
Self-enforcing agreements and forward

induction reasoning�

Emiliano Catoniniy

June 1, 2020

Abstract

In dynamic games, players may observe a deviation from a pre-play,

possibly incomplete, non-binding agreement before the game is over.

The attempt to rationalize the deviation may lead players to revise

their beliefs about the deviator�s behavior in the continuation of the

game. This instance of forward induction reasoning is based on interac-

tive beliefs about not just rationality, but also the compliance with the

agreement itself. I study the e¤ects of such rationalization on the self-

enforceability of the agreement. Accordingly, outcomes of the game are

deemed implementable by some agreement or not. Conclusions depart

substantially from what the traditional equilibrium re�nements suggest.

A non subgame perfect equilibrium outcome may be induced by a self-

enforcing agreement, while a subgame perfect equilibrium outcome may
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not. The incompleteness of the agreement can be crucial to implement

an outcome.

Keywords: Self-enforcing agreements, Incomplete agreements, For-

ward induction, Extensive-Form Rationalizability.
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1 Introduction

In many economic situations, agents can communicate before they start to act.

Players with strategic power may exploit this opportunity to coordinate on

some desirable outcome, or to in�uence other players�behavior by announcing

publicly how they plan to play. I will refer to the common, possibly partial

understanding of how each player will play as an agreement. In many cases,

players only reach a non-binding agreement, which cannot be enforced by a

court of law. The only way a non-binding agreement can a¤ect the behavior

of players is through the beliefs it induces in their minds. When the game is

dynamic, even if players tentatively trust the agreement at the outset, they are

likely to question this trust and revise their beliefs based on strategic reasoning

and the observed behavior. The fact that an agreement is in place can modify

the interpretation of unexpected behavior. All this can be decisive for the

incentives to �ght or accommodate a deviation from the agreed-upon play.

Taking these forward induction considerations into account, this paper sheds

light on which agreements players will believe in and comply with. Moreover,

in an implementation perspective, the paper investigates which outcomes of

the game can be enforced by some agreement. The paper will not deal with

the pre-play communication phase. Yet, assessing their credibility has a clear

feedback on which agreements are likely to be reached.

In static games, it is well-known that Nash equilibrium characterizes the

action pro�les that can be played as the result of a non-binding agreement,

reached at a pre-play round of cheap talk communication.1 In dynamic games,

this role is usually assigned to Subgame Perfect Equilibrium (henceforth, SPE).

Because SPE induces a Nash equilibrium in every subgame, this seems prima

facie a sensible choice. But does SPE truly characterize self-enforcing agree-

ments in dynamic games?

Relevant economic decisions can seldom be interpreted as unintentional

mistakes. A deviation from an equilibrium path can safely be interpreted as

disbelief in some features of the equilibrium. Can we expect the deviator to

1Nevertheless, Aumann [2] provides an argument against this view.
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best reply to threats that are meant precisely to deter the deviation? Often, the

deviation clearly displays con�dence that none of the adverse re-coordination

scenarios will realize. Then, credible threats are not the ones that rely on illu-

sory re-coordination, but those that best respond to the potentially pro�table

continuation plans of the deviator. Indeed, compliance with non-binding agree-

ments often relies on the threat/concern that a deviation will provoke the end

of coordinated play, rather than less advantageous re-coordination. Moreover,

agreements are often incomplete: di¤erently than SPE, they do not pin down

exactly what to do in every contingency. Partially con�icting interests, legal

constraints, social taboos, unilateral communication channels, anticipated dis-

trust or objective impossibility of credible (re-)coordination: these are some

of the reasons why players may be unable or unwilling to reach a complete

agreement.

In economic applications, absence of an intuitive SPE solution is often

blamed on a misspeci�cation of the model, rather than on the objective im-

possibility to reach a plausible agreement for every contingency. A classical ex-

ample is the two-stage Hotelling model with linear transportation cost, which

has no SPE in pure strategies. A quadratic transportation cost has been intro-

duced by D�Aspremont et al. [19] to obtain a pure SPE where �rms, contrary

to Hotelling�s conjecture, locate at the extremes of the spectrum (i.e., at 0

and 1). In the original model, Osborne and Pitchik [30] �nd a SPE in mixed

strategies with numerical methods. In this solution, counterintuitively, �rms

locate at a distance that may induce a �price war�, whereas a slightly larger

distance would prevent this possibility. In a separate paper [16], I show that

the transportation-e¢ cient location pair (1=4; 3=4) is the unique symmetric

pair that is induced by a self-enforcing agreement between the two �rms. This

recovers the intuitive prediction that �rms will locate at the smallest distance

that prevents a price war. In Section 6, I replicate this result in a discretized

version of the model.

To illustrate the main insights in a simpler but meaningful economic en-

vironment, in Section 2 I analyze an entry game in monopolistic competition.

Depending on the value of the entry cost, SPE turns out to be too permis-
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sive, too restrictive, or simply inadequate to evaluate the credibility of the

incumbent�s threats.

That SPE can be too permissive is not a new observation. Classical ex-

amples, such as the battle of the sexes with an outside option (Ben Porath

and Dekel [13]), have already shown this point. This paper captures these

re�nement arguments in a simple and general way.

That SPE can be too restrictive may instead sound surprising, therefore

I sketch here the intuition behind this observation. Consider the following

game.
AnB W E AnB L R

N 3; 3 �� �! U 1; 1 2; 2

S 0; 0 2; 2 D 0; 6 3; 5

In the �rst stage, Ann and Bob can potentially coordinate on two outcomes,

(N;W ) and (S;E). If they fail to coordinate, the game either ends (after

(S;W )),2 or moves to a second stage (after (N;E)), where in the unique equi-

librium all actions are played with equal probability. So, the unique SPE of

the game induces outcome (S;E). But (S;E) is Pareto-dominated by (N;W ),

hence Ann and Bob would rather coordinate on (N;W ). To do so, they agree

that Bob should play W , and that Ann should play N in the �rst stage and

U in case Bob deviates to E.3 Is the agreement credible? If Bob is rational4

and believes in the agreement, he has no incentive to deviate. Then, after a

deviation to E, Ann cannot believe at the same time that Bob is rational and

believes in the agreement. If she keeps the belief that Bob is rational, she

has to drop the belief that Bob believes in the agreement. So, she can think

that Bob gives higher probability to D than to U . Then, she expects Bob

to play L and best replies with U . Anticipating this, Bob can believe in U

and refrain from deviating. The conclusion is that the agreement is credible

2This is just to keep the game small: it could continue in a symmetric way after (S;W )
and (N;E) and the analysis would not change.

3To keep the game small, the threat U that sustains (N;W ) is played with positive
probability also in the SPE. This is by no means necessary for its credibility, even when the
SPE is unique: see the variation of this example in Supplemental Appendix I.

4The notion of rationality employed in this paper simply requires expected utility maxi-
mization, without imposing by itself any restriction on beliefs. See Section 3.2 for details.
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and, once believed, players will comply with it. Therefore, the agreement is

self-enforcing.

The further inadequacy of SPE comes from the intrinsic assumption of

agreement completeness. In the entry game of Section 2, for intermediate val-

ues of the entry cost, the most realistic threat by the incumbent does not com-

pletely specify its plan, therefore its credibility cannot be evaluated through

SPE. Moreover, the complete agreement on the SPE that deters entry is not

credible, because the continuation plan of the entrant is not part of any ratio-

nal entry plan. Yet, the SPE threat is credible, and its credibility relies on the

(physiological) uncertainty regarding the behavior of the entrant. I will show

in Section 5.2 that, sometimes, an outcome can be achieved only by not fully

specifying the reactions to deviations either.

In Section 3, I model agreements with sets of plans of actions, as opposed

to one pro�le of strategies, from which players are expected to choose. Per se,

a plan of actions (also known as reduced strategy) already features a basic form

of incompleteness: it does not prescribe moves after a deviation from the plan

itself. However, an agreement can also specify alternative plans that players

are expected to follow after deviations from the own primary plans (and so on,

in a lexicographic fashion). For notational simplicity, I restrict the attention to

the class of �nite games with complete information, observable actions,5 and

no chance moves. However, the methodology can be applied to all dynamic

games with perfect recall.

In Section 4, I study credibility and self-enforceability of agreements start-

ing from primitive assumptions about players�strategic reasoning. An agree-

ment is credible when players may comply with it in case they are rational,

they believe in the agreement, they believe that the co-players are rational

and believe in the agreement, and so on. When a player�s move is not rational

under belief in the agreement (such as Bob�s deviation to E in the example

above), I assume that the co-players keep the belief that the player is rational

5Games where every player always knows the current history of the game, i.e. � allowing
for simultaneous moves � information sets are singletons. For instance, all repeated games
with perfect monitoring are games with observable actions.
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and drop the belief that the player believes in the agreement.6 Under this rea-

soning scheme, deviations, or more generally past actions, are not interpreted

as mistakes but as intentional choices. To visualize this, suppose that in the

game above Ann and Bob agree on (S;E), without specifying what to do in

case Ann deviates. If Ann believes in E, she has the incentive to deviate to

N only if she expects R with su¢ ciently high probability. Then, Bob will

expect her to play D after the deviation.7 This instance of forward induction

reasoning is based not just on the belief that Ann is rational, but also on the

belief that she believes in the agreement.

Under a credible agreement, the outcomes players should reach (according

to the agreement) and might reach (according to strategic reasoning) overlap

but need not be nested. I will refer to the former as the outcome set the agree-

ment prescribes, and to the latter as the outcome set the agreement induces. A

credible agreement is self-enforcing when it induces a subset of the outcomes

it prescribes.

A set of outcomes is implementable when it is induced by a self-enforcing

agreement. In Section 5 I provide necessary and su¢ cient conditions for im-

plementability. A set of outcomes is implementable if it is prescribed by a

Self-Enforcing Set of plans (henceforth, SES). SES�s are self-enforcing agree-

ments that do not require players to promise, and co-players trust, what they

would do after a own deviation. Thus, they can be seen as a set-valued coun-

terpart of SPE where the behavior of deviators is not exogenously given but

determined by forward induction. In games with two players or two stages,

every implementable outcome set is prescribed by a SES. In a two-player game,

the SES�s that induce a single outcome boil down to (sets of) Nash equilib-

ria in extensive-form rationalizable plans with strict incentives.8 To complete

the search for implementable outcomes in games with more than two players

and stages, tight agreements augment SES�s by restricting the behavior of de-

6This appears as the most sensible choice given the cheap-talk nature of the agreement.
7See Section 4.2 for the complete analysis of this and other agreements for this game.
8Every feature of this simple characterization is not assumed, but derived from �rst

principles. The original notion of extensive-form-rationalizability is due to Pearce [31] and
was further analyzed and clari�ed by Battigalli [6].
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viators. An outcome set is implementable if and only if it is prescribed by

a tight agreement. Since tight agreements induce exactly the outcomes they

prescribe, we have a �revelation principle�for agreements design: players need

not be vague about the set of outcomes they want to achieve.

Tight agreements and SES�s have the double value of solution concepts and

�soft mechanisms�for implementation,9 because they specify the outcome set

they induce. Thus, they provide to the analyst (or a mediator) all possible pre-

dictions (and an implementation strategy) under the non-binding agreements

motivation, abstracting away from the foundations of self-enforceability. In

particular, after a standard elimination procedure (extensive-form rationaliz-

ability), they only require to verify one-step conditions instead of doing all

steps of reasoning under all candidate self-enforcing agreements.

This work is greatly indebted to the literature on rationalizability in dy-

namic games. In this literature, restrictions to �rst-order beliefs are usually ac-

counted for through Strong-�-Rationalizability (Battigalli, [7]; Battigalli and

Siniscalchi, [11]). Strong-�-Rationalizability does not require players to keep

believing in the rationality of a co-player who displays behavior that is not

optimal under her �rst-order belief restrictions. To capture the opposite hy-

pothesis, in the companion paper I construct and analyze another elimination

procedure with belief restrictions, Selective Rationalizability. Selective Ratio-

nalizability captures common strong belief in rationality (Battigalli and Sinis-

calchi [10]), i.e., the hypothesis that each order of belief in rationality holds as

long as not contradicted by the observed behavior. Thus, it combines �unre-

stricted�(i.e., based only on beliefs in rationality) and �restricted�(i.e., based

also on �rst-order belief restrictions) forward induction reasoning. In Section

3.3, I specialize Selective Rationalizability for the analysis of agreements, and

I call it Agreement-rationalizability. The priority given to the beliefs in ra-

tionality, the structure given by agreements to the belief restrictions, and the

requirement of self-enforceability greatly increase the predictive power with

respect to the literature. In the Section 7.1, I expand on this comparison.

9�Soft�in the sense that they not modify the rules of the game, they only act via beliefs.
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When the agreement prescribes a speci�c outcome, a possible way to in-

terpret a deviation is that the deviator believed in the agreed-upon path (i.e.,

that the co-players would have complied with it), but does not believe in the

threat. In Section 7.2, I provide an example where imposing this particular

rationalization of deviations matters, and I argue that a simple revision of

the methodology accommodates it. All the general insights of the paper are

robust to these stricter strategic reasoning hypotheses, which further increase

the re�nement power.

Strategic stability à la Kohlberg and Mertens [27] and related re�nements

are often justi�ed with stories of forward induction reasoning where deviators

are believed to aim for a higher payo¤ than under the equilibrium path. How-

ever, understanding and applying stability and related re�nements present var-

ious di¢ culties. Stability is hard to interpret and verify, and does not o¤er an

implementation strategy: what should players exactly agree on/believe in?10

Later re�nements focus exclusively on sequential equilibrium and, to simplify

the analysis, sacri�ce depth of reasoning (e.g., forward induction equilibria

of Govindan and Wilson [22] capture only strong belief in rationality11) or

scope (e.g., the intuitive criterion of Cho and Kreps [18] and divine equilib-

rium of Banks and Sobel [3] are tailored on signaling games). Moreover, the

equilibrium language does not allow to talk of incomplete agreements. Then,

the methodology of this paper can also be seen as a general and transparent

approach to the problems analyzed in this literature. It turns out that the

spirit of subgame perfection, i.e., the idea that a deviator will best reply to

the threat, is at odds precisely with the rationalization of deviations based on

the belief in the path.

The Appendix collects the proofs omitted from Sections 5 and 6. The

Supplemental Appendix formalizes the claims of Section 7 and contains fur-

ther examples and technical remarks that can be useful to whoever wishes to

develop (as opposed to just apply) the methodology.

10An interesting critique of this kind to stability was put forward by Van Damme [35].
11See [22], pages 11 and 21. An example of this fact is provided by Perea ([33], pag. 509).
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2 An entry game

Consider the following linear city model of monopolistic competition. Two

�rms, i = 1; 2, sell the same good at the extremes of a continuum of potential

buyers of measure 96. Each individual j 2 [0; 96] either does not buy, or buys
one unit from the �rm i that maximizes uji = 120� pi� t � dji, where pi is the
price �xed by �rm i, t = 1=2 is the transportation cost, and dji is the distance

from �rm i: dj1 = j and dj2 = 96� j. There are two production technologies:
k = A, with marginal cost mc = 48 and no �xed cost; and k = B, with no

marginal cost and �xed cost F = 482. Firms choose price and technology

simultaneously.

Prices below 48 and above 96, with either technology, do not best reply to

any conjecture about the competitor�s price (see Supplemental Appendix II

for the proof). For each (pi; p�i) 2 [48; 96]2, �rm i�s demand is

Di(pi; p�i) = 48� pi + p�i;

and the best reply correspondence reads

bpi(p�i) =
8><>:
48 + 1

2
p�i (with k = A) if p�i 2 [48; 72)

f60; 84g (with k = B;A) if p�i = 72

24 + 1
2
p�i (with k = B) if p�i 2 (72; 96]

:

Since demand is linear in p�i, the best replies to a conjecture � 2 �([48; 96])
are bpi(E�(p�i)). Then, only the price-technology pairs [60; 72] � fBg and
[72; 84] � fAg can be best replies. In turn, only the pairs [60; 66] � fBg and
[78; 84]�fAg best reply to some � 2 �([60; 84]). These are the rationalizable
price-technology pairs in the static market game. The pure equilibrium prices

are (64; 80) and (80; 64), and the only mixed equilibrium assigns probability

1=2 to 60 and 84 for both �rms. Let � > � > � denote the (expected) pro�t

of �rm 2 in the (80; 64), in the mixed, and in the (64; 80) equilibrium. Let �

denote the optimal pro�t of �rm 2 when p1 = 60.
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Suppose now that �rm 1 is already in the market, while �rm 2 still has

to pay an entry cost E. If �rm 2 does not enter, its pro�t is 0. Can �rm 1

deter the entry of �rm 2 by announcing how it plans to react?12 I am going to

tackle this question for di¤erent values of the entry cost. To avoid repeating

uninteresting steps of reasoning, assume directly that �rms cannot �x prices

below 48 or above 96. The analysis is formalized in Section 4.2.

Case 1: � < E < � (SPE is too permissive). According to SPE, entry
is deterred by two equilibria of the subgame. However, a rational �rm 2

will enter only under the belief that, in expected terms, p1 will be at least

p for p 2 (72; 80) that depends on E. Moreover, if �rm 2 believes that �rm

1 is rational, it will expect p1 � 84. Then, in case of entry, �rm 2 will

�x p2 2
�
24 + 1

2
p; 66

�
(with k = B). Realizing this, �rm 1 will react with

p1 2
�
60 + 1

4
p; 57

�
(with k = A), thus p1 > p. So, �rm 2 will enter. Firm

1 cannot credibly deter entry because any explicit threat would clash with

strategic reasoning about rationality.

Case 2: � < E < � (agreement incompleteness). According to SPE,

entry is deterred by equilibrium (64; 80). But believing in p2 = 80 is incom-

patible with strategic reasoning. If �rm 2 is rational and believes that �rm

1 is rational, it will enter only when it expects p1 2
�
p; 84

�
with p 2 (64; 72)

that depends on E. Then, �rm 2 will �x either p2 2
�
48 + 1

2
p; 84

�
with k = A,

or p2 2 [60; 66] with k = B, thus not p2 = 80. However, every p1 2 [60; 66]
(with k = B) and every p1 2 [78; 84] (with k = A) are best replies to beliefs
over these entry plans of �rm 2. Hence, prices cannot be re�ned further with

strategic reasoning about rationality. The SPE price p1 = 64 is compatible

with strategic reasoning, but it is justi�ed by uncertainty over values of p2
12For the purpose of the example, the incumbent has no commitment power or switching

costs. Instead, Dixit [19] studies entry deterrance through an irreversible investment in pro-
ductive capacity. Interestingly, Dixit motivates his analysis with the following observations:
�The theory of large-scale entry into an industry is made complicated by its game-theoretic
aspects. Even in the simplest case of one established �rm facing one prospective entrant,
there are subtle strategic interactions. [...] In reality, there may be no agreement about the
rules of the post-entry duopoly, and there may be periods of disequilibrium before any order
is established.�
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that do not best respond to it. So, to deter entry, it must be formulated as a

unilateral threat and not as part of a complete agreement.

Furthermore, �rm 1 does not actually need to specify p1: it is enough to

announce the use of technology k = B. If �rm 2 believes that �rm 1 (i) is

rational, (ii) believes that �rm 2 is rational, and (iii) adopts k = B, it expects

�rm 1 to �x p1 2 [60; 66]. If p > 66, this is su¢ cient to deter entry. If

p 2 (64; 66], �rm 2 may enter and �x p2 2
�
48 + 1

2
p; 81

�
with k = A. But

then, realizing this, �rm 1 will react with p1 2
�
48 + 1

4
p; 64:5

�
and k = B.

This realization is based not just on the beliefs in rationality, but also on the

belief that �rm 2 believes in �rm 1�s announcement, which is not at odds

with rational entry. If needed, further steps of reasoning eventually bring

the highest possible p1 below p. Hence, the announcement of k = B by the

incumbent is credible and deters entry. Such a coarse announcement can have

real-life advantages; for instance it may be illegal to state future prices.13

Case 3: � < E < � (SPE is too restrictive). Now �rm 2 enters

in every SPE. But, like in Case 2, there is p 2 (60; 64] such that every

p2 2 [60; 66] [
�
48 + 1

2
p; 84

�
is compatible with strategic reasoning, and then

every p1 2 [60; 66] [ [78; 84] is compatible as well. So, �rm 1 can credibly

threaten to �x p1 2
�
60; p

�
and deter entry.14 The arguments for the credi-

bility of this threat are identical to the arguments for the SPE threat in Case

2. For instance, p1 = 60 is justi�ed by a uniform distribution over the three

equilibrium (expected) prices, which are now all compatible with strategic

reasoning.

13Harrington [26] documents instances of �mutual partial understanding� among �rms
which leaves the exact path of price increase undetermined to escape antitrust sanctions.
Such mutual understanding can be modeled as an incomplete agreement, whose conse-
quences can be studied with the methodology developed in this paper.
14One could argue that alternated best responses from p1 would lead to the (64; 80)

equilibrium in the long run. If �rms are impatient, this is irrelevant. If �rms are patient,
�rm 2 could try to upset this trajectory by switching to k = 2 at any time. The choice of
p1 = 60 is justi�ed precisely by this uncertainty.

12



3 Agreements, beliefs and strategic reasoning

3.1 Framework

Primitives of the game. Let I be the �nite set of players. For any pro�le
of sets (Xi)i2I and any J � I, I write XJ := �j2JXj, X := XI , X�i := XInfig.

Let (Ai)i2I be the �nite sets of actions potentially available to each player.

Let H � [t=1;:::;TA
t [ fh0g be the set of histories, where h0 2 H is the empty

initial history and T is the �nite horizon. The set H must have the following

properties. First property: For any h = (a1; :::; at) 2 H and l < t, it holds

h0 = (a1; :::; al) 2 H, and I write h0 � h.15 Let Z := fz 2 H : /9h 2 H; z � hg
be the set of terminal histories (henceforth, outcomes or paths)16, and H :=

HnZ be the set of non-terminal histories (henceforth just histories). Second
property: For every h 2 H, there exists a non-empty set Ai(h) � Ai for each
i 2 I17 such that (h; a) 2 H if and only if a 2 A(h). Let ui : Z ! R be the
payo¤ function of player i. The list � =



I;H; (ui)i2I

�
is a �nite game with

complete information and observable actions.

Derived objects. A plan of actions (henceforth, just �plan�) of player i is
a function si that assigns an action si(h) 2 Ai(h) to each history h that can
be reached if i plays si. Let Si denote the set of all plans of player i. A pro�le

of plans s 2 S naturally induces a unique outcome z 2 Z. (When referring to
pro�les of plans rather than to agreements, the word �induce�will still be used

with this traditional meaning.) Let � : S ! Z be the function that associates

each pro�le of plans with the induced outcome. For any h 2 H, the set of
plans of player i compatible with h is

Si(h) :=
�
si 2 Si : 9s�i 2 S�i; h � �(si; s�i)

	
:

15Then, H endowed with the precedence relation � is a tree with root h0.
16�Path� will be used with emphasis on the sequence of moves, and �outcome� with

emphasis on the end-point of the game.
17When player i is not truly active at history h, Ai(h) consists of just one �wait�action.

13



For any J � I and bSJ � SJ , the set of histories compatible with bSJ is
H(bSJ) := nh 2 H : bSJ \ SJ(h) 6= ;o :

3.2 Beliefs, Rationality, and Rationalizability

The beliefs of a player about the plans of the co-players are modeled as a

Conditional Probability System (henceforth, CPS).

De�nition 1 Fix i 2 I. An array of probability measures (�i(�jh))h2H over

S�i is a Conditional Probability System if for each h 2 H, �i(S�i(h)jh) = 1,
and for each h0 � h and bS�i � S�i(h0),

�i(bS�ijh) = �i(S�i(h0)jh) � �i(bS�ijh0).
The set of all CPS�s on S�i is denoted by �H(S�i).

A CPS is an array of beliefs, one for each history, that satis�es the chain

rule of probability: whenever possible, the belief at a history is an update of

the belief at the previous history based on the observed co-players�moves.18

As put forward by Battigalli and Siniscalchi [10], a player strongly believes

an event when she believes the event is true as long as not contradicted by

observation. Here the events will correspond to sets of co-players�plans. For-

mally, for any player i and any set of co-players J � In fig, I say that a CPS
�i strongly believes bSJ � SJ if for every h 2 H(bSJ), �i(bSJ � SIn(J[fig)jh) = 1.
I say that a CPS strongly believes a collection of sets when it strongly be-

lieves each set of the collection. I will often use the fact that strong belief in

a collection of sets implies strong belief in their intersection.

18Note that a player can have correlated beliefs over the plans of di¤erent co-players,
although players will not make use of joint randomization devices. The two things are
not at odds, because players can believe in spurious correlations among co-players�plans
(see, for instance, Aumann [1] and Brandenburger and Friedenberg [15]). However, strategic
independence (Battigalli [5]) could be assumed throughout the paper and the results would
not change. See the companion paper for details.
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I consider players who best respond to their beliefs. A rational player,

at every history, chooses an action that maximizes expected payo¤ given the

belief about how the co-players will play and the expectation to choose ratio-

nally again in the continuation of the game. By standard arguments, this is

equivalent to playing a sequential best reply to the CPS.

De�nition 2 Fix �i 2 �H(S�i). A plan si 2 Si is a sequential best reply to
�i if for each h 2 H(si), si is a continuation best reply to �i(�jh), i.e., for
every esi 2 Si(h),X

s�i2S�i(h)

ui(�(si; s�i))�i(s�ijh) �
X

s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
The set of sequential best replies to �i (resp., to some �i 2 �i � �H(S�i))

is denoted by bri(�i) (resp., by bri(�i)). I say that a plan si is justi�able if

si 2 bri(�i) for some �i 2 �H(S�i).

I consider players who always ascribe to each co-player the highest level

of strategic sophistication that is compatible with her past behavior. This

means that players strongly believe that each co-player is rational; strongly

believe that each co-player is rational and strongly believes that everyone else is

rational; and so on. This form of common strong belief in rationality (Battigalli

and Siniscalchi [10]) is captured by the following version of extensive-form-

rationalizability, which I will call Rationalizability for brevity.

De�nition 3 Let S0 := S. Fix n > 0 and suppose to have de�ned ((Sqj )j2I)
n�1
q=0 .

For each i 2 I and si 2 Si, let si 2 Sni if si 2 bri(�i) for some �i 2 �H(S�i)

that strongly believes ((Sqj )j 6=i)
n�1
q=0 .

Finally, let S1i := \n�0Sni . The pro�les S1 are called rationalizable.

De�nition 3 modi�es strong rationalizability of Battigalli [7] by substituting

strong belief in (Sq�i)
n�1
q=0 with strong belief in (S

q
j )
n�1
q=0 for each j 6= i. Strong

belief in (Sqj )j 6=i is more restrictive than strong belief in S
q
�i, because it requires

to believe that each co-player j is following a plan in Sqj at every history com-

patible with just Sqj , even if not compatible with S
q
k for some other co-player
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k. This is irrelevant for Rationalizability,19 but the analogous requirement will

play an important role in Agreement-rationalizability, where it allows to better

scrutinize the promises of each individual co-player (see the next section).

An example of Rationalizability is o¤ered by the formal analysis of the

entry game in Section 4.2.

3.3 Agreements, belief in the agreement, and Agreement-

rationalizability

Players talk about their plans for the game before the start. I assume that:

� Players do not coordinate explicitly as the game unfolds: all the oppor-
tunities for coordination are discussed beforehand.

� No subset of players can reach a private agreement, secret to co-players.

� Players do not agree on the use of (joint) randomization devices.20

Under these assumptions, agreements can be modeled as follows:

De�nition 4 An agreement is a pro�le e = (ei)i2I where each ei = (e0i ; e
1
i ; :::; e

ki
i )

is a chain of sets of rationalizable plans:

e0i � e1i � ::: � ekii � S1i :

First, an agreement speci�es for each player i a set of plans e0i that i

promises to follow. Second, the agreement can also specify alternative sets

of plans eni (n = 1; :::; ki) that player i promises to follow in case she fails to

19All the classical de�nitions of extensive-form rationalizability (Pearce [31], Battigalli [6],
Battigalli and Siniscalchi [10]) are outcome-equivalent in this context.
20The use of randomization devices can be easily introduced in the methodology. Note

however that a player would lack the strict incentive to use an individual randomization
device over the own actions. Therefore, in absence of joint randomization devices, only sets
of outcomes instead of outcome distributions could be enforced anyway. As Pearce [31] puts
it, �this indeterminacy is an accurate re�ection of the di¢ cult situation faced by players in
a game.�
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follow any of the plans in en�1i . So, the plans in eni nen�1i will be relevant for

co-players�beliefs only after a deviation by player i from the plans in en�1i .21

With respect to a strategy pro�le, which can be seen as a complete agree-

ment, an agreement can instead specify only partially, or not at all, what a

player should do from some history onwards. This is obtained as follows. First,

e0i and each e
n
i nen�1i need not be singletons. Second, some history h may not

be allowed by any plan in ekii ; in this case, the agreement is silent regarding

what player i should do from h onwards. Nonetheless, just like a strategy pro-

�le, an agreement can also pin down exactly one move for each player at each

history: see the second example of Section 5.2, where the agreement coincides

with a SPE.

I will often focus on reduced agreements, where each player i is silent re-

garding how she would play after own deviations from the plans in e0i . Reduced

agreements do not require players to trust the promises of a co-player who has

already violated the agreement. Path agreements are reduced agreements that

just require players to agree on an outcome to achieve. So, players do not spec-

ify how they would react to someone else�s deviation either. Path agreements

are to be expected, for instance, when discussing deviations is �taboo�.

De�nition 5 An agreement e = (ei)i2I is:

- reduced if for every i 2 I, ei = (e0i );

- a path agreement on z 2 Z if for every i 2 I, ei = (e0i ) = (S1i (z)).

A reduced agreement remains silent regarding a deviator�s continuation

plans by not introducing alternative sets. Introducing all rationalizable plans

as e1i = S
1
i would be equivalent: these two ways of (essentially) not specifying

a player�s behavior from some history onwards will be convenient in di¤erent

contexts � see footnote 28. A path agreement on z remains (essentially)

silent regarding the behavior of all players after a deviation by featuring all

21In light of this, agreements could be given a more compact representation with just
one set of strategies (as opposed to plans of actions) for each player. However, the current
representation is way more handy to de�ne belief in the agreement (De�nition 6).
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the rationalizable plans compatible with z. The formal analysis of the game in

the Introduction, carried out in Section 4.2, o¤ers examples of reduced, path,

and non-reduced agreements.

I say that player i believes in the agreement if she believes as long as

possible that each co-player j is carrying out a plan in e0j ; and when this is no

more possible, she believes as long as possible that j is carrying out a plan in

e1j ; and so on.
22

De�nition 6 Fix an agreement e = (ei)i2I . I say that player i believes in the
agreement when, for each j 6= i, �i strongly believes e0j ; :::; e

kj
j .

If player j is observed to deviate from e
kj
j , that is, a history h 62 H(e

kj
j ) is

reached, from then on player i�s beliefs about j�s behavior are unrestricted. Let

�e
i denote the set of all the CPS�s �i where player i believes in the agreement.

I take the view that players re�ne their beliefs about co-players�behavior

through strategic reasoning based on rationality and the agreement. In partic-

ular, I assume that players, as long as not contradicted by observation, believe

that each co-player is rational and believes in the agreement; that each co-

player believes that all other players are rational and believe in the agreement;

and so on. At histories where common belief in rationality and agreement is

contradicted by observation, I assume that players maintain all orders of belief

in rationality that are per se compatible with the observed behavior, and drop

the incompatible orders of belief in the agreement. In the companion paper

[17], I provide the details of this reasoning scheme, and I show that its behav-

ioral implications are captured by an elimination procedure called Selective

Rationalizability. The de�nition of Selective Rationalizability in [17] accom-

modates any kind of �rst-order belief restrictions, and it is equivalent to the

following simpler de�nition for the analysis of agreements. (The equivalence

is shown in Supplemental Appendix IV.) Fix an agreement e = (ei)i2I .

De�nition 7 Let S0e := S
1. Fix n > 0 and suppose to have de�ned ((Sqj;e)j2I)

n�1
q=0 .

22This is reminiscent of the agreement being a basis for the CPS: see Siniscalchi [34].
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For each i 2 I and si 2 S1i , let si 2 Sni;e if si 2 bri(�i) for some �i 2 �e
i that

strongly believes ((Sqj;e)j 6=i)
n�1
q=0 .

Finally, let S1i;e := \n�0Sni;e. The pro�les S1e are called agreement-rationalizable.

Agreement-rationalizability re�nes Rationalizability with the belief in
the agreement and strategic reasoning about it. In particular, the �rst step

re�nes Rationalizability with the belief in the agreement; the second step re-

�nes a player�s plans further with the consideration that each co-player re�nes

her rationalizable plans with the belief in the agreement as well; and so on.

Agreement-rationalizability requires each player i, at every step of reason-

ing n, to strongly believe both in e0j ; :::; e
kj
j (by �i 2 �e

i ) and in S
n�1
j;e ; :::; S

0
j;e

for each co-player j. If Sn�1j;e \ e0j = ; for some j, it means that j has come to
the conclusion that she has no incentive to comply with the agreement. Then,

Sni;e is empty, because �i (�jh0) cannot give probability 1 to both Sn�1j;e and e0j
as required. But even if Sn�1j;e \ e0j 6= ;, there could be a history h that is
compatible both with Sn�1j;e and with some emj (0 � m � kj), but not with

Sn�1j;e \ emj . Then, �i(�jh) cannot give probability 1 to both Sn�1j;e and emj , and

Sni;e is empty. In light of this, non-emptiness of S
1
e means two things: com-

plying with the agreement and believing in the agreement (from any history

onwards) are both compatible with strategic reasoning.

Remark 1 If S1e 6= ;, then S1e \ e0 6= ;, and for each i 2 I and si 2 S1i;e,
there exists �i 2 �e

i that strongly believes ((S
q
j;e)j 6=i)

1
q=0 such that si 2 bri(�i).

Proof. By �niteness of the game,23 there exists M such that SMe =

SM+1
e = S1e . Then, for each i 2 I and si 2 S1i;e = SM+1

i;e , there exists �i 2 �e
i

that strongly believes ((Sqj;e)j 6=i)
M
q=0 such that si 2 bri(�i). For each j 6= i, we

have �i((S
M
j;e \ e0j)� SInfi;jgjh0) = 1, thus S1j;e \ e0j 6= ;. Since both e0 and S1e

are Cartesian sets, we obtain S1e \ e0 6= ;. Moreover, �i strongly believes also
SM+1
j;e ; SM+2

j;e ; ::: because all these sets are identical to SMj;e. �
23The results of Battigalli and Tebaldi [12] imply that Remark 1 is true also in the large

class of in�nite dynamic games they study when the belief restrictions that arise from the
agreement are compact (see [12], page 758).
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Analogously, every si 2 S1i is a sequential best reply to some �i that

strongly believes ((Sqj )j 6=i)
1
q=0.

Examples of Agreement-rationalizability are o¤ered by the analysis of the

introductory game and of the entry game in Section 4.2. In the rest of the

paper, recall that I will refer to �(e0) as the outcome set that the agreement

prescribes, and to �(S1e ) as the outcome set the agreement induces: For a set

of plans S� � S, I will still say that S� induces �(S�), as customary.

4 Self-enforceability

4.1 Credible, self-enforcing, and truthful agreements

In order to evaluate a given agreement, two features have to be investigated.

First, whether the agreement is credible or not. Second, if the agreement is

credible, whether players will certainly comply with it or not. An agreement

is credible if believing in it is compatible with strategic reasoning.

De�nition 8 An agreement e = (ei)i2I is credible if S1e 6= ;.

A credible agreement induces each player i to believe in the agreed-upon

plans that are compatible with strategic reasoning, S1�i;e \ e0�i (cf. Remark 1).
But this belief may be contradicted by the actual play, because credibility does

not imply that players will comply with the agreement, it only implies that

they may do so everywhere in the game. So, the set of outcomes induced by

the agreement (�(S1e )) may be larger than the set of outcomes players expect

given the belief in the agreement (� (S1e \ e0)). When instead the agreement
induces only the outcomes players expect, I say that the agreement is self-

enforcing.

De�nition 9 A credible agreement is self-enforcing if �(S1e ) = �(S
1
e \ e0).

In light of this, every agreement that induces one and just one outcome is

self-enforcing.
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Proposition 1 If �(S1e ) is a singleton, then e is self-enforcing.

Proof. Since �(S1e ) is a singleton, S
1
e 6= ;. Then, by Remark 1, �(S1e \

e0) 6= ;. So, since �(S1e ) is a singleton, �(S1e \ e0) = �(S1e ). �

Self-enforceability implies that, for all their re�ned beliefs, players will

comply with the agreement on the induced paths, so that no violation of the

agreement will actually occur. That is, �(S1e ) � �(e0). This inclusion can be
strict: a self-enforcing agreement may not explicitly exclude all the outcomes

that will be ruled out by strategic reasoning. When instead the agreement

speci�es directly the outcomes it induces, I say that the agreement is truthful.24

De�nition 10 A self-enforcing agreement is truthful if �(S1e ) = �(e
0).

The tools developed in Section 3 and the de�nitions above allow to assess

the implications of a given agreement among players. In the next section, I

use the game from the Introduction and the entry game of Section 2 to give a

concrete illustration of this methodology.

4.2 Examples

The game in the Introduction It is easy to check that all plans are jus-

ti�able, hence they are all rationalizable: S = S1 = S1. The table summarizes

the analysis of four possible agreements (fN:�g and fE:�g denote fN:U;N:Dg
and fE:L;E:Rg).

Agreement Reduced Path on (S;E) �Unilateral� Path on (N;W )

eA fN:Ug fSg SA fN:�g
eB fWg fE:�g fWg ; fW;E:Lg fWg

S1A;e � S1B;e fN:�g � fWg fS;N:Dg � fE:�g fN:Ug � SB fN:�g � SB
S2A;e � S2B;e fN:�g � fWg fS;N:Dg � fE:Lg fN:Ug � fWg fN:�g � SB
S1A;e � S1B;e fN:�g � fWg fSg � fE:Lg fN:Ug � fWg fN:�g � SB
Conclusion Truthful Truthful Self-enforcing Credible

24The choice of the term �truthful� is clearly inspired by the implementation literature,
although an important caveat applies: see the end of Section 5.1.
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The reduced agreement is the one proposed in the Introduction. The

belief in the agreement is given by �e
A = f�A : �A(W jh0) = 1g and �e

B =

f�B : �B(N:U jh0) = 1g. Since all plans are rationalizable (S0e = S), we have
S1A;e = brA(�

e
A) = fN:U;N:Dg and S1B;e = brB(�e

B) = fWg. Strong belief in
S1B;e and in S

1
A;e does not restrict Ann and Bob�s conjectures further with re-

spect to the belief in the agreement. Hence, S2e = S
1
e . By induction, S

1
e = S1e .

Since � (S1e ) = f(N;W )g, by Proposition 1 the agreement is self-enforcing,
and since � (e0) = f(N;W )g as well, the agreement is truthful.
The path agreement on (S;E) requires more steps of reasoning. We have

�e
A = f�A : �A(fE:L;E:Rg jh0) = 1g and �e

B = f�B : �B(Sjh0) = 1g. So, at
the �rst step of reasoning, Ann plays either S, or N:D if she gives su¢ ciently

high probability to E:R; Bob plays E and either L or R depending on his new

belief after being surprised by Ann�s deviation. Strong belief in S1A;e imposes

belief in N:D at history (N;E), so we get S2B;e = fE:Lg. Strong belief in S2B;e
imposes belief in E:L, so we obtain S3e = fSg � fE:Lg = S1e : the agreement
is self-enforcing and truthful.

In the �unilateral� agreement, Ann remains silent (e0A = SA), while Bob

promises to play W (e0B = fWg), and to play L in case he deviates to E
(e1B = fW;E:Lg). Ann�s belief in the agreement is given by

�e
A =

�
�A : �A(W jh0) = 1 = �A(E:Lj(N;E))

	
:

Then, Ann plays N:U . Consequently, Bob plays W . The agreement in-

duces (N;W ), so by Proposition 1 it is self-enforcing. With respect to the

reduced agreement, it has the seeming advantage that N:D is not agreement-

rationalizable for Ann. However, at (N:E), both actions of Bob are equally

compatible with strategic reasoning, and Ann believes in L and thus plays U

only because of Bob�s post-deviation promise. This is why requiring S1e � e0

does not seem to be a compelling strengthening of self-enforceability.

The path agreement on (N;W ) is only credible: beside the agreed outcome

(N;W ), also the outcomes where Bob plays E are compatible with strategic

reasoning. Note that, while enforcing outcome (N;W ) requires explicit threats,
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the path agreement su¢ ces to obtain the SPE outcome (S;E). This is far from

true in general, even when the SPE is unique: the variation of the game in

Supplemental Appendix I shows this point.

The entry game of Section 2 Let p be the smallest price of the incum-

bent that makes entry pro�table. To �x ideas, I am going to consider three

speci�c values of p that fall into the three cases analyzed in Section 2. The

table illustrates the �rst four steps of Rationalizability: the prices in bold are

associated with technology k = B, the prices in italics with k = A, action �en-

try� is omitted from the description of the entrant�s plans, and the no-entry

plan is denoted by N .

Case 1 (p = 76) Case 2 (p = 65) Case 3 (p = 62)

S11 [60,72], [72,84] [60,72], [72,84] [60,72], [72,84]

S12 [62,72], N [60,72], [80.5,84], N [60,72], [79,84], N

S21 60,[79,84] [60,66], [78,84] [60,66], [78,84]

S22 [62,66], N [60,66], [80.5,84], N [60,66], [79,84], N

S31 [79,81] [60,66], [78,84] [60,66], [78,84]

S32 [62,66], N [60,66], [80.5,84], N [60,66], [79,84], N

S41 [79,81] " "

S42 [63.5,64.5] " "

For each �rm, every step of reasoning n is entirely determined by the lowest

and the highest prices of the competitor, pn�1�i and pn�1�i , determined at step

n� 1, where �step-0�feasible prices range from 48 to 96 by assumption. Firm
1 best replies to any expected price between pn�1

2
and pn�12 , whereas �rm 2,

in case of entry, best replies to any expected price between maxfp; pn�1
1
g and

pn�11 (see the �rst part of Section 2 for best replies).

In Case 1, we have maxfp; p3
1
g = p3

1
; then, entry is always pro�table and

no-entry is eliminated from S42 . Note by induction that after in�nite steps of

reasoning prices converge to the (80; 64) equilibrium. Any di¤erent announce-

ment by the incumbent would con�ict with some order of belief in rationality,
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and thus is not credible (formally, it is not even allowed as an agreement).

In Cases 2 and 3, Rationalizability converges in two steps, because the

lowest and highest prices of both �rms are 60 and 84 for both the �rst two

steps. Both entry and no-entry are rationalizable, therefore there is scope

for the incumbent to deter entry with an announcement. The incumbent can

announce any rationalizable price p1 < p. Formally, this translates into the

reduced agreement with e01 = f(p1; B)g and e02 = S12 , and it induces S
1
2;e =

S12;e = fNg and S11;e = S01;e = S11 . Alternatively, in Case 2, the incumbent

can simply announce technology k = B. Formally, this translates into the

reduced agreement with e01 = f[60; 66]� fBgg and e02 = S12 .
25 Agreement-

rationalizability goes as follows (S11;e and S
2
2;e are identical to S

0
1;e and S

1
2;e).

S02;e = S
1
2 S01;e = S

1
1 S12;e S21;e S32;e

[60,66],[80.5,84],N [60,66],[78,84] [80.5,81],N [64.25,64.5] N

The prices in S12;e best reply to an expected price of the incumbent between

p = 65 (otherwise entry would not be rational) and 66 (because the incumbent

is expected to �x a rationalizable price with k = B). The prices in S21;e best

reply to beliefs over the prices in S12;e and leave no incentive to enter, so

S32;e = fNg = S12;e and S
2
1;e = S11;e. Since the agreement induces no-entry as

unique outcome, by Proposition 1 it is self-enforcing.

The incompleteness of the agreement triggers steps of reasoning that re�ne

players�plans up to the point where every belief over these plans (here S21;e)

induces the desired behavior (no-entry). Under the SPE threat p1 = 64,

instead, entry cannot be rationalized under belief in the threat (�entry�is not

in S12;e), thus no rationalizable price of the incumbent can be eliminated.

25Note that the agreement, featuring only rationalizable plans, already incorporates
strategic reasoning about rationality, which is convenient from an algorithmic viewpoint.
In Section 2, I followed instead the equivalent but more natural reasoning scheme where the
announcement does not talk of rationalizable prices, and belief in the announcement and
beliefs in rationality interact from the �rst step of reasoning.
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5 Implementability

5.1 Implementability and agreements design

I say that an agreement implements a set of outcomes P � Z when it is

self-enforcing and it induces P .

De�nition 11 A set of outcomes P � Z is implementable if there exists a
self-enforcing agreement e = (ei)i2I such that �(S1e ) = P .

A set of outcomes induced by a merely credible agreement does not corre-

spond to what players agreed on and believe in. For this reason, implementa-

tion requires the agreement to be self-enforcing.

Which sets of outcomes are implementable? How to design agreements that

implement them? This section aims to answer these questions.

By the de�nitions of implementability and self-enforceability, every imple-

mentable outcome set is induced by S1e \ e0 for some self-enforcing agreement
e. This provides the �rst necessary conditions for implementability.

Proposition 2 For every self-enforcing agreement e = (ei)i2I , the set S� =

�i2IS�i := S1e \ e0 satis�es the following properties:
Realization-strictness: For every i 2 I and �i that strongly believes S��i,

�(bri(�i)� S��i) � �(S�);

Self-Justi�ability: For each i 2 I and si 2 S�i , there exists �i that strongly
believes (S�j )j 6=i and (S

1
j )j 6=i such that si 2 bri(�i).26

Corollary 1 If a set of outcomes is implementable, then it is induced by a
Cartesian set of rationalizable pro�les that satis�es Realization-strictness and

Self-Justi�ability.
26The focus will always be on rationalizable plans that can be justi�ed under strong belief

in the rationalizable plans of the co-players. Basically, it is as if the game is reduced to
(S1i )i2I . Then, one could in principle take this reduced strategic form and reformulate the
analysis in terms of lexicographic beliefs instead of CPS�s. This alternative approach would
be generically equivalent.
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Self-Justi�ability says that, for each player i, every plan in S�i is justi�able

under strong belief that each co-player j follows a plan in S�j , and some other

rationalizable plan otherwise. Realization-strictness says that players have

the strict incentive to stay on the paths induced by S� whenever they strongly

believe that the co-players follow plans in S��i. Analogously, say that a Nash

equilibrium s� = (s�i )i2I is realization-strict when it provides strict incentive

to stay on path; that is, argmaxsi2Si ui(�(si; s
�
�i)) = Si(�(s

�)) for every i 2 I.
Then, when S� induces a unique outcome, Realization-strictness boils down

to S� being a set of realization-strict Nash equilibria.

Proposition 3 A Cartesian set of rationalizable pro�les that induce the same
outcome satis�es Realization-strictness if and only if every element is a realization-

strict Nash equilibrium.

Corollary 2 If an outcome is implementable, then it is induced by a realization-
strict Nash equilibrium in rationalizable plans.

Corollary 1 simpli�es the search for implementable outcome sets. First,

Rationalizability is performed. This is a standard elimination procedure that

does not depend on agreements. Then, one must look for sets of rationaliz-

able plans that satisfy Realization-strictness and Self-Justi�ability. However,

there is no guarantee that the induced outcome set is implementable, because

Realization-Strictness and Self-Justi�ability are necessary but, in general, not

su¢ cient conditions for implementability. The next step is �nding additional

conditions on the set of plans or conditions on the game that, together with

Realization-Strictness and Self-Justi�ability, ensure implementability. De�ni-

tion 13 of a Self-Enforcing Set will provide su¢ cient conditions for all games.

To this end, I must �rst de�ne the �closure�of a self-justi�able set.

De�nition 12 Fix a Cartesian set of rationalizable pro�les S� = �i2IS�i �
S1 that satis�es Self-Justi�ability. For each i 2 I, let S�i be the set of all
si 2 S1i such that si 2 bri(�i) for some �i that strongly believes (S�j )j 6=i and
(S1j )j 6=i. I call S

�
= �i2IS

�
i the closure of S

� (under rationalizable behavior).
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The closure of S�, for each player i, consists of all the rationalizable plans

that can be justi�ed under strong belief that each co-player j follows a plan

in S�j , and some other rationalizable plan otherwise. By Self-Justi�ability of

S�, S
�
includes S� itself.

De�nition 13 A Cartesian set of rationalizable pro�les S� is a Self-Enforcing
Set if it satis�es Realization-strictness, Self-Justi�ability, and:
Forward Induction: For each i 2 I and si 2 S

�
i , there exists �i that strongly

believes (S�j )j 6=i, (S
�
j)j 6=i, and (S

1
j )j 6=i such that si 2 bri(�i).

Forward Induction says that, for each player i, every plan in S
�
i is justi�able

under strong belief that each co-player j follows a plan in S�j , and some other

plan in S
�
j otherwise (or a rationalizable plan, as usual). Essentially, the

closure of a SES is the set of plans that players may follow under belief in the

SES, and Forward Induction requires these plans to remain justi�able after

the additional consideration that the co-players believe in the SES as well.

Consider now the agreement on the SES; that is, the reduced agreement

e = (ei)i2I with e0i = S�i for each i 2 I. By de�nition of closure, S1e =

S
�
. By Forward Induction, S

�
is not re�ned by forward induction reasoning

based on the agreement. Hence, we obtain S1e = S
�
. A SES and its closure

are outcome-equivalent: by Self-Justi�ability, S� � S
�
, and by Realization-

strictness, �(S
�
) � �(S�).27 Therefore, the agreement on the SES implements

precisely the SES outcomes �(S�).

Proposition 4 The reduced agreement on a SES is truthful.

Corollary 3 If an outcome set is induced by a SES, then it is implementable
(with a truthful, reduced agreement).

A simple SES is constructed in the �rst example of the next subsection. In

Section 6 I uses SES�s to solve the Hotelling problem.

27So, in terms of outcomes, SES�s are �closed under rationalizable behavior�, and indeed
boil down to sets closed under rational behavior (Basu and Weibull [4]) in static games.
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The current gap between necessary and su¢ cient conditions for imple-

mentability is given by a seemingly strong condition: Forward Induction. But

the power of Forward Induction is mitigated by Realization-strictness and

Self-Justi�ability. In a nutshell, Self-Justi�ability already captures forward

induction reasoning based on the beliefs in rationality, and by Realization-

strictness any deviation from the paths induced by S� cannot be rationalized

under the view that the deviator believes in S�. Then, forward induction rea-

soning based on S� kicks in only after later deviations by other co-players.

With this, I am going to argue that, in a game with two players or two stages,

Forward Induction is implied by Realization-strictness and Self-Justi�ability.

I say that a game has two stages when Z � A [ A2.

Proposition 5 In games with 2 players or 2 stages, any Cartesian set of
rationalizable pro�les that satis�es Realization-strictness and Self-Justi�ability

also satis�es Forward Induction.

The proof of Proposition 5 is based on the following ideas. Recall that each

S
�
i consists of all the rationalizable plans of player i that can be optimal under

strong belief in (S�j )j 6=i and (S
1
j )j 6=i. Forward Induction requires these plans

to remain optimal when strong belief in (S
�
j)j 6=i is also imposed. Now, Self-

Justi�ability yields S� � S�, therefore strong belief in S�j can have additional
bite with respect to strong belief in S�j only at histories that are compatible

with S
�
j but not with S

�
j . However, Realization-Strictness yields �(S

�
) � �(S�),

therefore such histories are incompatible with S
�
i in two-player games, thus are

irrelevant for Forward Induction, and do not exist in two-stage games, because

the �rst-stage optimal moves of j must be compatible with S�j .

The important consequence of Proposition 5 is that, in games with two

players or two stages, SES�s fully characterize implementable outcome sets

and provide truthful reduced agreements that implement them.

Theorem 1 In games with 2 players or 2 stages, the following hold:

1. a Cartesian set of rationalizable pro�les is a Self-Enforcing Set if and

only if it satis�es Realization-strictness and Self-Justi�ability;
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2. an outcome set is implementable if and only if it is induced by a Self-

Enforcing Set;

3. every implementable outcome set is implemented by a truthful, reduced

agreement.

Proof. Statement 1 follows from Proposition 5. Statement 2 follows from

statement 1 and Corollary 1 for the �only if�part, and from Corollary 3 for

the �if�part. Statement 3 follows from statement 2 and Proposition 4. �

Moreover, in two-player games, Realization-strictness implies Self-Justi�ability

when there is only one path to follow.

Proposition 6 In 2-player games, any Cartesian set of rationalizable pro�les
that induces a unique outcome and satis�es Realization-strictness also satis�es

Self-Justi�ability.

Then, in two-player games, the implementable outcomes are fully charac-

terized by realization-strict Nash equilibrium in rationalizable plans.

Theorem 2 In 2-players games, an outcome is implementable if and only if it
is induced by a realization-strict Nash equilibrium in rationalizable plans, and

it is implemented by the truthful, reduced agreement on the equilibrium itself.

Proof. �Only if�comes from Corollary 2. For �if�and the �nal statement:
let s� = (s�i )i2I 2 S1 be a realization-strict Nash equilibrium. By Proposition
3, the singleton fs�g satis�es Realization-strictness. By Proposition 6, it also
satis�es Self-Justi�ability. By Proposition 5, it also satis�es Forward Induc-

tion, thus it is a SES. Then, by Proposition 4, �(s�) is implemented by the

reduced agreement e = (ei)i2I with e0i = fs�i g for each i 2 I. �

How to �ll the gap between necessary and su¢ cient conditions in games

with more than two players and stages? Forward Induction may be violated

because a deviation from a candidate SES would induce further deviations

by other players down the line. Possibly, this can be avoided by restricting

the continuation plans of the deviators, compatibly with forward induction

reasoning. This is what tight agreements do.
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De�nition 14 An agreement e = (ei)i2I is tight when:

T1 e0 satis�es Realization-strictness;

T2 for every i 2 I and h 2 H(S1i ),

ekii \ Si(h) 6= ;;

T3 for every i 2 I and h 2 H(bri(�e
i ) \ S1i ), there is n � ki such that

; 6= eni \ Si(h) � bri(�e
i ):

Remark 2 If e = (ei)i2I is tight, then e0 satis�es Self-Justi�ability.

Like a SES, a tight agreement initially speci�es plans that satisfy Realization-

strictness (by T1) and Self-Justi�ability (by Remark 2). Di¤erently from a

SES, a tight agreement also speci�es alternative plans e1i ; :::; e
ki
i that each

player i should follow, until all histories compatible with her rationalizable

plans are reached (this is T2). All histories that player i can reach under

belief in the agreement, H(bri(�e
i )\ S1i ), are also reached by a set of agreed-

upon plans eni that can be justi�ed under belief in the agreement (this is T3).

So, T2 and T3 guarantee that, when player j strongly believes that each co-

player i follows plans in e0i ; :::; e
ki
i , her beliefs are also compatible with forward

induction reasoning based on rationality and on the agreement.28 This makes

up for the fact that e0 does not satisfy Forward Induction. Therefore, the

agreement is credible. By Realization-strictness and Self-Justi�ability of e0,

the agreement is self-enforcing and truthful.

Proposition 7 Tight agreements are truthful.
28Relatedly, given a SES S�, one can anticipate these forward induction considerations

in the agreement and transform it into a tight agreement as follows: for each i 2 I, e0i =
S�i , e

1
i = S

�
i , e

2
i = S1i . Introducing e

2
i is immaterial for the agreement but veri�es T2:

introducing all or none of the rationalizable plans of a player are equivalent ways not to
restrict beliefs, but the �rst is convenient for tight agreements, the second for SES�s.
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Theorem 3 An outcome set is implementable if and only if it is prescribed by
a tight agreement.

Proof. �If�comes from Proposition 7. �Only if�: see the Appendix. �

Tight agreements close the gap between necessary and su¢ cient conditions

for implementability in all games,29 and the roadmap for the joint search of

implementable outcome sets and agreements that implement them. If a can-

didate set of outcomes is implementable, a tight agreement that implements

it can be found by following the search for SES�s �rst, and introducing alter-

native plans if Forward Induction cannot be satis�ed. A tight agreement is

constructed in this way in the second example of the next subsection.

Since tight agreements are truthful and fully characterize implementable

outcomes, we have the following �revelation principle�for agreements design.

Corollary 4 Every implementable outcome set is implemented by a truthful
agreement.

This means that if players want to implement an outcome z (or a set P ),

there is no use of being vague about it in the agreement.

The use of the terms �truthful�and �implementation�is indeed inspired by

an analogy with robust implementation (Bergemann and Morris [14]). A ro-

bust mechanism implements the outcome assigned by the social choice function

to players�types30 for all their hierarchies of beliefs about co-players�types; a

self-enforcing agreement implements (a subset of) the agreed-upon outcome(s)

for all players�re�ned beliefs. When players use direct mechanisms, they truth-

fully reveal their types and the corresponding outcome obtains; when players

use truthful agreements, they declare precisely the outcome(s) they want to

29A word of caution: extending the �only if�direction of Theorem 3 to games with in�nite
horizon probably requires to introduce agreements of in�nite length.
30In this paragraph, I use the term types to mean payo¤-relevant types. In robust im-

plementation, precisely because it does not rely on a common prior, a given payo¤-relevant
type must be allowed to have di¤erent beliefs about the co-players� types, which become
part of her full epistemic type: see, e.g., Penta [32] in a completely belief-free setting, and
Ollar and Penta [30] in a setting with partial belief restrictions.
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achieve. Both direct mechanisms and truthful agreements su¢ ce for imple-

mentation. Note though an important di¤erence: while a direct mechanism

requires players to specify only their type, a truthful agreement, beside the

outcome(s), typically needs to specify o¤-path behavior. This is the price to

pay for the agreement being a �soft mechanism�, which does not change the

rules of the game.

5.2 Further examples

The aim of this section is two-fold. First, it provides examples of (the search

for) a SES and a tight agreement where, respectively, realization-strict Nash

and SES�s do not implement the desired outcome. Second, it shows that,

after a deviation from the desired path, agreement incompleteness regarding

the reaction of co-players (as allowed by SES) or restrictions to the continua-

tion plans of the deviator (as allowed by tight agreements) can be necessary

for implementation. This complements the entry game of Section 2, where

the incumbent can credibly specify a precise reaction that deters entry, while

specifying the behavior of the entrant is unneeded or even precludes the im-

plementation of no-entry.

Peacekeeping game31 Dave, a weapons producer, can Instigate a con-

�ict between Ann and Bob. If he does, Ann and Bob can engage in an Arms

Race, or remain Peaceful. Engaging in the arms race transfers 1 util to Dave.

At the same time, Cleo, a superpower, can Intervene to prevent an escalation

of the con�ict and impose sanctions against Dave. The cost of the intervention

is 3 for Dave and 2 for Cleo; however, if Ann or Bob engages in the arms race

and the other does not, the unarmed player falls under Cleo�s in�uence and

has to share its 6 units of resources with Cleo. If Cleo does not intervene and

Ann or Bob engage in the arms race, the con�ict escalates. Cleo su¤ers a

disutility of 1 from the war. If both Ann and Bob are armed, the war comes

to a costly impasse; otherwise, the unarmed player gets conquered and loses

31This game is freely inspired by the leading example in Greenberg [23].
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all its resources to the other. The game is represented in the �gure, where the

payo¤s are in alphabetical order (Cleo chooses the matrix).

DAVE � Out �! 0; 0; 0; 0

Instigate #

Int Arms Race Peaceful Not Arms Race Peaceful

AR �1;�1;�2;�1 �1;�3; 1;�2 AR �3;�3;�1; 2 5;�6;�1; 1
P �3;�1; 1;�2 0; 0;�2;�3 P �6; 5;�1; 1 0; 0; 0; 0

The game has only one SPE, where Dave instigates, Cleo does not intervene,

and Ann and Bob engage in the arms race.32 However, Cleo would rather stop

Dave from instigating the con�ict by threatening to intervene. Intervening

is in Cleo�s interest only if Ann and Bob do not coordinate.33 This form

of agreement incompleteness is enabled by je0j > 1 (even when �(e0) is a

singleton) and allowed by SES�s. Hence, I show that there is a SES where

Cleo threatens to intervene, Ann and Bob remain silent, and Dave does not

instigate. All plans are justi�able, hence rationalizable. Let S� = fAR;Pg �
fAR;Pg � fIntg � fOutg. To show that S� is a SES, since the game has

2 stages, by Theorem 1 it is enough to show Realization-strictness and Self-

Justi�ability. For Dave, they both follow from the fact that brD(�D) = fOutg
for every �D that strongly believes S�C . For each i = A;B;C, Realization-

strictness trivially follows from �(Si � e0�i) = f(Out)g. There remains to

show Self-Justi�ability. For Cleo, Int is justi�ed by any �C that strongly

believes S�D such that (for instance) �C(sA 6= sBj(Inst)) � 1=2. For Ann,

AR (resp., P ) is justi�ed by any �A that strongly believes S
�
C and S

�
D such

that �A(sB = ARj(Inst)) � 1=3 (resp., �A(sB = P j(Inst)) � 2=3); likewise
for Bob.
32Ann and Bob may have the incentive to be peaceful only if they assign probability at

least 2=3 to the other being peaceful and Cleo intervening. But if each of them is peaceful
with probability at least 2=3, Cleo would rather not intervene.
33In view of Cleo�s intervention, coordinating is not an obvious task for Ann and Bob:

coordinating on Peaceful dominates coordinating on the Arms Race, but the Arms Race is
a way less risky action. Moreover, to justify Cleo�s threat to Dave, it is in the interest of
Ann and Bob not to establish any form of coordination, if, as assumed, it would not remain
secret to Cleo�s intelligence.
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Should I stay or should I go? In the department of dean Ann there are

two game theorists, Bob and Cleo, who are up for midterm review. Ann max-

imizes the bene�t from game theorists to the department, which is marginally

decreasing, minus the opportunity cost of their salaries, which is marginally

increasing. Ann wants to o¤er to Bob and Cleo the renewal at salary r, lower

than the market salary w, but su¢ cient to make them prefer to Stay if they

have to pay cost g < w � r to Go on the market (they have a preference for
staying). If they both accept, the game ends. If one accepts and the other does

not, say Bob, the game continues in the next year as in the �gure. Cleo can

Stay or Go on the market as well; Ann can Shut down Bob�s position, or keep

it Open. If Ann shuts down the position and Cleo goes on the market, Ann is

in a weak bargaining position and Cleo obtains a raise to v > r + g (v < w).

If Ann keeps Bob�s position open and Cleo stays, Bob gets the position back

and bargains a salary t > r + g (t < v). With both game theorists on the

market and the position open, Ann starts a job search and bargaining gets

delayed to the market stage. Ann can Hire or Not; Bob and Cleo can Stay or

Go for good. As deadlines approach, players must make their choices without

knowing the choices of others. If Ann hires a new game theorist at salary w,

she will keep only Cleo if she stays, or Bob if he stays and Cleo leaves, in both

cases at salary r. If Ann does not hire and Bob and Cleo do not leave, they

will bargain a salary t; if one leaves and the other stays, the latter bargains

a salary u with t < u < v. Ordinal payo¤s compatible with this story are in

the �gure (cardinal payo¤s will not matter for the analysis). In the last stage,

Bob chooses the row.

8; 3; 3  � Stay � Bob � Go �!
(Cleo stays)

AnC Stay Go

Open 7; 4; 3 �� �! �

Shut 6; 2; 3 3; 2; 6

� :

Hire Stay Go Not Stay Go

Stay 2; 0; 1 2; 1; 2 Stay 5; 4; 4 4; 5; 2

Go 2; 2; 1 1; 2; 2 Go 4; 2; 5 0; 2; 2
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Before o¤ering the renewal, Ann clari�es her intention to shut down a game

theorist position if one of them, say Bob, will not accept the o¤er. But this will

induce Cleo to bargain a higher salary by going on the market. In turn, this

may induce Ann to increase her bargaining power by keeping Bob�s position

open to look for potential new hires. However, Ann has no real intention to

hire. Understanding this with forward induction reasoning, Cleo will not leave.

Then, Ann will actually keep the position open but not hire. This leaves the

position to Bob at salary t > r+ g. How to solve the impasse? Bob and Cleo,

who are happy to secure their renewals at salary r, convene with Ann that if

they will all be on the market, they will go their separate ways: Bob and Cleo

will leave and Ann will hire.

We are going to construct this agreement and show it is tight through the

roadmap of Section 5.1. We look for an agreement that implements outcome

(Stay) in the game of the �gure; by symmetry, it can be extended to the whole

game. All plans are justi�able, hence rationalizable. Thus, we look for e0 that

induces (Stay) and satis�es Realization-strictness and Self-Justi�ability. Bob�s

Realization-strictness is satis�ed if e0A = fSg, or if O:N 62 e0A and S 62 e0C . In
the �rst case, Ann�s and Cleo�s Self-Justi�ability require, respectively, G:G 2
e0C and S 62 e0C , so we have fG:Gg � e0C � fG:S;G:Gg. The second case
boils down to the �rst, because Ann�s Self-Justi�ability requires O:H 62 e0A as
well. Thus, we focus on agreements with e0A = fSg, e0B = fSg, and either
e0C = fG:Gg, or e0C = fG:S;G:Gg. Does any of the two constitute a SES? No.
In both cases, the closure of e0 for Ann is fS;O:Ng: under belief that Cleo goes
on the market, O:H is never optimal. But then, Forward Induction is violated

for Cleo, because the only sequential best reply under strong belief in fS;O:Ng
is G:S. Therefore, we look for a tight agreement. Let e0 = f(S; S;G:G)g.
Restrict Bob�s behavior after his deviation by imposing e1B = fS;G:Gg. Also,
let e1A = fS;O:Hg, so that all histories are reached by all players and T2 is
satis�ed. T1 is Realization-strictness of e0. Is T3 satis�ed? Under belief in

the agreement, players play exactly e0, so it immediate to check that T3 holds.

Note that the tight agreement is a �complete agreement�, in that it speci�es

one action for each player and history, and it corresponds to a SPE.
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6 Application - discretized Hotelling

In a separate paper [16], I show that in the original Hotelling model with

two �rms, two stages (location-pricing), and linear transportation cost, the

transportation-e¢ cient location pair (1=4; 3=4) is the only symmetric location

pair that is induced by a SES.

The intuition is simple. When �rms locate at (a1; a2) 2 [0; 1]2 with a1 � 1=4
and a2 � 3=4, there is only one rationalizable price pair. In this pricing

solution, given the location of the competitor, the closer a �rm is to the center,

the higher its pro�t. This generates the incentive to move inwards, up to

(1=4; 3=4).

Suppose now �rms are at (1=4; 3=4). If a �rm, say �rm 1, deviates towards

the middle, a multiplicity of rationalizable prices arises. This is because, as

�rms get closer to each other, it becomes cheaper to undercut the competitor�s

price by more than the transportation cost between the two locations, so to

conquer the whole market. In particular, �rm 1 has the incentive to undercut

any price of �rm 2 that makes the deviation pro�table. In turn, �rm 2 has the

incentive to respond to an undercutting attempt with a low price, which �rm

1 has no incentive to undercut. Hence, the SES inducing locations (1=4; 3=4)

is sustained by a very intuitive, incomplete, non-equilibrium threat: �if you

deviate towards the middle, I will make sure you won�t undercut me!�

The same uncertainty about prices prevents the existence of a SES where

�rms locate at (a1; a2) with a1 2 (1=4; 1=2) and a2 = 1� a1. Di¤erently from
SPE, SES�s do not reduce this uncertainty to one probability distribution.

Any set of prices �rms could credibly agree on includes undercutting attempts.

Then, in case of pessimistic belief over this set, a �rm has the incentive to �give

in�and move outwards, to a location where undercutting is not rationalizable

anymore for the competitor.

Here I replicate existence and uniqueness of the SES solution in a dis-

cretized version of the model. To simplify exposition, I will also impose that

�rm 1 locates in the �rst half and �rm 2 in the second half of the spectrum, and

I will consider only SES�s that are symmetric also in prices, not just locations.
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Model Each �rm i = 1; 2 chooses a location ai from the set of integers Ai,

where A1 = f0; :::; 49g and A2 = f51; :::; 100g. After observing the chosen
locations, each �rm chooses an integer price pi below an arbitrarily large pro-

hibitive threshold. Then each consumer j 2 [0; 100] buys one unit from the

�rm i that minimizes pi + jj � aij, breaking ties at random. Firms maximize
revenues. All the arguments will be provided from �rm 1�s viewpoint; for �rm

2 symmetric arguments apply. I will write Si(ai) for the set of plans si with

si(h
0) = ai, and I will write si(a�i) for si((si(h0); a�i)).

Optimal prices Fix a location pair (a1; a2) and a price p2 of �rm 2. Let

D1(p1; p2) =
a1 + a2
2

+
1

2
(p2 � p1):

When p2 � (a2 � a1) < p1 < p2 + (a2 � a1), D1(p1; p2) represents �rm 1�s

demand; thus, among these values of p1, the closer p1 to

pF1 (p2) := argmaxep12R ep1D1(ep1; p2) = a1 + a2
2

+
1

2
p2;

the higher �rm 1�s revenues. Let:

p�1 (p2) : = p2 � (a2 � a1)� 1;
p+1 (p2) : = p2 + (a2 � a1)� 1:

Undercutting p2 with p�1 (p2) brings demand 100. The candidate best replies

to p2 are p�1 (p2), and either the closest integers to p
F
1 (p2), if p

�
1 (p2) < p

F
1 (p2) <

p+1 (p2), or p
+
1 (p2), if p

F
1 (p2) � p+1 (p2).34 It is useful to record that the integer

part of pF1 (p2), denoted by
�
pF1 (p2)

�
, best replies to p2 whenever pF1 (p2) �

p+1 (p2) and
35

p2 � p2 := 400� a1 � a2 � 40
p
100� a2:

34When a2 is close to 100, also p1 = p2 � (a2 � a1) can best reply to p2, however this
situation will never materialize in the analysis. Instead, p1 = p2+(a2�a1) is never optimal,
because it brings demand a1=2, while p

+
1 (p2) = p1 � 1 brings D1(p+1 (p2); p2) > a1.

35Since pF1 (p2) is the average of two integers, either it is integer, or its integer part is
one of the closest integer. Price p2 is de�ned by equation (4) in the Appendix. As apparent
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For �rm 2, the expressions for p�2 (p1) and p
+
2 (p1) are unchanged, and

pF2 (p1) = 100� a1 + a2
2

+
1

2
p1;

p1 = 200 + a1 + a2 � 40
p
a1:

There is a unique pair (p�1; p
�
2) 2 R2 such that p�1 = pF1 (p�2) and p�2 = pF2 (p�1):

(p�1; p
�
2) =

�
200 + a1 + a2

3
;
400� a1 � a2

3

�
:

When clear from the context, I will not say explicitly at which locations I am

computing pi, p
�
i , p

F
i (p�i), p

�
i (p�i), and p

+
i (p�i).

Existence Let z := ((a1; a2); (p�1; p
�
2)) = ((25; 75); (100; 100)). Let

S�i =
�
si 2 S1i \ Si(z)

��8a0�i 6= a�i; si(a0�i) < pi	 ; i = 1; 2.
I show that S� = S�1 � S�2 is non-empty and satis�es Realization-Strictness.
Then, by Proposition 6, S� satis�es also Self-Justi�ability, and thus by Theo-

rem 1 it is a SES.

At locations (25; 75), given p�2 = 100, p
�
1 = 100 brings revenues 5000, while

p�1 (p
�
2) = 49 brings revenues 4900. Hence, p

�
1 best replies to p

�
2.

For every a01 6= 25, at (a01; 75) we have p2 = 125� a01 and

pF1 (p2) = 100 < 200� 2a01 � 1 = p+1 (p2):

Hence, pF1 (p2) best replies to p2 and brings demand 50 and revenues 5000.

So, for every s2 2 S�2 , �rm 1�s revenues against s2(a01) < p2 are lower than 5000.
Then, for every �1 that strongly believes S

�
2 , the set of continuation best replies

from that equation, in the continuous model p2 � p2 is also a necessary condition for pF1 (p2)
to be a best reply; here it is not because undercutting requires to lower the price by an
entire unit with respect to p2 � (a2 � a1). As a consequence, at (a01; 75) with a01 > 25, for
some k > 1, �rm 1 has no incentive to undercut any p2 2 (p2; p2 + k), although it would
make the deviation from the SES path pro�table.
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to �1(�jh0) (and �1(�j(25; 75))) coincides with S1(z). Thus, br1(�1) � S1(z),
establishing Realization-Strictness.

Now I show that S�1 � S�2 is non-empty. Suppose by induction that

S�i;n :=
�
si 2 Sni \ Si(z)

��8a0�i 6= a�i; si(a0�i) < pi	 6= ;; i = 1; 2.
For every �2 that strongly believes S

�
1;n, as shown above, the set of continuation

best replies to �2(�jh0) and �2(�j(25; 75)) coincides with S2(z), thus br2(�2) �
S2(z). So, Sn+12 \ S2(z) 6= ;. Then, for each a01 6= 25 we can de�ne

p
a01
2 := min

�
p2
��9s2 2 Sn+12 \ S2(z); s2(a01) = p2

	
;

and �x �a
0
1
2 that strongly believes Sn1 ; :::; S

0
1 such that s

0
2(a

0
1) = p

a01
2 for some

s02 2 br2(�
a01
2 ). By S

�
1;n � S1(25), I can construct �2 that strongly believes

S�1;n; S
n
1 ; :::; S

0
1 such that �2(�j(a01; 75)) = �

a01
2 (�j(a01; 75)) for each a01 6= 25 (the

chain rule is satis�ed). Fix the unique s2 2 S2(z) such that s2(a01) = p
a01
2 for

each a01 6= 25; s2 is a continuation best reply to �2(�jh) for all h 2 H(s2), thus
s2 2 br2(�2) � Sn+12 . Suppose by contradiction that S�2;n+1 = ;, so s2 62 S�2;n+1.
Thus, s2(a01) � p2 for every a01 in a non-empty subset eA1 of A1n f25g. Fix �1
that strongly believes Sn2 ; :::; S

0
2 with �1(s2jh0) = 1. Recall that �rm 1�s rev-

enues after z and at any (a01; 75) against p2 are identical. Then, there exist

a01 2 eA1 and s1 2 br1(�1) � Sn1 such that s1 2 S1(a01) and p1 := s1(75) is the
smallest best reply to s2(a01) = p

a01
2 � p2. With this I will show in the next

paragraph that there is a best reply p02 < p
a01
2 to p1. Then, for any �02 that

strongly believes S�1;n; S
n
1 ; :::; S

0
1 with �

0
2(s1j(a01; 75)) = 1, there is s02 2 br2(�02) �

S2(z) \ Sn+12 such that s02(a
0
1) = p

0
2, contradicting the de�nition of p

a01
2 .

If p1 = p�1 (p
a01
2 ), any best reply to p1 is below p

a01
2 . So, suppose p1 6= p�1 (p

a01
2 ).

Consider �rst a01 < 25. We have p
a01
2 � p2 = 125� a01 > p�2. So, p

a01
2 = p

�
2+ k for

some k 2 R+. By p1 6= p�1 (p
a01
2 ), p1 is bounded above by p

F
1 (p

a01
2 ) = p

�
1 + k=2.

So, the smallest best reply to p1 is bounded above by either p�2 (p1) < p
a01
2 , or

pF2 (p
F
1 (p

a01
2 )) = p

�
2 + k=4 < p

a01
2 .
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Consider now a01 > 25. Recall that �rm 1�s best reply to p2 is 100. Then,

since p1 best replies to p
a01
2 � p2 without undercutting it, p1 must be at least

100. For �rm 2, against 100, recall that the optimal revenues are 5000 at

(25; 75), so when �rm 1 is closer to the center they are lower than 5000 without

undercutting, while they are at least 5000 with p�2 (100) � 50. Thus, p�2 (100)
best replies to 100, so a fortiori p�2 (p1) < p

a01
2 best replies to p1 � 100.

Uniqueness Fix (a1; a2) = (a1; 100� a1) with a1 6= 25. Suppose by contra-
diction that there is a symmetric SES S� = S�1�S�2 inducing locations (a1; a2).
By Self-Justi�ability and Realization-strictness, S� must prescribe at (a1; a2)

a symmetric set of prices P � � P � closed under rational behavior (CURB),
that is, P � is exactly the set of prices that best reply to some belief over P �.

It is easy to see that S1 must prescribe a best response set (BRS) of prices

P1 � P2 at every location pair (a01; a02) that is compatible with S1, that is,
Pi is contained in the set of prices that best reply to some belief over P�i.

In the Appendix, I show the existence of a01 6= a1 such that for every symmet-
ric CURB set P � P at (a1; a2) and every BRS P1 � P2 at (a01; a2), �rm 1�s

revenues against minP2 at (a01; a2) are not lower than against minP at (a1; a2).

With this, I will show in the next paragraph that (a01; a2) is indeed compatible

with S1. Then, for any s2 2 S�2 � S12 with s2(a1) = minP �, �rm i�s revenues

against s2(a01) at (a
0
1; a2) are not lower than against s2(a1) at (a1; a2). Hence,

for every �1 with �1(s2jh0) = 1, we have br1(�1) 6� S1(a1). Since �1 strongly
believes S�2 , this contradicts Realization-strictness.

Fix a BRS P1 � P2 at (a01; a2). Fix s2 2 S�2 such that s2(a1) = minP �. By
Self-Justi�ability, there is �2 that strongly believes S

�
1 such that s2 2 br2(�2).

By s2 2 S12 , there is e�2 that strongly believes (Sq1)1q=0 such that s2 2 br2(e�2).
So, I can construct e�02 that strongly believes S�1 � S11 \ S1(a1) and (Sq1)1q=0
as e�02(�jh0) = �2(�jh0) and e�02(�j(a001; a2)) = e�2(�j(a001; a2)) for each a001 6= a1;

clearly s2 2 br2(e�02). Let S 02 be the set of all s02 2 S2(a2) such that s02(a01) 2 P2
and s02(a

00
1) = s2(a

00
1) for each a

00
1 6= a01. For each p1 2 P1, let S 01(p1) be the set

of all s01 2 S1(a01) with s01(a2) = p1.
Suppose by induction that S 02 � Sn2 and S 01(p1) \ Sn1 6= ; for each p1 2 P1.
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Fix s02 2 S 02 and a probability distribution � over P1 such that s
0
2(a

0
1)

best replies to �. Construct �02 that strongly believes S
n
1 ; :::; S

0
1 such that

�02(�jh) = e�02(�jh) for all h 6= (a01; a2), �02(S 01(p1)j(a01; a2)) = �(p1) for all p1 2 P1.
Thus, for each h 2 H(s2) = H(s02) with h 6= (a01; a2), we have �02(S1(a01)jh) = 0.
Note also that s02 and s2 yield the same outcome against each s1 62 S1(a01).
Then, since s2 is a continuation best reply to e�02(�jh) = �02(�jh), so is s02.
Hence, s02 2 br2(�02) � Sn+12 .

Fix p1 2 P1 and a probability distribution � over P2 such that p1 best replies
to �. Construct �01 that strongly believes S

n
2 ; :::; S

0
2 such that, for each p2 2 P2,

�01(s
0
2jh0) = �(p2), where s02 is the unique es2 2 S 02 with es2(a01) = p2. Fix �1 with

�1(s2jh0) = 1. Since �1 strongly believes S�2 , by Realization-strictness we have
br1(�1) � S1(a1). By construction of S 02, for each a001 6= a01, �01(�j(a001; a2)) gives
probability 1 to s2(a001) like �1(�j(a001; a2)). Hence, br1(�01) � S1(a1) [ S1(a01).
But then, since �rm 1 has non-lower revenues against minP2 at (a01; a2) than

against s2(a1) = minP � at (a1; a2), we have br1(�01) \ S1(a01) 6= ;. So, there is
s01 2 br1(�01) � Sn+11 such that s01(a2) = p1.

7 Discussion - epistemic priority orderings

7.1 Epistemic priority to the agreement

The literature on strategic reasoning with �rst-order belief restrictions is mostly

based on Strong-�-Rationalizability (Battigalli [7], Battigalli and Siniscalchi

[11]). The predictions of this paper are typically stronger than in this lit-

erature for three reasons: (i) the adoption of Agreement-rationalizability in

place of Strong-�-Rationalizability, (ii) the structure on the �rst-order be-

lief restrictions imposed by the notion of agreement, and (iii) the focus on

self-enforceability rather than just credibility.

Battigalli and Friedenberg [8] capture the implications of Strong-�-Rationalizability

across all �rst-order belief restrictions with the notion of Extensive-Form Best

Response Set. Essentially, an EFBRS is a set of plans where each plan can

be justi�ed under strong belief in co-players�plans. A comparison between
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EFBRS and SES clari�es the three di¤erences between the two approaches.

First, while a SES features only rationalizable plans, an EFBRS needs not.

This is because Strong-�-Rationalizability allows players to stop believing in

the rationality of a co-player who makes a move that cannot be optimal under

her belief restrictions. Here I call this hypothesis epistemic priority to the

agreement (as opposed to rationality).

Second, the belief restrictions that yield an EFBRS can impose speci�c

randomizations, or di¤er across two players regarding the moves of a third

player. SES�s capture instead the material implications of the belief in the

SES itself. Just like the belief in any agreement, this only restricts the support

of beliefs about co-players�behavior, in the same way for every player.

Third, an EFBRS may induce a larger set of outcomes with respect to

what players expect under the belief restrictions that yield the EFBRS itself.

Realization-strictness, and more generally self-enforceability, rule this out.36

All this translates into a signi�cant di¤erence in predictive power. For

instance, competition among �rms on price, quantity, or quality often leads

to a unique outcome under common belief in rationality (see cobweb stability

or Cournot duopoly), but this predictive power is lost in subgames where

orders of belief in rationality are dropped by Strong-�-Rationalizability. I

show in [16] that in the Hotelling model almost every location pair is induced

by some EFBRS. In Supplemental Appendix V, I show that the analysis of

Sections 4 and 5 can be replicated verbatim under priority to agreement with

mere rationality in place of rationalizability and Strong-�-Rationalizability in

place of Agreement-rationalizability, and that this expands the collection of

implementable outcome sets.

36Relatedly, by Corollary 2, an implementable outcome is induced by a pure Nash equi-
librium, whereas the outcome prescribed by a merely credible agreement can be just a
self-con�rming equilibrium outcome (Fudenberg and Levine [21]). This is because under
a self-enforcing agreement players have the incentive to stay on path for all their re�ned
beliefs, so in particular under belief in one pro�le of plans.
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7.2 Epistemic priority to the path

Consider the twofold repetition of the following game, which is solved formally

in Supplemental Appendix V.

AnB Work FreeRide

W 2; 2 1; 3

FR 3; 1 0; 0

Suppose that Ann and Bob agree on the SPE where Bob works in the �rst

period and Ann works in the second period (no matter what happened in the

�rst). However, suppose that not just Bob, but also Ann actually works in the

�rst period. Then, if Bob believes that Ann is rational, he must conclude that

she has not believed that he plays as in the SPE. At this point, in the baseline

analysis, Bob is free to believe that Ann expected him to free ride in the �rst

period. Then, Bob can believe that Ann expects him to free-ride in the second

period and thus will work. So, he will free-ride as agreed. Suppose now instead

that Bob believes that Ann did expect him to work in the �rst period. Then,

Bob must believe that Ann expects him to work again after her deviation and

thus will free-ride, for otherwise her deviation would not be pro�table. So, he

will work. If Ann anticipates that Bob will interpret the deviation in this way,

she has incentive to deviate. The agreement is not credible.

In the example, when Bob cannot believe anymore that Ann believes in

the whole agreement, he keeps the belief that Ann believed in the agreed-upon

path, and drops the belief that Ann believes in the threat. Still assigning the

highest epistemic priority to rationality, when this further epistemic priority

choice is transparent to players, I say there is epistemic priority to the path.

In Supplemental Appendix V, I operationalize this �ner epistemic priority

ordering with a variation of Agreement-rationalizability. With this, I show

that the analysis of Sections 4 and 5 can be replicated verbatim under priority

to the path, and that this re�nes the set of implementable outcomes.
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8 Conclusion

I develop a novel methodology to assess the implications of pre-play communi-

cation in a dynamic game. I introduce a notion of agreement that, di¤erently

from equilibrium, is able to capture agreement incompleteness. In particu-

lar, while a subgame perfect equilibrium speci�es one (mixed) action for each

player in every contingency, an agreement can remain vague, or completely

silent, regarding players� behavior in some contingencies. Leaving the be-

havior of deviators unspeci�ed is a natural form of incompleteness. Then, a

self-enforcing agreement needs not rely on coordinated play after deviations.

While this rescues many intuitive threats (and consequently, paths), one may

worry that it makes the notion of self-enforcing agreement too permissive.

This is not the case, for two reasons. First, players�beliefs are re�ned with

strategic reasoning. This restricts the beliefs regarding the continuation play

of a deviator and challenges the belief in the agreement. Second, whenever

players cannot coordinate on a precise path, or formulate precise threats, self-

enforceability requires deviations to be suboptimal for all the re�ned beliefs,

instead of neutralizing the uncertainty with one probability distribution. In

the Hotelling model, the existence of an intuitive solution is guaranteed by a

natural non-equilibrium threat, and its uniqueness by strategic reasoning and

the ineliminable residual uncertainty.

In applications, an economist may need to carry out two types of analysis.

Sometimes, there are obvious constraints to the extent of pre-play communi-

cation, or there are speci�c agreements of interest. For instance, an institution

may be in the position to make a public announcement, while other players

may not have this opportunity; or, some relevant agreement among parties has

been reached and one would like to predict its consequences. Other times, an

economist would like to start o¤ by considering all possible agreements among

players. The methodology developed in this paper satis�es both needs. The

self-enforceability of a speci�c agreement can be determined with Agreement-

rationalizability, a re�nement of extensive-form rationalizability that captures

strategic reasoning based not just on the beliefs in rationality but also on the
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beliefs in the agreement. The search for all the outcomes induced by self-

enforcing agreements, and for agreements that induce them, revolves around

a set-valued solution concept called Self-Enforcing Set. A SES is a set of

extensive-form rationalizable plans of actions that satis�es three simple condi-

tions and coincides with a self-enforcing agreement that does not specify the

behavior of deviators. In games with two players or two stages, all the out-

comes induced by self-enforcing agreements are also induced by SES�s. In the

Hotelling model, it would be virtually impossible to establish uniqueness if one

had to evaluate all possible agreements, instead of just the SES�s. In games

with more than two players and stages, some outcomes can be enforced only by

augmenting SES�s with restrictions to the behavior of deviators. Tight agree-

ments o¤er a canonical way to do this, and fully characterize the outcomes

induced by self-enforcing agreements in all games. Since for a tight agreement

the announced outcomes and the induced outcomes coincide, a �revelation

principle�for agreements design follows.
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9 Appendix

9.1 Proofs for Section 5

Proof of Proposition 2. Realization-strictness: Fix i 2 I and �i that

strongly believes S��i = S
1
�i;e\ e0�i. By Remark 1, there exists e�i that, for each

j 6= i, strongly believes e0j ; :::; e
kj
j and (Sqj;e)

1
q=0. By e

kj
j � S1j , I can let e�i

strongly believe also (Sqj )
1
q=0. Since �i strongly believes S

�
�i, I can construct

�0i 2 �e
i that strongly believes ((S

q
j;e)j 6=i)

1
q=0 and ((S

q
j )j 6=i)

1
q=0 as �

0
i(�jh) =

�i(�jh) for all h 2 H(S��i), �0i(�jh) = e�i(�jh) for all h 62 H(S��i). Thus, bri(�0i) �
S1i;e. Every si 2 bri(�i) is a continuation best reply to �0i(�jh) = �i(�jh) for all
h 2 H(S��i) \ H(si). Then, for every si 2 bri(�i), there is s0i 2 bri(�0i) such
that s0i(h) = si(h) for all h 2 H(S��i) \H(si).37 So,

�(bri(�i)� S��i) � �(bri(�0i)� S��i) � �(S1i;e � S1�i;e) = �(S�);

where the last equality is by self-enforceability of e.

Self-Justi�ability: Fix i 2 I and si 2 S�i � S1i;e. By Remark 1, every

si 2 S1i;e is a sequential best reply to some �i 2 �e
i that strongly believes

((Sqj;e)j 6=i)
1
q=0, thus that strongly believes (S

1
j;e)j 6=i, (S

0
j;e)j 6=i = (S1j )j 6=i, and

(e0j)j 6=i. Then, �i strongly believes also (S
1
j;e \ e0j)j 6=i = (S�j )j 6=i. �

Proof of Proposition 3. Let z := �(S�).
If: Fix i 2 I and �i that strongly believes S��i. Fix si 62 Si(z) and s�i 2 S�i .

For every s��i 2 S��i, since (s�i ; s��i) is a realization-strict Nash, ui(�(si; s��i)) <
ui(z) = ui(�(s

�
i ; s

�
�i)). So, si is a worse reply than s

�
i to �i(�jh0). Hence,

bri(�i) � Si(z). With S��i � S�i(z), we obtain �(bri(�i)� S��i) = fzg.
Only if: Fix (s�j)j2I 2 S� and i 2 I. Fix si 2 argmaxs0i ui(�(s

0
i; s

�
�i)) and

�i that strongly believes S
�
�i with �i(s

�
�ijh0) = 1. For each h � �(si; s

�
�i),

�i(s
�
�ijh) = 1, so si is a continuation best reply to �i(�jh). Then,38 there exists

37If for every h 2 H(s0i) there is a continuation best reply esi to �0i(�jh) such that s0i(h) =esi(h), then s0i is a sequential best reply to �0i. This is because no matter which optimal actions
are planned at future histories, the expected payo¤ of an action at the current history is
always the same. This allows to construct the desired s0i.
38See footnote 37 for the argument.
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s0i 2 bri(�i) such that s0i(h) = si(h) for every h � �(si; s��i). Hence, �(si; s��i) =
�(s0i; s

�
�i). By Realization-strictness, �(s

0
i; s

�
�i) = z. Thus, si 2 Si(z). For everyesi 2 Si(z), �(esi; s��i) = z. So, argmaxs0i ui(�(s0i; s��i)) = Si(z). �

Proof of Proposition 4. By de�nition, S
�
= S1e . Then, by Forward

Induction, for each i 2 I and si 2 S
�
i = S1i;e, there is �i 2 �e

i that strongly

believes (S
�
j)j 6=i = (S1j;e)j 6=i and (S

1
j )j 6=i = (S0j;e)j 6=i such that si 2 bri(�i) �

S2i;e. Thus, S
1
e = S

2
e . By induction, S

1
e = S

1
e . Hence, (i) S

�
= S1e .

Fix s = (si)i2I 2 S
�
. For all i 2 I, si 2 bri(�i) for some �i that strongly

believes (S�j )j 6=i and thus S
�
�i. Then, for all h 2 H(S�) \H(s), we must have

si(h) = s
0
i(h) for some s

0
i 2 S�i \ Si(h), otherwise we would have �(si; s0�i) 62

�(S�) for any s0�i 2 S��i \ S�i(h), violating Realization-strictness. So, �(S
�
) �

�(S�). By Self-Justi�ability, S� � S�. With (i), we get (ii) �(S1e ) = �(S�).
By S� � S� and (i), we get (iii) S� = S1e \ S�.
By (ii) and (iii), �(S1e ) = �(S

�) = �(S1e \ S�): e is credible, self-enforcing
and truthful. �

Proof of Proposition 5. Note preliminarly the following facts. As shown
in the proof of Proposition 4, by Realization-strictness �(S

�
) � �(S�), thus

H(S
�
) � H(S�). Moreover, by Self-Justi�ability, S�j � S

�
j for each j 2 I.

Fix i 2 I and si 2 S
�
i . By de�nition of S

�
i , there is �i that strongly believes

(S�j )j 6=i and (S
1
j )j 6=i such that si 2 bri(�i).

Consider �rst a game with two stages. Fix j 6= i. ByH(S�) � H(S�), every
move allowed by S

�
j at h

0 must be allowed also by S�j , that is, every history

of length one compatible with S
�
j is compatible also with S

�
j . Since the game

has two stages, all the longer histories are terminal, therefore H(S
�
j) � H(S�j ).

Then, strong belief in S�j � S
�
j implies strong belief in S

�
j . Thus, �i strongly

believes also S
�
j . Hence, �i veri�es Forward Induction.

Consider now a game with two players. Let j be i�s co-player. By S�j �
S
�
j � S1j , I can construct �0i that strongly believes S�j , S

�
j , and S

1
j such that

�0i(�jh) = �i(�jh) for all h 2 H(S�j ) and all h 62 H(S
�
j). For each h 2 H(S

�
i ),

since j is the only co-player, either h 62 H(S�j), or h 2 H(S
�
) � H(S�) �

H(S�j ). So, �
0
i(�jh) = �i(�jh) for all h 2 H(S

�
i ) � H(si). Thus, si 2 bri(�0i). �
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Proof of Proposition 6. Let �(S�) = fzg. Fix i 2 I and si 2 S�i . By si 2
S1i , there exists �i that strongly believes S

1
j such that si 2 bri(�i). Fix sj 2 S�j

and construct �0i that strongly believes S
�
j and S

1
j such that �0i(sjjh0) = 1 and

�0i(�jh) = �i(�jh) for all h 62 H(S�j ). By Realization-strictness, Proposition 3
implies that (si; sj) is a Nash equilibrium. For every h � z, since �0i(sjjh0) = 1
and sj 2 Sj(z), �0i(sjjh) = 1 as well. Hence, si is a continuation best reply

to �0i(�jh). For every h 2 H(si) � H(Si(z)) with h 6� z, since j is the only
co-player, h 62 H(Sj(z)) � H(S�j ), thus �

0
i(�jh) = �i(�jh). Hence, si is a

continuation best reply to �0i(�jh). So, si 2 bri(�0i). �

Proof of Remark 2. Fix i 2 I and si 2 e0i . By T3 and e0i � S1i ,

e0i = e
0
i \Si(h0) � bri(�e

i )\S1i . So, si 2 S1i \ bri(�i) for some �i 2 �e
i , which

strongly believes (e0j)j 6=i. There remains to show that �i strongly believes

(S1j )j 6=i. Fix j 6= i and h 2 H(S1j ). By T2, e
kj
j \ Sj(h) 6= ;. Since �i strongly

believes ekjj � S1j , we get �i(S1j � S�j;ijh) = 1, where S�j;i := SInfi;jg. �

Proof of Proposition 7. As shown in the proof of Remark 2, by T2 every
�i 2 �e

i strongly believes (S
1
j )j 6=i. Hence, for each i 2 I, bri(�e

i ) \ S1i = S1i;e.

Fix i 2 I and �i 2 �e
i . For each j 6= i and h 2 H(S1j;e) = H(brj(�e

j)\S1j ),
by T3 there is n � kj such that ; 6= enj \ Sj(h) � brj(�e

j) \ S1j = S1j;e (recall

that enj � S1j ). Then, since �i strongly believes enj , 1 = �i(e
n
j � S�j;ijh) �

�i(S
1
j;e�S�j;ijh). Thus, �i strongly believes (S1j;e)j 6=i, besides (S1j )j 6=i. Hence,

S2i;e = bri(�
e
i ) \ S1i = S1i;e for each i 2 I. By induction, we get (i) S1e = S1e .

Fix s = (si)i2I 2 S1e . For all i 2 I, si 2 bri(�i) for some �i that strongly
believes (e0j)j 6=i and thus e

0
�i. Then, for all h 2 H(e0) \ H(s), we must have

si(h) = s0i(h) for some s
0
i 2 e0i \ Si(h), otherwise we would have �(si; s0�i) 62

�(e0) for any s0�i 2 e0�i \ S�i(h), violating Realization-strictness (T1). Hence,
�(S1e ) � �(e0). By T3, we have e0i = e0i \Si(h0) � bri(�e

i )\S1i = S1i;e for each

i 2 I, thus e0 � S1e . So, �(S1e ) = �(e0). With (i), we get (ii) �(S1e ) = �(e0).
By e0 � S1e and (i), we get (iii) e0 = S1e \ e0.
By (ii) and (iii), �(S1e ) = �(e

0) = �(S1e \ e0): e is credible, self-enforcing
and truthful. �
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Proof of Theorem 3 (Only if). Fix an implementable outcome set P
and a self-enforcing agreement e = (ei)i2I that implements it. Let M be the

smallest m � 0 such that S1e = Sme (it exists by �niteness of the game).

The proof is constructive. For each i 2 I, let eki+1i := S1i . For each

q = 0; :::; ki +M + 1, let

eqi :=
S

(n;m)2f0;:::;ki+1g�f0;:::;Mg:n+m=q
(eni \ SM�m

i;e ).

In the table, I show graphically the construction of each eqi . Each box repre-

sents the intersection of its coordinates, and the union of the boxes marked

with �x�represents eqi for some q < min fki + 1;Mg.

\ SMi;e ::: SM�q
i;e ::: ::: S0i;e

e0i x

::: x

eqi x

:::

eki+1i

So, eqi is the union of the boxes along the line that connects box e
q
i \ SMi;e with

box e0i \ S
M�q
i;e . Starting from e0i = e

0
i \ SMi;e , every increase of q by 1 shifts the

line by 1 towards south-east, until eki+M+1
i = eki+1i \ S0i;e = S1i . The boxes

north-west of the line are subsets of the boxes along the line.

Without loss of generality, suppose that eni ( en+1i for every n.39 Then,

e = ((e0i ; :::; e
ki+M+1
i ))i2I is an agreement, and it prescribes P because

P = �(SMe ) = �(S
M
e \ e0) = �(e0),

where the �rst equality is by implementation of P , the second by self-enforceability

of e, and the third by construction. By eki+M+1
i = S1i for every i 2 I, e sat-

is�es T2. Since e is self-enforcing, by Proposition 2, e0 = e0 \ SMe satis�es

39If eni = e
n+1
i for some n, en+1i can simply be eliminated from the chain.
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Realization-strictness, thus e satis�es T1. Finally, I show that e satis�es T3.

For each j 2 I, SMj;e is the set of all sj 2 S1j such that sj 2 brj(�j) for some
�j that strongly believes ((S

q
i;e)i6=j)

M
q=0 and ((e

q
i )
ki
q=0)i6=j. I am going to show

that, for each i 6= j, strong belief in (eqi )ki+M+1
q=0 is equivalent to strong belief

in (Sqi;e)
M
q=0 and (e

q
i )
ki
q=0. Then, S

M
j;e = brj(�

e
j)\ S1j , which will be useful later.

First, I show that every �j that strongly believes (S
q
i;e)

M
q=0 and (e

q
i )
ki
q=0

strongly believes also (eqi )
ki+M+1
q=0 . Since eki+1i = S1i = S0i;e, �j strongly believes

also eki+1i . Fix q 2 f0; :::; ki +M + 1g. For each h 2 H(eqi ), by construction
h 2 H(eni \ Smi;e) for some n and m with eni \ Smi;e � eqi . Since �j strongly

believes eni and S
m
i;e, we have 1 = �j((e

n
i \ Smi;e) � S�j;ijh) � �j(e

q
i � S�j;ijh).

Hence, �j strongly believes e
q
i .

Second, I show that every �j that strongly believes (e
q
i )
ki+M+1
q=0 strongly

believes also (eqi )
ki
q=0 and (S

q
i;e)

M
q=0.

Fix n = 0; :::; ki and h 2 H(eni ). Fix the highest m 2 f0; :::;Mg such that
h 2 H(Smi;e) (it exists because S0i;e = S1i � eni ). By Remark 1, there exists �0j
that strongly believes (Sqi;e)

M
q=0 and (e

q
i )
ki
q=0, and thus �

0
j(e

n
i �S�j;ijh) = �0j(Smi;e�

S�j;ijh) = 1. Hence, eni \Smi;e\Si(h) 6= ;. By construction, eni \Smi;e � eM�m+n
i .

So, eM�m+n
i \Si(h) 6= ;. Recall that eM�m+n

i is the union of sets en
0
i \Sm

0
i;e with

n0+(M�m0) = n+(M�m). If n0 < n, then en0i � eni , and if n0 > n, thenm0 >

m, thus Sm
0

i;e \Si(h) = ; by de�nition of m. So, eM�m+n
i \Si(h) � eni . Since �j

strongly believes eM�m+n
i , we have 1 = �j(e

M�m+n
i �S�j;ijh) � �j(eni �S�j;ijh).

So, �j strongly believes e
n
i .

Fix m = 0; :::;M and h 2 H(Smi;e). Fix the lowest n 2 f0; :::; ki + 1g
such that h 2 H(eni ) (it exists because eki+1i = S1i � Smi;e). By Remark 1,

there exists �0j that strongly believes (S
q
i;e)

M
q=0 and (e

q
i )
ki
q=0, and thus �

0
j(e

n
i �

S�j;ijh) = �0j(Smi;e�S�j;ijh) = 1. Hence, eni \Smi;e\Si(h) 6= ;. By construction,
eni \ Smi;e � eM�m+n

i . So, eM�m+n
i \ Si(h) 6= ;. Recall that eM�m+n

i is the

union of sets en
0
i \ Sm

0
i;e with n

0 + (M �m0) = n + (M �m). If m0 > m, then

Sm
0

i;e � Smi;e, and if m0 < m, then n0 < n, thus en
0
i \ Si(h) = ; by de�nition

of n. So, eM�m+n
i \ Si(h) � Smi;e. Since �j strongly believes eM�m+n

i , we have

1 = �j(e
M�m+n
i � S�j;ijh) � �j(Smi;e � S�j;ijh). So, �j strongly believes Smi;e.
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With m = M , the previous paragraph shows that, for each i 2 I and h 2
H(SMi;e), there is q such that ; 6= e

q
i\Si(h) � SMi;e . So, since SMi;e = bri(�e

i )\S1i ,
e satis�es T3. �

9.2 Appendix to Section 6

Here I show the properties of CURB sets and BRS�s of prices used for the

uniqueness result. Fix a1 6= 25 and let a2 = 100� a1; I show the existence of
a01 6= a1 such that, for every symmetric CURB set P �P at (a1; a2) and every
BRS P1 � P2 at (a01; a2), �rm 1�s revenues at (a1; a2) against minP are not

higher than at (a01; a2) against minP2. At (a1; a2) I will drop the subscript for

the prices that, by symmetry, are equal for the two �rms.

Let �rst a1 < 25 and a2 = 100� a1. Let a01 = 25.

Claim: At (a1; a2), for every CURB set P � P , minP � p�.
Proof: For every p = p�+k with k > 0, we have pF (p) = p�+k=2 < p. Then,
there is a best reply to p lower than p. So, minP < p. �

Claim: At (25; a2), for every BRS P1 � P2, minP2 � p�2 � 1.40

Proof: Fix i such thatmaxPi�p�i � maxP�i�p��i. For each k > 1, pi = p�i+k
is never a best reply to a belief over

�
0; p��i + k

�
\N0: for each p�i � p��i + k,

we have pi > p�i � (a2 � 25), and pi � 1 > p�i is closer than pi = p�i + k to

pFi (p�i) � pFi (p��i + k) = p�i + k=2, so either pi� 1, or price 1 (if pi brings zero
demand) are better replies than pi. Then, maxPi � p�i cannot be k, and thus
maxPj � p�j + 1 for each j = 1; 2.
Now �x i such that p�i � minPi � p��i � minP�i. I show that for each

k > 1, pi = p�i � k is dominated over eP�i := �p��i � k;maxP�i� \ N0. Then,
1 � p�i �minPi � p�2 �minP2, as desired.
40In the proof of this and of the next claim, I will implicitly use the expressions for (p�1; p

�
2)

at (25; a2), so I report them here for reader�s convenience:

(p�1; p
�
2) =

�
225 + a2

3
;
375� a2

3

�
:
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If 0 < pi � p��i � (a2 � 25), I show that 2pi dominates pi. We have

2pi � 2p��i � 2(a2 � 25) < p�i ; (1)

2pi � p�i � k + p��i � (a2 � 25) < p��i � k + (a2 � 25); (2)

where the strict inequalities are equalities for a2 = 75, thus veri�ed for a2 > 75.

For each p�i 2
�
p��i � k; pi + (a2 � 25)

�
\ N0, 2pi is closer than pi = p�i � k to

pFi (p�i) � pFi (p��i � k) = p�i � k=2 by (1), and not larger than p+i (p�i) by (2).
For each p�i � pi + (a2 � 25), pi brings revenues of at most 100pi, and 2pi
brings demand higher than 50, because �rm 1 is closer to the center and

2pi � pi + p��i � (a2 � 25) < pi + (a2 � 25) � p�i; (3)

where the strict inequality is an equality for a2 = 75, thus veri�ed for a2 > 75.

If pi > p��i � (a2 � 25), by maxP�i � p��i + 1 we get pi > p�i (maxP�i).
When pi > maxP�i � (a2 � 25), pi + 1 dominates pi: for each p�i 2 eP�i,

pi + 1 = p
�
i � k + 1 < p+i (p��i � k) � p+i (p�i),

and since pi + 1 < p�i by k > 1, pi + 1 is closer than pi = p
�
i � k to pFi (p�i) �

pFi (p
�
�i � k) = p�i � k=2.
When pi = maxP�i � (a2 � 25), note preliminarly that prices 0; 1; 2 are

dominated by 4, so suppose that pi > 2. I argue that pi is dominated by

p0i := 2(pi � 1) > pi. Note that p0i has already been shown to satisfy (1)-(2)-
(3), because by maxP�i � p��i + 1, we get pi � 1 � p��i � (a2 � 25). For
each p�i 2 eP�i with p�i < maxP�i the argument above that uses (1) and (2)
applies. For p�i = maxP�i, by (3) p0i brings demand higher than (25 + a2) =2,

thus the di¤erence in revenues between p0i and pi is higher than

2(pi � 1)
�
25 + a2
2

�
� pi

�
a2 +

100� a2
2

�
= a2

�pi
2
� 1
�
� 25(1 + pi) > 0;

where the inequality comes from a2 > 75 and pi > p��i � (a2 � 25) > 16. �

52



Claim: Firm 1 has non-lower revenues against any integer p2 � p�2 � 1 at
(25; a2) than against p�2 at (a1; a2).

Proof: Firm 1�s best reply to p�2 = 100 at (a1; a2) is p
�
1 = 100, with demand 50.

With p1 = 100, �rm 1 gets demand at least 50 at (25; a2) against the smallest

integer p2 � p�2 � 1, which is 99 if a2 = 76, and at least (372� a2) =3 >
100� (a2 � 75) otherwise. �

The combination of the three claims yields the desired result for a1 < 25.

Now let a1 > 25, a2 = 100� a1. Let a01 = 0. Note preliminarly these facts.

Fact: (i) it is optimal to undercut any p � bpc+ 3 at (a1; a2);
(ii) it is not optimal to undercut any p2 � bp2c+ 1 at (0; a2).

Proof: Note that, at any locations (ea1;ea2),41
100 � (p2 � (ea2 � ea1)) = pF1 (p2)�12pF1 (p2)

�
: (4)

Fix p2 = p2 + k with k 2 [�p2; 200] � for higher k is obviously optimal to

undercut. Firm 1�s revenues from p�1 (p2) di¤er from the left-hand side of (4)

by 100k� 100. Firm 1�s revenues without undercutting are bounded above by

max
p1
p1D1(p1; p2) = p

F
1 (p2)

�
1

2
pF1 (p2)

�
=
1

2

�
pF1 (p2) +

k

2

�2
, (5)

and with p1 =
�
pF1 (p2)

�
, if p2 � (ea2 � ea1) < pF1 (p2) < p2 + (ea2 � ea1), they are

bounded below by�
pF1 (p2)�

1

2

��
1

2
pF1 (p2)

�
=
1

2

�
pF1 (p2) +

k

2

�2
� 1
4

�
pF1 (p2) +

k

2

�
. (6)

At (a1; a2), note �rst that p < 97 (compute it for a1 = 26 and note that it is

decreasing in a1). Then, if k 2 [2; 200], (5) di¤ers from the right-hand side of

41Indeed, p�i is derived in [16] as the price p�i that equalizes �rm i�s supremum of the
revenues from undercutting and the optimal revenues without undercutting in case of an
interior solution (see equation 5).
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(4) by
1

2

�
kpF (p) +

1

4
k2
�
<

�
49:25 +

1

8
k

�
k < 100k � 100;

where the �rst inequality is due to pF (p) < 98:5. So, it is optimal to undercut.

At (0; a2), note �rst that p2 < 125 (it is 125 for a2 = 75 and it decreases as a2
decreases). Then, if k 2 [�p2; 1], by p2 � p2 + 1 < 3a2 we get

pF1 (p2) =
p2 + a2
2

2 (p2 � a2; p2 + a2);

and (6) di¤ers from the right-hand side of (4) by

1

2

�
kpF1 (p2) +

1

4
k2
�
� 1
4

�
pF1 (p2) +

k

2

�
=�

1

2
pF1 (p2) +

1

8
k � 1

8

�
k � 1

4
pF1 (p2) > 100k � 100;

where the inequality is satis�ed for k = 1, thus also for k < 1. So, it is optimal

not to undercut. �

Claim: At (a1; a2), for every symmetric CURB set P � P ,

minP � bpc+ 3� (a2 � a1) =: bp:
Proof: Let p0 := bpc+3. Suppose by contradiction that minP � bp+1. Thus,
p+(minP ) � p0. Throughout, recall that all the best replies to (conjectures
over) prices in P are in P by closedness under rational behavior.

First, I show the existence of p; p0 2 P such that

p <
�
pF (p)

�
= p0 < p0 � pF (p0):

It cannot be optimal to undercut minP or a best reply to it, otherwise we

would fall below minP . By Fact (i), it is optimal to undercut any p � p0.

Hence, minP < p0, and since p+(minP ) � p0,
�
pF (minP )

�
best replies to

minP and is below p0. For every ep � p0�1, we have pF (ep_) = 50+ ep=2 � ep+1,
where the inequality comes from p < 97, thus ep � 98. So, if pF (�pF (minP )�) �
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p0, minP and
�
pF (minP )

�
are the desired p and p0; else, iterating best replies,

we rise to the desired p; p0, because for every ep 2 P \ (minP; p0), jpF (ep_)k
best replies to ep: undercutting ep would bring below minP , and pF (minP ) <
p+(minP ) implies pF (ep_) < p+(ep).
Now, consider the belief � over fp; p0g such that pF (E�(�)) = p0. The

expected revenues from ep 2 (p0 � (a2 � a1); p+ 100) are bounded above by
ep��(p)�50 + p� ep

2

�
+ �(p0)

�
50 +

p0 � ep
2

��
= ep�50 + E�(�)� ep

2

�
; (7)

note that 50 + (p � ep)=2 is positive as long as ep < p + 100, so it does not

underestimate demand against p. The maximum of (7) is at ep = pF (E�(�)) =
p0, and since p0 � p+(minP ) � p+(p), it represents the true expected revenues.
For each ep � p + 100, since pF (p0) = pF (

�
pF (p)

�
) � 75 + p=4, ep cannot be

optimal. Each ep � p0 � (a2 � a1) cannot best reply to � because it is below
minP . Thus, p0 is the best reply to �, but by Fact (i) the best reply to p0 is

p�(p0) < minP , a contradiction. �

Claim: At (0; a2), for every BRS P1 � P2,

minP2 � min
��
pF2 (bp2c+ 1� a2)

�
; bp2c)

	
=: bp2:

Proof: Let pm1 := minP1 and pm2 := min
��
pF2 (p

m
1 )
�
; p+2 (p

m
1 )
	
. Since �rm 1

is at 0, �rm 2 has no incentive to undercut. Then, for each p1 2 P1, �rm
2�s revenues are strictly increasing in p2 up to min

��
pF2 (p1)

�
; p+2 (p1)

	
� pm2 .

Thus, every p2 < pm2 is dominated over P1 by p
m
2 . Hence, minP2 � pm2 .

There remains to show that pm1 � bp2c+1�a2. Suppose not: pm1 � bp2c�a2.
Let p02 := p

m
1 + a2 + 1 � bp2c + 1. I show that P1 � P2 is not a BRS because

pm1 is dominated by p
0
1 :=

�
pF1 (p

0
2)
�
over fpm2 ; pm2 + 1; :::g. We have

p01 � pF1 (p02) =
1

2
pm1 + a2 +

1

2
<
1

2
pm2 + a2 < p

+
1 (p

m
2 ):

By Fact (ii), pm1 = p�1 (p
0
2) does not best reply to p

0
2, so p

0
1 does. Then, p

0
1

does better than pm1 against any p2 � p02 � 1. The same is true against each
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p2 2 fpm2 ; :::; pm1 + a2 � 1g because p01 is closer than pm1 to pF1 (p2):

pF1 (p2) � pF1 (p
m
2 ) =

1

2
a2 +

1

2
min

��
100� 1

2
a2 +

1

2
pm1

�
; pm1 + a2 � 1

�
�

� min

�
50 +

1

4
a2 +

1

4
pm1 �

1

4
;
1

2
pm1 + a2 �

1

2

�
>
1

2
a2 +

3

4
pm1 +

1

4
=

=
pF1 (p

0
2) + p

m
1

2
� p

0
1 + p

m
1

2
;

where the strict inequality comes from(
50� 1

4
a2 � 1

2
> 1

2
pm1

1
2

�
a2 � 3

2

�
> 1

2

�
1
2
pm1
� ;

which is true because

a2 �
3

2
> 50� 1

4
a2 �

1

2
>
1

2

�
400� 2a2 � 40

p
100� a2

�
=
1

2
(p2 � a2) �

1

2
pm1 ;

where the second inequality holds for a2 = 51 and a2 = 75, hence also in

between by convexity of the right-hand side. �

Claim: Firm 1 has non-lower revenues against bp2 at (0; a2) than against bp at
(a1; a2).

Proof: Suppose �rst a1 � 48. For any p1, �rm�s 1 demand at (a1; a2) againstbp is not higher than at (0; a2) against bp2, because bp2 is higher than bp by more
than a1: when bp2 = �pF2 (bp2c+ 1� a2)�, bp2 � bp is greater than�

300� 3
2
a2 � 20

p
100� a2 � 1

�
�
�
400� 2a2 � 40

p
100� a2 + 3

�
=

1

2
a2 + 20

p
100� a2 � 104 > 100� a2 = a1;

where the inequality is satis�ed for a2 = 51 and a2 = 75, thus also in between

by concavity of the left-hand side; when bp2 = bp2c, bp2 � bp is greater than�
400� a2 � 40

p
100� a2 � 1

�
�
�
400� 2a2 � 40

p
100� a2 + 3

�
= a2�4 � a1:
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If a1 = 49, at (a1; a2) the best reply to bp = 21 is p�(bp) = 18 and it brings

revenues 1800, while at (0; a2) the best reply to bp2 = bp2c = 69 is p1 = 60 and
it brings revenues 1800 as well.42 �

The combination of the last three claims yields the result for a1 > 25.
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