equilibrium).
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0.1 III.F. Costly information acquisition setup

Consider an alternative setup in which advisors have no reputation concerns and care

about the quality of decisions, but need to incur a cost of acquiring a signal. Assume, for

simplicity, there is only one advisor, whose ex-post payo¤ is8<: 1 if d = !;

0, if d 6= !.

At stage 2 the advisor has no signal. At stage 4 (if asked for advise at stage 3) by

incurring a �xed cost c the advisor can acquire a binary signal s 2 f0; 1g of precision

� := Pr(s = !) for any !. If he does not invest in information acquisition, no signal is

acquired. The advisor then reports whether he invested in information and which signal

he received. Otherwise the model is the same as in our baseline setup.

Notice that there is absolutely no reason for the advisor to lie, so let us assume he

will always reveal the truth.

Denote � := qg + (1� q)b.

To avoid uninteresting cases, let us make the following two assumptions. First, assume

Pr(! = sj�; s) > 1=2 for any � and s:

That is, like in our baseline model (assumption A1), advice is always potentially useful

for both signal-types. The decision-maker, thus, will always follow the advice. This

means that the advisor�s update about the decision-maker�s signal after being asked does

not a¤ect his expected payo¤: regardless of the state, the decision will be correct with

probability � �the expected quality of the advisor�s signal. Thus, if the advisor decides

to invest in information acquisition, his expected payo¤ (after he is asked for advice) will

be �� c.

Second, assume that, in the case when Pr(! = 0j� = 1) > 1=2, learning that � = 1

always results in information acquisition (this is analogous to the second part of A2 for

Pr(! = 0j� = 1) > 1=2). If signal-type 1 believes that state 0 is more likely, absent any

advice she will take d = 0, and the advisor�s expected payo¤ will be Pr(! = 0j� = 1).

Thus, the advisor will acquire information after learning that � = 1 (assuming information
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acquisition in case of indi¤erence) if and only if

�� c � Pr(! = 0j� = 1):

Additionally, to simplify matters, assume that, if signal-type 1 believes that ! = 1 is

more likely, the advisor prefers to invest in information when both signal-types always

ask for advice (in fact, this is equivalent to assuming that at p = 1=2 learning � triggers

information acquisition). In this case, if the advisor does not acquire information, the

decision-maker will always take d = �, which implies the advisor�s expected payo¤ of

� �the ex-ante probability that � coincides with !. Then, the necessary and su¢ cient

condition for information acquisition is

�� c � �:

The above two inequalities can be combined into7

�� c � max fPr(! = 0j� = 1); �g :

Let us �rst analyze the second-best solution. Like in the baseline model, signal-

type 1 must always ask in the second best, as more asking by signal-type 1 never hurts

the advisor�s incentives. Indeed, it raises the advisor�s belief that the decision-maker is

less con�dent about the state (as signal-type 1 is always less con�dent), which can only

encourage information acquisition.

Let � be the probability that signal-type 0 asks for advice.

Consider �rst the case p > �, that is, the case when signal-type 1 believes that ! = 0

is more likely.

If the advisor does not acquire information, the decision-maker will always take d = 0.

Thus, the advisor�s expected payo¤ will then be just Pr(! = 0jm1), and he will invest in

information if and only if

�� c � Pr(! = 0jm1):

Clearly, Pr(! = 0jm1) < p for all � < 1, increases with � and reaches p at � = 1.

7Pr(! = 0j� = 1) = (1��)p
(1��)p+�(1�p) , which can be either higher or smaller than � depending on p.

Hence, neither inequality is redundant.
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Start with p large enough so that �� c < p. The second-best �, i.e., �, is determined by

�� c = Pr(! = 0jm1); it exists thanks to our assumption that �� c � Pr(! = 0j� = 1).

As we decrease p, Pr(! = 0jm1) declines for given �. Hence, � has to go up to keep the

equality satis�ed. If p becomes equal to �� c while we are still in the case p > �, � hits

1. Then the second best becomes the �rst best, and � = 1 achieves information provision

for any lower value of p > � as well.

If p � �, signal-type 1 believes that ! = 1 is weakly more likely. Then, thanks to our

assumption that �� c � �, � = 1 generates information acquisition.

Thus, the entire dynamics of � is the same as in the baseline model.

Let us turn now to the equilibrium asking/not asking behavior. For the decision-

maker�s incentives, it is immaterial why exactly advisors provide truthful information; it

only matters whether, for a given asking/non-asking behavior, asking triggers information

provision. Hence, the trade-o¤s of the two signal-types remain qualitatively the same as

in the baseline model.

Given the dynamics of �, the equilibrium structure, thus, also remains the same.

When ��c < p, pooling on asking does not trigger information acquisition. The existence

of �, below which no information provision occurs in the case is straightforward: Under

too low reputation concerns, signal-type 0 would deviate from any (partially or fully)

separating equilibrium and ask for advice. The existence of b� (corresponding to �) is
straightforward as well. Given that � is decreasing in p, we can apply the arguments of

the baseline model to show that both � and b� increase with the degree of prior uncertainty.
IV. Numerical Example

We conclude the Supplemental Appendix with a numerical example, which shows how

the �-thresholds for equilibria are determined and change with the prior uncertainty.

Fix the following values of the parameters:

q = r =
1

2
; g = h =

7

9
; b = l =

5

9
; n = 3.

We leave the prior uncertainty p free, to study how it in�uences the e¤ect of reputation

concerns on information aggregation. Note that the average signal precision, i.e. the

ex-ante probability that a state generates the corresponding signal, is the same for the
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decision-maker and for the advisors (2=3). This has two implications. First, if both

signal-types of the decision-maker always ask, each signal-type of the advisor has the

same posterior over the state of the world as the decision-maker of the same signal-type.

Second, the posterior over the state of the world of the decision-maker depends only on

the total number of signals of each kind that she learns, including her own. Note that this

is not a knife-edge case, in the sense that whether the decision-maker is on average better

informed than the advisors or not does not determine per se any qualitative di¤erence in

the results.

First, we compute the decision-maker and the advisors� beliefs as a function of p.

By Bayes rule, we can use the average signals precision (2=3) as a deterministic signal

precision. Denote by o(s) the number of 0�s in a pro�le of truthfully revealed signals s.

Then we have:

Pr(! = 0j� = 0) = 2p

p+ 1
= Pr(! = 0jsi = 0);

Pr(! = 0j� = 1) = p

2� p = Pr(! = 0jsi = 1);

Pr(! = 0j� = 0; s) =
(2
3
)o(s)+1(1

3
)3�o(s)p

(2
3
)o(s)+1(1

3
)3�o(s)p+ (1

3
)o(s)+1(2

3
)3�o(s)(1� p)

=

8>>>>>><>>>>>>:

16p
1+15p

if o(s) = 3
4p
1+3p

if o(s) = 2

p if o(s) = 1
p

4�3p if o(s) = 0

Pr(! = 0j� = 1; s) =

8>>>>>><>>>>>>:

4p
1+3p

if o(s) = 3

p if o(s) = 2
p

4�3p if o(s) = 1
p

16�15p if o(s) = 0

Pr(! = 0jm1) =
(2Pr(m1j� = 0) + Pr(m1j� = 1))p

(2 Pr(m1j� = 0) + Pr(m1j� = 1))p+ (2Pr(m1j� = 1) + Pr(m1j� = 0))(1� p) :

As p changes, we have the following situations.

� p � 4
5
. Then Pr(! = 0j� = 0; s) � 1

2
for o(s) = 0. This case contradicts A1.and

thus it is not analyzed.

� 2
3
< p < 4

5
. Then Pr(! = 0j� = 1) = Pr(! = 0jsi = 1) > 1

2
. This is Case 1;

14



moreover the advisors herd in case of pooling on asking. Signal-type 0 changes her

mind only if all the advisors suggest 1. Signal-type 1, instead, follows the majority

of the advisors.

� 1
2
< p � 2

3
. Then Pr(! = 0j� = 1) = Pr(! = 0jsi = 1) � 1

2
. This is Case 2;

moreover the advisors report truthfully in case of pooling on asking. The reactions

of the decision-maker to the advices are the same as in the previous case.

� p = 1
2
. We are still in Case 2, but also signal-type 1 now changes her mind only if

all the advisors suggest 0. The analysis of this case is left to the reader

For no value of p we fall in Case 3, for which it is necessary (but not su¢ cient) that

the advisors�signals have worse average precision than the decision-maker�s one.

So, we call 2
3
< p < 4

5
Case 1 and 1

2
< p � 2

3
Case 2.

Both signal-types of the decision-maker react to the advisors�suggestions in the same

way in the two cases. Moreover, signal-type 0 always decides 0 after not asking. Thus, we

can compute all values of instrumental utility and reputation in the same way for both

cases, except for signal-type 1 when she does not ask.

The expected instrumental utility for signal-type 0 after not asking is Pr(! = 0j� =

0) = 2p
p+1

and for signal-type 1 it is Pr(! = 0j� = 1) = p
2�p in Case 1 and Pr(! = 1j� =

1) = 2�2p
2�p in Case 2. After asking, the expected instrumental utility for signal-type 0 is

P
s:o(s)�1 Pr(! = 0; sj� = 0) + Pr(! = 1; s = (1; 1; 1)j� = 0) =

=
P

s:o(s)�1 Pr(sj! = 0)Pr(! = 0j� = 0) + Pr(s = (1; 1; 1)j! = 1)Pr(! = 1j� = 0) =

= (1� 1

33
)
2p

p+ 1
+
23

33
(1� 2p

p+ 1
) =

2

3

2p

p+ 1
+
8

27
=
44p+ 8

27p+ 27
;

and for signal-type 1 it is

P
s:o(s)�2 Pr(! = 0; sj� = 1) +

P
s:o(s)<2 Pr(! = 1; sj� = 1) =

=
P

s:o(s)�2 Pr(sj! = 0)Pr(! = 0j� = 1) +
P

s:o(s)<2 Pr(sj! = 1)Pr(! = 1j� = 1) =

= (
23

33
+ 3 � 1

3
� 2

2

32
)
p

2� p + (
23

33
+ 3 � 1

3
� 2

2

32
)(1� p

2� p) = (
23

33
+ 3 � 1

3
� 2

2

32
) =

20

27
:

Suppose now that signal-type 1 always asks and signal-type 0 asks with probability �.

Then, after not asking, the advisors believe that the decision-maker has received signal
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0 after decision 0 (by equilibrium strategy or A3) and signal 1 after decision 1 (by A3).

Using the same notation as in the Appendix (x := Pr(Gj� = !); y := Pr(Gj� 6= !)), the

expected reputation for signal-type 0 after not asking is:

Pr(! = 0j� = 0)x+ Pr(! = 1j� = 0)y =

=
2p

p+ 1
� 7
12
+ (1� 2p

p+ 1
) � 1
3
=
1

4

2p

p+ 1
+
1

3
=
5p+ 2

6p+ 6
;

and for signal-type 1, in Case 1 (where she optimally decides 0), it is:

Pr(! = 0j� = 1)x+ Pr(! = 1j� = 1)y =

=
p

2� p �
7

12
+ (1� p

2� p) �
1

3
=
1

4

p

2� p +
1

3
=

8� p
24� 12p:

and in Case 2 (where she optimally decides 1), it is:

Pr(! = 0j� = 1)y + Pr(! = 1j� = 1)x =

=
p

2� p �
1

3
+ (1� p

2� p) �
7

12
=
7

12
� 1
4

p

2� p =
7� 5p
12� 6p:

After asking, the expected reputation of the two signal-types is di¤erent since they decide

di¤erently if o(s) = 1. Using v and w as de�ned in the Appendix, for signal-type 0 it is:

Pr(!=1; o(s) 6= 1j0)v + Pr(!=0; o(s) 6= 1j0)w + Pr(!=1; o(s)=1j0)y + Pr(!=0; o(s)=1j0)x =

= (1� 31
3

22

32
)(1� 2p

p+ 1
)v + (1� 32

3

1

32
)
2p

p+ 1
w + (3

1

3

22

32
)(1� 2p

p+ 1
)y + (3

2

3

1

32
)
2p

p+ 1
x =

=
5

9
(1� 2p

p+ 1
)
7 + 2�

12 + 6�
+
7

9

2p

p+ 1

7�+ 2

12�+ 6
+
4

9
(1� 2p

p+ 1
)
1

3
+
2

9

2p

p+ 1

7

12
=

=
35 + 10�

108 + 54�
+

2p

p+ 1
(
49�+ 14

108�+ 54
� 35 + 10�

108 + 54�
� 1

54
) +

4

27
;

and for signal-type 1:

Pr(!=1; o(s) 6= 1j1)v + Pr(!=0; o(s) 6= 1j1)w + Pr(!=1; o(s)=1j1)x+ Pr(!=0; o(s)=1j1)y =

= (1� 31
3

22

32
)(1� p

2� p)v + (1� 3
2

3

1

32
)
p

2� pw + (3
1

3

22

32
)(1� p

2� p)x+ (3
2

3

1

32
)
p

2� py =

=
5

9
(1� p

2� p)
7 + 2�

12 + 6�
+
7

9

p

2� p
7�+ 2

12�+ 6
+
4

9
(1� p

2� p)
7

12
+
2

9

p

2� p
1

3
=

=
35 + 10�

108 + 54�
+

p

2� p(
49�+ 14

108�+ 54
� 35 + 10�

108 + 54�
� 5

27
) +

7

27
:
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To look for � and � we need to compute the values of reputation for � = 0. Then, for

signal-type 0 the expected reputation after asking is:

35

108
+

2p

p+ 1
(
28

108
� 35

108
� 2

108
) +

16

108
=
51

108
� 9

108

2p

p+ 1
=

33p+ 51

108p+ 108

For signal-type 1 it is:

35

108
� 27

108

p

2� p +
28

108
=
126� 90p
108(2� p) =

7� 5p
12� 6p:

The di¤erence in expected payo¤ between asking and not asking for signal-type 0 is

zero for � such that:

(1� �)( 44p+ 8
27p+ 27

� 2p

p+ 1
) + �(

33p+ 51

108p+ 108
� 5p+ 2
6p+ 6

) = 0

(1� �)(32� 40p) + �(15� 65p) = 0

� =
32� 40p
17 + 25p

:

As expected, for p " 4=5, � # 0: signal-type 0 has no strict incentive to follow three

1 suggestions, so there is no gain from asking. For p # 2=3, � " 16
101
. So, in Case 1

� 2 (0; 16
101
). Recall that in Case 1 pooling on asking does not trigger truthful reporting.

Thus, there is no information aggregation up to �, i.e. there is no information aggregation

for too low reputation concerns. As uncertainty increases, i.e. as p decreases, � increases.

That is, higher reputation concerns are needed to obtain some degree of information

aggregation. For p # 1=2, � " 24
59
, so in Case 2, � 2 [ 16

101
; 24
59
). However in Case 2, pooling

on asking triggers truthful reporting and can be implemented from � = 0.

The di¤erence in expected payo¤ between asking and not asking for signal-type 1 in

Case 1 is zero for � such that:

(1� �)(20
27
� p

2� p) + �(
7� 5p
12� 6p �

8� p
24� 12p) = 0

(1� �)(160� 188p
108(2� p) ) + �(

54� 81p
108(2� p)) = 0

� =
160� 188p
106� 107p:

As expected, for p # 2=3, � " 1. Note indeed that in Case 2, as suggested by Proposition
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1, � = 1: The expected reputation after asking and not asking is the same, so no value

of � makes signal-type 1 indi¤erent between asking and not asking. For p = 4=5, � = 24
51
.

Thus, also � increases as p decreases.

To compute b�, we need to compute the highest value of � such that the advisors report
truthfully. It solves:

Pr(! = 0jm1) =
2�p+ p

�p+ 2 + �� p =
2

3
:

� =
4� 5p
4p� 2 :

For p " 4=5, � # 0, so the "second best" partially separating equilibrium approaches

the separating equilibrium with weak incentive for signal-type 0. As anticipated, for

p = 2=3, � = 1 so for every p > 2=3 there is no pooling-on-asking equilibrium with

truthful reporting. Now we look for the value of � such that signal-type 0 is indi¤erent

between asking and not asking for p = 2=3 and � = 1: this is the upper bound for b�
in Case 1. Substituting � = 1 in the reputation after asking, the di¤erence in expected

payo¤ for signal-type 0 between asking and not asking is zero for b� such that:
(1� b�)( 44p+ 8

27p+ 27
� 2p

p+ 1
) + b�( 45

162
+

2p

p+ 1
(
15

162
) +

4

27
� 5p+ 2
6p+ 6

) = 0

(1� b�)(48� 60p) + b�(15� 36p) = 0
b� = 48� 60p

33� 24p:

For p # 2=3, b� " 8
17
. So, in Case 1, b� 2 (0; 8

17
). Note that for every p, as expected, b� > �.

In case 2, pooling on asking triggers truthful reporting. So, we are interested in b� as
the maximum weight on reputation such that the pooling-on-asking equilibrium exists

under A3. For p # 1=2, b� " 6
7
. Thus, in Case 2, the pooling-on-asking equilibrium exists

up to b� 2 � 8
17
; 6
7

�
.

Also b� increases as p decreases. That is, more uncertainty requires (in Case 1) or allows
(in Case 2) higher reputation concerns to achieve the best feasible level of information

aggregation.
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