Лекции по эконометрике № 6-7

Множественная линейная регрессия

Демидова
Ольга Анатольевна
https://www.hse.ru/staff/demidova_olga
E-mail:demidova@hse.ru
07-14.10.2019

План лекций № 6-7

- •Множественная линейная регрессия в скалярной и матричной формах
- •Метод наименьших квадратов и его геометрическая интерпретация в многомерном случае. Система нормальных уравнений
- •Матричное выражение для вектора оценок коэффициентов регрессии. Ковариационная матрица оценок коэффициентов регрессии
- •Теорема Гаусса-Маркова для множественной линейной Показатели качества подгонки множественной регрессии
- •Особенности регрессии без свободного члена
- •Проверка гипотез для коэффициентов множественной регрессии

Множественная линейная регрессия

$$Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + \epsilon_i, i = 1,..., n -$$

общий вид модели множественной регрессии.

 $X_1,...,X_k$ – факторы (независимые переменные),

Ү – зависимая переменная,

 ϵ_{i} – возмущения,

n – число наблюдений.

Множественная линейная регрессия

$$Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + \varepsilon_i, i = 1,...,n$$

Обозначим

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_n \end{pmatrix}, X_1 = \begin{pmatrix} X_{11} \\ X_{12} \\ \dots \\ X_{1n} \end{pmatrix}, \dots, X_k = \begin{pmatrix} X_{k1} \\ X_{k2} \\ \dots \\ X_{kn} \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}$$

Тогда уравнение регрессии можно переписать в векторном виде

$$Y = \beta_0 + \beta_1 X_2 + \dots + \beta_k X_k + \varepsilon$$

Множественная линейная регрессия

$$Y_i = \beta_0 + \beta_1 X_{2i} + ... + \beta_k X_{ki} + \varepsilon_i, i = 1,...,n$$

Если ввести матрицу наблюдений X размера (nxk) и вектор коэффициентов β размера (kx1)

$$X = \begin{pmatrix} 1 & X_{11} & \dots & X_{k1} \\ 1 & X_{12} & \dots & X_{k2} \\ \dots & \dots & \dots & \dots \\ 1 & X_{1n} & \dots & X_{kn} \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_k \end{pmatrix},$$

то уравнение регрессии можно переписать в матричном виде:

$$Y = X\beta + \varepsilon$$

Оцененные значения зависимой переменной и остатки регрессии

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon,$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \dots + \hat{\beta}_k X_{ki}, i = 1, \dots, n$$

$$e_i = Y_i - \hat{Y}_i, i = 1, \dots, n$$

6

$$RSS = \sum_{i=1}^{n} e_i^2 \to \min$$

$$Y = X\beta + \varepsilon$$

$$\hat{Y} = X\hat{\beta}$$

$$e = Y - \hat{Y} = Y - X\hat{\beta}$$

$$e = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

$$\sum_{i=1}^{n} e_i^2 = (e_1, \dots, e_n) \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} = e'e$$

$$RSS(\hat{\beta}) = e'e = (Y - X\hat{\beta})'(Y - X\hat{\beta}) =$$

$$= (Y' - \hat{\beta}'X')(Y - X\beta) =$$

$$= Y'Y - \hat{\beta}'X'Y - Y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$

$$\begin{array}{cc} Y' & X & \hat{\beta} \\ {}_{(1\times n)(n\times k)(k\times 1)} & \Rightarrow (Y'X\hat{\beta}) = (Y'X\hat{\beta})' = \hat{\beta}'X'Y \end{array}$$

$$RSS(\hat{\beta}) = Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}'X'X\hat{\beta}$$

Необходимые условия экстремума, система нормальных уравнений и оценка МНК

$$RSS(\hat{\beta}) = Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}'X'X\hat{\beta}$$

$$\frac{\partial RSS(\hat{\beta})}{\partial \hat{\beta}} = -2X'Y + 2X'X\hat{\beta} = 0$$

$$X'X\hat{\beta} = X'Y$$

$$\hat{\beta} = (X'X)^{-1}X'Y$$

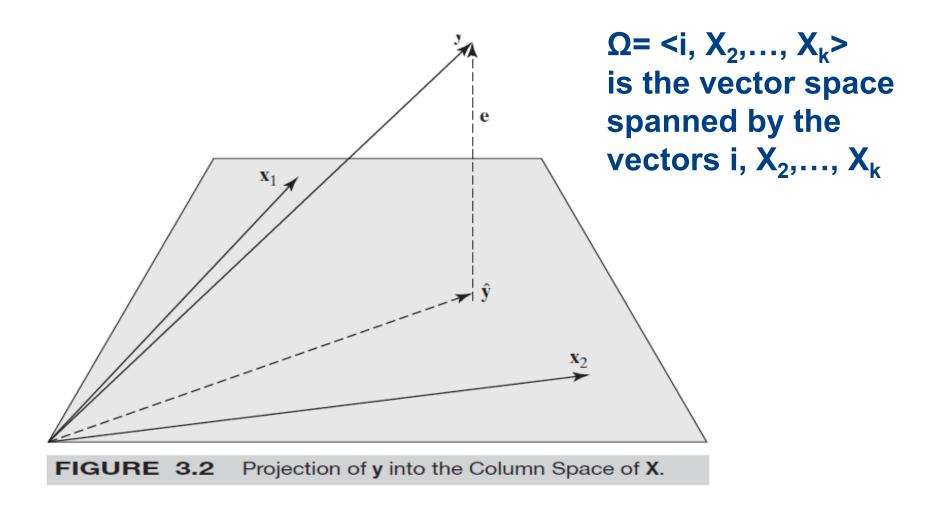
Достаточное условие экстремума

$$RSS(\hat{\beta}) = Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}'X'X\hat{\beta}$$

$$H = \frac{\partial^2 RSS(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}'} = 2X'X$$

-

Геометрический вывод формулы оценок МНК



Геометрический вывод формулы оценок МНК

$$Y = \hat{Y} + e \Leftrightarrow |e| \to \min \Leftrightarrow |e|^2 \to \min$$

$$|e| \to \min \Rightarrow e^{-1}\Omega$$

$$\Rightarrow e^{\downarrow} X_j \ \forall \ j = 1, \dots, k \Rightarrow$$

$$X_{i}^{\prime}e=0$$

Геометрический вывод формулы оценок МНК

$$X'e = 0$$

$$X'(Y - \hat{Y}) = 0$$

$$X'(Y - X\hat{\beta}) = 0$$

$$X'Y - X'X\hat{\beta} = 0$$

$$X'X\hat{\beta} = X'Y$$

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'Y$$

Если модель множественной линейной регрессии

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \varepsilon,$$

- 1) Правильно специфицирована
- 2) Не существует линейной связи между регрессорами
- 3) Возмущения имеют нулевое мат. ожидание $E(\epsilon_i) = 0$,
- 4) Дисперсии возмущений одинаковы $D(\epsilon_i) = \sigma_\epsilon^{-2}$,
- 5) Возмущения с разными номерами не коррелируют

$$Cov(\epsilon_i, \epsilon_j) = 0$$

Тогда оценки МНК являются BLUE (Best Linear Unbiased Estimator).

Estimator – оценка,

Unbiased – несмещенная,

Linear – по Y,

Best – это оценки с наименьшей дисперсией в классе всех линейных несмещенных оценок

1

Estimator – оценка (т.е. по набору наблюдений мы получаем оценки параметров регрессии)

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + ... + \beta_{k}X_{ki} + \varepsilon_{i}, i = 1,...,n$$

$$\hat{\beta} = (X'X)^{-1}X'Y,$$

$$\hat{eta} = \left(egin{array}{c} \hat{eta}_0 \ ... \ \hat{eta}_k \end{array}
ight).$$

Unbiased – несмещенная

(т.е. математические ожидания оценок коэффициентов регрессии совпадают с истинными значениями параметров).

$$\hat{\beta}_{OLS}(Y) = (X'X)^{-1}X'Y = (X'X)^{-1}X'(X\beta + \varepsilon) =$$

$$= \beta + (X'X)^{-1}X'\varepsilon$$

$$E(\hat{\beta}_{OLS}) = E(\beta + (X'X)^{-1}X'\varepsilon) =$$

$$= \beta + E[(X'X)^{-1}X'\varepsilon] = \beta + 0 = \beta$$

Linear – по Y.

$$\hat{\beta}_{OLS}(Y) = (X'X)^{-1}X'Y$$

1.1.
$$\hat{\beta}_{OLS}(Y_1 + Y_2) = (X'X)^{-1}X'(Y_1 + Y_2) =$$

$$= \hat{\beta}_{OLS} (Y_1) + \hat{\beta}_{OLS} (Y_2)$$

1.2.
$$\hat{\beta}_{OLS}(\alpha Y) = \alpha \hat{\beta}_{OLS}(Y), \alpha - const$$

Best – это оценки с наименьшей дисперсией в классе всех линейных несмещенных оценок (без доказательства).

$$Var (\hat{\beta}) = \sigma_{\varepsilon}^{2} (X'X)^{-1},$$

$$var(\hat{\beta}_{j}) = \sigma_{\epsilon}^{2} (X'X)_{jj}^{-1}, j = 1,..., k$$

Для множественной регрессионной модели вычисляется ковариационная матрица. Ее диагональными элементами являются дисперсии оценок коэффициентов.

Ковариационная матрица оценок МНК

$$var[\varepsilon] = \sigma_{\varepsilon}^{2} I_{n} \Rightarrow$$

$$Var(Y) = Var(X\beta + \varepsilon) = Var(\varepsilon) = \sigma_{\varepsilon}^{2} I_{n}$$

$$var[\varepsilon] = \sigma_{\varepsilon}^{2} I_{n} \Rightarrow$$

$$Var(\hat{\beta}_{OLS}) = Var((X'X)^{-1} X'Y) =$$

$$= (X'X)^{-1} X' Var(Y) X(X'X)^{-1} = \sigma_{\varepsilon}^{2} (X'X)^{-1}$$

Оценки дисперсий оценок коэффициентов множественной регрессии

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{RSS}{n - k - 1}$$

$$v\hat{a}r(\hat{\beta}_{j}) = \hat{\sigma}_{\varepsilon}^{2} (X'X)_{jj}^{-1}, j = 0,..., k$$

Приведены формулы для вычисления оценок дисперсий оценок коэффициентов регрессии. Но дисперсия ошибок регрессии неизвестна. Поэтому используется ее оценка (верхняя формула). Подставив вместо дисперсии ошибок регрессии ее оценку, получаем оценку дисперсии коэффициентов.

Стандартные ошибки оценок коэффициентов множественной регрессии

$$s.e.(\hat{\beta}_j) = \sqrt{\hat{\sigma}_{\varepsilon}^2 (X'X)_{jj}^{-1}}, j = 0,..., k$$

Однако вместо оценок дисперсий коэффициентов обычно используются корни квадратные из них, называемые стандартными ошибками (standard errors). Они выдаются статистическими пакетами.

Пример оценки стандартных ошибок коэффициентов множественной регрессии

reg EARNINGS S												
Source	1	SS	df		MS			Number of obs =	570			
	+-							F(1, 568) =	65.64			
Model	1	3977.38016	1	3977	38016			Prob > F =	0.000			
Residual	1	34419.6569	568	60.5	979875			R-squared =	0.1036			
	+-							Adj R-squared =	0.1020			
Total	1	38397.0371	569	67.4	816117			Root MSE =	7.7845			
EARNINGS	1	Coef.	Std.	Err.	t	•	P> t	[95% Conf. I	nterval]			
	+-											
S	1	1.073055	.1324	1501	8.1	.02	0.000	.8129028	1.333206			
_cons	1	-1.391004	1,820	305	-0.7	64	0.445	-4.966354	2.184347			

Дисперсионный анализ для множественной линейной регрессии

$$\sum (Y - \overline{Y})^2 = \sum (\hat{Y} - \overline{Y})^2 + \sum e^2$$

$$TSS = \sum (Y - \overline{Y})^2$$

$$ESS = \sum (\hat{Y} - \overline{Y})^2$$

$$RSS = \sum e^2$$

TSS (Total Sum of Squares) - общая сумма квадратов отклонений зависимой переменной от среднего значения.

ESS (Explained Sum of Squares) – объясненная с помощью регрессии сумма квадратов отклонений.

RSS (Residual Sum of Squares) – сумма квадратов остатков.

Коэффициент множественной детерминации

$$R^{2} = \frac{ESS}{TSS} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (Y_{i} - \overline{Y})^{2}} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2} / (n-1)}{\sum (Y_{i} - \overline{Y})^{2} / (n-1)} = \frac{\text{var}(\hat{Y})}{\text{var}(Y)}$$

R² - показатель качества подгонки (оценки) регрессии, является отношением ESS к TSS, (или долей дисперсии Y, объясненной с помощью регрессии).

Это неотрицательная и не превышающая 1 величина.

$$R^{2} = \frac{ESS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum e_{i}^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

Коэффициент множественной детерминации

R² действительно является квадратом, а именно, квадратом выборочного коэффициента корреляции Y и Ŷ.

Минимизируя сумму квадратов остатков, мы максимизируем R^2 . Таким образом, чем ближе R^2 к 1, тем выше качество подгонки (оценки) регрессии.

$$R^{2} = \frac{ESS}{TSS} = \sum_{i=1}^{k} \hat{\beta}_{i} \frac{\hat{cov}(X_{j}, Y)}{\hat{var}(Y)}$$

Факторное разложение R2

$$R^{2} = \frac{ESS}{TSS} = \sum_{i=1}^{k} \hat{\beta}_{i} \frac{\hat{cov}(X_{j}, Y)}{\hat{var}(Y)}$$

$$ESS = TSS - RSS = y'y - e'e$$

$$RSS = e'e = (y - x\hat{\beta}_{-1})'(y - x\hat{\beta}_{-1}) =$$

$$= y'y - \hat{\beta}'_{-1}x'y - y'x\hat{\beta}_{-1} + \hat{\beta}_{-1}x'x\hat{\beta}_{-1}$$

$$ESS = \hat{\beta}'_{-1}x'y + \hat{\beta}'_{-1}\underbrace{(x'y - x'x\hat{\beta}_{-1})}_{=0} = \hat{\beta}'_{-1}x'y$$

Коэффициент множественной детерминации

R² имеет существенный недостаток: он возрастает при добавлении любого регрессора X (т.к. при этом уменьшается сумма квадратов остатков).

$$R_{adj}^2 = 1 - \frac{RSS/(n-k-1)}{TSS/(n-1)}$$

 $R^2_{adj}\,$ - это R^2 , скорректированный с учетом числа степеней свободы. Он «наказывает» за включение лишних регрессоров.

Коэффициент множественной детерминации, скорректированный на число степеней свободы

$$R_{adj}^2 = 1 - \frac{RSS/(n-k-1)}{TSS/(n-1)}$$

Для сравнения качества подгонки (оценки) двух регрессий с одной и той же зависимой переменной Y используется коэффициент множественной детерминации, скорректированный на число степеней свободы R^2_{adj} .

 R^{2}_{adj} не превышает 1, но может быть меньше 0.

•

Особенности регрессии без свободного члена

Если в модели регрессии нет свободного члена, то не выполняются свойства

1)
$$\Sigma e_i = 0$$

$$2) TSS = ESS + RSS$$

3)
$$R^2 = 1 - RSS/TSS$$

В этом случае R^2 не является показателем качества подгонки регрессии (как и R^2_{adi}).

Проверка значимости коэффициентов множественной линейной регрессии

$$Y_{i} = \beta_{0} + \beta_{1}X_{1} + ... + \beta_{k}X_{k} + \varepsilon$$

Основная гипотеза

$$H_0: \beta_j = 0$$

Альтернативная гипотеза

$$H_1:\beta_j\neq 0$$

Тестовая статистика
$$t = \frac{\hat{eta}_j}{s.e.(\hat{eta}_j)} \sim t(n-k-1)$$

Отличие от парной регрессии только в числе степеней свободы.

Пример оценки множественной линейной регрессии

. reg EARNINGS S EXP

Source	ss +	df 	MS		Number of obs F(2, 537)	
Model Residual	22513.6473 89496.5838 + 112010.231	2 1125 537 166.	66.8237 660305		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.2010
EARNINGS	 Coef. +	Std. Err.	t	P> t	[95% Conf.	Interval]
S EXP _cons	2.678125 .5624326 -26.48501	.2336497 .1285136 4.27251	11.46 4.38 -6.20	0.000 0.000 0.000	2.219146 .3099816 -34.87789	3.137105 .8148837 -18.09213

Изучается зависимость заработной платы от длительности обучения и опыта работы.

t-статистики, p-value, доверительные интервалы рассчитываются аналогично случаю парной регрессии.

Связь доверительных интервалов с проверкой гипотез

(1- α)100% доверительный интервал для β_i

Если β_j^0 попадает в (1 – α)·100% доверительный интервал для коэффициента β_j , то при уровне значимости α гипотеза H_0 : $\beta_j = \beta_j^0$ при альтернативной гипотезе H_1 : $\beta_j \neq \beta_j^0$ не отвергается.

Проверка гипотезы об адекватности множественной линейной регрессии

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

$$H_0: \beta_1 = ... = \beta_k = 0$$

$$H_1: \exists \beta_i \neq 0$$

Гипотезу H₀ можно переформулировать следующим образом: выбранный набор независимых переменных не оказывает влияния на переменную Y.

Проверка гипотезы об адекватности множественной линейной регрессии

$$Y = \beta_{0} + \beta_{1}X_{1} + ... + \beta_{k}X_{k} + \varepsilon$$

$$H_{0}: \beta_{1} = ... = \beta_{k} = 0$$

$$H_{1}: \exists \beta_{i} \neq 0$$

$$F(k, n - k - 1) = \frac{ESS/k}{RSS/(n - k - 1)}$$

$$= \frac{\frac{ESS}{TSS}/k}{\frac{RSS}{TSS}/(n - k - 1)} = \frac{R^{2}/k}{(1 - R^{2})/(n - k - 1)}$$

Приведена формула для проверки гипотезы об адекватности регрессии.

Пример проверки гипотезы об адекватности регрессии

. reg EARNINGS S EXP

Source		df	MS		Number of obs	
					F(2, 537)	
Model	22513.6473	2 1125	6.8237		Prob > F	= 0.0000
Residual	89496.5838	537 166.	660305		R-squared	= 0.2010
+					Adj R-squared	= 0.1980
Total	112010.231	539 207.	811189		Root MSE	= 12.91
EARNINGS	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
s (.2336497	11.46	0.000	2.219146	3.137105
EXP	.5624326	.1285136	4.38	0.000	.3099816	.8148837
_cons	-26.48501	4.27251	-6.20	0.000	-34.87789	-18.09213

F – статистика для проверки гипотезы об адекватности регрессии приводится любым статистическим пакетом. Если p-value для этой F-статистики меньше выбранного уровня значимости, например, 0.05, то регрессия адекватна.

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 SM + \beta_3 SF + \varepsilon$$

Пример зависимости длительности обучения S от способностей индивида, характеризуемых обобщенной переменной ASVABC, длительности обучения мамы индивида SM и папы SF.

. reg S ASVABC SM SF

Source	S	SS df	MS		Number of obs	
Model Residual	•	61353 536	3.775398	37	F(3, 536) Prob > F R-squared	= 0.0000 = 0.3686
Total	-	98333 539	5.946165		Adj R-squared Root MSE	= 0.3651 = 1.943
s	l Co	pef. Std.	Err.	t P> t	[95% Conf.	Interval]
S ASVABC	+ .1257	 009. ל708	 8533 12	.76 0.000	.1063528	.1450646
	+	 009. ל708	 8533 12 0901 1	.76 0.000 .26 0.208		.1450646 .1260309
ASVABC	+ .1257	7087 .009 2424 .039	 8533 12 0901 1	.76 0.000	.1063528	.1450646

Коэффициент при переменной SM незначим. Но это может быть следствием мультиколлинеарности (об этом явлении на следующей лекции).

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 SM + \beta_3 SF + \varepsilon$$

$$H_0: \beta_2 = \beta_3$$

Проверим гипотезу об одинаковом влиянии обоих родителей, равенстве коэффициентов β_3 и β_4 .

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 SM + \beta_3 SF + \varepsilon$$

$$H_0: \beta_2 = \beta_3$$

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 (SM + SF) + \varepsilon =$$

$$= \beta_0 + \beta_1 ASVABC + \beta_2 SP + \varepsilon$$

$$SP = SM + SF$$

Для этого инкорпорируем ограничение в уравнение регрессии, введя дополнительную переменную SP.

- . g SP=SM+SF
- . reg S ASVABC SP

Source	ss	df	MS	Number of obs	
Model Residual	1177.98338 2026.99996 	2 588. 537 3.77	991689 467403	F(2, 537) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.3675
s	Coef _i .	Std. Err.	•	: [95% Conf.	Interval]
ASVABC SP _cons	.1253106 .0828368 5.29617	.0098434 .0164247 .4817972	12.73 0.00 5.04 0.00 10.99 0.00	.1059743 .0505722	.1446469 .1151014 6.242608

Оцениваем вспомогательную регрессию.

. reg S ASVABC SM SF

s	 +-	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ASVABC	i	.1257087	.0098533	12.76	0.000	.1063528	.1450646
SM	1	.0492424	.0390901	1.26	0.208	027546	.1260309
SF	1	.1076825	.0309522	3.48	0.001	.04688	.1684851
_cons	I	5.370631	.4882155	11.00	0.000	4.41158	6.329681

. reg S ASVABC SP

s		Std. Err.			_	Interval]
ASVABC SP	.1253106	.0098434 .0164247	12.73	0.000 0.000	.1059743 .0505722 4.349731	.1446469 .1151014 6.242608

Сравним результаты оценивания двух регрессий.

. reg S ASVABC SM SF

S		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ASVABC	i	.1257087	.0098533	12.76	0.000	.1063528	.1450646
SM	ļ	.0492424	.0390901	1.26	0.208	027546	.1260309
SF	1	.1076825	.0309522	3.48	0.001	.04688	.1684851
_cons	I	5.370631	.4882155	11.00	0.000	4.41158	6.329681

. reg S ASVABC SP

s (Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ASVABC	.1253106	.0098434	12.73	0.000	.1059743	.1446469
SP (.0828368	.0164247	5.04	0.000	.0505722	.1151014
_cons	5.29617	.4817972	10.99	0.000	4.349731	6.242608

Если проверяемое ограничение имеет место, то сумма квадратов остатков *RSS* должна увеличиться незначительно.

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 SM + \beta_3 SF + \varepsilon$$
 (1)
$$H_0: \beta_2 = \beta_3, \quad H_1: \beta_2 \neq \beta_3$$

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 (SM + SF) + \varepsilon$$

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 SP + \varepsilon$$
 (2)

Модель (2) является ограниченной версией модели (1).

$$H_0: \beta_2 = \beta_3, \quad H_1: \beta_2 \neq \beta_3$$

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 (SM + SF) + \varepsilon$$

$$S = \beta_0 + \beta_1 ASVABC + \beta_2 SP + \varepsilon \quad (2)$$

Проведем формальную проверку гипотезы, рассчитав значение тестовой статистики.

$$F(1,n-k-1) = \frac{(RSS_R - RSS_U)/1}{RSS_U/(n-k-1)} = \frac{202700 - 202361}{202361/536} = 0.90$$

$$F(1,n-k-1) = \frac{(RSS_R - RSS_U)/1}{RSS_U/(n-k-1)} = \frac{2027.00 - 202361}{202361/536} = 0.90$$

Полученное значение F – статистики равно 0.90, что меньше критического значения F (1, 536), равного 1. Следовательно, нулевая гипотеза не отвергается.

$$Y_i = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$$

H₀: Имеют место q конкретных линейных ограничений на коэффициенты регрессии

H₁: Это ограничения не имеют места

Чтобы проверить выполнение линейных ограничений, необходимо

- 1) Оценить регрессию без ограничений и найти RSS_{uR}
- 2) Оценить регрессию с ограничениями RSS_R
- 3) Вычислить соответствующую F статистику

$$Y_{i} = \beta_{0} + \beta_{1}X_{1} + ... + \beta_{k}X_{k} + \varepsilon$$

H₀: Имеют место q конкретных линейных ограничений на коэффициенты регрессии

H₁: Это ограничения не имеют места Тестовая статистика:

$$F = \frac{(RSS_R - RSS_U)/q}{RSS_U/(n-k-1)} \sim F(q; n-k-1)$$

Если значение тестовой F - статистики больше, чем Fcr(q,n-k-1), то гипотеза H_0 отвергается. Если значение тестовой F — статистики меньше, чем Fcr(q,n-k-1), то H_0 не отвергается.