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Abstract

We study optimal information design in static contests where contestants do not
know their values of winning. The designer aims at maximizing the total expected
effort. Before the contest begins, sheы commits to the information technology that
includes (1) a signal distribution conditional on each values profile (state) and (2) the
type of signal disclosure to contestants – public, private or none at all. Upon observing
the signal, contestants simultaneously choose effort that maximizes their expected payoff
in an all-pay auction game. Using a mixture of analytical and numerical methods, we
find that the optimal information technology involves private and positively correlated
signals that never reveal the true state precisely if the contestants’ values of winning
are different. In settings where public disclosure is a prerequisite, the optimal signal
distribution generates symmetric beliefs about the values profile, so that a complete
information concealment is optimal, while public and precise disclosure of each state is
not.
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1 Introduction

Many real life competitions can be viewed as contests in which the contestants’ values of

winning/prize valuations are not known neither to the contest organizer (designer), nor to

the contestants themselves. For example, in R&D and patent races, the designer and the

competing researchers/labs/firms are often not sure about the rents they would extract from

winning the patent and obtaining monopoly rights for selling their innovation. In competition

for promotion among employees, there is always doubt about the goodness of match between

each candidate and the new position. Similarly, a competitive selection of students for a

place in a prestigious graduate program and assessment centers for some types of employment

(often in management or military command)1 involve a fair share of uncertainty about the

candidates’ fitness for the vacancy and the associated value of winning.

This information about the contestants’ values of winning, however, is an important

determinant of how much effort the contestants will be willing to exert in the competition,

and that, in turn, is frequently what the designer cares about the most. For example, if

the contestants know that they all have a high value of winning, they are likely to compete

aggressively and exert much effort, while the opposite might be the case if the competition is

known to be “uneven”. Then, it is reasonable to presume that the designer, who often has an

advantage in acquiring the relevant information (in the form of a report, expert evaluation,

etc.),2 may wonder whether she can benefit from (a) soliciting an informative signal about

the contestants’ values of winning and (b) passing this signal on to the contestants. Even

if this signal is of no intrinsic interest to the designer and is meant to be used exclusively

for stimulating the competitive efforts, the designer may be concerned with how precise she

wants the signal to be and in what way, if any, she wants to convey it to the contestants.

This is the essence of the research question that we address in this paper: can the organizer

of a contest with unknown prize valuations increase the total competitive effort by choosing

optimally the precision of the signal and the way of communicating it to the contestants?
1About 68% of employers in the UK and USA now use some form of assessment centre as part of their

recruitment/promotion process (see https : //www.assessmentcentrehq.com/).
2For example, she has access to application materials of all competitors, and she can invite an

expert/committee or solicit a report to evaluate the unknown characteristics of both, the prize (job, patent,
position in a graduate program) and the contestants themselves.
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In general, players in a contest can be informed publicly or privately or not informed

at all. We consider these three information regimes and assume that for each regime the

designer chooses the precision of the signal and whether to make it dependent on the true

(unknown) values profile. For example, in case of public information disclosure, the designer

can choose to have a perfectly precise signal about any values profile, or a signal that is

perfectly precise only when both contestants have high values of winning, or any other signal

with predetermined precision. This provides the designer with a very broad set of possible

disclosure rules.

We formalize these ideas in a stylized all-pay auction model with two ex ante identical

players who compete for a single prize, and a designer who aims at maximizing the expected

aggregate effort. The value of a prize can be either high or low for each contestant and is

determined randomly according to a symmetric prior distribution. The designer has access

to a certain information technology that allows her to (costlessly) draw signals about the

contestants’ prize values. She can choose (1) the precision of this information technology,

conditional on each actual values profile (state of the world) and (2) whether to pass the

signals on to both contestants privately, or publicly, or keep them uninformed. In the spirit

of the Bayesian persuasion literature, we assume that the designer commits to the disclosure

regime before she receives the signal. Moreover, irrespective of the chosen regime, she always

reveals the obtained signal truthfully. After that the contestants update their beliefs about

own and the opponent’s type and choose an action from continuous effort space.

To infer the optimal choice of information technology by the designer, we first study

equilibria of the contest game and find the best signal distribution (i.e., the signal precision

parameters) for each type of information disclosure separately. Then we compare the

resulting values of the expected aggregate effort across all the cases and characterize the

information technology that constitutes the global optimum. Our main result is that the

optimal disclosure policy employs private signals, and these signals are (slightly) positively

correlated. We also find, using a combination of analytical and numerical approaches, that

one specific feature of these signals is that they reveal the true state precisely if and only if

both contestants have the same values of winning, that is, the state is symmetric.3 The
3A deviation from such policy (towards signals that are not perfectly precise in symmetric states) can be

profitable only when a gap between the high and low values of winning is sufficiently large and the prior
probability of having a high value is low.
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intuition for this result follows from an observation that the perceived asymmetry in

contestants’ values of winning reduces efforts. In that sense, the policy that reveals the

information about values of winning privately and does so using signals that (a) are

positively correlated and (b) never reveal the true state precisely if the contestants’ values

of winning are different, is best at masking out the asymmetry. The finding that private

disclosure is optimal has been reported in other studies, too (e.g., Melo-Ponce, 2020), but

not in the setting where contestants are a priori identical and have no private information.

The latter produces a different information structure in our model, as it means that it is

the designer who decides whether to provide the contestants with private information and

what kind of information it should be. As a result (and in contrast to Melo-Ponce, 2020),

we find that disclosure rules inducing asymmetric beliefs are never optimal, and the

designer extracts the full surplus.

We further find that while public information disclosure is never optimal, in cases when

it has to be used, an optimal signal distribution is such that it generates symmetric beliefs in

contestants. That is, upon receiving a public signal from that distribution, the contestants

must believe that each of them is equally likely to have high value of winning. This is, in fact,

the only condition that an optimal public disclosure rule must fulfill. For example, complete

nondisclosure of information, which can be regarded as public disclosure with a completely

uninformative signal, satisfies this property. On the other hand, a precise public revelation of

every state is never optimal. The key intuition behind these findings is that when disclosure

induces symmetric beliefs about valuations, it makes the contestants perceive their incentives

and chances of winning as equal, which results in the highest competitive efforts.

Despite the simple intuition behind the results, our paper is the first to provide a precise

theoretical characterization of optimal disclosure policies in a setting with (i) a broad range of

available disclosure rules, (ii) both contestants being initially uninformed about their values

of winning and (iii) effort choices being continuous. In the next section we discuss our

contribution to the existing literature in more detail. The rest of the paper is organized as

follows. In Section 3 we provide a simple example and give a preview of our main results. In

Section 4 we introduce the model. Section 5 describes equilibria of the contest game under

public and private information disclosure. Section 6 characterizes the optimal information

disclosure policy. Section 7 concludes.
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2 Related literature

This paper lies at the intersection of two research fields. First, it is related to the Bayesian

persuasion literature initiated by Kamenika and Gentzkow (2011) and extended to a setting

with multiple signal receivers by a stream of subsequent studies (Alonso and Camara, 2016

a,b; Bardhi and Guo, 2018; Arieli and Babichenko, 2019; Chan et al., 2019). In this literature,

the closest to us is Taneva (2018). She uses the concept of Bayes correlated equilibrium

introduced by Bergemann and Morris (2016) to solve for the optimal signal structure in an

environment with multiple interacting receivers. We borrow Taneva’s signal parametrization

but allow the precision parameters to be state-dependent. This is important in our setting

since in a contest where state captures the players’ values of winning, it might be optimal to

make the signals more or less precise depending on the state. Our key results confirm this

intuition, and perfect precision appears optimal only in those states where the contestants’

values of winning are the same. Another important difference from Taneva (2018) is that

our model assumes continuous efforts, while her results are derived for a discrete and finite

action space, which makes them inapplicable in our setting.

Second, our study contributes to the literature on the optimal information

revelation/feedback in contests. Most papers in this field focus on very simple disclosure

rules and/or assume that at least one of the contestants is privately informed about own

type. Aoyagi (2010) investigates the optimal feedback in two-stage tournaments and looks

only at no feedback and full feedback cases. He finds that the no-feedback policy maximizes

the players’ expected effort when the second stage effort cost is convex; otherwise, full

feedback is best.4 Zhang and Zhou (2016) model a static two-player contest where one of

the players has private information about his prize valuation. The authors show that if this

valuation follows a binary distribution, one can reduce the set of information revelation

policies to full disclosure and no disclosure without loss of generality. Warneryd (2003)

analyzes a game between two ex-ante symmetric contestants who compete for a prize of a

common but uncertain value. The disclosure regimes he studies are (1) concealment, (2)

full information revelation, and (3) player-specific disclosure, where only one contestant
4Lai and Matros (2007), Gershkow and Perry (2009), Ederer (2010), Goltsman and Mukherjee (2011) and

Mihm and Schlapp (2019) work on similar issues and also look at the restricted set of information disclosure
policies.
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gets informed about the prize value. Warneryd (2003) finds that the last policy results in

the smallest aggregate effort. This is consistent with our finding that the best outcome is

obtained when contestants have symmetric beliefs.

Lu et al. (2018) also focus on two-player all-pay auctions with incomplete information. In

their setting, the contestants have binary types – either high or low – that the designer can

observe. The set of disclosure policies is restricted to the following anonymous rules:5 (1) full

disclosure, (2) no disclosure, and (3) state-contingent disclosure when the designer commits to

reveal only the “high-high” or “low-low” profile. Lu et al. (2018) rank these policies according

to different criteria. In terms of the expected aggregate effort, concealment outperforms

the other policies. Serena (2018) investigates almost the same set of disclosure rules in a

Tullock contest with two players that are privately informed about their skills. He finds

that revealing the “high-high” profile and concealing other states maximizes the aggregate

effort. These results contrast with our findings for a contest where players have no private

knowledge about their values. In our model, a rule where both “high-high” and “low-low”

profiles are revealed privately and precisely leads to a greater expected aggregate effort than

a policy that reports only the “high-high” profile.

Similarly to us, Celik and Michelucci (2020) assume no private information on the

contestants’ side and allow for a rich set of disclosure rules, where a principal chooses the

optimal coarseness of information that she provides to the contestants. They report that

the solution varies with the size of the effort cost and with the relative likelihood of

different states. In contrast to us, Celik and Michelucci (2020) consider only public

information disclosure, assume binary efforts and analyze two alternative settings: where

the principal commits to a disclosure policy before learning the true state, and where such

commitment is missing. We focus on the environment with commitment, but by comparing

optimal public and private disclosure regimes, we find that the optimal private disclosure

delivers a higher total effort.

Finally, the closest to our paper are Melo-Ponce (2020) and Kuang et al. (2019).

Melo-Ponce (2020) uses the concept of Bayes correlated equilibrium introduced by

Bergemann and Morris (2016) to find the optimal disclosure policy in a two-player contest
5Lu et al. (2018) define anonymous disclosure rules as policies that do not depend on the contestants’

identities.
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with incomplete information and binary effort. Melo-Ponce (2020) does not restrict the set

of possible disclosure rules and, like us, finds that the optimal policy involves private and

partial information revelation. Unlike us, however, he assumes that players have private

information about their type, and finds that the optimal policy often requires asymmetric

(and sometimes uncorrelated) signals. Such signals make a weak player more informed and

incentivize him to exert higher effort. In our model, contestants are a priori identical, with

no private information about their prize valuations. It is the designer who decides whether

to endow them with private information, because she has a full control over the signals they

receive. As a result, we find that disclosure rules that induce asymmetric beliefs are never

optimal. This is different from the finding in Melo-Ponce (2020), though the intuition is

somewhat similar: the highest efforts are achieved when the contestants have equal

incentives to compete. Furthermore, our assumptions imply that the designer has a

“first-mover advantage”, which in the optimum allows her to extract the full surplus.6

Kuang et al. (2019) look at a two-player all-pay auction with continuous action space

and correlated types. They allow for a rich set of disclosure rules, even though the signal

distribution in their case cannot be state-dependent.7 Most importantly and differently from

our paper, the main part of the analysis in Kuang et al. (2019) is devoted to studying the

case where both players know their true value of winning.8 As we explained earlier, this

limits the designer’s control over the information the contestants have and leads to different

results. In an extension, Kuang et al. (2019) allow for the situation where contestants do

not know their valuations. But first, in this setting they assume that a signal from the

designer about the valuations must always be perfectly precise, which, as we show, is not

without loss of generality. And second, differently from us, they focus on the comparison of

just three cases, where both, one or none of the players have private information on their

winning values. Comparing these three cases, they find that from the designer’s perspective,

the setting where only one player knows his own type is dominated by the setting where no

players know their own type.
6Also, in contrast to Melo-Ponce (2020), we cannot take advantage of the Bergemann and Morris (2016)

approach because efforts in our model are not binary but continuous.
7Kuang et al. (2019) also employ a different timing where contestants first obtain a public and then

private signal.
8Under this assumption, the authors formalize the ridge phenomenon of positive correlation and

characterize the optimal disclosure policy. According to Kuang et al. (2019), the best disclosure rule never
generates more than two posteriors, and one of them must be located at the ridge.
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3 A simple example

To demonstrate the main idea and results, let us start with a simple example. Consider

a research contest. Research contests or patent races are often used to spur innovation.

Participants of such innovation races, who are commonly firms, compete to be the first to

develop a new product and obtain a patent and monopoly rights to sell it. The value of

being the winner is not always certain though. For example, the monopoly rents depend on

future demand and the costs of producing a new good. These characteristics may vary vastly

depending on market conditions, such as boom or recession, and exact features that the new

product will gain in the outcome of conducted research. Thus, the value of winning for each

contestant is determined by an unknown payoff-relevant state that reflects characteristics of

both, the market and the contestants. In this example, it is convenient to think of a state as

being multi-dimensional, where each dimension is firm-specific, that is, represents the value

of winning for each competitor.

Neither the contestants nor the contest designer know the state perfectly, though they may

hold a certain prior belief about it. However, the designer has a possibility to inquire more

information about the state. For instance, she can solicit a report on the prospective market

demand for each of the contestants’ developed products or invite a committee of experts to

evaluate submitted research proposals and their chances for market success. This information

may then be revealed to the contestants, either privately or publicly, in an attempt to induce

more research effort on their side.

In collecting the state-relevant information, the designer can select the quality of the

inquiry, such as its precision.9 However, a very precise report is helpful only if the realization

of the state makes the contestants compete more aggressively (we call this a “good” state)

and it is detrimental otherwise. Then, the designer could adjust the report to make it more

precise in “good” than in “bad” states. For example, she can solicit a report that focuses

on specific items that are likely to produce a favorable from her perspective outcome, which

is precise only in good state. Finally, the designer can choose how to communicate the

findings of the report to the contestants – privately, or publicly, or not at all.10 If the
9For example, to increase the report’s precision, the designer can choose many items to be evaluated

or/and invite a very thorough consultant.
10As we make it explicit later, the designer cares only about the contestants’ research efforts in the

competition and does not derive any intrinsic value from the report itself. Therefore, she uses the report
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designer committed to provide the information, then she must disclose the findings of the

report truthfully. The question we are interested in is whether the designer who aims at

maximizing the total research effort, can benefit from choosing the precision of the report

and the way of communicating its findings to the contestants.

Let us now formalize this example. For simplicity, suppose that only two contestants,

indexed by i = 1, 2, participate in the patent race. The value of winning for each contestant

can be either high (H = 4) or low (L = 1). These are determined by realizations of i.i.d.

random variables v1 and v2. Hence, there are four possible states of the world: (4, 4), (1, 1),

(4, 1), and (1, 4). The designer and the contestants share a common prior belief about the

state of the world, with P (vi = 4) = 1
2
for any i = 1, 2.

Since the contestants always extract a strictly positive value from winning the race, they

have incentives to exert effort. Assume that the quality of the product they develop is

proportional to the invested effort, and the highest quality producer wins. Then contestant

i wins if and only if his effort is (weakly) higher than that of the rival, i.e., ei ≥ e−i. The

effort, however, is costly, and the contestants choose it by weighting their expected winning

benefit against the effort cost, which we define as γ(ei) = ei.

To gain some intuition, consider a few baseline cases regarding the type of disclosure and

report precision. Suppose the designer commits to share information publicly and solicits a

report that is perfectly precise in every state.11 Then, both contestants learn their true values

of winning (v1, v2), and it turns the contest into a standard all-pay auction with complete

information. The equilibrium of this game features mixed strategies of the following form

(see Baye et al., 1996):

• If the contestants have the same value of winning v ∈ {1, 4}, then both of them

randomize uniformly on the [0, v] interval;

• If the values of winning are different, then the contestant with value H = 4 randomizes

uniformly on the [0, 1] interval with probability 1, while his opponent with value L = 1

randomizes uniformly on the same interval with probability L
H

= 1
4
and stays inactive

otherwise.
exclusively as a means of motivating the contestants. In particular, since we also assume that inquiring
information is costless for the designer, not revealing information to contestants is equivalent to not soliciting
a report.

11Perfectly precise report is not unrealistic and can be assumed without loss of generality if we interpret
the state of the world as the most informative signal that can be produced.
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With these equilibrium strategies, it is easy to rank the aggregate efforts over different states:

JHH = 4 > JLL = 1 > JHL = JLH =
1

2
·
(

1 +
1

4

)
=

5

8

and this ranking is generic. Basically, the competition for a prize (a patent in this case) is

strongest and prompts the highest effort when the contestants know that they have equal

incentives to win, and it is particularly strong when these incentives are high. Since the

designer chooses her disclosure policy (i.e., the report precision and the way to communicate

its findings) before she learns the state of the world, she has to weigh each of these outcomes

with a corresponding probability. Thus, from the designer’s perspective, public disclosure

with perfectly precise signals in each state results in the following ex ante expected aggregate

effort :
1

4
· 4 + 2 · 1

4
· 5

8
+

1

4
· 1 =

25

16

This, in fact, is not very high because asymmetric states obtain a substantial weight.

Intuitively, the designer could do better and increase the ex ante expected aggregate effort

by “masking out” the possible asymmetry from the contestants. The simplest way to do this

with public disclosure is to not reveal any information to the contestants in asymmetric

states and send precise signals when the contestants’ values of winning are identical. If the

players receive no information, they symmetrically update their priors according to Bayes

rule:

Pi (4|Ø) =
PHLI{i=1} + PLHI{i=1}

PHL + PLH
=

1

2

and the expected value of winning turns out to be the same for both contestants:

E (vi|Ø) =
1

2
· 4 +

1

2
· 1 =

5

2

As anticipated, the resulting ex ante expected aggregate effort is larger than the one under

public disclosure with perfect precision in all states:
1

4
· 4 + 2 · 1

4
· 5

2
+

1

4
· 1 =

5

2
= 2.5 >

25

16

Thus, the designer indeed benefits from concealing information in asymmetric states. Note,

however, that under such type of public disclosure, when contestants do not receive any

signal, they know that their values are different. Would the aggregate effort increase even
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further if the designer decides to hide more information by sending private instead of public

signals in all states? Let the designer commit to the following disclosure policy. All signals

are to be transmitted to the contestants privately, and the precision of signals is chosen to

be perfect if and only if the state is symmetric, that is, (4, 4) or (1, 1). In asymmetric states

(4, 1) and (1, 4), the (signal generating) report

• reveals the true state with probability 2
5
,

• captures the value of exactly one contestant correctly (for example, sends (4, 4) or

(1, 1) instead of the true state (4, 1)) with probability 1
10
, and

• reveals the “opposite” state (for example, (1, 4) instead of (4, 1) ) with the remaining

probability 2
5
.

With this disclosure rule, the report is noisy and features positive correlation between

contestants’ private messages. Each contestant learns only his own prize valuation – true in

symmetric states and possibly false in asymmetric – but does not know the valuation of the

other. Upon receiving a private signal mi, each contestant updates his beliefs about own

valuation and the opponent’s signal as follows:12

P (vi = 4|mi = 4) =
3

4
, P (vi = 4|mi = 1) =

1

4

P (m−i = 4|mi = 4) =
3

5
, P (m−i = 4|mi = 1) =

2

5

Here, the first two probabilities define the belief of contestant i about his true valuation

when the signal ismi. The other two expressions characterize a probability that the opponent

receives a “good” signal (namely, m−i = 4), conditional on the information of contestant

i. The resulting contest game is essentially a symmetric all-pay auction with incomplete

information where a contestant’s type is associated with the message received. The expected

values of winning for each type are:

E (vi|mi = 4) = 4 · P (vi = 4|mi = 4) + 1 · (1− P (vi = 4|mi = 4)) =
13

4

E (vi|mi = 1) = 4 · P (vi = 4|mi = 1) + 1 · (1− P (vi = 4|mi = 1)) =
7

4

12The updating is symmetric, so we do not label the beliefs with index i.
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In equilibrium:13

• a contestant who receives mi = 1 randomizes uniformly on [0, e] with probability 1,

where e = P (m−i = 1|mi = 1) · E (vi|mi = 1), and

• a contestant who receives mi = 4 randomizes uniformly on [e, ē] with probability 1,

where ē = e+ P (m−i = 4|mi = 4) · E (vi|mi = 4).

It is easy to show that the ex ante expected aggregate effort in this case is equal to:
21

20
·
(

1 +
1

2

)
+

39

20
· 1

2
=

102

40
= 2.55

which is higher than under public disclosure. The intuition for this result is that such policy

is best at making contestants believe that their values of winning are likely to be the same,

which, as we saw, leads to the most intense competition. In the next sections, we generalize

this example and provide a full characterization of the optimal disclosure policy.

4 The model

Two players striving to win a single prize engage in a contest game. The values of winning the

prize can be different for the players and are determined by realizations of two i.i.d. discrete

random variables vi, i = 1, 2, where:

vi =

{
H (high), with probability α ∈ (0, 1)

L ≡ 1 < H (low), with probability 1− α

This results in four possible states of the world : (H, H), (L, L), (H, L), and (L, H).14 Let

us denote the set of these states by S. An important feature of our model is that neither the

contest designer nor the contestants have any ex ante information about the realized state of

the world and share a common symmetric prior, denoted by ξ.15

In the contest, players simultaneously choose non-negative effort ei and pay the effort cost

γi (ei) = ei for any i = 1, 2. The player exerting higher effort wins and receives the prize, and
13See Liu and Chen (2016) and Section 5 for formal discussion of equilibria under private disclosure.
14Note that α = 0 and α = 1 are assumed away as otherwise, the question of information disclosure is

irrelevant: the state is known to be (H, H) or (L, L), respectively.
15As should become clear from the model description below, the assumption about uninformed designer

who draws signals about contestants’ prize valuations with a predetermined precision and simply passes them
on to the contestants, is equivalent to assuming that the designer holds the best possible knowledge about
the state but prior to its realization commits to the precision of signals that she will send to the contestants.
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ties are broken randomly. Thus, in the absence of any signal about the state of the world,

player i’s payoff is equal to

(αH + (1− α)L)P (ei > e−i)− ei

where (αH + (1− α)L) is the expected prize valuation of player i given the prior and

P (ei > e−i) denotes the probability that player i wins. By making his effort choice ei,

player i maximizes this utility or, – if some information about valuations arrives, – a utility

analogous to this, but calculated using an updated prior.

The designer aims at achieving the highest aggregate effort in the contest.As the

contestants, she does not know the actual state of the world. But in contrast to them, she

has access to a certain information technology that allows her to (costlessly) draw signals,

or messages, m1,m2 ∈ {H,L} about contestants’ prize valuations v1 and v2. She can choose

(1) the precision of this information technology, conditional on each state of the world, and

(2) whether to pass the signals on to both contestants privately, or publicly, or keep them

uninformed, with the goal of inducing maximal aggregate effort.

To be more precise, let us define an information technology I = (M,π, τ) as a triple that

consists of all possible signal profiles M = {(m1,m2) s.t. mi ∈ {H,L}, i = 1, 2}, conditional

signal distributions π : S → ∆(M), one for each possible state, and the type of information

disclosure to contestants τ ∈ {public, private, none}.16 We assume that any type of disclosure

in τ is applied to both players symmetrically. That is, either both players are informed about

the signal publicly (each of them learns the same pair of messages (m1,m2)), or both are

approached privately (player i observes only message mi), or both remain uninformed and

have to rely only on their prior. Furthermore, suppose that irrespective of whether the

disclosure is public or private, the designer always conveys the information truthfully.

Since the contestants are symmetric, we restrict attention to signal distributions where

conditional on every state of the world s ∈ S, the probability that exactly one of the signals

m1, m2 is different from the value in s is the same for both players. Such distributions can be

fully characterized by two parameters per state qj, rj ∈ [0, 1], j ∈ 1 : 4, as shown on Figure

1. Let us denote the resulting conditional signal distribution by π = π ({qj, rj}j∈1:4).17 The
16This concept is similar to the concept of “information structure” in Taneva (2019), where it is applied

to a discrete-action game in which signals are action recommendations, and they are conveyed to players
privately.

17Similar distributions but over action profiles and two states of the world emerge in Taneva (2019).
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s1 = (H, H)
m2 = H m2 = L

m1 = H r1 q1 − r1

m1 = L q1 − r1 1− 2q1 + r1

s2 = (H, L)
m2 = H m2 = L

m1 = H q2 − r2 r2

m1 = L 1− 2q2 + r2 q2 − r2

s3 = (L, H)
m2 = H m2 = L

m1 = H q3 − r3 1− 2q3 + r3

m1 = L r3 q3 − r3

s4 = (L, L)
m2 = H m2 = L

m1 = H 1− 2q4 + r4 q4 − r4

m1 = L q4 − r4 r4

Figure 1: Conditional signal distribution π

parameter rj indicates the probability with which signals about both players’ prize valuations

match the true state sj:

P (m1 = H,m2 = H|s1 = (H,H)) = r1, P (m1 = H,m2 = L|s2 = (H,L)) = r2,

P (m1 = L,m2 = H|s3 = (L,H)) = r3, P (m1 = L,m2 = L|s4 = (L,L)) = r4

In other words, rj measures the probability that conditional on the state, the information

technology reveals the true prize valuations of both contestants. The parameter qj represents

the probability that a signal regarding each contestant matches his actual valuation in state sj,

irrespective of whether the same holds for a signal regarding the opponent. This probability is

the same for both contestants. For example, consider state s2 = (H,L). Then, for contestant

1 this probability is given by

P (m1 = H,m2 = H| s2 = (H,L)) + P (m1 = H,m2 = L| s2 = (H,L)) = q2

Similarly, for contestant 2, it is

P (m1 = H,m2 = L| s2 = (H,L)) + P (m1 = L,m2 = L| s2 = (H,L)) = q2

Thus, parameters qj and rj measure the signal’s precision, conditional on state sj: rj

reflects the precision of a signal about both contestants simultaneously, while qj measures

the precision of a signal about each contestant individually. Clearly, qj ≥ rj for any state sj.

The choice of qj and rj in each state also allows for arbitrary correlation between signals

m1 and m2. In general, this correlation can be defined as

ρ = P (m−i = H|mi = H)−P (m−i = H|mi = L) = P (m−i = L|mi = L)−P (m−i = L|mi = H)

and it will be the focus of our attention when we study the case of private information
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disclosure. By calibrating the correlation between private messages that the designer sends

to players, she can further her agenda of maximizing their aggregate effort.

Note that depending on the parameter values, the distribution over signal profiles π may,

in fact, be independent of the state. This is the case when all four probability matrices on

Figure 1 are identical, such as when all entries in each matrix are equal to 1/4, or when the

same and equal weight is given only to symmetric signals (H, H), (L, L) in every state, and

no weight is assigned to asymmetric signals. The former represents a situation where signals

are completely uninformative, in that they do not affect the prior beliefs about players’ prize

valuations. Public revelation of such signals to contestants is equivalent to nondisclosure,

or concealment. The latter represents an environment with the highest positive correlation

between private signals. Moreover, the precision of these signals is zero if the realized state

is asymmetric (namely, r2 = r3 = 0).

The timing of the events is as follows. Before the contest and any signal realization, the

designer commits to and publicly announces an information technology I, which thus becomes

common knowledge. Once the state has been randomly drawn from the prior distribution ξ,

the signals are generated according to the announced distribution π and subsequently revealed

to each player in line with the chosen type of disclosure τ . Upon observing the signal, each

contestant i updates beliefs about the state and about the beliefs of his opponent. Then,

both contestants simultaneously select a (possibly mixed) action – a probability distribution

over effort levels – which maximizes their expected payoffs. The resulting choices conditional

on players’ signals define a Nash equilibrium or a Bayesian Nash equilibrium of the contest

game. The exact solution concept depends on the type of information disclosure used. If

the designer sends public messages or transmits no information (τ = public or τ = none),

the information set of both contestants is the same, and the appropriate equilibrium concept

is Nash. In case of private disclosure (τ = private), the contest game features incomplete

information, and each contestant can be of two types, H or L, as determined by his private

message. Then, the appropriate concept is Bayesian Nash equilibrium.

In general, there could exist multiple equilibria of the contest game. The designer has

to choose an information technology that induces contestants to play the equilibrium that

maximizes her ex ante expected payoff, i.e., the ex ante expected aggregate effort of the

contestants. This problem can be solved in two steps:
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1. First, we characterize the set of equilibria that could emerge under any possible

information technology, that is, under any type of information disclosure

τ ∈ {public, private, none} and any conditional signal distribution π ({qj, rj}j∈1:4).

2. Second, we maximize the objective function of the designer over the set of all possible

equilibria. This delivers the optimal information technology I∗ that consists of the

optimal type of information disclosure τ ∗ and the optimal signal distribution

π({q∗j , r∗j}j∈1:4).

In what follows we adopt this approach. We first consider equilibria of the contest game under

both public and private information disclosure. Then we solve the designer’s problem in each

case to derive an optimal signal distribution for τ = public and τ = private. Nondisclosure,

or information concealment (τ = none), is addressed as a special case of public disclosure.

Finally, we compare the optimal values of the designer’s objective function across cases of

public and private disclosure and characterize the global optimum, that is, the information

technology I∗ that the designer should optimally use in our model.

5 Equilibrium of the contest game

In this section, we characterize the equilibrium of the contest game under different disclosure

regimes. If the designer adopts public disclosure, both contestants have the same information

set, and the appropriate solution concept is a Nash equilibrium. With private disclosure, the

contestants’ information sets differ, and one must look for a Bayesian Nash equilibrium. We

study these two cases separately.

5.1 Equilibrium under public information disclosure

Let us first consider the contest game following public information disclosure. To distinguish

the notation in this case from the case of private disclosure (where additional restrictions

will be imposed on distribution π), let us denote the precision parameters {qj, rj}j∈1:4 in this

case by {qpubj , rpubj }j∈1:4.

Under public disclosure, the designer truthfully reveals the signal profile m = (m1,m2)

to both players. Since the information received by the contestants is identical, they update
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beliefs about own and the opponent’s prize valuations in the same way:18

P (vi = H|m = (H, H) , π) =

=
α2rpub1 + α (1− α)

((
qpub2 − rpub2

)
I{i=1} +

(
qpub3 − rpub3

)
I{i=2}

)
α2rpub1 + α (1− α)

(
qpub2 − rpub2 + qpub3 − rpub3

)
+ (1− α)2

(
1− 2qpub4 + rpub4

)
P (vi = H|m = (H, L) , π) =

=
α2
(
qpub1 − rpub1

)
+ α (1− α)

(
rpub2 I{i=1} +

(
1− 2qpub3 + rpub3

)
I{i=2}

)
α2
(
qpub1 − rpub1

)
+ α (1− α)

(
rpub2 + 1− 2qpub3 + rpub3

)
+ (1− α)2

(
qpub4 − rpub4

)
P (vi = H|m = (L, H) , π) =

=
α2
(
qpub1 − rpub1

)
+ α (1− α)

((
1− 2qpub2 + rpub2

)
I{i=1} + rpub3 I{i=2}

)
α2
(
qpub1 − rpub1

)
+ α (1− α)

(
1− 2qpub2 + rpub2 + rpub3

)
+ (1− α)2

(
qpub4 − rpub4

)
P (vi = H|m = (L, L) , π) =

=
α2
(

1− 2qpub1 + rpub1

)
+ α (1− α)

((
qpub2 − rpub2

)
I{i=1} +

(
qpub3 − rpub3

)
I{i=2}

)
α2
(

1− 2qpub1 + rpub1

)
+ α (1− α)

(
qpub2 − rpub2 + qpub3 − rpub3

)
+ (1− α)2 rpub4

where I{i=1} and I{i=2} are index functions equal to one if the condition in curly brackets

holds, and zero otherwise. The expected prize valuation of player i, conditional on m, is then

given by:19

E (vi|m, π) ≡ vm,pubi = P (vi = H|m, π)H + P (vi = L|m, π)

Since the signal profile m is publicly observable, the contest mimics a complete information

all-pay auction. This class of games was extensively studied in Baye et al. (1996). With two

contestants, the Nash equilibrium is unique and features mixed strategies. Let’s take any

message m ∈M and assume vm,pubi ≥ vm,pub−i , that is, P (vi = H|m, π) ≥ P (v−i = H|m, π).

Then, in the Nash equilibrium:20

• Contestant i randomizes uniformly on
[
0, vm,pub−i

]
with probability 1,

18All probabilities are calculated by Bayes rule using parameters of the conditional distribution
π
(
{qpubj , rpubj }j∈1:4

)
(see Figure 1) and the prior distribution ξ defined in the previous section.

19Recall that L ≡ 1.
20See Baye et al. (1996) for technical details.
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• Contestant −i randomizes uniformly on
(

0, vm,pub−i

]
with probability vm,pub−i

vm,pubi

and stays

inactive with probability
(

1− vm,pub−i

vm,pubi

)
.

Note that given these strategies, the contestants’ expected equilibrium payoffs are:

ui =
vm,pub−i

vm,pubi

· 1

2
· vm,pubi +

(
1−

vm,pub−i

vm,pubi

)
· vm,pubi −

vm,pub−i

2
= vm,pubi − vm,pub−i ≥ 0

u−i =
vm,pub−i

vm,pubi

· 1

2
· vm,pub−i −

vm,pub−i

vm,pubi

·
vm,pub−i

2
= 0

Furthermore, we can define Jpub, the ex ante expected aggregate effort of the contestants,

where “ex ante” refers to the fact that the designer commits to the information technology

before the realization of a signal:

Jpub ≡
∑

m∈M̃π

P (m)
vm,pub2

2

(
1 +

vm,pub2

vm,pub1

)
+
∑

m/∈M̃π

P (m)
vm,pub1

2

(
1 +

vm,pub1

vm,pub2

)
, (1)

where M̃π ⊆M denotes the set of all such signal profiles m for which vm,pub1 ≥ vm,pub2 .

5.2 Equilibrium under private information disclosure

Consider now the case of private information disclosure. Upon observing signal profile

m = (m1,m2), the designer truthfully reveals m1 to contestant 1 and m2 to contestant 2.

Thus, private signals create an environment with asymmetric information, where each

contestant’s message mi is his privately observed type. To simplify things, let us assume in

the analysis of private information disclosure that conditional on realization of either of the

asymmetric states (H,L) or (L,H), the signal distribution π is characterized by the same

precision parameters. This reduces the number of choice variables for the designer and,

hence, the dimensionality of the optimization problem she has to solve. Figure 2 depicts the

signal distribution for this case.

Furthermore, we employ a standard Bayesian rationality requirement that the distribution

of contestants’ beliefs is Bayes-plausible. By definition (see Kamenica and Gentzkow (2011)),

this means that for every player i, the expected posterior probability equals the prior, that

is, the probability of receiving signal mi = H is equal to α. We will say that the signal

distribution π that induces such Bayes-plausible beliefs is consistent.
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s1 = (H, H)
m2 = H m2 = L

m1 = H r1 q1 − r1

m1 = L q1 − r1 1− 2q1 + r1

s2 = (H, L)
m2 = H m2 = L

m1 = H q2 − r2 r2

m1 = L 1− 2q2 + r2 q2 − r2

s3 = (L, H)
m2 = H m2 = L

m1 = H q2 − r2 1− 2q2 + r2

m1 = L r2 q2 − r2

s4 = (L, L)
m2 = H m2 = L

m1 = H 1− 2q3 + r3 q3 − r3

m1 = L q3 − r3 r3

Figure 2: Conditional signal distribution π in case of private information disclosure

Definition. A disclosure rule is consistent if and only if P (mi = H) = α for i = 1, 2, that

is, α2q1 + α (1− α) + (1− α)2 (1− q3) = α.

Note that the consistency condition holds for any α ∈ (0, 1), when the disclosure of

symmetric states is perfectly precise: q1 = q3 = 1, so that also r1 = r3 = 1. However, the

condition also holds for other q1 and q3, provided that α is defined appropriately. Interestingly,

our results in the next section imply that despite these restrictions on signal distributions,

the optimal information disclosure with private signals (τ = private) delivers higher expected

aggregate effort than the best public disclosure rules (τ = public and τ = none).

Having received signal mi from the designer, each player i updates his beliefs about own

valuation and the opponent’s type m−i as follows:21

P (vi = H|mi = H, π) =
α2q1 + α (1− α) q2

α
(2)

P (vi = H|mi = L, π) =
α2 (1− q1) + α (1− α) (1− q2)

1− α
(3)

and

P (m−i = H|mi = H, π) ≡ PH|H =
α2r1 + 2α (1− α) (q2 − r2) + (1− α)2 (1− 2q3 + r3)

α

P (m−i = H|mi = L, π) ≡ PH|L =
α2 (q1 − r1) + α (1− α) (1− 2q2 + 2r2) + (1− α)2 (q3 − r3)

1− α

To complete the notation, let us define PL|H = 1− PH|H and PL|L = 1− PH|L. Beliefs in

(2)–(3) determine the expected prize valuation of player i, conditional on message mi:
21These probabilities are computed by Bayes rule using the conditional distribution π in Figure 2 and the

prior distribution ξ.
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E (vi|mi, π) ≡ vmi = P (vi = H|mi, π)H + P (vi = L|mi, π)

From this equation it is clear that the type of player i determined by message mi can be

equivalently defined by his expected valuation vmi :

mi = H if and only if vmi = vHi

Moreover, since vH1 = vH2 and vL1 = vL2 hold, we can drop the player subscript i. Therefore,

we will refer to vHi and vLi as types vH and vL of player i.

In the analysis, we focus on the case where vH ≥ vL. This describes a situation where

receiving signal H means good news and results in higher expected valuation. In other

words, we require the designer to stick to the signal distributions that preserve the

relationship between valuations H and L. Since H > L, the inequality vH ≥ vL is

equivalent to P (vi = H|mi = H, π) ≥ P (vi = H|mi = L, π), that is, q1 ≥ 1− 1−α
α
q2.

To characterize the contestants’ equilibrium behavior, we employ the results of Liu and

Chen (2016). They provide a closed-form solution for both monotonic and non-monotonic

symmetric Bayesian Nash equilibria of an all-pay auction with correlated types. In our

setting, where types are players’ expected valuations, or messages that they observe privately,

the relevant correlation is between the contestants’ private signals. It is inherent in the signal

distribution π and equal to

ρ = PH|H − PH|L = PL|L − PL|H

where the second equality follows from PL|H = 1 − PH|H and PL|L = 1 − PH|L. Similarly to

Liu and Chen (2016), we define two types of equilibrium. If messages m1 and m2 are

independent or mildly correlated (namely, ρ = 0 or slightly positive/negative), the

equilibrium is monotonic. With sufficiently correlated messages (ρ � 0 or ρ � 0), the

equilibrium becomes non-monotonic.22 Each of the cases – with mild, sufficiently positive

and sufficiently negative correlation – corresponds to respective intervals for PL|L
PL|H

and PH|L
PH|H

.

Indeed, PL|L
PL|H

=
PH|L
PH|H

= 1 if and only if the contestants’ types are independent, and any

deviation from this corresponds to the presence of non-zero correlation. Using Proposition 1

of Liu and Chen (2016), we now describe the value of the ex ante expected aggregate effort

that is generated in each equilibrium. The derivations are provided in the Appendix.
22Each equilibrium features mixed strategies. It is defined as monotonic if different types of a contestant

randomize on non-overlapping intervals. Otherwise, the equilibrium is classified as non-monotonic.
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Proposition 1. If correlation between the two messages m1 and m2 is zero or mild, i.e.,
vH

vL
≥ PL|L

PL|H
and vH

vL
≥ PH|L

PH|H
, the equilibrium is monotonic. The ex ante expected aggregate

effort amounts to:

JM = (1 + α)PL|Lv
L + αPH|Hv

H

If correlation between m1 and m2 is sufficiently positive, i.e., vH

vL
<

PL|L
PL|H

, or sufficiently

negative, i.e., vH

vL
<

PH|L
PH|H

, the equilibrium is non-monotonic. The ex ante expected aggregate

effort in case of positive correlation is equal to:

JNM,+ =
vH
(
vL
(
PL|L − PL|H

)
+ α

(
vH − vL

))
PH|HvH − PH|LvL

and in case of negative correlation it is equal to:

JNM,− =
vL
(
vH − vL

) (
PL|L − (1− α)

)
PL|HvH − PL|LvL

+ vL

In all equilibria, a contestant of type L gets zero expected payoff:

uML = uNM,+
L = uNM,−

L = 0

while a contestant of type H receives an expected payoff given by:

uMH = PL|Hv
H − PL|LvL,

uNM,+
H = 0, uNM,−

H = vH − vL

Note that Proposition 1 does not immediately imply the ranking of the three equilibria in

terms of the expected aggregate effort they generate. This depends on the designer’s choice

of the conditional signal distribution π, that is, on parameters {qj, rj}3
j=1 which parametrize

it (see Figure 2). In our search for the optimal private disclosure rule we will proceed in

two steps. First, we will study an optimal choice of the signal distribution π for each of the

equilibria separately. Second, we will compare the expected aggregate effort associated with

each choice and define the best signal distribution under private information disclosure.

6 The optimal signal distribution

In this section, we use a mixture of analytical and numerical methods to solve for the optimal

signal distribution. First, we state a general result that does not depend on the type of
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information disclosure τ and illustrates a typical first-mover advantage. Since the contestants

are ex ante identical and have no private information, the designer, who commits to the signal

distribution before the competition starts, can extract full surplus.

Lemma 1. For any type of information disclosure, an optimal information technology leaves

no surplus to either of the contestants, i.e., ui = 0 for any i = 1, 2.

We prove this result by contradiction. Suppose that the optimal disclosure rule is such that

ui > 0 for some contestant i and some message profilem ∈M . Since the expected equilibrium

payoff of the contestant with lower prize valuation is always zero, contestant i’s valuation is

higher, i.e., vmi > vm−i. Then, in the absence of ex ante heterogeneity and private information

on the contestants’ side, the designer can slightly perturb the signal distribution in a way

that makes vm−i larger (but still below vmi ), so that the expected effort of −i, conditional on

message m, increases.23 This means that the expected payoff of contestant i declines: indeed,

even if i reacts to the change by increasing his effort just enough to keep the probability of

winning the same, his effort cost increases. Since there is no other party that could capture

the contestants’ surplus, and externalities are absent, the reduction in ui > 0 benefits the

designer.24 This contradicts the assumption that the designer’s information technology is

optimal.

Equipped with Lemma 1, we can now characterize an optimal signal distribution under

public disclosure. From Section 5.1 it follows that the expected equilibrium payoffs of the

contestants in this case are equal to:

ui =
(
vm,pubi − vm,pub−i

)
· I{vm,pubi ≥vm,pub−i } ∀m ∈M, i = 1, 2

where I{vm,pubi ≥vm,pub−i } is an index function equal to one if and only if the condition vm,pubi ≥

vm,pub−i holds and zero otherwise. Then, according to Lemma 1, an optimal signal distribution

must induce vm,pub1 = vm,pub2 for any message m ∈ M . Now, the equality vm,pub1 = vm,pub2 (or

alternatively, P (v1 = H|m) = P (v2 = H|m)) is true for any signal m ∈ M if and only if
23This perturbation can keep the surplus of player −i unaffected by balancing the two components of the

contestant’s payoff.
24For any information technology, contestants’ expected effort is always positive because no matter what

the state is, they attach a value of at least L ≡ 1 to the prize, i.e. winning is always attractive.

21



the following three conditions hold:25

qpub2 − rpub2 = qpub3 − rpub3 (4)

rpub2 = 1− 2qpub3 + rpub3 (5)

rpub3 = 1− 2qpub2 + rpub2 (6)

Thus, these conditions are necessary for an optimal signal distribution π under public

disclosure. Moreover, as we show in the proof of Proposition 2, they are also sufficient for

an optimum because the designer’s objective function achieves its upper bound on the set

of feasible parameters when these conditions hold.

Proposition 2. Under public disclosure (τ = public), an optimal signal distribution

π
(
{qpubj , rpubj }j∈1:4

)
is characterized by conditions (4)–(6), that is, it generates symmetric

beliefs, where P (v1 = H|m) = P (v2 = H|m) ∀m ∈ M . The ex ante expected aggregate

effort associated with the optimal signal distribution is equal to Jpub = αH + (1− α).

The interpretation of this result is the following. By definition of distribution π in Figure

1, conditions (4)–(6) make the probability matrices corresponding to states s2 = (H,L) and

s3 = (L,H) identical, without imposing any further restrictions on the probability matrices

for states s1 = (H,H) and s4 = (L,L). This means that for any signal realization (m1,m2),

the asymmetric states (H,L) and (L,H) receive equal weight in contestants’ beliefs. The

result confirms our intuition from the opening example: if contestants believe that their prize

valuations are different, they exert the lowest possible effort. To prevent this, the designer

should obscure the information about such states. In particular, an information technology

with precise revelation of every state is never optimal, because at least in asymmetric states,

the designer would prefer the signal to be imprecise.

Another immediate observation is that the optimal signal distribution under public

disclosure is not unique. In fact, any distribution that results in symmetrically updated

beliefs, where for any signal m each contestant is equally likely to have a high prize

valuation, is optimal. In the Appendix, we provide two examples of optimal public

disclosure rules. The first one is equivalent to complete nondisclosure, or concealment. It

implies that under public disclosure regimes, not revealing any information to contestants is
25This follows immediately from the definition of probabilities P (vi = H|m, π) in the beginning of Section

5.1 and the assumption that α ∈ (0, 1).
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one optimal possibility. The second example emphasizes that precise revelation can benefit

the designer only in symmetric states (H,H) and (L,L), while any disclosure in case of

asymmetric prize valuations must be uninformative.

However, it turns out that even the optimal public disclosure regime is never globally

optimal, as there exists a private disclosure rule that delivers a higher payoff to the designer.

Proposition 3. Public information disclosure is never optimal.

To prove this proposition, we construct a signal distribution with private signals that

generates a higher ex ante expected aggregate effort than the best signal distribution under

public disclosure. This result is sufficient to show that the optimal information technology

I∗ must feature private signals. Now, to uncover the properties of the optimal signal

distribution π∗, we take a closer look at the private signals case.

6.1 Private information disclosure

We start from studying an optimal choice of a signal distribution π for each of the equilibria

in the contest game under private disclosure separately (see Proposition 1). First, we derive

an optimal signal distribution that supports the monotonic equilibrium. Then, we study the

properties of optimal distributions that induce non-monotonic equilibria with positive and

negative correlation. After that we compare the expected aggregate effort associated with

each choice and define the best signal distribution under private information disclosure. In

view of Proposition 3, this will determine the global optimum in our model. We will see that

at least as long as H is not much larger than L ≡ 1, the globally optimal signal distribution

induces the monotonic equilibrium with slightly positively correlated private signals that are

perfectly precise if and only if the state is symmetric.

6.1.1 An optimal signal distribution supporting the monotonic equilibrium

An optimal signal distribution that supports the monotonic equilibrium is a solution to the

following maximization problem:

max
π={qj , rj}3j=1

{
JM ≡ (1 + α)PL|Lv

L + αPH|Hv
H
}

(7)
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s. t. α2q1 + α (1− α) + (1− α)2 (1− q3) = α (8)

q1 ≥ 1− 1− α
α

q2 (9)

vHPL|H − vLPL|L ≥ 0 (10)

vHPH|H − vLPH|L ≥ 0 (11)

qj ≥ rj (12)

rj ≥ max {0, 2qj − 1} (13)

qj, rj ∈ [0, 1] , j = 1, .., 3 (14)

The set of constraints includes the consistency requirement in (8), the inequality stating that

vH ≥ vL in (9),26 two “monotonicity” conditions to sustain a monotonic equilibrium in (10)–

(11), and the feasibility constraints ensuring that the signal distribution π is well defined

in (12)–(14). Due to non-linearity and multi-dimensionality of this constrained optimization

problem, finding all solutions analytically does not appear feasible. However, Lemma 2

formulates one general property that any optimal private disclosure policy inducing JM must

possess.

Lemma 2. Under private disclosure, an optimal signal distribution that supports a monotonic

equilibrium must satisfy PL|HvH = PL|Lv
L, i.e., condition (10) binds.

The proof follows immediately if we recall from Lemma 1 that the expected payoff of both

contestant types must be zero, and uMH = PL|Hv
H − PL|Lv

L, as stated by Proposition 1.

Lemma 2 implies that private signals of the contestants must be (mildly) positively correlated.

This benefits the designer as it makes the contestants give less weight to asymmetric states,

and the expected aggregate effort increases.

We now analytically derive one (local) optimum for the case when the prior probability

α of having a high valuation is above a certain threshold. Then, we consider a candidate for

an optimum when α lies below that threshold. Later we will look for other possible solutions

numerically and demonstrate that the analytically derived optima are, in fact, global for a

large range of parameter values. Specifically, deviations to a different disclosure policy turn
26Recall that this is the assumption we made in section 5.2.
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out to be profitable only when valuations H and L are sufficiently different and α is small

enough.

Proposition 4 states that for α ≥ max
{

0, H−3
3(H−1)

}
, an optimal signal distribution that

supports the monotonic equilibrium is such that the symmetric states (H, H) and (L, L)

are revealed precisely, whereas the asymmetric states are reported with a noise. Moreover,

conforming to Lemma 2, the first monotonicity constraint in (10) binds, so that the

contestants’ messages are slightly but positively correlated.

Proposition 4. For α ≥ max
{

0, H−3
3(H−1)

}
, there exists a (locally) optimal signal distribution

π ({qj, rj}j∈1:3) that supports a monotonic equilibrium under private disclosure (τ = private).

It is characterized by such precision parameters {qj, rj}j∈1:3 that generate a small but strictly

positive correlation between private messages (condition (10) binds), perfectly precise signals

in case of the symmetric states (H, H) and (L, L) and imprecise signals in case of the

asymmetric states (H, L) and (L, H). Specifically:
q1 = r1 = q3 = r3 = 1

q2 = min {q̂2, q̄2}

r2 = q2 −
(1− α)

(
vH − vL

)
2 ((1− α) vH + αvL)

≡ r̂2 (q2) > 0

where

q̄2 =


H−3−5α(H−1)−

√
D

4(H−1)(1−2α)
, α 6= 1

2

2(H+1)
3H+1

, α = 1
2

q̂2 =


α−
√
α(1−α)(1+α(H−1))

α(2α−1)(H−1)
, α 6= 1

2

H+1
2(H−1)

, α = 1
2

D = −7 (H − 1)α2 + 6
(
H2 − 4H + 3

)
α +H2 + 10H − 7 > 0 ∀α ∈ [0, 1]

Intuitively, and in line with the opening example and our results on public disclosure, the

designer has an incentive to keep the competition between contestants even. This is achieved

by perfectly revealing the symmetric states and adding noise to the information when the

state is asymmetric. Positive correlation between contestants’ messages is also a step in this

direction, particularly given that the prior is strong (α is sufficiently high), that is, high prize

valuations are likely.27

27Recall that the highest competitive effort is exerted when contestants know that both of them have high
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Now, to gain some insights into how an optimal disclosure rule may look like for a range

of lower values of α, we compare the optimal signal distribution in Proposition 4 with its

counterpart under which the asymmetric states (H,L) and (L,H) are never revealed

precisely, that is, where r2 = 0. We show that for such a distribution, there exists a range of

lower values of α and a range of sufficiently different H and L ≡ 1, such that the resulting

ex ante expected aggregate effort is higher than under the optimal policy of Proposition 4.

To make the statement precise, let us denote by JM (q1, r1, q2, r2, q3, r3) the value of the ex

ante expected aggregate effort (in the monotonic equilibrium) when the precision

parameters are fixed at {qi, ri}3
i=1.

Proposition 5. Assume q1 = r1 = q3 = r3 = 1 and monotonicity condition (10) binds.

Then, for H ≥
(
9 + 4

√
5
)
, there exist α̃1 > 0 and α̃2 ∈

(
α̃1,

H−3
3(H−1)

)
such that for any

α ∈ (α̃1, α̃2), a counterpart of the signal distribution in Proposition 4 where the asymmetric

states (H, L) and (L, H) are never revealed precisely (r2 = 0) induces a higher ex ante

expected aggregate effort: H ≥
(
9 + 4

√
5
)

α̃2 ∈
(
α̃1,

H−3
3(H−1)

) ⇒

JM
(

1, 1, q
2
, 0, 1, 1

)
> JM (1, 1, min {q̂2, q̄2} , r̂2 (min {q̂2, q̄2}) , 1, 1)

where

• α̃1, 2 = H−9∓
√
H2−18H+1

10(H−1)
,

• q
2

= H−3−3α(H−1)
2(1−2α)(H−1)

, and

• q̂2, q̄2, and r̂2 (q2) are defined in Proposition 4.

While this proposition does not claim optimality of the described policy with r2 = 0, it hints

that it may dominate other disclosure rules. In the next subsection and in section 6.1.3 we

will study alternative local optima under private disclosure, that support both monotonic

and non-monotonic equilibria of the contest game. We will see that the signal distributions

of Propositions 4 and 5 do indeed generate the highest expected aggregate effort for a broad

range of α and H.

valuation.
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6.1.2 Optimal signal distributions supporting the non-monotonic equilibria

To understand the properties of the optimal signal distributions that induce non-monotonic

equilibria, let us again refer to Lemma 1. First, consider the case of sufficiently negative

correlation between contestants’ messages, that is, vH
vL
<

PH|L
PH|H

. By Proposition 1, the expected

equilibrium payoff of a contestant of typeH is uNM,−
H = vH−vL. Combining this with Lemma

1, we obtain the following result.

Lemma 3. Under private disclosure, an optimal signal distribution that supports a non-

monotonic equilibrium with negative correlation must satisfy vH = vL, i.e., condition (9) has

to bind.

Lemma 3 implies that with negatively correlated messages, the meaning of private signals

gets lost, and the case becomes equivalent to public disclosure. In particular, one can show

that the ex ante expected aggregate effort of the contestants in this case is exactly the same as

under the optimal signal distribution in case of public disclosure, i.e., JNM,− = αH+(1− α).

Indeed, since the optimal signal distribution must satisfy vH = vL, the ex ante expected

aggregate effort JNM,− reduces to (see Proposition 1):

JNM,− =
vL
(
vH − vL

) (
PL|L − (1− α)

)
PL|HvL − PL|LvL

+ vL = vL

By substituting q1 = 1− 1−α
α
q2 (which is condition (9) when it binds) into JNM,− = vL, we

obtain:

JNM,− = αH + (1− α) = Jpub

The intuition behind this result is the following. If a signal distribution features

sufficiently negative correlation, each contestant believes that most likely, the opponent is of

a different type. As a result, both competitors assign more weight to asymmetric signals,

and their efforts decline. To mitigate this effect, the best the designer can do is to design a

signal distribution that induces vH = vL, independently of the exact signal realizations.

This equivalence with the case of public disclosure, together with Proposition 3, lead to the

following result:

Proposition 6. Private disclosure with strongly negatively correlated signals is never optimal.
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As for the case with sufficiently positively correlated messages, where vH

vL
<

PL|L
PL|H

,

unfortunately, we cannot say much. By Proposition 1, for any signal distribution π that

satisfies vH

vL
<

PL|L
PL|H

, both contestants’ types receive zero expected payoff. However, such

signal distributions do not need to be equivalent in terms of the expected aggregate effort

they generate. Also, the corresponding optimization program of the designer turns out to

be analytically intractable. To overcome these issues, in the next subsection we perform

numerical simulations to see whether a signal distribution that generates the

non-monotonic equilibrium with positively correlated private signals can be optimal.

Intuitively, we expect that the ex ante expected aggregate effort of the contestants in this

case is lower than in the monotonic equilibrium. To see this, let us first consider the strategies

played by the contestants in the non-monotonic equilibrium with positive correlation:28

• Type L randomizes uniformly on [0, e] with probability 1, where e ∈
(
0, vH

)
,

• Type H randomizes on the same interval with probability pHB =
PL|Lv

L−PL|HvH

PH|HvH−PH|LvL
and

exhausts the remaining probability in
[
e, vH

]
.

Using this, we can rewrite the ex ante expected aggregate effort JNM,+ (see Proposition 1)

as follows:

JNM,+ = e+ αvH(1–pHB )

Since JNM,+ strictly decreases in pHB , it is intuitive that the designer should reduce this

probability and, hence, prompt type H to play in the top interval more often. This would

bring the equilibrium play closer to the one in the monotonic equilibrium, where type H

chooses his effort in a strictly higher interval than type L. Also, pHB = 0 holds in the

monotonic equilibrium, under the optimal signal distribution (where condition (10) binds).

This suggests that the designer may benefit from moving as close to the monotonic equilibrium

as possible.29

Another indication of that is an observation that sending perfectly correlated private

signals cannot do better than the optimal public disclosure rule, which, in turn, is dominated

by the optimal private disclosure inducing the monotonic equilibrium. The second part of
28See Proposition 1 of Liu and Chen (2016).
29The fact that JNM,+ strictly decreases in pHB is not sufficient to prove that the designer will necessarily

improve JNM,+ by choosing parameters of the signal distribution π so as to set pHB = 0. This is because the
same parameters enter other components of JNM,+ – e and vH , – and the effect on them can be suboptimal.
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that statement is established in the proof of Proposition 3. Here we show that the expected

aggregate effort under perfectly correlated private signals is equal to the one under optimal

public disclosure. Under τ = private, the following signal distribution supports perfect

correlation, ρ = 1:

r1 = q1 = r3 = q3 = 1

r2 = 0, q2 =
1

2

This induces PH|H = PL|L = 1, vH = H, and vL = 1. Then one can easily show that

JNM,+ = αH + (1− α) and pHB =
1

H

Thus, JNM,+ coincides with the expected aggregated effort under optimal public disclosure

(see Proposition 2).

Two opposing forces lead to the tradeoff that the designer faces when she generates the

non-monotonic equilibrium with perfectly positively correlated signals. First, the proposed

signal distribution induces an equilibrium with the largest possible support of contestants’

strategies, e ∈ [0, H]. Second, the probability pHB that type H plays in the lower interval

[0, e] is sufficiently high. The former works in the direction of increasing the expected

aggregate effort, while the latter works in the opposite direction. This tradeoff

demonstrates the difficulty with achieving the highest possible aggregate effort despite

perfectly aligned messages of the contestants.

Altogether, the results of our analysis so far imply that the optimal information

technology has τ ∗ = private with non-negatively correlated private signals. Moreover, since

a signal distribution that features perfect positive correlation cannot do better than the

optimal public disclosure, it must be that the optimal signal distribution induces either the

monotonic equilibrium with slightly positively correlated private signals or the

non-monotonic equilibrium where the correlation between signals is positive but not too

strong. To take a deeper look at these issues and find a globally optimal signal distribution

in our model, we perform numerical simulations.

6.1.3 Global optimum via simulations

In this section we present the results of numerical simulations and check if there exist private

disclosure rules that outperform the policies characterized in Propositions 4 and 5. The best
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of these rules will constitute the global optimum in our model.

Let us denote by M and NM+ the best information disclosure policies that support,

respectively, the monotonic equilibrium and the non-monotonic equilibrium with strong

positive correlation between private signals. In simulations, we vary the degree of

heterogeneity in prize valuations, H/L ≡ H, and the prior probability of a high prize

valuation, α. For each (α, H) pair, we find the optimal policies M and NM+, and then

choose the best of them, that is, the policy that generates the highest expected aggregate

effort.

Figure 3 shows when policy M is a global optimum. As one can see, for any (α, H) pair,

the best disclosure rule supports the monotonic equilibrium. With this policy the designer

sends mildly positively correlated private messages, signaling the contestants that they are

not too different, and achieves the highest ex ante expected aggregate effort. Thus, we can

formulate the following result.

Result 1. The optimal information technology features private signal disclosure,

τ ∗ = private, and induces the monotonic equilibrium in the contest game.

Next, we take a closer look at the optimal disclosure policies that support the monotonic

equilibrium. Figure 4 demonstrates how a specific form of policy M depends on α and H.

As one can see, in case of mild (H = 2 and H = 12) and moderate (H = 22) heterogeneity

in prize valuations, the policy with q1 = r1 = q3 = r3 = 1 is always the best and, hence,

constitutes the global optimum. For strong heterogeneity (H = 32), however, there exists a

non-empty set of α’s, α ∈ [0.09, 0.13], for which disclosure rules with q1 = r1 = q3 = r3 = 1

are no longer optimal. Table 1 reports the best information revelation policies when this is

the case. Moreover, whenever q1 = r1 = q3 = r3 = 1 is globally optimal, the policy is exactly

the one that is described by Propositions 4 or 5. In particular, the monotonicity constraint

(10) binds, that is, vHPL|H = vLPL|L, and (q2, r2) equals to either (min {q̂2, q̄2} , r̂2 (q2))

or
(
q

2
, 0
)
. The constraint (10) also binds under the optimal disclosure policies of Table 1

(strong heterogeneity and α ∈ [0.09, 0.13]), so that even in this “special” case, the designer

sends positively correlated signals to the contestants.30 At the same time, here we observe

r1 ≤ q1 < r3 ≤ q3 < 1. Thus, the symmetric states are not revealed precisely. Also,

state (L, L) is disclosed precisely much more often (r3 is close to one) than state (H, H)

30Here r2 = r̂2 (·) where r̂2 (·) solves vHPL|H = vLPL|L.
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that generates the highest expected aggregate effort in the perfect information setting. In

other words, if heterogeneity in valuations is strong enough, the designer can benefit from

persuading both contestants that they are of type L. Importantly, such a policy performs

best only for a sufficiently small α when state (L, L) is indeed likely. The following result

summarizes theses findings.

Result 2. The optimal signal distribution π
(
{q∗j , r∗j}j∈1:3

)
can be characterized as follows:

• If heterogeneity in prize valuations is mild or moderate, the symmetric states (H, H)

and (L, L) are revealed precisely, that is, q∗1 = r∗1 = q∗3 = r∗3 = 1, while the asymmetric

states (H, L) and (L, H) are revealed with a noise:

q∗2 = max
{

min {q̂2, q̄2} , q2
I{q2<1}

}
∈ (0, 1) and r2 = r̂2 (q2) ∈ (0, 1)

where q̂2, q̄2, q2
, and r̂2 (q2) are defined in Propositions 4 and 5, and I is an index

function equal to one if the condition in curly brackets holds, and zero otherwise. Thus,

the optimal policy coincides with the one in Proposition 4 or the one in Proposition 5.

• If heterogeneity in prize valuations is strong, there exist α̌1, α̌2 > 0 such that α̌1 < α̌2 <

H−3L
3(H−L)

for which the following observations are true:

– for α ∈ [0, α̌1)∪ (α̌2, 1], the optimal precision parameters are q∗1 = r∗1 = q∗3 = r∗3 =

1, q∗2 = max
{
q̂2, q2

}
∈ (0, 1), and r∗2 = r̂2 (q2) ∈ [0, 1),

– for α ∈ [α̌1, α̌2], the optimal precision parameters are such that condition

vHPL|H = vLPL|L holds (i.e., monotonicity condition (10) binds) and

r∗1 ≤ q∗1 < r∗3 ≤ q∗3 < 1.

To sum up, our simulations reveal that the optimal disclosure policy always induces the

monotonic equilibrium in the contest game. Under this policy, the designer sends private and

slightly positively correlated signals. Most often (around 98.7% of cases in our simulations),

she chooses to reveal the symmetric states precisely and to signal the asymmetric states with

a noise. A deviation from this strategy can be profitable only when heterogeneity in prize

valuations is sufficiently strong, while the prior α is weak.
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Figure 3: The Best Disclosure Policy as a Function of α and Heterogeneity in Prize
Valuations
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The Best Disclosure Policy: H = 32

Note: this figure indicates for which α and H policyM constitutes a global optimum. The indicator
equals to 1 if and only ifM ≥ NM+, whereM corresponds to the best disclosure rule that supports a
monotonic equilibrium and NM+ stands for the best rule that induces a non-monotonic equilibrium
with strong positive correlation. In all simulations, L ≡ 1 and α takes values between 0.01 and 0.99
with a step of 0.01.
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Figure 4: The Optimal Disclosure Policy as a Function of α and Heterogeneity in Prize
Valuations
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0.01 0.1 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.8 0.88 0.97

1

α

In
d
ic

a
to

r 
(=

1
 f
o
r 

th
e
 B

e
s
t 
M

o
n
o
to

n
ic

 E
q
.)

The Best Monotonic Equilibrium: H = 22

0.01 0.1 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.8 0.88 0.97

1

α

In
d
ic

a
to

r 
(=

1
 f
o
r 

th
e
 B

e
s
t 
M

o
n
o
to

n
ic

 E
q
.)

The Best Monotonic Equilibrium: H = 32

Note: this figure indicates for which α and H policy M of a particular form constitutes a
global optimum. Here, qu2 = q̄2, q*

2 = q̂2, and qL
2 = q

2
where q̄2, q̂2, and q

2
are defined in

Propositions 4 and 5. For other policies, we run a grid search over the signal distribution parameters
(r1, r2, r3, q1, q2, q3) that satisfy all the constraints, and choose a scheme with the highest ex ante
expected aggregate effort. In all simulations, L ≡ 1 and α takes values between 0.01 and 0.99 with
a step of 0.01.
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Table 1: Policy M that does not feature q1 = r1 = q3 = r3 = 1

α r1 r2 r3 q1 q2 q3 r̂2(·) J∗

0.09 0.00 0.01 0.98 0.00 0.42 0.99 0.01 3.986
0.10 0.05 0.00 0.98 0.19 0.42 0.99 0.00 4.331
0.11 0.00 0.01 0.94 0.00 0.34 0.94 0.01 5.050
0.12 0.03 0.00 0.99 0.46 0.41 0.99 0.00 5.022
0.13 0.01 0.10 0.98 0.10 0.48 0.98 0.10 5.370

Note: this table shows policies M that deviate from q1 = r1 = q3 = r3 = 1, and J∗ denotes the ex
ante expected aggregate effort induced by each policy. These policies are found by running a grid
search over the signal distribution parameters (r1, r2, r3, q1, q2, q3) that satisfy constraints (8)–(14),
and choosing a scheme with the highest ex ante expected aggregate effort. In all simulations, H = 32,
and α takes values between 0.09 and 0.13 with a step of 0.01.

7 Conclusion

In this paper we address the question, whether the designer of a contest with unknown

prize valuations whose objective is to stimulate as much competitive efforts as possible can

gain by choosing the information technology, that is, the precision of the signal about

valuations in each state and the way of communicating the signal to the contestants. A

combination of three important features distinguishes our model from other studies on the

optimal information disclosure/feedback in contests: (i) a broad range of disclosure rules

available to the designer, (ii) an assumption that both contestants are initially uninformed

about their values of winning, and (iii) the continuous space for the contestants’ possible

effort choices. Similarly to the literature on the Bayesian persuasion, we also assume that

the designer commits to a certain information technology before the signal about valuations

is realized. Upon its realization, she reveals the signal to the contestants by means of the

announced type of information disclosure: publicly, privately or not at all. Then a static

contest game begins, in which the equilibrium effort choices depend on the disclosure policy

adopted by the designer.

We find that the highest expected aggregate effort can be obtained if the designer employs

private signals that are (slightly) positively correlated (the monotonicity condition binds) and

that reveal the true contestants’ values of winning precisely if and only if these values are the

same. Such signal distribution is proved to be at least one of the local optima under private

disclosure when the prior probability of having a high prize valuation, α, is sufficiently high.
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Then, using numerical simulations we show that this policy is, in fact, globally optimal in

98.7% of all cases. Public disclosure is never optimal, but when it has to be used, – as may be

the case in many real-life contests, – the optimal signal distribution must induce symmetric

beliefs. These findings confirm that the best the designer can do to stimulate effort is to

make contestants believe that their values of winning, and hence the incentives to compete,

are likely to be the same. The perceived asymmetry reduces the intensity of competition,

prompting the designer to make signals about asymmetric states noisy.

Research in this paper can be extended in several directions. For example, one could

study the implications of adding a possibility of communication between contestants before

the start of the competition. There, both the choice of the disclosure policy by the designer

and the incentives of the contestants to share information could be explored. Furthermore, in

a setting with more than two contestants, one could model the communication structure by

a network, in which only the directly linked players can share information with each other.

Such local nature of communication introduces the role for the social network structure in

the designer’s choice of the disclosure policy and in the contestants’ choice of whether to

share their signal or not. Another interesting possibility is to conduct an experiment so as

to investigate how actual subjects in a contest game with unknown prize valuations respond

to different disclosure policies. In particular, one could explore whether the theoretically

optimal disclosure rule, that involves private and partially precise signals, actually induces

a higher aggregate effort than some more straightforward disclosure policies, such as, for

instance, complete nondisclosure, where subjects have to rely only on the prior.
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Appendix A: Examples of optimal signal distributions
under public disclosure
Example 1. Concealment
Suppose the designer chooses to send signals that are completely uninformative about the
state:

rpubj =
1

4
and qpubj =

1

2
for any j ∈ 1 : 4

Then, upon receiving any signal m, contestants stay with their (symmetric) prior. It is easy
to see that the expected aggregate effort in this case is, indeed, equal to Jpub =

vm1
2

+
vm1
2

=
vmi = αH + (1− α).

Example 2. Partially precise information revelation
Another policy that respects symmetric belief updating is to disclose precisely both symmetric
states and convey no information when the contestants’ prize valuations turn out to be
asymmetric:

rpub1 = rpub4 = qpub1 = qpub4 = 1 and rpub2 = rpub3 = qpub2 = qpub3 =
1

2

The expected aggregate effort generated by this policy is

α2H + 2α (1− α)

(
H

2
+

1

2

)
+ (1− α)2

which is exactly equal to αH + (1− α).

Appendix B: Proofs
Proof. [Proof of Proposition 1] To characterize the equilibrium of a symmetric contest
game with private signals, we use Proposition 1 of Liu and Chen (2016). In our setting

vH ≡ HLC , v
L ≡ LLC , andVLC = 1

where the LC subscript corresponds to the original model of Liu and Chen (2016). Then, our
equilibrium characterization follows immediately if one substitutes vH and vL into Proposition
1 of Liu and Chen (2016).

First, consider a monotonic equilibrium that requires vH

vL
≥ PL|L

PL|H
and vH

vL
≥ PH|L

PH|H
. In this

equilibrium

• A contestant who gets message L, or type L, randomizes on the [0, e] interval with
probability 1, where e = PL|Lv

L, and

• A contestant who receives message H, or type H, randomizes on the [e, ē] interval with
probability 1, where ē = e+ PH|Hv

H

and the ex ante expected aggregate effort reaches

JM = PHH (e+ ē) + 2PHL

(
e

2
+
e+ ē

2

)
+ PLLe = e+ (PHH + PHL) ē = PL|Lv

L + αPH|Hv
H

The expected equilibrium payoffs the two contestants’ types get are equal to
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uMH = PH|H
1

2
vH + PL|Hv

H − e+ ē

2
= PL|Hv

H − PL|LvL

uML = PL|L
1

2
vL − e

2
= 0

Second, take a non-monotonic equilibrium with strong positive correlation that arises
when vH

vL
<

PL|L
PL|H

holds. In this equilibrium

• Type L randomizes on the [0, e] interval with probability 1, where e =
vHvL(PL|L−PL|H)
PH|HvH−PH|LvL

,
and

• Type H randomizes on the [0, e] interval with probability pHB =
PL|Lv

L−PL|HvH

PH|HvH−PH|LvL
and

exhausts the remaining bidding probability on the [e, ē] interval, where ē = vH .

The ex ante expected aggregate effort is

JNM,+ = PHH
(
e+

(
1− pHB

)
ē
)

+ 2PHL

(
e

2

(
1 + pHB

)
+
(
1− pHB

) e+ ē

2

)
+ PLLe =

e+ ē (PHH + PHL)
(
1− pHB

)
=
vHvL

(
PL|L − PL|H

)
PH|HvH − PH|LvL

+
vHα

(
vH − vL

)
PH|HvH − PH|LvL

=

vH
(
vL
(
PL|L − PL|H

)
+ α

(
vH − vL

))
PH|HvH − PH|LvL

and the expected equilibrium payoffs amount to

uNM,+
H = PH|H

1

2
vH + PL|Hv

H

(
pHB

1

2
+
(
1− pHB

))
− pHB

e

2
−
(
1− pHB

) e+ ē

2
=

PH|H
1

2
vH+PL|Hv

H 1

2
+PL|Hv

H 1

2

(
1− pHB

)
− e

2
−
(
1− pHB

) vH
2

=
vH

2
−PH|H

(
1− pHB

) vH
2
− e

2
=

vH

2

[
1−

PH|H
(
vH − vL

)
+ vL

(
PL|L − PL|H

)
PH|HvH − PH|LvL

]
=
vH

2

[
1−

PH|Hv
H − PH|LvL

PH|HvH − PH|LvL

]
= 0

uNM,+
L = PL|L

1

2
vL+PH|Lp

H
B

1

2
vL−e

2
=
vL

2

[
PL|L + PH|L

PL|Lv
L − PL|HvH

PH|HvH − PH|LvL
−
vH
(
PL|L − PL|H

)
PH|HvH − PH|LvL

]
=

vLvH

2
(
PH|HvH − PH|LvL

) [PL|LPH|H − PH|LPL|H − (PL|L − PL|H)] =

vLvH

2
(
PH|HvH − PH|LvL

) [PL|L (1− PL|H)− PL|H (1− PL|L)− (PL|L − PL|H)] = 0

Finally, take a non-monotonic equilibrium with strong negative correlation, that is, vH
vL
<

PH|L
PH|H

. In this equilibrium
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• Type L randomizes on the [0, e] interval with probability pLB = vH−vL
PL|HvH−PL|LvL

and
exhausts the remaining bidding probability on the [e, ē] interval, where

e =
PL|L(vH−vL)vL
PL|HvH−PL|LvL

and ē = vL,

• Type H randomizes on the [e, ē] interval with probability 1.

The ex ante expected aggregate effort achieves

JNM,− = PHH (e+ ē) + 2PHL

(
e

2
pHB +

(
1 + 1− pLB

) e+ ē

2

)
+ PLL

(
e+

(
1− pLB

)
ē
)

=

e+ ē
(
α +

(
1− pLB

)
(1− α)

)
= e+ ē− ēpLB (1− α) = vL +

(
vH − vL

)
vL
(
PL|L − (1− α)

)
PL|HvH − PL|LvL

and the expected equilibrium payoffs are

uNM,−
H = PH|H

1

2
vH + PL|Hv

H

(
pHB +

(
1− pHB

) 1

2

)
− e+ ē

2
=

PH|H
1

2
vH + PL|Hv

H 1

2
+ PL|Hv

H p
H
B

2
− e+ ē

2
=
vH

2

vL

2
+ PL|Hv

H p
H
B

2
− e

2
=

vH

2
− vL

2
+

1

2

[
PL|Hv

H
(
vH − vL

)
− PL|LvL

(
vH − vL

)
PL|HvH − PL|LvL

]
= vH − vL

uNM,−
L = PL|L

1

2
vL + PH|L

(
1− pLB

) 1

2
vL − pLB

e

2
−
(
1− pLB

) e+ ē

2
=

vL

2
− pLBPH|L

1

2
vL − e

2
−
(
1− pLB

) vL
2

= pLBPL|L
1

2
vL − e

2
= 0

Proof. [Proof of Proposition 2] Suppose that vm,pub1 ≥ vm,pub2 for a subset of signal profiles
m ∈ M̃π ⊆ M , and vm,pub1 < vm,pub2 for all other m /∈ M̃π. Recall that by definition of
vm,pubi , vm,pubi ≥ vm,pub−i if and only if P (vi = H|m, π) ≥ P (v−i = H|m, π). Then, given the
equilibrium strategies described in Section 5.1, and in line with equation (1), the ex ante
expected aggregate effort of the contestants is equal to

Jpub ≡
∑

m∈M̃π

P (m)
vm,pub2

2

(
1 +

vm,pub2

vm,pub1

)
+
∑

m/∈M̃π

P (m)
vm,pub1

2

(
1 +

vm,pub1

vm,pub2

)

Thus, the optimization problem of the contest designer in case of publicly revealed signals
looks as follows:

max
π≡{qj , rj}4j=1

Jpub ≡ ∑
m∈M̃π

P (m)
vm,pub2

2

(
1 +

vm,pub2

vm,pub1

)
+
∑

m/∈M̃π

P (m)
vm,pub1

2

(
1 +

vm,pub1

vm,pub2

)
(A-1)
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s. t. P (v1 = H|m, π) ≥ P (v2 = H|m, π) ∀mπ ∈ M̃π

P (v2 = H|m, π) > P (v1 = H|m, π) ∀mπ /∈ M̃π

qpubj ≥ rpubj

rpubj ≥ max
{

0, 2qpubj − 1
}

qpubj , rpubj ∈ [0, 1] , j = 1, .., 4

Here the first two constraints define the meaning of m ∈ M̃π and m /∈ M̃π, while the
remaining inequalities make sure that the signal distribution π is well defined.

The solution of this problem gives an optimal signal distribution π under public disclosure.
To find it, we observe that the expression vm2

2

(
1 +

vm2
vm1

)
under the first sum in Jpub is strictly

increasing in vm2 and decreasing in vm1 . Then, given the first constraint, which is equivalent
to vm1 ≥ vm2 , the expression attains its maximum when vm1 = vm2 . Similarly, the expression
vm1
2

(
1 +

vm1
vm2

)
under the second sum in Jpub is maximized when the second constraint is as close

to equality as possible, which also means vm1 = vm2 . Condition vm1 = vm2 turns the objective

function into
∑

m∈M P (m) vm2 . Thus, on the set of parameters
{
qpubj , rpubj

}4

j=1
that satisfy

the constraints of the optimization problem in (A-1), the value of the objective function does
not exceed

∑
m∈M P (m) vm2 . Simple algebra implies that∑

m∈M

P (m) vm2 = αH + (1− α)

Hence, we obtain that the upper bound for Jpub, given the set of constraints in (A-1), is equal

to αH + (1− α)L, and it is achieved at such values of
{
qpubj , rpubj

}4

j=1
that deliver vm1 = vm2

for any signal m ∈ M . Now, vm1 = vm2 (or alternatively, P (v1 = H|m) = P (v2 = H|m)) is
true for any signal m ∈M if and only if conditions (4) – (6) hold:31

qpub2 − rpub2 = qpub3 − rpub3

rpub2 = 1− 2qpub3 + rpub3

rpub3 = 1− 2qpub2 + rpub2

Thus, any set of precision parameters
{
qpubj , rpubj

}4

j=1
that satisfy these conditions delivers

an optimal signal distribution π under public disclosure.

Proof. [Proof of Proposition 3] To prove the first statement of the proposition, we construct
a private disclosure policy that induces a monotonic equilibrium and generates a higher
expected aggregate effort than the best public policy:

• Take q1 = r1 = q3 = r3 = 1 and q2 = 1
2
,

• Then, the contestants’ types look as follows:
31This follows immediately from the definition of probabilities P (vi = H|m, π) in the beginning of this

section and the assumption that α ∈ (0, 1).
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vH =
(1 + α)H + (1− α)

2
≡ vH (1, 1) , vL =

αH + (2− α)

2
≡ vL (1, 1)

• Assume the monotonicity condition
{
vHPL|H ≥ vLPL|L

}
binds and solve it for r2:

r2 =
vL (1, 1)

2 (αvL (1, 1) + (1− α) vH (1, 1))
≡ r̂2

(
1

2

)
∈ [2q2 − 1, q2]

• With this policy, the expected aggregate effort reaches:

JM
(
1, 1, 1

2
, r̂2

(
1
2

)
, 1, 1

)
= (1 + α)

(
1− 2αr̂2

(
1
2

))
vL (1, 1) +

α
(
1− 2 (1− α) r̂2

(
1
2

))
vH (1, 1)

Now, we check if JM
(
1, 1, 1

2
, r̂2

(
1
2

)
, 1, 1

)
outperforms the best public disclosure rule. Notice

that
{
Jpub ≡ αH + (1− α)

}
can be rewritten as follows:

Jpub ≡ αH + (1− α)L = vL (1, 1) (1− α) + αvH (1, 1)

The constructed private disclosure rule dominates the optimal public disclosure policy if and
only if:

(1 + α)

(
1− 2αr̂2

(
1

2

))
vL (1, 1) + α

(
1− 2 (1− α) r̂2

(
1

2

))
vH (1, 1) ≥

vL (1, 1) (1− α) + αvH (1, 1)⇔

vL (1, 1)

(
1− r̂2

(
1

2

))
− r̂2

(
1

2

)(
αvL (1, 1) + (1− α) vH (1, 1)

)
≥ 0⇔

vL (1, 1)

(
1

2
− r̂2

(
1

2

))
≥ 0

and the inequality holds for any vH (1, 1) ≥ vL (1, 1).

Proof. [Proof of Proposition 4] Write down the Lagrangian for the designer’s optimization
program when the monotonic equilibrium is played:

L
(
{qi, ri}3

i=1 , M
)

= JM
(
{qi, ri}3

i=1

)
+ η1

(
vHPL|H − vLPL|L

)
+

η2

(
vHPH|H − vLPH|L

)
+ Σ3

i=1λi (qi − ri) + Σ3
i=1γi (ri −max {0, 2qi − 1}) +

χ

(
q1 −

(
1− 1− α

α
q2

))
+ ω

(
α2 (q1 − 1) + (1− α)2 (1− q3)

)
where

• M =
{
{λj, γj}3

j=1 , χ, ω
}

denotes a set of non-negative Lagrange multipliers and

• JM
(
{qi, ri}3

i=1

)
≡ (1 + α)PL|Lv

L + αPH|Hv
H .

Suppose
(
vHPL|H = vLPL|L

)
holds in the optimum, which requires:

η1 ≥ 0, η2 = 0

Rewrite the monotonicity condition:
r2 = r̂2 (q1, r1, q2, q3, r3) = q2 − T (q1, r1, q2, q3, r3)
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where

T (q1, r1, q2, q3, r3) =
(1− α)

(
vH − vL

)
2 ((1− α) vH + αvL)

≥ 0 for any vH ≥ vL

Then, {r2 = q2 − T (·)} implies r2 ≤ q2, and λ2 = 0 follows.
Next, assume q1 = r1 = q3 = r3 = 1 in the optimum that can be supported with:

λ1 ≥ 0, λ3 ≥ 0, γ1 ≥ 0, γ3 ≥ 0

and verify this later. Now, the
{
q1 ≥

(
1− 1−α

α
q2

)}
constraint becomes a strict inequality,

and χ = 0 follows. Also, the consistency condition is always satisfied for q1 = q3 = 1, and we
impose ω = 0.

Expressing q3 as a function of q1 from the consistency condition and substituting this into
the objective function J (·), we get the system of first-order conditions with respect to q1, r1,
q2, r2, and r3 (recall η2 = χ = ω = 0 imposed above and λ2 = 0 that follows from η1 ≥ 0):

∂L(·)
∂ri

= ∂JM (·)
∂ri

+ η1
∂(vHPL|H−vLPL|L)

∂ri
− λi + γi = 0, i ∈ {1, 2, 3}

∂L(·)
∂q1

= ∂JM (·)
∂q1

+ η1
∂(vHPL|H−vLPL|L)

∂q1
+ λ1 − 2γ1I

{
q1 ≥ 1

2

}
− 2 α2

(1−α)2
γ3I
{
q3 ≥ 1

2

}
= 0

∂L(·)
∂q2

= ∂JM (·)
∂q2

+ η1
∂(vHPL|H−vLPL|L)

∂q2
− 2γ2I

{
q2 ≥ 1

2

}
= 0

With all the assumptions made, the set of possibly inactive constraints reduces to:{
r̂2 (q2) ≥ 0 (1.1)

r̂2 (q2) ≥ 2q2 − 1 (1.2)

where r̂2 (q2) ≡ r̂2 (1, 1, q2, 1, 1). Consider condition (1.1) in detail. The underlying equation
has two real roots with respect to q2:

q2 = 0 and q2 =

{
H−3−3α(H−1)
2(1−2α)(H−1)

≡ q
2
, α 6= 1

2

0, α = 1
2

The only case when q
2
turns to be feasible corresponds to H > 3 and α ∈

[
0, H−3

3(H−1)

]
.

Otherwise, it is either (1) q
2
< 0 and r̂2 (q2) ≥ 0 for any q2 ≥ max

{
0, q

2

}
or (2) q

2
> 1 and

r̂2 (q2) ≥ 0 for any q2 ≤ min
{

1, q
2

}
. Thus, we define the lower bound on q2:

• H > 3 and α ∈
[
0, H−3

3(H−1)

]
⇒ it must be q2 ≥ q

2
,

• Otherwise, q2 ≥ 0.

Thus, fixing α ≥ max
{

0, H−3
3(H−1)

}
ensures that the lower bound on q2 is zero.

Further, take inequality (1.2) and find the roots of {r̂2 (q2) ≥ 2q2 − 1} with respect to q2:

q2 =

{
H−3−5α(H−1)±

√
D

4(H−1)(1−2α)
≡ q1, 2

2 , α 6= 1
2

2(H+1)
3H+1

, α = 1
2

where
D = −7 (H − 1)α2 + 6

(
H2 − 4H + 3

)
α +H2 + 10H − 7 > 0 ∀α ∈ [0, 1]
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For α = 1
2
, there is only one root with respect to q2, and {r̂2 (q2) ≥ 2q2 − 1} holds for any

q2 ≤ 2(H+1)
3H+1

. Next, take the case of α 6= 1
2
. Here, q1

2 belongs to the [0, 1] interval for any
α ∈ [0, 1]. At the same time, q2

2 turns to be negative for α ∈
[
0, 1

2

)
and exceeds 1 for

α ∈
(

1
2
, 1
]
. Hence, q2

2 is never feasible. Taking the feasibility constraint into account, the
{r̂2 (q2) ≥ 2q2 − 1} inequality holds if and only if q2 ∈ [0, q1

2]. Thus, we have an upper bound
on q2:

q2 ≤ q̄2 =

{
q1

2, α 6= 1
2

2(H+1)
3H+1

, α = 1
2

First, consider the case when the q2 ∈ [0, q̄2] constraint does not bind in the optimum
(namely, γ2 = 0 holds). The system to solve for q2 and r2 reduces to:{

η1 = −∂JM (·)
∂r2

/
∂(vHPL|H−vLPL|L)

∂r2
= −∂JM (·)

∂q2
/
∂(vHPL|H−vLPL|L)

∂q2

r2 = r̂2 (q2)

where the first equation comes from
(
∂L(·)
∂q2

= ∂L(·)
∂r2

= 0
)
, η1 ≥ 0, and γ2 = 0. This delivers

two real roots for q2:32

q2 =

α±
√
α(1−α)(1+α(H−1))

α(2α−1)(H−1)
≡ q̂1, 2

2 , α 6= 1
2

H+1
2(H−1)

, α = 1
2

where
q̂1

2 < 0∀α ∈
[
0,

1

2

)
and q̂2

2 > 1 ∀α ∈
(

1

2
, 1

]
q̂2

2 > 0 ∀α ∈ [0, 1] and

q̂2
2 ≤ 1⇔ (H ≥ 3) andα ∈ [α1, α2] where

α1, 2 =
H − 1∓

√
(H − 3) (H + 1)

2 (H − 1)

H + 1

2 (H − 1)
≤ 1⇔ H ≥ 3

When α 6= 1
2
, the only root that can be feasible under certain conditions, is q2

2, and we define
the ultimate solution – q̂2 – as follows:

q̂2 =

α−
√
α(1−α)(1+α(H−1))

α(2α−1)(H−1)
, α 6= 1

2
H+1

2(H−1)
, α = 1

2

One must verify when q̂2 ∈ (0, q̄2) holds and, hence, supports γ2 = 0.33 With
α ≥ max

{
0, H−3L

3(H−L)

}
, the {q̂2 > 0} inequality is always satisfied. Next, we solve {q̂2 < q̄2}

for α 6= 1
2
. The corresponding equation has two roots:

32All calculations were performed with Matlab symbolic toolbox.
33Recall that {r̂2 (q̂2) < q̂2} always holds when the monotonicity condition binds, and λ2 = 0 follows.
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α̂1, 2 =
H − 1∓

√
(H + 3) (H − 5)

2 (H − 1)

When H ∈ (1, 5), these roots are complex, and {q̂2 > q̄2} for any α. If H ≥ 5, both α̂1 and
α̂2 become real, and α̂1, 2 ∈ (0, 1) holds where α̂1 > α1 and α̂2 < α2 for any H > 1. Then,
α ∈ (α̂1, α̂2) supports {q̂2 < q̄2}. For α 6= 1

2
, the {q̂2 < q̄2} inequality holds if and only if

H > 5. Putting things together, we get that:

• For H ∈ (1, 5), q̂2 is not feasible (namely, q̂2 > q̄2), and the {q2 ≤ q̄2} constraint must
bind implying γ2 ≥ 0 in the optimum,

• For H ≥ 5, the {q̂2 < q̄2} constraint always holds for α = 1
2
and requires α ∈ (α̂1, α̂2)

for α 6= 1
2
.

Here, q̂2 is the only stationary point in the q2 ∈ [0, q̄2] interval. Then, to illustrate that
q2 = q̂2 is a maximum, we compare the value of the objective function JM (·) at q2 = 0,
q2 = q̄2, and q2 = q̂2, respectively:

• JM (·, r̂2 (0) , 0) < JM (·, r̂2 (q̂2) , q̂2) holds for any α ∈ [0, 1] and

• JM (·, r̂2 (q̄2) , q̄2) < JM (·, r̂2 (q̂2) , q̂2) is true if and only if α ∈ (α̂1, α̂2).

Hence, if q̂2 is feasible, it constitutes a maximum. Otherwise, q2 = q̄2 must be chosen:
JM (·, r̂2 (0) , 0) < JM (·, r̂2 (q̄2) , q̄2) ∀α [0, 1]

Finally, we restore the set of Lagrange multipliers that support the optimality of q1 =

r1 = q3 = r3 = 1 and η1 ≥ 0 for α ≥ max
{

0, H−3
3(H−1)

}
. First, take the case when q̂2 is feasible,

i.e. γ2 = 0. Then, the following set of Lagrange multipliers solves the system of first-order
condition:

η1 =

{
3α2−α−α

√
α(1−α)

2α−1
, α 6= 1

2
3
4
, α = 1

2

λi = γi = 0, i ∈ {1, 2, 3}

where η1 > 0 for any α ∈ [0, 1]. Second, we solve for the multipliers that support {q̂2 > q̄2}
as the optimum:

η1 =

(
−∂J

M (·)
∂r2

− 1

2

∂JM (·)
∂q2

)
/

(
∂
(
vHPL|H − vLPL|L

)
∂r2

+
1

2

∂
(
vHPL|H − vLPL|L

)
∂q2

)
|(q̄2, r̂2(q̄2))

γ2 =

(
−∂J

M (·)
∂r2

− η1

∂
(
vHPL|H − vLPL|L

)
∂r2

)
|(q̄2, r̂2(q̄2)), λ2 = 0

γ3 =


(
−∂JM (·)

∂r3
− η1

∂(vHPL|H−vLPL|L)
∂r3

)
|(q̄2, r̂2(q̄2)),

(
∂JM (·)
∂r3

+ η1
∂(vHPL|H−vLPL|L)

∂r3

)
|(q̄2, r̂2(q̄2)) < 0

0,

(
∂JM (·)
∂r3

+ η1
∂(vHPL|H−vLPL|L)

∂r3

)
|(q̄2, r2(q̄2)) ≥ 0

λ1 = 2γ1 + 2γ3
α2

(1− α)2 =

(
∂JM (·)
∂r1

+ η1

∂
(
vHPL|H − vLPL|L

)
∂r1

)
|(q̄2, r̂2(q̄2))
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λ3 =

(
∂JM (·)
∂r3

+ η1

∂
(
vHPL|H − vLPL|L

)
∂r3

+ γ3

)
|(q̄2, r̂2(q̄2))

To ensure that all the multipliers are non-negative, it is sufficient to verify when η1 ≥ 0,

γ2 ≥ 0, and
{
∂JM (·)
∂r1

+ η1
∂(vHPL|H−vLPL|L)

∂r1
≥ 0

}
hold:

η1 ≥ 0 ∀α ∈ [0, 1]

γ2 ≥ 0⇔

{
H < 5

α ∈ [0, 1]
or

{
H ≥ 5

α ∈ [0, α̂1] ∪ [α̂2, 1](
∂JM (·)
∂∂1

+ η1

∂
(
vHPL|H − vLPL|L

)
∂r1

)
|(q̄2, r̂2(q̄2)) ≥ 0⇔

{
H < 5

α ∈ [0, 1]
or

{
H ≥ 5

α ∈ [0, α̂1] ∪ [α̂2, 1]

where α̂1 and α̂2 were introduced above. Thus, if q̂2 is not feasible, the Lagrange multipliers
that support the optimality of q1 = r1 = q3 = r3 = 1, q2 = q̄2, and r2 = r̂2 (q̄2) are well
defined.

Proof. [Proof of Proposition 5] To support the claim, we refer to the proof of Proposition
4. Fix H ≥ 3 and α ∈

[
0, H−3

3(H−1)

]
. For q1 = r1 = q3 = r3 = 1 and the binding monotonicity

constraint, we can rewrite the original optimization program in term of q2:34

max
q2

{
(1 + α)PL|Lv

L + αPH|Hv
H
}

s.t. q2 ∈
[
q

2
, q̄2

]
6= Ø

q
2

=
H − 3− 3α (H − 1)

2 (1− 2α) (H − 1)

where H ≥ 3 and α ∈
[
0, H−3

3(H−1)

]
ensure that the lower bound on q2 is positive, and q2 solves

r̂2 (q2) = 0. As we showed in the proof of Proposition 4, the interior solution of the program
for α 6= 1

2
corresponds to:

q̂2 =
α−

√
α (1− α) (1 + α (H − 1))

α (2α− 1) (H − 1)

First, we check if there exist α’s such that
{
q̂2 < q

2

}
holds. The underlying equation

solved for α has two roots:

α̃1, 2 =
H − 9∓

√
H2 − 18H + 1

10 (H − 1)

For H ∈
(
1,
(
9 + 4

√
5
))
, both roots are complex, and

{
q̂2 > q

2

}
for any feasible α. When

H ≥
(
9 + 4

√
5
)
, α̃1 and α̃2 become feasible, and α ∈ (α̃1, α̃2) supports

{
q̂2 < q

2

}
. As q̂2 is

always positive, α ∈ (α̃1, α̃2) implies α ∈
[
0, H−3

3(H−1)

]
for H ≥

(
9 + 4

√
5
)
.

34See the proof of Proposition 4 for more detail.
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Second, we verify if the value of the objective function Jm (·) at the lower bound of q2

is greater than JM (·) at the upper bound when
{
q̂2 < q

2

}
holds. Here, we solve the next

condition for α:35

JM
(
·, q

2
, 0
)
> JM (·, q̄2, r̂2 (q̄2))

The underlying equation has four roots – ᾱ1, ᾱ2, ᾱ3, and ᾱ4 – with the following properties:

1. ᾱ1 = − 2
H−1

< 0,

2. ᾱ2 > α̃2 for any H > 1,

3. ᾱ3 < 0 for any H > 1, and

4. 0 < ᾱ4 < α̃1 for any H > 1.

Thus,
{
JM

(
·, q

2
, 0
)
− JM (·, q̄2, r̂2 (q̄2))

}
does not change its sign in the interval where{

q̂2 < q
2

}
is satisfied. Finally, we take the value of H = 22 that does not violate the{

H ≥
(
9 + 4

√
5
)}

constraint and show that the sign is positive. Hence,{
JM

(
·, q

2
, 0
)
> JM (·, q̄2, r̂2 (q̄2))

}
holds when the interior solution q̂2 is located to the

left of q
2
.

35All calculations were performed with Matlab symbolic toolbox.
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