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1 Introduction

Strong Rationalizability (Battigalli and Siniscalchi [7]) is a form of extensive-form ratio-

nalizability (Pearce [17]) based on the notion of strong belief. Concretely, it is the iterated

elimination of �never sequential best replies� to belief systems that assign probability 1,

as long as possible, to opponents� strategies that survive the previous step of the proce-

dure. Strong-�-Rationalizability (Battigalli [4], Battigalli and Siniscalchi [8]) introduces

�rst-order belief restrictions in the same reasoning scheme: only belief systems in an exoge-

nously given set are allowed at all steps.

It is well-known that the introduction of belief restrictions can let the elimination proce-

dure depart completely from Strong Rationalizability. This is due to the non-monotonicity

of strong belief: strong belief in an event does not imply strong belief in a larger event. Even

in a perfect information game without relevant ties, the introduction of �rst-order belief

restrictions can induce completely di¤erent outcomes with respect to the unique strongly

rationalizable/backward induction one (see, e.g., the introductory example in Catonini [9]).

Are there interesting restrictions under which Strong-�-Rationalizability re�nes the set

of strongly rationalizable outcomes? Under such restrictions, the predictions of Strong-�-

Rationalizability are reassuringly compatible with common strong belief in rationality, as

captured by Strong Rationalizability.

It turns out that, in all games with observable actions,1 the set of outcomes predicted by

Strong-�-Rationalizability is included in the set of strongly rationalizable outcomes when

the restrictions corresponds to initial belief in an outcome (distribution), or in a set of

outcomes that all receive positive probability.2 I will refer to both as �path restrictions�.

Path restrictions are important both for theory and applications. Agreements among real

players often specify only one or more outcomes to achieve and fall through if a player

deviates, i.e., they do not specify o¤-path behavior � see Catonini [10]. Or, if the source

of the belief restrictions is learning, players are likely to have a rich record of observations

of the path of play, but limited or no experience of what would happen o¤-path � a

motivation used by Sobel et. al. [25, page 310]. Theoretically, path restrictions can be

used to test the compatibility of an outcome distribution with a kind of forward induction

reasoning, whereby a deviation from the paths is interpreted as optimistic beliefs about the

opponents�reaction, rather than disbelief that the opponents will stay on path themselves.

In [9] I elaborate on this use of path restrictions and on the connection between this kind

of strategic reasoning and strategic stability (Kohlberg and Mertens [14]). Equilibrium

1 i.e., games where, allowing for simultaneous moves, every player knows the current history of the game.
2These are two extremes of the spectrum of sets of outcome distributions with the same support. The

whole spectrum will be considered by the formal analysis.
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re�nements related to strategic stability have indeed been motivated informally with the

idea that a deviator is expected to aim for a higher payo¤ than in equilibrium. Path

restrictions have been used to make this idea precise: see Battigalli and Siniscalchi [8] for

the Iterated Intuitive Criterion (Cho and Kreps [12]), Catonini [10] for �equilibrium paths

that can be upset by a convincing deviation�(Osborne [15]), and (with di¤erent but related

techniques) Sobel et al. [25] for Divine Equilibrium (Banks and Sobel [1]).

Why do path restrictions re�ne the set of strongly rationalizable outcomes? Note that,

also under path restrictions, Strong-�-Rationalizability forces players to give up orders of

belief in rationality that are per se compatible with the observed behavior, in order to keep

orders of belief in the path. A more general result highlights that the outcome inclusion

between Strong-�-Rationalizability and Strong Rationalizability is preserved as long as

the restrictions �never bite o¤-path�. With this, I refer to restrictions that exclude belief

systems only according to the probabilities they assign to the opponents�behavior along

the paths that survive all steps of Strong-�-Rationalizability. Roughly speaking, under

such restrictions, a strongly rationalizable path could be abandoned only if, at a step of

reasoning, a deviation outside of the strongly rationalizable paths was pro�table for all

the beliefs about the continuation play; but in this case, some of these beliefs would be

compatible with common strong belief in rationality, contradicting that the deviation is not

strongly rationalizable. On the contrary, in presence of o¤-path restrictions, the deviation

may occur only because the beliefs are constrained on a particular continuation play, which

may not be compatible with some order of belief in rationality.

In [9] I de�ne an elimination procedure with �rst-order belief restrictions, Selective Ra-

tionalizability, that re�nes Strong Rationalizability, thus guarantees common strong belief

in rationality. Selective Rationalizability is based on the idea that all orders of belief in ra-

tionality receive epistemic priority over all orders of belief in the restrictions. For instance,

when a player displays behavior that cannot be rational under her restrictions, Selective

Rationalizability requires to keep the belief that the player is rational (if per se compatible

with the observed behavior) and drop the belief that her restrictions hold, while Strong-�-

Rationalizability captures the opposite epistemic priority choice. Selective Rationalizability

and Strong-�-Rationalizability can even predict non-empty disjoint outcome sets for the

same restrictions (see [9]). But in light of the main monotonicity result, one expects the

two solution concepts to give the same predictions under path restrictions. I prove that this

is the case. Hence, path restrictions have the further advantage of giving predictions that

are robust to this epistemic priority choice.

The workhorse lemma of the paper also yields the following result, proven also by Perea

[21]: in games with observable actions, the iterated deletion of never sequential best replies
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under the strong belief operator (of which Strong Rationalizability is the maximal elimi-

nation order) is order independent in terms of predicted outcomes. Chen and Micali [11]

characterize Strong Rationalizability with the maximal iterated elimination of distinguish-

ably dominated strategies,3 which they prove being order independent in terms of outcomes

in all games with perfect recall. Here, like in the recent work of Perea ([22], [21]), I do not

use dominance characterizations.

Finally, I use the order independence result to show that Strong Rationalizability re�nes

(in terms of outcomes) a generalization of backward induction to games without perfect

information, Backwards Extensive-Form Rationalizability of Penta ([18], [19]). Perea [21]

provides the same result with the Backwards Dominance Procedure (Perea [20]). Perea [22]

had already shown that Strong Rationalizability re�nes backward induction in games with

perfect information, to shed new light on their outcome equivalence in absence of relevant

ties � a result originally proven by Battigalli [3], and then by Heifetz and Perea [13] in a

more direct way. I derive this classical result as a corollary as well.

Section 2 introduces the formal framework for the analysis. Section 3 de�nes elimination

procedures and introduces the workhorse lemma. Section 4 presents the results on outcome

monotonicity with respect to �rst-order belief restrictions and outcome equivalence with

respect to the epistemic priority choice. Section 5 presents the results on order independence

and backward induction. Section 6 provides an example and the sketch of the proof of the

workhorse lemma. In Section 7 I elaborate on similarities and di¤erences between my

approach and Perea�s. The Appendix contains the proof of the workhorse lemma.

2 Preliminaries

Primitives of the game.4 Let I be the �nite set of players. For any pro�le of sets (Xi)i2I
and any subset of players ; 6= J � I, I write XJ := �j2JXj , X := XI , X�i := XInfig.

Let (Ai)i2I be the �nite sets of actions potentially available to each player. Let H �
[t=1;:::;TA

t [
�
h0
	
be the set of histories, where h0 2 H is the empty, initial history and

T is the �nite horizon. The set H must have the following properties. First property: For

any h = (a1; :::; at) 2 H and l < t, it holds h0 = (a1; :::; al) 2 H, and I write h0 � h.5

Let Z := fz 2 H : /9h 2 H; z � hg be the set of terminal histories (henceforth, outcomes
3They do so by proving the equivalence between distinguishable and conditional dominance, whereby the

maximal iterated elimination of conditionally eliminated strategies was proven to be equivalent to extensive-
form rationalizability by Shimoji and Watson [24].

4The main notation is almost entirely borrowed from Osborne and Rubinstein [16].
5Then, H endowed with the precedence relation � is a tree with root h0.
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or paths),6 and H := HnZ the set of non-terminal histories (henceforth, just histories).

Second property: For every h 2 H, there is a Cartesian set of actions pro�le A(h) such that
(h; a) 2 H such that (h; a) 2 H if and only if a 2 A(h). For each i 2 I, let Ai(h) denote the
set of actions available at h, so that �i2IAi(h) = A(h).7 For each i 2 I, let ui : Z ! R be
the payo¤ function. The list � =



I;H; (ui)i2I

�
is a �nite game with complete information

and observable actions.

Derived objects. A strategy of player i is an element of �h2HAi(h). Let Si denote
the set of all strategies of i. A strategy pro�le s 2 S naturally induces a unique outcome
z 2 Z. Let � : S ! Z be the function that associates each strategy pro�le with the induced

outcome. For any h 2 H, the set of strategies of i compatible with h is:

Si(h) := fsi 2 Si : 9z � h;9s�i 2 S�i; �(si; s�i) = zg :

For any subset of players J � I and any SJ � SJ , let SJ(h) := SJ(h) \ SJ . Let

H(SJ) :=
�
h 2 H : SJ(h) 6= ;

	
denote the set of histories compatible with SJ . For any h = (h0; a) 2 Hn

�
h0
	
, let p(h)

denote the immediate predecessor h0 of h.

Since the game has observable actions, each history h 2 H is the root of a subgame

�(h). If h 6= h0, all the objects in �(h) will be denoted with h as superscript, except

for histories and outcomes, which will be identi�ed with histories and outcomes of the

whole game, and not rede�ned as shorter sequences of action pro�les. For any h 2 H,
shi 2 Shi = �h0�hAi(h0), and bh 2 Hh = fh0 2 H : h � h0g, shi jbh will denote the strategy
s
bh
i 2 S

bh
i such that s

bh
i (
eh) = shi (eh) for all eh � bh. For any Shi � Shi , Shi jbh will denote the set

of all strategies sbhi 2 Sbhi such that sbhi = shi jbh for some shi 2 Shi .
Beliefs. In this dynamic framework, beliefs are modeled as Conditional Probability

Systems (Renyi, [23]; henceforth, CPS).

De�nition 1 Fix i 2 I. An array of probability measures (�i(�jh))h2H over co-players�

strategies S�i is a Conditional Probability System if for all h 2 H, �i(S�i(h)jh) = 1, and
for all h0 � h and S�i � S�i(h0),

�i(S�ijh) = �i(S�i(h0)jh) � �i(S�ijh0).
6�Path�will be used with emphasis on the moves, and �outcome�with emphasis on the end-point of the

game.
7When player i is not truly active at history h, Ai(h) consists of just one �wait�action.
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The set of all CPS�s on S�i is denoted by �H(S�i).

For any subset of opponents� strategies S�i � S�i, I say that a CPS �i 2 �H(S�i)
strongly believes S�i if, for all h 2 H(S�i), �i(S�ijh) = 1. I say that a CPS strongly

believes a sequence of events (S
q
�i)

1
q=0 when it strongly believes each event in the sequence.

I �x the following convention: H(;) = ;. With this, the empty set is always strongly
believed, because the condition is vacuously satis�ed.

Rationality. I consider players who reply rationally to their conjectures. Rationality
here means that players, at every history, choose an action that maximizes expected payo¤

given the belief about how the opponents will play and the expectation to play rationally

again in the continuation of the game. By standard arguments, this is equivalent to playing

a sequential best reply to the CPS.

De�nition 2 Fix �i 2 �H(S�i). A strategy si 2 Si is a sequential best reply to �i if for
every h 2 H(si),8 si is a continuation best reply to �i(�jh), i.e., for every esi 2 Si(h),X

s�i2S�i(h)
ui(�(si; s�i))�i(s�ijh) �

X
s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
The set of sequential best replies to �i is denoted by �i(�i). For each h 2 H, the set of

continuation best replies to �i(�jh) is denoted by bri(�i; h).
3 Elimination procedures and the workhorse lemma

I provide a very general notion of elimination procedure for a subgame �(h), which en-

compasses all the procedures I am ultimately interested in, or that will be used in the

proofs.

De�nition 3 Fix h 2 H. An elimination procedure in �(h) is a sequence ((Shi;q)i2I)1q=0
where, for every i 2 I,

EP1 Shi;0 = S
h
i ;

EP2 Shi;n�1 � Shi;n for all n 2 N;

EP3 for every shi 2 Shi;1 = \n2NShi;n, there exists �hi that strongly believes (Sh�i;q)1q=0 such
that shi 2 �i(�hi ) � Shi;1.

8 It would be immaterial for the analysis to require si to be optimal also at the histories precluded by si
itself.
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Note three things. First, the fact that shi is a sequential best reply to some �
h
i that

strongly believes (Sh�i;q)
n
q=0 does not imply that s

h
i 2 Sn+1i , and vice versa; this allows to

encompass �rst-order belief restrictions and �slow�elimination orders. Second, EP2 allows

Shn = S
h
n+1, and still S

h
1 ( Shn+1; that is, the eliminations can stop for all players and then

restart. Third, Shi;n = ; implies Shi;m = ; for all m > n, but does not imply Shj;1 = ;
for j 6= i: as already established, the empty set is always strongly believed, hence EP3

can be satis�ed for j. These three facts allow De�nition 3 to encompass the �truncation�

((Shi;q(
bh)jbh)i2I)1q=0 of an elimination procedure in a subgame �(bh) (bh � h).

Remark 1 For every elimination procedure ((Shi;q)i2I)
1
q=0 and every bh � h, ((Shi;q(bh)jbh)i2I)1q=0

is an elimination procedure.

Proof: see the Appendix.

At each step of reasoning q and for each player i, the truncation Shi;q(bh)jbh is constructed
by taking the strategies in Shi;q that allow bh (Shi;q(bh)), and restricting their domain to the
histories that weakly follow bh; that is, the histories of the subgame �(bh). It will be important
to keep in mind that a strategy sbhi can be eliminated from Shi;n(

bh)jbh �exogenously�: it may
be a sequential best reply to some �bhi that strongly believes (Sh�i;q(bh)jbh)nq=0, and yet not
belong to Shi;n+1(bh)jbh, because no �hi that strongly believes (Sh�i;q)nq=0 and induces �bhi in
�(bh) has sequential best replies that allow bh.

The workhorse lemma of the paper claims the outcome inclusion between two elimination

procedures, ((S
h
i;q)i2I)

1
q=0 and ((S

h
i;q)i2I)

1
q=0, with the following feature. For each player i

and each strategy shi 2 S
h
i;1, �x a CPS �

h
i (s

h
i ) that satis�es EP3; i.e., it strongly believes

(S
h
�i;q)

1
q=0, and s

h
i 2 �i(�hi (shi )) � S

h
i;1. Say that a CPS �

h
i �mimics� �

h
i (s

h
i ) along the

paths predicted by S
h
1 when, at every history along these paths, �hi and �

h
i (s

h
i ) assign

the same probabilities to (the opponents playing compatibly with) each of these paths:

�hi (S�i(z)jeh) = �hi (shi )(S�i(z)jeh) for all eh 2 H(Sh1) and all z 2 �(Sh1). Suppose that, for
every step m 2 N, the following is true: if a CPS �hi mimics some �hi (shi ) along �(S

h
1) and

strongly believes (S
h
�i;q)

m�1
q=0 , then its sequential best replies survive the step of elimination

of the �rst procedure: �i(�
h
i ) � S

h
i;m; if a CPS �

h
i mimics some �

h
i (s

h
i ) along �(S

h
1) and

strongly believes (Sh�i;q)
m�1
q=0 , then its sequential best replies survive the step of elimination

of the second procedure: �i(�
h
i ) � Shi;m. Under these two conditions, the lemma claims that

the second procedure predicts a superset �(Sh1) � �(S
h
1) of the outcomes predicted by the

�rst.

Lemma 1 Fix h 2 H and two elimination procedures ((S
h
i;q)i2I)

1
q=0, ((S

h
i;q)i2I)

1
q=0.
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For every i 2 I, �x a map �hi : S
h
i;1 ! �H

h

i (Sh�i) such that, for each s
h
i 2 S

h
i;1, �

h
i (s

h
i )

strongly believes (S
h
�i;q)

1
q=0, and s

h
i 2 �i(�hi (shi )) � S

h
i;1.

Suppose that the two procedures satisfy the following property:

A0 for every i 2 I, shi 2 S
h
i;1, m 2 N, and for every �hi that strongly believes (Sh�i;q)m�1q=0

(resp., (S
h
�i;q)

m�1
q=0 ) and satis�es

�hi (S�i(z)jeh) = �hi (shi )(S�i(z)jeh) 8eh 2 H(Sh1);8z 2 �(Sh1), (1)

we have �i(�
h
i ) � Shi;m (resp., �i(�

h
i ) � S

h
i;m).

Then, �(S
h
1) � �(Sh1).

The proof of the lemma is in the Appendix. In Section 6, I provide an example of

outcome inclusion between two relevant elimination procedures, Strong-�-Rationalizability

and Strong Rationalizability, and I illustrate the main intuition for it. Then, I sketch the

proof of Lemma 1 in its generality.

4 Belief-restrictions and monotonicity

In this section, I am going to focus on the following elimination procedures (for the whole

game).

De�nition 4 An elimination procedure ((Si;q)i2I)1q=0 is �unconstrained� when for every
n 2 N, i 2 I, and �i that strongly believes (S�i;q)n�1q=0 , �i(�i) � Si;n.

De�nition 5 Strong Rationalizability is the unconstrained elimination procedure ((Ri;q)i2I)1q=0
such that for every n 2 N, i 2 I, and si 2 Ri;n, there is �i that strongly believes (R�i;q)n�1q=0

with si 2 �i(�i).9

De�nition 6 For each i 2 I, �x �i � �H(S�i). Strong-�-Rationalizability is the elimi-
nation procedure ((R�i;q)i2I)

1
q=0 such that, for every n 2 N, i 2 I, and si 2 Si, si 2 R�i;n if

and only if si 2 �i(�i) for some �i 2 �i that strongly believes (R��i;q)n�1q=0 .
10

De�nition 7 For each i 2 I, �x �i � �H(S�i). Selective Rationalizability is the elimina-
tion procedure ((RSi;q)i2I)

1
q=0 such that:

1. (RSq )
M
q=0 = (Rq)

M
q=0, where M is the smallest n � 0 such that Rn+1 = Rn;

9The present de�nition of Strong Rationalizability is the one of Battigalli [4].
10The present de�nition of Strong-�-Rationalizability is the one of Battigalli and Prestipino [6].
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2. for every n > M , i 2 I, and si 2 Si, si 2 RSi;n if and only if si 2 �i(�i) for some
�i 2 �i that strongly believes (RS�i;q)n�1q=0 .

11

Consider �rst-order belief restrictions (�i)i2I with the following feature: for each player

i and CPS �i, all that matters to determine whether �i belongs to �i are the probabilities

assigned at the strongly-�-rationalizable histories h 2 H(R�1) to the (opponents play-

ing compatibly with the) strongly-�-rationalizable paths z 2 �(R�1): �i(S�i(z)jh). Then,
Strong-�-Rationalizability satis�es the hypotheses of Lemma 1 as �rst elimination proce-

dure. Strong Rationalizability, being an unconstrained procedure, saves at each step all the

sequential best replies to every CPS that strongly believes in the previous steps, regardless

of whether the CPS satis�es (1) or not. Therefore, Strong Rationalizability trivially satis-

�es the hypotheses of Lemma 1, and it can be taken as second elimination procedure. The

desired outcome inclusion with respect to belief restrictions that �do not end up o¤-path�

obtains.

Lemma 2 For each i 2 I, �x �i � �H(S�i). Suppose that for each �i 2 �i and �i 2
�H(S�i),�

8eh 2 H(R�1);8z 2 �(R�1); �i(S�i(z)jeh) = �i(S�i(z)jeh)�) (�i 2 �i) . (2)

Then, �(R�1) � �(R1).

Proof. Fix i 2 I. For each si 2 R�i;1, by De�nition 6 there is �i 2 �i that strongly
believes (R��i;q)

1
q=0 such that si 2 �i(�i) � R�i;1. For each �i that satis�es (1) with �i, by (2)

we have �i 2 �i. So, for each n 2 N, if �i strongly believes (R��i;q)nq=0, then �i(�i) � R�i;n+1.
Thus, A0 is satis�ed for Strong-�-Rationalizability, while, as observed, it is always satis�ed

for Strong Rationalizability. Hence, by Lemma 1, �(R�1) � �(R1). �

Lemma 2 provides insight on what can determine the non-monotonicity of the predicted

outcome set with respect to the belief restrictions: the presence of o¤-path restrictions.

Beside the theoretical insight, though, Condition 2 is of little practical use to establish

which restrictions guarantee the outcome inclusion: Whether the restrictions end up o¤-

path or not has to be assessed with respect to the �nal output of Strong-�-Rationalizability

itself.
11Selective Rationalizability in [9] is initialized with R1 and strong belief in (R�i;q)1q=0. It is easy to see

that De�nition 7 is equivalent in �nite games.
Moreover, in [9] Selective Rationalizability is de�ned under the hypothesis of independent rationalization.

That is, a valid �i is required to strongly believe (R
R�
j;q )

n�1
q=0 for all j 6= i, in place of just (RR��i;q)n�1q=0 . However,

this hypothesis is immaterial for the result on Selective Rationalizability of this paper (Theorem 2) � a
proof is available upon request.
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Consider then �rst-order belief restrictions that correspond to the belief in a set of

outcome distributions with the same support. To start, �x a set Z � �(Z) of probability
measures with the same support Z that can be induced by a product measure �i2I�i 2 �(S)
(�i 2 �(Si)) over strategy pro�les � the focus on product measures is of course restrictive

(also for the possible supports Z), but it simpli�es the exposition. Every player i initially

believes that the opponents will play compatibly with an outcome distribution in Z. With
this, I de�ne the notion of �path restrictions�.

De�nition 8 Fix a set Z � �(Z) of outcome distributions with support Z � Z that can

be induced by a product measure over strategy pro�les. The corresponding path restrictions

of player i are given by the set of CPS�s

�i :=
�
�i 2 �H(S�i) : 9� 2 Z;9�i 2 �(Si);8z 2 Z; �i(Si(z))�i(S�i(z)jh0) = �(z)

	
:

If Z is a singleton, the corresponding path restrictions represent the belief in an outcome
distribution; if Z is a singleton, they represent the belief in a speci�c path z: �i(S�i(z)jh0) =
1.12 When Z is not a singleton and Z is the set of all probability measures with support
Z, the corresponding path restrictions constitute a �restricted full support�condition with

respect to a subset of outcomes.

Under path restrictions, when Strong-�-Rationalizability yields a non-empty set, all the

paths in Z must be strongly-�-rationalizable: If at some step n player i eliminates all the

strategies that are compatible with some path z 2 Z (that is, R�i;n \ Si(z) = ;), it is easy
to see that R�j;n+1 = ; for each j 6= i.

Remark 2 Under path restrictions, if R�1 6= ;, then Z � �(R�1).

Then, the restrictions never �end up o¤-path�, and Lemma 2 can be applied.

Theorem 1 Fix path restrictions (�i)i2I . We have �(R�1) � �(R1).

Proof. If R�1 = ;, �(R�1) � �(R1) is trivially true, so suppose R�1 6= ;. Fix i 2 I,
�i 2 �i, and �i 2 �H(S�i). By De�nition 8, there are � 2 Z and �i 2 �(Si) such that
�i(Si(z))�i(S�i(z)jh0) = �(z) for all z 2 Z. By Remark 2, Z � �(R�1). Hence, we have�

8eh 2 H(R�1);8z 2 �(R�1); �i(S�i(z)jeh) = �i(S�i(z)jeh)� )�
8z 2 Z; �i(S�i(z)jh0) = �i(S�i(z)jh0)

�
)�

8z 2 Z; �i(Si(z))�i(S�i(z)jh0)) = �(z)
�
) (�i 2 �i) :

12For Strong-�-Rationalizability and Selective Rationalizability, initial belief in S�i(z) is equivalent to
strong belief in Sj(z) for all j 6= i � the belief in the (path) agreement as modeled in [10]. The reason is
that after a deviation from the path by a player di¤erent than j, believing that j would have kept complying
with the path is not restrictive for the expected behavior of j after the deviation. A formal proof is available
upon request.
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Thus, (2) holds, and Lemma 2 yields �(R�1) � �(R1). �

Corollary 1 Fix z 2 Z. Let �i be the set of all �i 2 �H(S�i) such that �i(S�i(z)jh0) = 1.
Then, �(R�1) � �(R1).

Also Selective Rationalizability eventually saves only strategies that are sequential best

replies to CPS�s in the restricted set. Therefore, for path restrictions, Selective Rationaliz-

ability and Strong-�-Rationalizability satisfy the hypotheses of Lemma 1 regardless of the

roles assigned to the two procedures. Then, the outcome equivalence of the two procedures

under path restrictions obtains.

Theorem 2 Fix path restrictions (�i)i2I . Then �(R�1) = �(R
S
1).

Proof. I show that �(R�1) � �(RS1) � the proof of the opposite inclusion is identical. If

R�1 = ;, the inclusion holds trivially, so suppose R�1 6= ;. Fix i 2 I. For each si 2 R�i;1, by
De�nition 6 there is �i 2 �i that strongly believes (R��i;q)1q=0 such that si 2 �i(�i) � R�i;1.
For each �i that satis�es (1) with �i, proceeding like in the proof of Theorem 1, we �nd that

�i 2 �i. So, for each n 2 N, if �i strongly believes (R��i;q)nq=0, then �i(�i) � R�i;n+1, and if �i
strongly believes (RS�i;q)

n
q=0, then �i(�i) � RSi;n+1. Thus, A0 is satis�ed for both Strong-�-

Rationalizability and Selective Rationalizability. Hence, Lemma 1 yields �(R�1) � �(RS1).
�

Corollary 2 Fix z 2 Z. Let �i be the set of all �i 2 �H(S�i) such that �i(S�i(z)jh0) = 1.
Then �(R�1) = �(R

S
1).

An example of outcome inclusion between Strong-�-Rationalizability with path restric-

tions and Strong Rationalizability is provided in Section 6.

5 Order independence and backward induction

For any unconstrained elimination procedure, exactly as for Strong Rationalizability, A0

holds. An unconstrained elimination procedure is what I referred to in the Introduction

as an order of elimination of never sequential best replies. Thus, using Lemma 1 in both

directions with Strong Rationalizability and any other unconstrained elimination procedure,

the order independence of the iterated elimination of never sequential best replies in terms

of outcomes obtains.

Theorem 3 For every unconstrained elimination procedure ((Si;q)i2I)1q=0, �(S1) = �(R1).

11



Proof. Any two unconstrained elimination procedures, taken in both orders, satisfy A0.
The results follows then from Lemma 1. �

In games with observable actions, the well-known backward induction procedure for

games with perfect information has been generalized by Penta ([18], [19]) and Perea ([20])

in the following way. Starting from the bottom of game, an action of a player at a history

shall be eliminated when it is not �folding-back optimal� under any conjecture over the

surviving actions of the opponents at the same history and at the future histories. Here I

adopt Backwards Extensive-Form Rationalizability of Penta [18], because it is formulated

in the language of extensive-form rationalizability, i.e., as a procedure of elimination of

strategies that are not sequentially optimal for any viable conditional probability system.

The following is a simpli�cation of Penta�s de�nition for games with complete information.

De�nition 9 Backwards Extensive-Form Rationalizability is a sequence ((RBi;q)i2I)
1
q=0 where,

for every i 2 I,

BR1 RBi;0 = Si;

BR2 for each n 2 N and si 2 Si, si 2 RBi;n if and only if there exists �i 2 �H(S�i) such
that, for each h 2 H,

(i) there is esi 2 bri(�i; h) such that esijh = sijh;
(ii) for each es�i with �i(es�ijh) > 0, there is s�i 2 RB�i;n�1 such that es�ijh = s�ijh.

Condition BR2.(ii) does not make a distinction between strategies inRB�i;n�1 that allow h

or not; for this reason, it does not capture forward induction reasoning. Condition BR2.(i)

requires si to be optimal given �i(�jh) from any history h onwards, and not only when

h 2 H(si) (cf. De�nition 2 of sequential best reply). This entails that players�strategies
are further re�ned also at histories that are not allowed anymore by some player. However,

being such histories o¤-path, each step of Backwards Extensive-Form Rationalizability is

outcome-equivalent to a step of an unconstrained elimination procedure. Moreover, Back-

wards Extensive-Form Rationalizability stops when the unconstrained procedure may not

yet be allowed to, because EP3 is not satis�ed.

Lemma 3 Let N be the smallest n such that RBn = R
B
n+1. There exists an unconstrained

elimination procedure ((Si;q)i2I)1q=0 such that for each n = 1; :::; N ,

Si;n =
�
si 2 Si;n�1 : 9s0i 2 RBi;n;8h 2 H(RBn ) \H(si); si(h) = s0i(h)

	
.

12



Proof: see the Appendix.

Hence, Backwards Extensive Rationalizability predicts a superset of the outcomes pre-

dicted by Strong Rationalizability.

Theorem 4 Every strongly rationalizable outcome is a backwards extensive-form rational-

izable outcome: �(R1) � �(RB1).

Proof. Immediate from Lemma 3 and Theorem 3. �

In perfect information games without relevant ties, the backward induction outcome is

unique. Thus, the following obtains.

Corollary 3 (Battigalli, [3]) In every perfect information game without relevant ties,
Strong Rationalizability and backward induction yield the same unique outcome.

6 Example and sketch of the proof of the workhorse lemma

In this section, I provide an example of outcome inclusion between Strong-�-Rationalizability

with path restrictions and Strong Rationalizability, and I illustrate the rough intuition be-

hind it. Then, I generalize these ideas to sketch the proof of the workhorse lemma.

Consider the following game.

AnB W E AnB L C R

N 2; 2 �� ! U 1; 1 1; 0 0; 0

S 0; 0 2; 2 M 0; 0 0; 1 1; 0

D 0; 0 0; 0 0; 3

For brevity, I am going to use plans of actions (also known as reduced strategies) in place

of strategies: given De�nition 2, if a strategy is a sequential best reply to a CPS, all other

strategies that correspond to the same plan of actions are as well. The plans of actions of

Ann will be written as S, N:U , N:M , N:D; likewise for Bob.

Strong Rationalizability goes as follows. At the �rst step, Ann eliminates N:D, which is

dominated by 1=2(N:U) + 1=2(N:M) in the subgame. At the second step, Bob eliminates

E:R, now dominated by 1=2(E:L) + 1=2(E:C) in the subgame. At the third step, Ann

eliminates N:M , dominated by N:U in the subgame. At the fourth step, Bob eliminates

E:C, dominated by E:L in the subgame. The �nal output is R1 = fS;N:Ug � fW;E:Lg.

13



Now, �x path z := (N;W ); thus, SA(z) = fN:U;N:M;N:Dg and SB(z) = fWg. The
corresponding path restrictions are de�ned as

�i :=
�
�i 2 �Hi (S�i) : �i(S�i(z)jh0) = 1

	
; i = A;B.

Strong-�-Rationalizability goes as follows. At the �rst step, Ann eliminates S, which is

dominated by N under belief inW , and N:D, which is dominated by 1=2(N:U)+1=2(N:M)

in the subgame; Bob eliminates E:L and E:C, because they are both dominated by W

under belief in N . At the second step, Ann eliminates N:U , now dominated by N:M

in the subgame, and Bob eliminates E:R, now dominated by W . The �nal output is:

R�1 = f(N:M;W )g.

Note that �(R�1) = fzg � �(R1), although R�1 \ R1 = ;. Why does the outcome
inclusion hold, despite of the disjoint strategy sets? At every step of Strong Rationalizability,

Ann can play N as long as Bob may playW . For Bob, it is a bit more complicated. To play

W , he needs at the same time to believe in N and have a belief for the subgame that deters

a deviation to E. This is far from guaranteed, precisely because Strong Rationalizability

and Strong-�-Rationalizability depart o¤ the strongly-�-rationalizable path: the former

ends up predicting (U;L), the latter M for Ann and R as the best rationalizable action for

Bob. But note two things. First: Ann can play N while believing in W and thus being

surprised by E. So, after E, she must come up with a new belief, and then, at each step

of reasoning, she can combine N with any action that can be justi�ed after E. Second: for

Bob to abandonW at a step of reasoning, he must be willing to deviate to E for every belief

after E he can associate with the belief in N . By the argument about Ann, he can associate

with the belief in N any belief after E that is compatible with the step of reasoning. Thus,

if he abandons W , he can combine E with any action that can be justi�ed after E as well.

Therefore, if Bob abandonsW at step n, the set of action pro�les Rn�1((N;E))j(N;E) must
feature all the best replies of both players to beliefs over the set. This allows to re�ne the set

by iteratively eliminating dominated actions and �nd a non-empty best response set. Now,

by the absence of o¤-path restrictions and by the same combination arguments, this best

response set would survive and keep supporting E throughout Strong-�-Rationalizability.

But E does not survive Strong-�-Rationalizability. This tells us that Bob cannot abandon

W in Strong Rationalizability.

The workhorse lemma generalizes these intuitions to all elimination procedures, pre-

dicting a set of paths, with many possible deviations, followed by a non-static subgame.

That deviations can be followed by a dynamic game is the real challenge that the work-

horse lemma has to face; generalizing in all other dimensions complicates the exposition but

14



does not present interesting challenges. Therefore, I sketch here the proof of the workhorse

lemma in its generality, but with particular focus on how the issue of dynamic subgames is

tackled.

Essentially, for a subgame that follows a hypothetical deviation along the second pro-

cedure (Procedure 2) from the paths predicted by the �rst procedure (Procedure 1), the

task is to generate an extensive form best response set (Battigalli and Friedenberg [5]) of

substrategies that make the deviation pro�table, and prove that its sub-paths should have

survived the truncation of the Procedure 1 in the subgame, a contradiction to the fact that

the subgame follows a deviation from the paths predicted by Procedure 1 (henceforth, just

�the paths�). As long as the paths survive also Procedure 2, players can form beliefs that,

along the paths, mimic the beliefs that justify the output of Procedure 1. The sequential

best replies to these beliefs survive Procedure 2 by A0. Then, the only way one of the paths

can be abandoned is that, at some step n+1, for all these beliefs, a player �nds a particular

deviation outside of the paths more pro�table, no matter what she believes the reactions of

the opponents to the deviation will be. The opponents may be surprised by the deviation,

hence they may react with any continuation plan that survives until step n. This is because

until step n they followed the paths while believing that the others would follow them as

well. Suppose for simplicity that the deviator has a deterministic belief as to which sub-

game the deviation will lead to. So, the truncation of Procedure 2 in the subgame at step n

features, both for the deviator and the opponents, all the sequential best replies to all the

beliefs over step n itself. Then, the output of the following, auxiliary elimination procedure

in the subgame is non-empty: it coincides with the truncation of Procedure 2 until step

n, and iteratively eliminates the substrategies that are never sequential best replies after-

wards. Take the subpaths induced by this auxiliary procedure. I want to show that they

survive the truncation of Procedure 1 in the subgame, the desired contradiction. Note �rst

that believing in these subpaths incentivizes our player to deviate from the paths also along

Procedure 1. Given this, if the subgame is a static game, it is easy to observe that they do

survive � see the example above. If the subgame has length higher than 1, then suppose

by induction that the lemma is true in games of smaller length than the one under analysis

� as a basis step, it is easy to see that the lemma holds in static games. By the absence of

o¤-path restrictions (i.e., by A0 for Procedures 1 and 2) and by the deviation incentives, the

truncation of Procedure 1 in the subgame and the auxiliary procedure both satisfy A0 with

respect to the subpaths induced by the auxiliary procedure, thus with inverted roles with

respect to Procedures 1 and 2 that generated them. Then, by the induction hypothesis, the

truncation of Procedure 1 induces a superset of those subpaths.
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7 Discussion - Comparison with Perea ([21], [22])

To facilitate the comparison between my methodology and Perea�s, I refer to the order

independence problem tackled by Perea in [21].13 The fundamental problem is the need

to overcome the non-monotonicity of the strong belief, which implies that delaying the

elimination of some strategy can provoke the elimination of another strategy that would

have not been eliminated otherwise.

Consider two nested, Cartesian sets of strategy pro�les, S = �i2ISi � bS = �i2I bSi. Fix
a player i 2 I and consider the sets bS�i ; S�i of sequential best replies to CPS�s that strongly
believe, respectively, bS�i and S�i. By non-monotonicity of strong belief, it needs not be
the case that S

�
i � bS�i . However, for every CPS that strongly believes S�i, there is one that

strongly believes bS�i and is identical to the �rst at all histories compatible with S: at such
histories (H(S)), the �rst CPS has to give probability 1 to S�i, and we have S�i � bS�i.
Then, for every si 2 S

�
i , there is si 2 bS�i that is identical to si at each h 2 H(S). So,

if we focus on the paths induced by S, bS� must induce a (weakly) larger subset of them
with respect to S

�
. If S has been obtained by iterated elimination of never sequential best

replies, we have �(S
�
) � �(S), and then �(S�) � �(bS�) as well.

However, if one wants to iterate further and �nd the sequential best replies to CPS�s

that strongly believe bS��i and S��i, there is the problem that these two sets are no more

nested. So, let us restart with two sets S; bS where the projection of S on H(S) is smaller
than that of bS (on H(S) as well). Now, bS�i may feature fewer reactions than S�i to a
deviation by player i from the paths induced by S, and this may induce i to leave one of

these paths under strong belief in bS�i, but not under strong belief in S�i. The challenge is
proving that this possibility does not arise when S; bS have been derived from the iterated

elimination of never sequential best replies. Perea does it by restricting the de�nition of

�monotonicity on reachable histories�to sets S; bS where the projection of bS�i on H(S) is
smaller than that of Si,14 which excludes the presence of such deviation moves. Then,

13Perea formulates the problem as order independence of the iterated elimination under the strong belief
reduction operator, i.e., the elimination at each step of some strategies that are not sequential best replies
to CPS�s that strongly believe in the opponents�strategies that survived the last step, without memory of
the previous steps. This is probably the most interesting formulation of the problem, because slow reduction
orders can be seen as heuristic procedures, while keeping memory of all steps makes more sense for the
maximal elimination order, because it re�ects common strong belief in rationality. Since the main object of
this paper is monotonicity with respect to belief restrictions and not order independence, the requirement
that the �nal strategies be sequential best replies to CPS�s that strongly believe in all the previous steps
has been kept for convenience. This makes an iterated deletion of never sequential best replies as de�ned
in this paper not necessarily an order of elimination under the strong belief reduction operator, and vice
versa, although both maximal elimination orders coincide with Strong Rationalizability. However, this subtle
di¤erence is immaterial for this discussion.
14Perea works with a reduction operator, thus not really with bS�i but with bS�i \ bSi, which in principle might

be poorer than needed (or even empty). This is why Perea imposes in the de�nition of monotonocity under
reachable histories that bS has been derived from an iterated application of the operator. For the strong
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he divides the order independence problem into a chain of pairwise comparisons between

iterated eliminations (Sn)n�0; (bSn)n�0 that are identical up to the step m, after which the
�rst becomes maximal, and so does the second one step later. In this way, for each n > m,

Sn and bSn, and with inverted roles Sn and bSn+1 are shown to satisfy the requirements. In
this paper, I observe that if the deviation by player i depicted above was to arise, there

would be a extensive-form best response set of the subgame that follows the deviation which

justi�es it; but then, the paths induced by this set and the deviation should have survived

also the procedure that generated S, a contradiction.

In my view, the approach of Perea is better suited than the approach of this paper for

order independence problems, because it teaches why delaying some eliminations does not

matter. The approach of this paper is inspired by, and designed for, outcome monotonicity

problems, and it aims to shed light on their roots by comparing directly maximal elimina-

tion procedures under belief restrictions, showing when and why deviations from the paths

induced by the more restrictive procedure cannot occur in the less restrictive one. The

identi�cation of sets of outcome distributions with the same support as class of restrictions

that preserve outcome monotonicity was indeed triggered by this view and by the work-

horse lemma that captures the main conceptual insight. However, the outcome equivalence

of Strong-�-Rationalizability with Selective Rationalizability under such restrictions, which

implies the outcome inclusion with Strong Rationalizability, can also be seen as an order in-

dependence problem (while the workhorse lemma in its generality cannot). Indeed, in �nite

games, Selective Rationalizability can be seen as a slow elimination order of strategies that

are not sequential best replies under the belief restrictions, where the �rst steps coincide

with Strong Rationalizability. So, focusing for simplicity on a single path z, one could:

- de�ne a reduction operator �z that takes a Cartesian set of strategy pro�les S = �i2ISi
and, for each player i, returns the strategies in Si that are sequential best replies to

a CPS that strongly believes S�i and initially believes in S�i(z);

- invoke Proposition 1 in Battigalli and Prestipino [6] to claim that Strong-�-Rationalizability
coincides with the maximal elimination order under the �z operator;15

- show that Selective Rationalizability coincides with an elimination order under the �z

operator that coincides with Strong Rationalizability until convergence, and then pro-

ceeds at �full speed�;16

belief operator, via combination arguments similar to those of this paper, this ensures the every projection
of a strategy in bSi on the paths induced by S can be associated in bSi with o¤-path behavior that best replies
to beliefs over bS�i.
15 It is easy to see that path restrictions are closed under composition (Battigalli and Prestipino [6]).
16Under the hypotheses of strategic independence (Battigalli [2]), or just independent rationalization

(Catonini [9]), Strong-�-Rationalizability and Selective Rationalizability cannot be written as reduction
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- show that �z is monotone on reachable histories (Perea [22]);

- invoke Theorem 3.2 in Perea [22] to claim the outcome equivalence of Selective Rational-

izability and Strong-�-Rationalizability.

That �z is monotone on reachable histories is so far only a conjecture, but I expect

the proof to follow the same lines of the proof of Perea that the strong belief operator

is monotone on reachable histories (Theorem 3.1 in [22]). Exploiting the existing results

and proofs, the roadmap above would probably result into a shorter proof of the outcome

equivalence and outcome monotonicity results under path restrictions.

8 Appendix

8.1 Proofs omitted from Sections 4 and 5

Proof of Remark 1. That a truncation satis�es EP1 and EP2 is obvious.
To show EP3, �x i 2 I and sbhi 2 Shi;1(bh)jbh. I want to �nd �bhi that strongly believes

(Sh�i;q(
bh)jbh))1q=0 such that sbhi 2 �i(�bhi ) � Shi;1(bh)jbh.

Fix shi 2 Shi;1(bh) such that shi jbh = sbhi . Since ((Shi;q)i2I)1q=0 satis�es EP3, there is �hi that
strongly believes (Sh�i;q)

1
q=0 such that s

h
i 2 �i(�hi ) � Shi;1. Construct �

bh
i as follows: for eacheh � bh, de�ne �bhi (�jeh) as the pushforward of �hi (�jeh) through the map that associates each

sh�i 2 Sh�i(bh) with sh�ijbh. It is easy to see that �bhi strongly believes (Sh�i;q(bh)jbh))1q=0. For
each eh � bh, �bhi (�jeh) and �hi (�jeh) induce the same distribution over terminal histories when
coupled with any esbhi and eshi such that eshi jbh = esbhi . Therefore, that shi is a continuation best
reply to �bhi (�jeh) implies that sbhi is a continuation best reply to �bhi . Thus, sbhi 2 �i(�bhi ).

Finally, �x a sequential best reply esbhi to �bhi . It is easy to see that the strategy eshi witheshi jbh = esbhi and eshi (eh) = shi (eh) for each eh 2 H(shi )nHbh is a sequential best reply to �hi . Thus,
by �i(�

h
i ) � Shi;1, eshi 2 Shi;1(bh), and then esbhi 2 Shi;1(bh)jbh. �

Proof of Lemma 3. De�ne
�
(Si;n)i2I

�N
n=0

as in the statement of the lemma, and for

each n > N and i 2 I, let si 2 Si;n if and only if there exists �i that strongly believes
(S�i;q)

n�1
q=0 such that si 2 �i(�i). It is immediate to see that ((Si;q)i2I)1q=0 is an elimination

procedure. Now I show it is unconstrained. Fix n = 1; :::; N and, if n > 1, suppose by way

of induction that for each m = 1; :::; n� 1, i 2 I, and �i that strongly believes (S�i;q)m�1q=0 ,

we have �i(�i) � Si;m. Fix �i that strongly believes (S�i;q)n�1q=0 . I show that �i(�i) � Si;n.

procedures, not even under path restrictions. However, for path restrictions, outcome equivalences hold. A
proof is available upon request.
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By de�nition of S�i;n�1, I can construct �0i that satis�es BR2.(ii) such that

�0i(S�i(z)jh) = �i(S�i(z)jh); 8h 2 H (Sn�1) ;8z 2 � (Sn�1) : (3)

For each s0i 2 �i(�0i), there is a realization-equivalent s00i that satis�es BR2.(i), so that s00i 2
RBi;n � RBi;n�1. Then, �

�
�i(�

0
i)�RB�i;n�1

�
� �

�
RBn�1

�
. By de�nition of Sn�1, � (Sn�1) =

�
�
RBn�1

�
. Thus, (i) �

�
�i(�

0
i)�RB�i;n�1

�
� � (Sn�1). For each si 2 �i(�i), by the induction

hypothesis we have si 2 Si;n�1. Thus, (ii) � (�i(�i)� S�i;n�1) � � (Sn�1). Together with
(3), (i) and (ii) imply that for each si 2 �i(�i), there is s0i 2 �i(�0i) such that si(h) = s0i(h)
for all h 2 H (Sn�1). As observed, there is s00i 2 RBi;n realization-equivalent to s0i, thus
s00i (h) = s0i(h) = si(h) for all h 2 H (Sn�1) \ H(si). Hence, by de�nition of Si;n, we have
si 2 Si;n, as desired. �

8.2 Proof of the workhorse lemma

The proof of Lemma 1 is by induction. Let Z := �(S
h
1). The induction hypothesis claims

that Shi;n contains strategies that imitate those in S
h
i;1 along the Z paths. This implies

the desired outcome inclusion, and it also allows to construct beliefs for step n + 1 that

satisfy (1): for each shi 2 S
h
i;1, for each eh 2 H(Sh1), one can substitute in the supports of

�hi (s
h
i )(�jeh) the strategies in Sh�i;1 with their imitations in Sh�i;n, and complete the new �

h
i

as to strongly believe (Sh�i;q)
n
q=0. By A0, �i(�

h
i ) � Shi;n+1. If player i has no incentive to

move out of Z under �hi , there is a sequential best reply to it that imitates s
h
i along Z: at

any eh 2 H(Sh1), with all strategies si 2 Si(eh) such that �(fsig � Sh�i;1(eh)) � Z, �hi (�jeh)
and �hi (s

h
i )(�jeh) induce the same outcome distribution, hence justify the same moves if the

other strategies are suboptimal. But there is no guarantee of this. Before tackling this

fundamental issue, I formalize the induction hypothesis. It will come in handy to formalize

it in terms also of the beliefs that mimic the �hi (s
h
i )�s along Z, beside the strategies that

imitate the shi �s. To shorten the formulation of these concepts, I introduce some additional

notation.

For any bh � h, (shj )j2I 2 Sh, (sbhj )j2I 2 Sbh, �hi 2 �Hh
(Sh�i), �

bh
i 2 �H

bh
(S
bh
�i), bZ � Zbh,

and J � I, let:

� shJ =
bZ sbhJ if for each z 2 bZ and eh with bh � eh � z, shJ(eh) = sbhJ(eh);

� �hi =
bZ �bhi if for each z 2 bZ and eh with bh � eh � z, �hi (Sh�i(z)jeh) = �bhi (Sbh�i(z)jeh);

� shJ =
bh sbhJ and �hi =bh �bhi if, respectively, shJ =Zbh sbhJ and �hi =Zbh �bhi .
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Induction Hypothesis (n): For each i 2 I, there exist maps b�hi : Shi;1 ! �H
h
(Sh�i)

and bshi : Shi;1 ! Shi such that for each s
h
i 2 S

h
i;1:

IH1. b�hi (shi ) strongly believes (Sh�i;q)n�1q=0 , and b�hi (shi ) =Z �hi (shi ) (i.e., b�hi (shi ) satis�es (1));
IH2. bshi (shi ) =Z shi and bshi (shi ) 2 �i(b�hi (shi )) (so, by A0, bshi (shi ) 2 Shi;n)).
Basis step (1): For all i 2 I, the Induction Hypothesis holds with b�hi (�) = �hi (�) andbshi (�) the identity map.
As anticipated, it is always possible to construct a map b�hi that satis�es IH1 at step

n+ 1 by doing, for each shi 2 S
h
i;1 and at each h 2 H(Sh1), the pushforward of �hi (shi )(�jh)

through the map �j 6=ibshj constructed at step n. The problem could be that, for some l 2 I
and some shl 2 S

h
l;1, every �

h
l that satis�es IH1 at step n + 1 does not justify a strategy

that imitates shl along Z.

Negation of the induction hypothesis at step n+1:

NIH. there exist l 2 I and shl 2 S
h
l;1 such that for every �hl =

Z �hl (s
h
l ) that strongly believes

(Sh�l;q)
n
q=0, there is no s

h
l 2 �l(�hl ) with shl =Z shl .17

I am going to claim that, if this was the case, there would be a unilateral deviation

by player l out of Z with the following property: every belief over the reactions of the

opponents compatible with step n is also induced by a CPS that mimics �hl (s
h
l ) along

Z and incentivizes player l to do that particular deviation. From here, I will eventually

arrive to the conclusion that some reactions that justify the deviation should have survived

throughout ((S
h
i;q)i2I)

1
q=0 as well, a contradiction.

Additional notation is needed. Let

Dl := feh 2 H(Sh�l;1)nH(Sh1) : p(eh) 2 H(Sh1)g
be the set of histories that immediately follow a unilateral deviation by player l from the

paths. For every bh 2 Dl and m 2 N, call Mbh
m (resp., M

bh
m) the set of all �

bh
l that strongly

believe (Sh�l;q(bh)jbh)mq=0 (resp., (Sh�l;q(bh)jbh)mq=0) with the following property: there exists �bhl
that strongly believes (Sh�l;q(bh)jbh)nq=0 such that the initial expected payo¤ of player l under
�
bh
l (i.e., under �

bh
l (�jbh)) is not higher than under �bhl (i.e., under �bhl (�jbh)).18

17Note that, to be rigorous, no �hl =
Z �hl (s

h
l ) that strongly believes (S

h
�l;q)

n
q=0 is assumed to exist yet.

18Note: �
bh
l strongly believes (S

h
�l;q(bh)jbh)nq=0 also when �bhl strongly believes (Sh�l;q(bh)jbh)mq=0.
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Claim 1 There exists bh 2 Dl such that:
C1. for every m � n and �bhl 2 Mbh

m, there exists �
h
l =

Z �hl (s
h
l ) that strongly believes

(Sh�l;q)
m
q=0 such that �

h
l =

bh �bhl and �l(�hl ) \ Shl (bh) 6= ;;
C2. for every p 2 N and �bhl 2 M

bh
p , there exists �

h
l =

Z �hl (s
h
l ) that strongly believes

(S
h
�l;q)

p
q=0 such that �

h
l =

bh �bhl and �l(�hl ) \ Shl (bh) 6= ;.19
C1 with m = n is the result described in words after NIH. C1 also extends the claim to

the previous steps of reasoning, focusing on the beliefs about the reactions that are at least

as optimistic as those of step n + 1. C2 extends the claim to the other procedure and all

steps of reasoning. It will become clear later why these additional claims are needed.

The proof of Claim 1, deferred to the end of this appendix, is by contraposition. I

illustrate it for C1 with m = n; it can be easily extended to all other cases. Suppose that

for every bh 2 Dl, there is a belief over Sh�l;n(bh)jbh for which there is no CPS in �(h) that
(i) induces such belief after bh, (ii) strongly believes (Sh�l;q)nq=0, (iii) mimics �hl (shl ) along
Z, and (iv) incentivizes player l to deviate towards bh.20 But all such beliefs (one for eachbh 2 Dl) can be induced by the same CPS �hl that strongly believes (Sh�l;q)nq=0 and mimics
�hl (s

h
l ) along Z, thus satisfying (i)-(ii)-(iii). So, �

h
l violates (iv) for every bh 2 Dl. But then,

under �hl player l has no incentive to do any deviation from Z, and so there is a sequential

best reply to �hl that imitates s
h
l along Z, contradicting NIH. The proof that such �

h
l can

be constructed is based on the following idea. By the induction hypothesis, for any player

i 6= l, the strategies in Shi;n that imitate those in S
h
i;1 along Z are sequential best replies to

CPS�s that assign probability 0 to deviations by the opponents from Z until they happen.

Being surprised by each deviation, player i must come up with a new belief afterwards. For

each bh 2 Dl, these new beliefs can justify the strategies in Sh�l;n(bh)jbh that player l has to
believe in. Thus, there are strategies in Sh�l;n that imitate those in S

h
�l;1 along Z and react

to player l�s deviation in any way that is compatible with step n. These strategies support

the required combination of beliefs.

Now it is time to use the negation of the induction hypothesis and Claim 1 to arrive to

a contradiction and thus prove the lemma. C1 with m = n and A0 imply that Shl;n+1(bh)jbh
contains all the sequential best replies to all the beliefs in Mbh

n , i.e., to all �
bh
l that strongly

believe (Sh�l;q(bh)jbh)nq=0. The same holds for Shi;n(bh)jbh with i 6= l, because by the induction
19The statement must hold vacously for some p 2 N (i.e., M

bh
p = ;): since bh 62 H(Shl;1), there cannot be

�hl that strongly believes (S
h
�l;q)

1
q=0 such that �l(�

h
l ) \ Shl (bh) 6= ;, because �l(�hl ) � Shl;1 by A0.

20 In presence of probabilistic beliefs along the paths, player l can be unsure as to which h 2 Dl will realize
after the deviation, but this is immaterial for the argument.
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hypothesis player i can allow bh while assigning probability 0 to reaching it until it is actually
reached, and then she can come up with any new belief and best reply to it. So, for each

player i, Shi;n(bh)jbh contains all the sequential best replies to CPS�s that strongly believe
(Sh�i;q(

bh)jbh)nq=0. Then, we can re�ne Shn(bh)jbh with an iterated deletion of never sequential
best replies (from n onwards) and obtain an elimination procedure with non-empty output.

Consider now the truncation of ((S
h
i;q)i2I)

1
q=0 after bh. By Remark 1 it is an elimination

procedure as well. If we conclude that it yields a non-empty output, we contradict that bh
is a deviation from Z. How to do that? By showing two things. First, that the lemma

holds in games of smaller length. This can be assumed by induction, because the lemma

obviously holds in static games. (The formal argument will be that bh cannot exist in static
games.) Second, the two elimination procedures in �(bh), with inverted roles with respect
to those in �(h) that originated them, satisfy A0. Here is where the rest of Claim 1 kicks

in. The whole argument is now formalized.

Proof that the negation of the induction hypothesis leads to contradiction.
If �(h) is a static game, Dl(S

h
1) = ;, so the existence of bh by Claim 1 is already a

contradiction. This allows to assume by way of induction that Lemma 1 holds in games of

smaller length than �(h), thus in �(bh).
De�ne ((S

bh
i;q)i2I)q�0 as follows: for every i 2 I and m � n, S

bh
i;m = S

h
i;m(

bh)jbh; for every
m > n, sbhi 2 Sbhi;m if and only if there exists �bhi that strongly believes (Sbh�i;q)m�1q=0 such that

s
bh
i 2 �i(�

bh
i ). I want to show that ((S

bh
i;q)i2I)q�0 is an elimination procedure with non-empty

output, and that it satis�es A0.

For every i 6= l, since bh 2 Dl(Sh1), Shi;1(bh) 6= ;. So, �x shi 2 Shi;1(bh). For every
m � n, the Induction Hypothesis provides bshi (shi ) 2 Shi;m(

bh) and b�hi (shi ) that strongly
believes (Sh�i;q)

m�1
q=0 . Note that b�hi (shi ) =Z �hi (shi ) implies b�hi (shi )(Sh�i(bh)jp(bh)) = 0. Hence,

for every �bhi that strongly believes (Sbh�i;q)m�1q=0 , I can construct �
h
i =

bh �bhi that strongly
believes (Sh�i;q)

m�1
q=0 such that �

h
i (�jeh) = b�hi (shi )(�jeh) for all eh 6� bh.21 Thus, �i(�hi )\Shi (bh) 6= ;,

and by �hi =
Z �hi (s

h
i ) and A0 (referred to ((S

h
j;q)j2I)q�0), �i(�

h
i ) � Shi;m. So, �i(�

bh
i ) � S

bh
i;m.

Fix �bhl that strongly believes (Sbh�l;q)nq=0; trivially, �bhl 2Mbh
n . Hence, by C1, there exists

�hl =
Z �hl (s

h
l ) that strongly believes (S

h
�l;n)

n
q=0 such that �

h
l =

bh �bhl and �l(�hl )\ Shl (bh) 6= ;.
By A0, �l(�

h
l ) � Shl;n. So, �l(�

bh
l ) � S

bh
l;n+1 � S

bh
l;n.

Then, for every i 2 I and �bhi that strongly believes (Sbh�i;q)nq=0,22 �i(�bhi ) � Sbhi;n 6= ;. So,
S
bh
i;n � S

bh
i;n+1 6= ;. Therefore, ((S

bh
i;q)i2I)q�0 is an elimination procedure with S

bh
1 6= ;.

21The construction is shown explicitly by Lemma 4 in the Appendix.
22For i 6= l, observe that strong belief in (S

bh
�i;q)

n
q=0 trivially implies strong belief in (S

bh
�i;q)

n�1
q=0 , the

condition used above.
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Fix m � n, �bhl that strongly believes (Sbh�l;q)1q=0, and �bhl =�(Sbh1) �bhl that strongly be-
lieves (S

bh
�l;q)

m�1
q=0 . Since (i) �l(�

bh
l )� S

bh
�l;1 � S

bh
1, (ii) �

bh
l strongly believes S

bh
�l;1, and (iii)

�
bh
l =

�(S
bh
1)�

bh
l , player l initially expects a non lower payo¤ under �

bh
l than under �

bh
l . So,

since �bhl strongly believes (Sbh�l;q)nq=0 = (Sh�l;q(bh)jbh)nq=0, �bhl 2Mbh
m. Thus, by C1 there exists

�hl =
Z �hl (s

h
l ) that strongly believes (S

h
�l;q)

m�1
q=0 such that �

h
l =

bh �bhl and �l(�hl )\Shl (bh) 6= ;.
By A0, �l(�

h
l ) � Shl;m. So �l(�

bh
l ) � S

bh
l;m.

Then, for every m 2 N, i 2 I, �bhi that strongly believes (Sbh�i;q)1q=0 and �bhi =�(Sbh1) �bhi
that strongly believes (S

bh
�i;q)

m�1
q=0 , �i(�

bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es A0.

De�ne now ((Sbhi;q)i2I)q�0 as ((Shi;q(bh)jbh)i2I)q�0. By Remark 1 it is an elimination pro-
cedure. I want to show that it satis�es A0.

Fix i 6= l and m 2 N. Since �hi (shi ) strongly believes S
h
�i;1, �

h
i (s

h
i )(S

h
�i(
bh)jp(bh)) = 0.

Hence, for every �bhi that strongly believes (Sbh�i;q)m�1q=0 , I can construct �
h
i =

bh �bhi that strongly
believes (S

h
�i;q)

m�1
q=0 such that �

h
i (�jeh) = �hi (shi )(�jeh) for all eh 6� bh. Thus, �i(�hi )\Shi (bh) 6= ;,

and by �hi =
Z �hi (s

h
i ) and A0 (referred to ((S

h
j;q)j2I)q�0), �i(�

h
i ) � S

h
i;m. So, �i(�

bh
i ) � S

bh
i;m.

For every m 2 N, �bhl that strongly believes (Sbh�l;q)1q=0, and �bhl =�(Sbh1) �bhl that strongly
believes (Sbh�l;q)m�1q=0 , by the same argument as above, �

bh
l 2 M

bh
m. Thus, by C2 there exists

�hl =
Z �hl (s

h
l ) that strongly believes (S

h
�l;q)

m�1
q=0 such that �

h
l =

bh �bhl and �l(�hl )\Shl (bh) 6= ;.
By A0, �l(�

h
l ) � S

h
l;m. So, �l(�

bh
l ) � S

bh
l;m.

Then, for every m 2 N, i 2 I, �bhi that strongly believes (Sbh�i;q)1q=0 and �bhi =�(Sbh1) �bhi
that strongly believes (Sbh�i;q)m�1q=0 , �i(�

bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es A0.

As assumed by induction on the length of the game, Lemma 1 holds in �(bh). Hence,
�(S

bh
1) � �(S

bh
1) 6= ;. But this contradicts bh 2 Dl(Sh1). �

8.2.1 Proof of Claim 1.

The main challenges for the proof of Claim 1 derive from the following issue. Fix an elim-

ination procedure ((Shi;q)i2I)q�0 and a player i 2 I. Consider two sequential best repliesbshi ; shi to two di¤erent CPS�s that strongly believe Sh�i;n; :::; Sh�i;0. Fix two unordered his-
tories bh; h 2 H(bshi ) \ H(shi ) (that is, h 6� bh and bh 6� h). Is there always a CPS that

strongly believes Sh�i;n; :::; S
h
�i;0 and a sequential best reply to it s

h
i 2 Si(bh) \ Si(h) such

that shi jbh = shi jbh and shi jh = bshi jh? No. The reason is the following: Player i may allow bh
and h either because she is con�dent that bh will be reached and she has optimistic beliefs
after bh, or because she is con�dent that h will be reached and she has optimistic beliefs after
h. If bshi is optimal under the �rst conjecture and shi is optimal under the second conjecture,
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bshi jh and shi jbh may be �emergency plans�for unforeseen contingencies, where the beliefs do
not justify the choice to allow h and bh in the �rst place. This can be seen already from the

set of justi�able strategies of a player. The following is a simpli�ed version of the game in

Figure 4 in Battigalli [3], provided by Gul and Reny. The payo¤s are of player 1.

2  out� 1
# in

1  a� 1  l� 2 �r ! 1 �a0 ! 1

# b b0 #
0  c� 3 3 �c0 ! 0

# d d0 #
3 3

Player 1 will rationally plan in:a:b0 if she �rst expects r and d0, and then c once she gets

surprised by l. Similarly, player 1 can rationally plan in:b:a0. However, player 1 cannot

rationally plan in:a:a0: the best payo¤ she can get is lower than the outside option. Actions

a and a0 are emergency plans for unforeseen contingencies, and best respond to beliefs that

do not justify playing in in the �rst place.

But in the proof of Claim 1, I will combine a player�s behavior along a set of expected

paths with her reactions to opponents�deviations from those paths. Di¤erently from the

example above, all these unforeseen contingencies are allowed by our player under the same

rational plan of following those paths. Then, the combination is always possible. To begin,

the �rst lemma formalizes the basic intuition that, after being surprised, a player can come

up with any new belief, and thus can combine any possible reaction to the surprise with

any plan she had if the surprise had not taken place.

Lemma 4 Fix an elimination procedure ((Shi;q)i2I)q�0, n 2 N, i 2 I, bh 2 Hh, and �hi that

strongly believes (Sh�i;q)
n�1
q=0 such that �

h
i (S

h
�i(
bh)jp(bh)) = 0. Fix shi 2 �i(�hi )\Shi (bh), �bhi that

strongly believes (Sh�i;q(bh)jbh)n�1q=0 , and s
bh
i 2 �i(�

bh
i ).

Consider the unique eshi =bh sbhi such that for every eh 62 Hbh, eshi (eh) = shi (eh).
There exists e�hi =bh �bhi that strongly believes (Sh�i;q)n�1q=0 such that e�hi (�jeh) = �hi (�jeh) for

all eh 62 Hbh, and eshi 2 �i(e�hi ) (so, �i(�hi ) \ Shi (bh) 6= ; implies �i(e�hi ) \ Shi (bh) 6= ;).
Proof.
Fix a map & : Sbh�i ! Sh�i such that for each s

bh
�i 2 S

bh
�i, &(s

bh
�i) =

bh sbh�i and &(sbh�i) 2
Sh�i;m(

bh) for all m � 0 with sbh�i 2 Sh�i;m(bh)jbh. Since & is injective, we can construct an
array of probability measures e�hi = (e�hi (�jeh))eh2Hh on Sh�i as e�hi (�jeh) = �hi (�jeh) for all eh 62 Hbh
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and e�hi (&(sbh�i)jeh) = �
bh
i (s

bh
�ijeh) for all eh 2 Hbh and sbh�i 2 Sbh�i. From the de�nition of &,

it immediately follows that e�hi (S�i(eh)jeh) = 1 for all eh 2 Hh, that e�hi strongly believes
(Sh�i;q)

n�1
q=0 , and that e�hi =bh �bhi . Finally, since e�hi (S�i(bh)jp(bh)) = 0, e�hi satis�es the chain

rule.

Fix eh 2 H(eshi )nHbh = H(shi )nHbh. If eh � bh, by �hi (Sh�i(bh)jp(bh)) = 0 we have �hi (Sh�i(bh)jeh) =
0, and for every sh�i 62 Sh�i(bh), �(shi ; sh�i) = �(eshi ; sh�i). If eh 6� bh, for every sh�i 2 Sh�i(eh),bh 62 H(shi ; sh�i), so �(shi ; sh�i) = �(eshi ; sh�i). Hence shi 2 bri(�hi ;eh) implies eshi 2 bri(�hi ;eh) =bri(e�hi ;eh). Fix eh 2 H(eshi ) \ Hbh = H(s

bh
i ). For every s

bh
�i 2 S

bh
�i, e�hi (&(sbh�i)jeh) = �

bh
i (s

bh
�ijeh).

For every bshi 2 Shi (bh), letting bsbhi := bshi jbh, we have �(bsbhi ; sbh�i) = �(bshi ; &(sbh�i)). So, eshi jbh = sbhi 2bri(�bhi ;eh) implies eshi 2 bri(e�hi ;eh). �
The same combination argument is now formalized from the point of view of the deviator

and her beliefs, for di¤erent deviations from the same set of paths. I will refer directly to

the context of Claim 1.

Lemma 5 Let ((eShi;q)i2I)q�0 denote ((Shi;q)i2I)q�0 (resp., ((Shi;q)i2I)q�0). Fix m � n (resp.,
m 2 N) and bD � Dl. For every bh 2 bD, �x e�bhl that strongly believes (eSh�l;q(bh)jbh)mq=0.

There exists e�hl =Z �hl (shl ) (resp., e�hl =Zn[bh2 bDZbh �hl (shl )) that strongly believes (eSh�l;q)mq=0
such that e�hl =bh e�bhl for all bh 2 bD.

Proof.
I am going to show that for each i 6= l and shi 2 S

h
i;1, and for each map & : bh 2 bD 7!

s
bh
i 2 eShi;m(bh)jbh, there exists eshi 2 eShi;m such that eshi =Z shi (resp., eshi =Zn[bh2 bDZbh shi ) andeshi =bh &(bh) for all bh 2 bD.23 Redistributing the probability from each shi to the correspondingeshi �s in the supports of �hl (shl ), one obtains the desired e�hl .
Drawing from the induction hypothesis of the proof of Lemma 1 (resp., from EP3),

let �hi and s
h
i denote b�hi (shi ) and bshi (shi ) (resp., �hi (shi ) and shi ). Thus, �hi strongly believes

(eSh�i;q)m�1q=0 , and s
h
i 2 �i(�hi ). Fix bh 2 bD \H(shi ). Since �hi =Z �hi (shi ) and �hi (shi ) strongly

believes S
h
�i;1, �

h
i (S

h
�i(
bh)jp(bh)) = 0. Since &(bh) 2 eShi;m(bh)jbh, there exists �bhi that strongly

believes (eSh�i;q(bh)jbh)m�1q=0 (24) such that &(bh) 2 �i(�bhi ). Thus, by Lemma 4, there exist (i)e�hi =bh �bhi that strongly believes (eSh�i;q)m�1q=0 such that e�hi (�jeh) = �hi (�jeh) for all eh 62 Hbh,
and (ii) eshi 2 �i(e�hi ) such that eshi =bh &(bh) and eshi (eh) = shi (eh) for all eh 62 Hbh. Iterating for
each bh 2 bD, we obtain (i) e�hi =Zn[bh2 bDZbh �hi that strongly believes (eSh�i;q)m�1q=0 such that

23For ((Shi;q)i2I)q�0, the map & is well de�ned because by the induction hypothesis of the proof of Lemma
1, Shi;m(bh) 6= ; for all bh 2 Dl.
24Here is where the convention that every CPS strongly believes the empty set comes in handy: eSh�i;q(bh)

can be empty (S
h
�i;q(bh) certainly is for su¢ ciently high q, because Shl;1(bh) = ;).
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e�hi =bh �bhi for all bh 2 bD, and (ii) eshi 2 �i(e�hi ) such that eshi =Zn[bh2 bDZbh shi (thus eshi =Z shi )
and eshi =bh &(bh) for all bh 2 bD. By A0, eshi 2 eShi;m. �

Now the proof of Claim 1 can be formalized.

Proof of Claim 1
Suppose by contraposition that there is a partition (D;D) of Dl such that for everybh 2 D, there exist m(bh) � n and �bhl 2 Mbh

m(bh) that violate C1, and for every bh 2 D there

exist m(bh) 2 N and �bhl 2 Mbh
m(bh) that violate C2. (Note: D or D may be empty.) For eachbh 2 Dl, �x �bhl that strongly believes (Sh�l;q(bh)jbh)nq=0 under which player l expects a non

higher payo¤ than under �bhl . Let �hl := �hl (shl ). By Lemma 5, there exists e�hl =Z �hl that
strongly believes (Sh�l;q)

n
q=0 such that for every bh 2 Dl, e�hl =bh �bhl . I want to show that there

exists shl 2 �l(e�hl ) such that shl =Z shl , contradicting NIH.
Fix bh 2 D. Substitute �bhl with �bhl in the construction of e�hl and obtain a new �hl =bh �bhl

that strongly believes (Sh�l;q)
m(bh)
q=0 with �hl (S�l(z)jeh) = e�hl (S�l(z)jeh) for all eh 62 Hbh and

z 62 Zbh. Since player l expects a non lower payo¤ against �bhl than against �bhl , �l(�hl ) \
Shl (

bh) = ; (which holds by the contrapositive hypothesis) implies �l(e�hl ) \ Shl (bh) = ;. So,
H(�l(e�hl )) \D = ;.

Write D = fh1; :::; hkg where m(h1) � ::: � m(hk). By Lemma 5, for each j = 1; :::; k,
there exists �hl;j =

Zhn[jt=1Zh
t

�hl that strongly believes (S
h
�l;q)

m(hj)
q=0 such that �hl;j =

ht �h
t

l

for all 1 � t � j. Let �hl;0 := �hl . Fix j = 1; :::; k and suppose to have shown that

�l(�
h
l;j�1) = �l(�

h
l ). Then, �l(�

h
l;j�1) \ Shl (hj) = ;. By the contrapositive hypothesis,

�l(�
h
l;j)\Shl (hj) = ; as well. For all eh 62 Hhj and z 62 Zhj , �hl;j(S�l(z)jeh) = �hl;j�1(S�l(z)jeh).

Then, �l(�
h
l;j) = �l(�

h
l;j�1). Inductively, �l(�

h
l;k) = �l(�

h
l ).

So, we have:

i) �l(�hl;k) \Dl = ;;

ii) shl 2 �l(�hl;k);

iii) H(�l(e�hl )) \D = ;;

iv) for each bh 2 D, player l initially expects a non lower payo¤ under �bhl than under �bhl ,
and recall that e�hl =bh �bhl and �hl;k =bh �bhl ;

v) e�hl =Z �hl =Z �hl;k, and �hl strongly believes Sh�l;1.
By (v), we obtain the following two facts: (a) if player l deviates out of Z, under e�hl

and �hl;k she expects the same distribution over histories in Dl and terminal histories that

26



immediately follow the deviation; (b) if she does not deviate out of Z, under e�hl and �hl;k she
expects the same outcome distribution. By (i), we have that (c) player l has no incentive to

deviate out of Z under �hl;k. By (iv) and (a), deviations that can only lead to histories in D

(or terminal histories) bring a lower expected payo¤ under e�hl than under �hl;k. Hence, by
(b) and (c), such deviations are suboptimal under e�hl as well. By (iii), under e�hl , deviations
that may lead to a history in D are suboptimal too. Hence, (d) player l has no incentive to

deviate out of Z under e�hl as well. By (b), (c), and (d), we have that for each eh 2 H(Sh1),brl(e�hl ;eh) = brl(�hl;k;eh). Then, by (ii), there exists shl 2 �l(e�hl ) such that shl (eh) = shl (eh) for alleh 2 H(Sh1). �
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