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1 Introduction

Network interactions in many social and economic environments involve a regular flow of payoffs.

For example, the long-term investment opportunities of business-people, the number of papers

published by academic researchers, and profits of a firm are the sum of their ongoing payoffs,

each determined by the networks of associates, co-authors and distributors that is in place in any

given time period. In such environments, it is reasonable to think that the outcome of network

formation, that is, the network structure which is stable and thus likely to be observed depends on

agents’ preferences and relative importance that they assign to payoffs derived at different steps.

The key contribution of this paper is to provide a theoretical framework for analyzing network

stability in such environments, and more generally, in any setting where players have arbitrary

and possibly heterogeneous preferences over the process of network formation. In contrast, most

of the existing theories assume that players are interested either only in their immediate payoffs

(as in myopic stability concepts1) or only in their final payoffs (as in existing farsighted concepts2).

Moreover, these attitudes are assumed to be the same across players. This paper extends the

existing theories and allows studying network stability in a setting where players’ preferences can

be different from the “standard assumption”.

The other notable feature of our framework is that, in accordance with the idea of cautiousness

or pessimism first introduced by Chwe (1994), players are assumed to have cautious attitudes

to network formation, where they act to avoid any possibility of becoming worse off than in the

status quo. This feature is introduced for two reasons. First, while the empirical research on

the relevance of cautiousness or risk aversion for network formation is limited, it is known to

be an important individual attribute, and the existing experimental studies do find support for

cautious behaviour in network formation and coalition formation/bargaining (Teteryatnikova and

Tremewan, 2019; Murnighan et al., 1988; Tremewan and Vanberg, 2016). Second, the assumption

of cautiousness in network formation results in a number of useful properties of the proposed

stability concept, such as the property of stable networks to be “absorbing” in a well defined

sense.3 The idea behind cautious network formation is that in any environment without full

communication and commitment, players may often not be willing to add or delete links even

if there exists a possibility of becoming better off as an eventual result of such a move. There

are instances where actually following the desired path of network changes requires either good

1Pairwise stable network, PWS (Jackson and Wolinsky, 1996), pairwise myopically stable set, PWMS (Herings
et al., 2009) and their refinements (Jackson and Van den Nouweland, 2005).

2Von Neumann-Morgenstern pairwise farsightedly stable set, vN-MFS, largest pairwise consistent set, LPWC
(von Neumann and Morgenstern, 1944; Chwe, 1994; Herings et al., 2009), pairwise farsightedly stable set, PWFS
(Herings et al., 2009) and largest farsightedly consistent set, LFC (Page Jr et al., 2005). In addition, Dutta et al.
(2005) studies a network formation game where players’ preferences are defined by exponentially discounted infinite
payoff streams. But their approach to modeling network formation is very different from our cooperative pairwise
approach: it is closer in spirit to non-cooperative game theoretic models and imposes much greater structure on the
process of network formation. In fact, the paper focuses on the existence and properties of the process of network
formation, rather than the outcome, and does not allow for arbitrary and heterogeneous preferences.

3Note that if players’ preferences were defined by their payoffs in the final network, as in other farsighted
stability concepts, then the feature of cautiousness alone would make our stability concept very similar to the
largest pairwise consistent set of Chwe (1994) (see Proposition 9).
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fortune, or full communication and commitment. For example, after a first player deletes a link,

a second player may have an equal incentive to delete either one of two further links to reach

a stable network. Deleting one of these links results in a transition that makes the first player

better off, but deleting the other makes her worse off. Under most of the existing concepts

of farsighted stability,4 which assume optimistic beliefs on the part of the players, the current

network is not stable because the first player may become better off by deleting a link. However,

if no credible commitment can be made by the second player to delete the “correct” link, it is

reasonable to think that the first player may not be willing to take the risk, making the current

network stable. In this paper we take such possibility into account. We assume that at least

one of full communication or commitment is not possible and consider players that, in the spirit

of max-min strategies, will not add or delete a link if there is any possibility that it will make

them worse off in the longer run. Such “extreme pessimism” is also assumed by Chwe (1994) and

the follow-up coalition formation theories (Xue, 1998; Mauleon and Vannetelbosch, 2004; Page Jr

et al., 2005) as the simplest way to capture cautiousness in players’ behaviour.5 Contributing to

these theories, our concept applies in the environments where players have arbitrary preferences

and identifies the set of networks that is never empty.

We model network formation as a cooperative game with bilateral, or pairwise link creation:

links require the consent of both players to form, but can be broken unilaterally.6 Note that

such limited cooperation between the two players involved in a link establishes an important

distinction between cooperative pairwise stability and coalitional stability. While in the pairwise

approach, only special 2-player “coalitions” can form, the cooperation in such coalitions is only

partial, and every player has a natural “unilateral” domain of action. This is where the structure

of a network is used to full effect, as it determines each player’s unilateral domain – the links that

the player has with the others.

By adding and deleting links, players can consecutively transform the network, and a chain of

networks that emerge at each step of this transformation produces a so-called path between the

initial and final network. We define two types of such paths, which then allows us to introduce our

new stability concept. First, we call a path between two networks improving if all players involved

in link changes on this path increase their payoffs relative to staying in the status quo network.

Namely, at each step of this path a link between players is added or deleted if the benefits that

these players derive from the remainder of the path are higher than those from staying in the

4Pairwise farsightedly stable set, von Neumann-Morgenstern pairwise farsightedly stable set, level-K farsight-
edly stable set.

5It allows avoiding dealing with beliefs and weighting of many (or infinitely many) different alternatives. As
we discuss later, the set of stable networks obtained under this “extreme” approach is larger than the set that
would have resulted from considering weighted averages. That is, networks which are not stable according to our
definition, cannot be stable according to such alternative approaches.

6Two alternative approaches are explicitly modeling a network formation game and using non-cooperative
equilibrium concepts, or considering deviating coalitions of more than two players. Examples of the former include
Myerson (1991), Bloch (1996), Bala and Goyal (2000), Jackson and Watts (2002b), Hojman and Szeidl (2008),
Granot and Hanany (2016). Examples of the latter, with considerations of farsightedness, include Aumann and
Myerson (1988), Chwe (1994), Xue (1998), Herings et al. (2004), Mauleon and Vannetelbosch (2004), Page Jr et al.
(2005), Page Jr and Wooders (2009), Ray and Vohra (2015), Bloch and van den Nouweland (2017). See Ray and
Vohra (2014) for a survey.
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status quo network for the same number of steps. This definition includes as special cases the

myopic and farsighted improving paths of Jackson and Watts (2002a) and Herings et al. (2009).

They arise when players derive utility only from the first or only from the last network of the

path, respectively. In our more general definition, where players may also care about intermediate

networks or even derive utility which is not directly related to networks on the path, an improving

path increases players’ payoffs/utility associated with the path rather than the network.

Second, we call an improving path surely improving if players’ path payoffs increase “with

certainty”, that is, not only on this path but also on any credible improving path that can be

followed after the link change. The credibility of a path is determined with respect to a set of

networks G, where G represents a stable set. Given G, an improving path is deemed credible only

if it leads to a network in G. This introduces the idea of a credible threat, or credible deviation,

since on a surely improving path link changes can be deterred only by those of the possible

deviating paths that are improving and lead to a stable set. We show that players’ cautiousness

in the definition of a surely improving path results in a useful property of “transitivity”, whereby

a union of two surely improving paths is surely improving. This underpins a number of results

in our analysis.

Using the above definitions, we call a set of networks G cautious path stable if it is a minimal

set that satisfies external stability, so that (1) from any network outside the set, there exists

a surely improving path (relative to G) leading to some network in the set, and (2) no proper

subset of G satisfies this condition. We show that, in addition to external stability, a cautious

path stable set also satisfies internal stability: for any pair of networks in the set, there does not

exist a surely improving path (relative to G) between them. These properties have an important

implication. Any network in the cautious path stable set turns out to be “absorbing”, in the

sense that once entered (by a surely improving path), it cannot be left without coming back to

exactly the same network.

The definition of the cautious path stable set is conceptually similar to the definition of the von

Neumann-Morgenstern pairwise farsightedly stable set (Herings et al., 2009; von Neumann and

Morgenstern, 1944), which also requires external and internal stability. However, in contrast to

the latter, our concept incorporates arbitrary preferences and cautiousness in players’ behaviour.

Also, in the special case when players care only about their end-of-path payoffs, our definition

turns out to be close to the definition of the pairwise farsightedly stable set (Herings et al., 2009).

Still, the key difference remains in the external stability condition as players in our setting behave

cautiously not only when they are inside but also outside the stable set.7

We prove that for any specification of preferences regarding the process of network formation,

a cautious path stable set of networks always exists, and we provide a characterisation of this

set. By means of examples, including Criminal networks (Calvó-Armengol and Zenou, 2004) and

Co-author model (Jackson and Wolinsky, 1996), we demonstrate that the definition of players’

preferences is key for stability predictions, and when these preferences are even slightly different

7See section 6 for the comparison of our concept with other concepts of farsighted stability.
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from the typically assumed end-of-path or immediate-network payoff specifications, the resulting

stable set can be different. This fact is not surprising, but it emphasizes our key point – the

importance of developing a theory for analyzing stability under a broader than usual set of

preference definitions. Moreover, we show that when players’ preferences are heterogeneous, –

for example, when some players care only about their immediate gains and losses, while others

are concerned about their long-run payoffs, – the predictions of cautious path stability can be

asymmetric, including some but not other of the structurally identical networks. Such asymmetry

is not possible with the existing concepts of stability, that do not allow for players’ heterogeneity.

The rest of the paper is organised as follows. In sections 2 and 3 we introduce some notation

and define the notions of path payoffs, improving and surely improving paths. In sections 4 and

4.2 we define and characterise the concept of the cautious path stable set, and in section 5 we

provide the examples. In section 6 we examine the relationship between cautious path stability

and other farsighted concepts, assuming a special type of preferences where players care only

about the end-of-path payoffs. Finally, in section 7 we conclude. Proofs are provided in the

Appendix.

2 Networks, paths and path payoffs

Consider a network g on n nodes. Nodes of the network are players and links indicate bilateral

relationships between them. The relationships are symmetric, or reciprocal, and the network is

therefore undirected. We say that ij ∈ g if players i and j are linked in the network g. In the

complete network all players are linked with each other, that is, ij ∈ g for any pair of players ij,

i 6= j. In the empty network, no pair of players is linked.

The set of all possible networks on n nodes is denoted by G. The network obtained by adding

a link ij to an existing network g is denoted by g + ij, while the network obtained by deleting a

link ij from an existing network g is denoted by g − ij.
A path from a network g to a network g′ is a finite sequence of networks P = {g1, .., gK},

where g1 = g, gK = g′ and for any 1 ≤ k ≤ K − 1 either (i) gk+1 = gk − ij for some ij, or (ii)

gk+1 = gk + ij for some ij, or (iii) gk+1 = gk. We will sometimes say that path P leads from g to

g′, and if g′ belongs to a set of networks G ⊆ G, then path P leads to G. The length of path P

is the number of networks in the sequence; it is denoted by |P |. In the definition of path P here,

|P | = K.

A special path that consists of a certain number of repetitions of the same network is a

constant path. A constant path that consists of m repetitions of network g is denoted by gm,

and |gm| = m.

For any two paths P = {g1, .., gK} and P ′ = {g′1, .., g′K}, where g′1 = gK ± ij for some ij, we

define a path P ⊕ P ′ as a path that is obtained by concatenation of paths P , P ′ in the specified

order: P ′ after P . That is, P ⊕ P ′ = {g1, .., gK , g′1, .., g′K}.8

8Note that in general, even if g1 = g′K ± ij for some ij, P ⊕ P ′ 6= P ′ ⊕ P .
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Finally, for any path P = {g1, .., gK} and any 1 ≤ k ≤ K, we define a continuation of path

P from position k as a sequence of networks on path P from network gk onward. That is, a

continuation of path P from position k is path Pk = {gk, .., gK}. In particular, a continuation of

path P from position 1 is path P itself.

The (infinite) set of all paths between any pair of networks in G is denoted by P.

For any player i, we define a path payoff as a function πi : P→ R that specifies payoff πi(P )

that player i obtains on any path P ∈ P. We do not impose any specific assumptions on the

functional form of πi. In fact, it may even be unrelated to payoffs that players derive from actual

networks on the path. However, in applications, it is often reasonable to consider a path payoff

as a weighted average of payoffs that a player obtains in different networks of the path, where

the exact definition of the weights and of the weighted average is subject to a specific context.

For example, denoting by Yi(g) a payoff that player i obtains in network g, a path payoff can be

defined as πi(P ) = Yi(g1) or πi(P ) = Yi(gK), where g1 is the first and gK is the last network of

path P . The former definition means that player i assigns positive weight only to the first network

of the path, which is commonly assumed in settings where players are myopic, for example, in

the definition of pairwise stability (Jackson and Wolinsky, 1996). The latter is suitable for the

environments where players are farsighted and do not care about gains and losses they may incur

before the final network is reached (Herings et al. (2009), Chwe (1994)).

In intermediate cases, where player i is interested not only in the immediate or final payoff

but also in payoffs accrued from intermediate steps, a path payoff of player i associated with path

P can be defined using exponential discounting, as πi(P ) = Yi(g1) + δYi(g2) + ... + δK−1

1−δ Yi(gK)

for some δ > 0, or as an “ε-weighted sum” πi(P ) = ε (Yi(g1) + ...+ Yi(gK−1)) + Yi(gK) for some

ε > 0, or as a simple arithmetic average πi(P ) = 1
K (Yi(g1) + ...+ Yi(gK)).

Example 1 Consider a set of all possible networks for the 3-player case depicted on Figure 1.

These are the empty network g0, complete network g7, three 1-link networks g1, g2, g3 and three

2-link networks g4, g5, g6. The payoff of a player in each network is represented by a number

next to the corresponding node.

Consider a path P = {g1, g5, g3} that leads from one 1-link network to another 1-link network

via a 2-link network. If Player 1 (Pl.1) is interested only in the final network of this path,

then her path payoff associated with P is π1(P ) = Y1(g3) = 6. If, on the other hand, Player

1 weighs payoffs in all networks of the path equally, then her path payoff is the arithmetic

average, π1(P ) = 1
3 (Y1(g1) + Y1(g5) + Y1(g3)) = 20. With exponential discounting, her path

payoff is π1(P ) = Y1(g1) + δY1(g5) + δ2

1−δY1(g3) = 30 + 24δ + 6 δ2

1−δ . And if Player 1 is mostly

interested in the final network but assigns a small positive weight ε to intermediate networks, then

π1(P ) = ε (Y1(g1) + Y1(g5))+Y1(g3) = 54ε+6. Clearly, this difference in path payoff specification

can lead to different predictions for network stability.
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Figure 1: Examples 1 and 2.

3 Improving and surely improving paths

We define two special types of paths: an improving and surely improving path. Both of these

notions will be used in the definition of our stability concept that we discuss in the next section.

3.1 Improving path

An improving path is a sequence of networks that can emerge when players add or severe links

based on the improvement that this sequence offers relative to staying in the current network.

Each network in the sequence differs from the previous by one link. If a link is added, then

the two players involved must both prefer the path payoff associated with the continuation of

the path (starting after the link was added) to the payoff associated with staying in the current

network for the same number of steps (equal to the length of the continuation path). If a link is

deleted, then it must be that at least one of the two players involved in the link strictly prefers

the payoff associated with the continuation of the path.9 As usual with pairwise deviations, the

idea behind this definition is that adding a link requires a consent of both involved players, while

deleting a link can be done unilaterally. The formal definition is as follows.

Definition 1 A finite path P = {g1, .., gK} is an improving path if for any 1 ≤ k ≤ K − 1 either

(i) gk+1 = gk − ij for some ij such that πi(Pk+1) > πi(g
|Pk+1|
k ) or πj(Pk+1) > πj(g

|Pk+1|
k ), or

(ii) gk+1 = gk + ij for some ij such that πi(Pk+1) > πi(g
|Pk+1|
k ) and πj(Pk+1) ≥ πj(g

|Pk+1|
k ).

For a given network g, let us denote by P I(g) the set of all improving paths starting at network

g. One useful observation is that if P is an improving path from g1 to gK , then a continuation of

9Similarly, on the farsighted improving path defined by Herings et al. (2009) (and underlying the concepts of
PWFS, vN-MFS, LPWC) players compare the payoff in the final network of the path with the payoff in the current
network.

6



P from any step k, 1 < k ≤ K − 1, is an improving path from gk to gK . That is, if P ∈ P I(g1),
then Pk ∈ P I(gk) for any 1 < k ≤ K − 1.

Note that for the appropriately chosen specification of path payoffs, the definition of an

improving path is equivalent to the definition of a myopic improving path or farsighted improving

path introduced in Jackson and Watts (2002a) and Herings et al. (2009). Indeed, if players care

only about their immediate payoff, which they obtain straight after adding or deleting a link,

then πi(Pk+1) = Yi(gk+1) and πi(g
|Pk+1|
k ) = Yi(gk). In this case an improving path is, in fact, a

myopic improving path of Jackson and Watts (2002a). If, on the other hand, players care only

about their payoff in the final network, then πi(Pk+1) = Yi(gK) and πi(g
|Pk+1|
k ) = Yi(gk). In this

case, an improving path is a farsighted improving path of Herings et al. (2009).

Example 2 Consider again the set of all possible 3-player networks depicted on Figure 1.

Suppose that players’ path payoffs are a simple arithmetic average of their payoffs in all networks

of the path. Then it is easy to see that as 30 is the absolute maximum of what players can gain in

any network, there are no improving paths starting at any of the 1-link networks. On the other

hand, from the empty network g0 there exists a one-step improving path to each of the 1-link

networks but there is no improving path leading anywhere else as there are no improving paths

starting at 1-link networks. From each of the 2-link networks there are improving paths to two

of the 1-link networks and nowhere else: from g4 there are improving paths to g1 and g2, from g5

– to g1 and g3, and from g6 – to g2 and g3.
10 Finally, from the complete network g7 there exists

at least one improving path to any other network, apart from the empty network. For example,

P1 = {g7, g4, g1}, P2 = {g7, g4, g2}, P3 = {g7, g6, g3} are improving paths to each of the 1-link

networks, and P4 = {g7, g4}, P5 = {g7, g5}, P6 = {g7, g6} are improving paths to each of the

2-link networks.

Note that path P1 is improving, as its continuation from g7 strictly improves the average

payoff of Player 2 (22 < 1
2(24 + 30)) and the continuation from g4, which is just network g1,

improves the average payoff of Player 1 (18 < 30). The payoff of Player 3 declines. Therefore,

on this path Player 2 deletes the first link and Player 1 deletes the second. Note also that due

to symmetry of players’ payoffs, Player 1 in the 2-link network g4 is actually indifferent between

deleting either of her two links. If she deletes the other link instead, then from the perspective of

Player 2, who initiates the move on the path, it is not worth deleting the first link as it eventually

reduces her average payoff (12(24 + 6) < 22). This implies that if no commitment can be made by

Player 1 to delete the link with Player 3 and not with Player 2, then Player 2 may prefer to avoid

the risk and not delete any link in the first place. These considerations are taken into account in

the definition of a surely improving path that we consider next.

10With equal weighting of all networks on the path, there is no improving path to the third 1-link network in
each case, neither via another 1-link network nor via the complete network. However, if players assigned sufficiently
higher weight to the final network on a path, there would exist improving paths from a 2-link network to all 1-link
networks. For example, {g4, g7, g6, g3} would be an improving path in such case.
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3.2 Surely improving path

Example 2 hints that when full-communication and/or commitment are not possible, cautious

players may abstain from deleting or adding links on an improving path. We incorporate this

idea of cautiousness in the definition of the improving path by assuming that players delete or

add a link only if their payoff increases not just on this but on any credible improving path that

follows after that. An improving path is called credible if it leads to a network in set G, where

G is regarded as a stable or absorbing set. The definition of a stable set is provided in the next

section. For now, it just introduces the idea of a credible threat, in the sense that players’ moves

on a surely improving path can be deterred only by those of the subsequent improving paths that

lead to a stable set.

To be more precise, we call an improving path surely improving relative to set G if (i) whenever

a link is deleted, at least one of the two players involved in the link prefers any improving path

that starts after the deviation and leads to a network in G to staying in the current network

for the same number of steps, and (ii) whenever a link is added, both involved players prefer

any improving path that starts after the deviation and leads to a network in G to staying in

the current network, with at least one of the two preferences being strict. That is, for any two

consecutive networks gk and gk+1 on a surely improving path it must be that a player or a pair

of players involved in this step prefer every improving path P̃ ∈ P I(gk+1) leading to G to staying

in gk for the respective number of steps, |P̃ |.11 We note that in general the last network of the

path, gK , does not have to belong to G. This ensures that when a certain improving path is

not surely improving, it has to do with the existence of a credible threat for some of the active

players on the path rather than with the fact that gK /∈ G.12

Definition 2 A finite path P = {g1, .., gK} is surely improving relative to G if it is an improving

path and for any 1 ≤ k ≤ K − 1 either

(i) gk+1 = gk − ij for some ij such that πi(P̃ ) > πi(g
|P̃ |
k ) for any P̃ ∈ P I(gk+1) leading to G

or πj(P̃ ) > πj(g
|P̃ |
k ) for any P̃ ∈ P I(gk+1) leading to G, or

(ii) gk+1 = gk + ij for some ij such that πi(P̃ ) ≥ πi(g
|P̃ |
k ) and πj(P̃ ) ≥ πj(g

|P̃ |
k ), with at least

one inequality being strict, for any P̃ ∈ P I(gk+1) leading to G.

For a given network g, we denote by PSI(g,G) the set of all paths starting at network g that

are surely improving relative to G. By definition, PSI(g,G) ⊆ P I(g) for any G ⊆ G. Note that

one case where players’ cautiousness does not play a role and surely improving paths are identical

11If P̃ such that P̃ ∈ P I(gk+1) and leads to G does not exist, that is, there is no credible threat that deleting
or adding a link may worsen players’ payoffs on some of the subsequent improving paths, then the corresponding
condition (i) or (ii) of the definition is trivially satisfied.

12Of course, in Definition 3 of the stability concept, all surely improving paths must end in G. Also, from
the discussion at the beginning of section 3.3 it follows that even if the last network of a surely improving path
does not belong to G, players that make changes on the path do, in fact, take into account all possible improving
continuations of this path that lead to G.
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to “simple” improving paths is when players care only about their immediate payoffs.13

One could object that just because a player(s) making a move at step k prefers any improving

path starting at gk ± ij to staying in the status quo network for the same number of steps, it

does not mean that she would also prefer these paths to an alternative path(s) that could be

followed if she stays inactive. Indeed, having the status quo network gk as a benchmark for

payoff comparisons can be regarded as a weak point of the proposed approach, and in fact, of

other approaches to farsighted network formation: all of them feature the analogous definition

of (farsighted) improving paths that disregards the possibility of other players deviating from

the status quo network.14 Alternatively, in parts (i) and (ii) of Definition 2 we could require

that players compare the worst path payoff from making the step with the worst payoff from not

making it : min
P̃∈P I(gk+1)

πi(P̃ ) > minP∈P I(gk) πi(P ). One difficulty with this approach is that

comparing payoffs associated with paths of different length does not appear sensible with most

payoff specifications. One would then need to restrict attention to special types of preferences,

such as where players care only about the first or only about the last network of each path or

use exponential discounting with the last network gaining most weight (as if it lasts forever). By

following this approach, many of our results would still hold. However, the tractability of the

proposed stability concept (let alone the set of preference definitions) would decline considerably.

Furthermore, comparing our concept with the existing concepts of farsighted stability would

become much more difficult, since, as explained above, these concepts feature analogous to ours

way of defining an improving path.

The definition of a surely improving path assumes players’ cautiousness in two respects. First,

just as with max-min preferences, a decision of a player to add or delete a link is discouraged by

the existence of at least one credible improving path starting after the player’s move on which

this player’s payoff is worse than the payoff associated with staying in the status quo network.

Second, among all paths that might be followed after the link is added or deleted, players give

consideration to all (credible) improving paths, and not only to the surely improving ones. The

latter is reasonable when players, for example, do not know how cautious or sophisticated the

others are, and being cautious themselves, take into account all possibilities.

Note that such “extreme cautiousness” in players’ behaviour makes the existence of surely

improving paths between networks harder than under alternative, less cautious approaches, where

players consider not all but only surely improving paths or take into account the weighted average

of possible improving paths. As a result, the set of networks from which a stable set can be reached

by a surely improving path is smaller, and this eventually implies the stability of a larger set of

networks. Thus, networks which are not stable according to our definition cannot be stable

according to these other, less cautious approaches. Put differently, stability concept that we

propose eliminates with confidence: if a network belongs to our stable set, the interpretation

13More generally, when not all but just some players are myopic in this sense, a step on a path that involves a
change made by the myopic player is improving for this player if and only if it is surely improving.

14In particular, though formally no surely improving paths are defined in Chwe (1994) and Page Jr et al. (2005),
the same idea of comparing any deviation outcome with the status quo is present in the definition of the (stable)
consistent set.
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is not that this network will be stable but that it is possible for it to be stable. On the other

hand, if a network does not belong to any of the stable sets according to our definition, then the

interpretation is that this network cannot possibly be stable, also with less cautious approaches.

The extreme cautiousness also makes the notion of a surely improving path and, later on, of a

stable set simpler, which turns out to be useful in applications.

3.3 Properties of improving and surely improving paths

A notable property of surely improving paths is that any player who adds or deletes a link on a

surely improving path, by considering all credible immediate deviations, in fact, also takes into

account all credible deviations at any later step. In particular, the player or players who initiate

the move on a surely improving path take into consideration all credible improving paths that start

at the last network of the path, i.e., all possible improving continuations (leading toG) of the given

surely improving path. This is so because any such future credible improving path is actually a

part of a credible improving path starting immediately after the player’s move. To see this suppose

that path P = {g1, .., gK} is surely improving relative to G. Consider that for any 1 < k ≤ K and

any credible improving path P̃ starting at gk, a path {gk−1}⊕ P̃ is also a credible improving path

but starting at gk−1, i.e., {gk−1}⊕P̃ ∈ P I(gk−1). Then by induction, {gk−2, gk−1}⊕P̃ ∈ P I(gk−2)
and is credible and so on. So, in general, path {gl, .., gk−1} ⊕ P̃ ∈ P I(gl) and is credible for any

1 ≤ l < k − 1. This means that players who delete or add a link on the transition from gl−1 to

gl of a surely improving path P , are guaranteed to become better off on any credible improving

path that starts not just at gl but also at any future network of the path.

By the same logic, even though two different surely improving paths may pass through the

same network (i.e., two different surely improving continuations are possible from the same state),

if both paths lead to G, then players who make moves at all previous steps of these surely

improving paths take both possible continuations into account. In this sense, players cannot be

mislead and will make “correct” choices on a surely improving path no matter which of the future

surely improving continuations will be followed.15

Just as any continuation of an improving path is also an improving path, any continuation of

a surely improving path is surely improving. This follows directly from the definition. Moreover,

if a path is surely improving relative to G, then it is also surely improving relative to any subset

of G. That is, PSI(g,G) ⊆ PSI(g,G′) for any G′ ⊂ G.

A slightly less straightforward pair of properties are stated by Lemma 1 and Lemma 2. The

first property establishes the “transitivity” of surely improving paths, in the sense that a union

of two surely improving paths, where the end of the first path is the beginning of the second, is a

15While this does not mean that our concept addresses the issue of “inconsistent expectations” recently raised
by Ray and Vohra (2014) and Dutta and Vohra (2017), – players may not share the same expectation about future
play in our setting, – we claim that this is not critical in a model where there is no specific protocol prescribing
which player or pair of players will actually get to make a move in each network, and no possibility for players to
fully communicate and commit to that exact player/pair of players making a move. In such case, if multiple players
can make an improving change at the same network, and everyone is cautious/pessimistic, then it is reasonable
that any player making a change at an earlier step expects that the future active player will be the one that delivers
her worst possible outcome. This would give rise to different expectations.
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surely improving path. More formally, if the first path is surely improving relative to set G and

the second is surely improving relative to set G′ (equal or not to G) but leads to a network in G,

then the union of the two paths is surely improving relative to the intersection of G and G′ (or

any smaller set). In a similar way, the second property establishes that a union of two improving

paths, where only the first is surely improving, is an improving path.16

Lemma 1 Suppose that P ∈ PSI(g,G) and P leads to g′, and P ′ ∈ PSI(g′, G′) and P ′ leads to

G. Then P ′′ = P ⊕ P ′2 ∈ PSI(g,G′′) for any G′′ ⊆ G ∩G′.

Lemma 2 If P ∈ PSI(g,G) and P leads to g′, and P ′ ∈ P I(g′) and P ′ leads to G, then P ′′ =

P ⊕ P ′2 ∈ P I(g).

Lemmas 1 and 2 follow directly from the definitions of improving and surely improving paths

and from the assumption of cautiousness in network formation. They turn out to be key for the

subsequent analysis, and in particular, determine the property of internal stability of our stable

set of networks (see sections 4 and 4.2).

To demonstrate the notion of a surely improving path, consider again Example 2. The one-

step improving paths from the empty network and from each of the 2-link networks to a 1-link

network are at the same time surely improving relative to any set, as no threat of further adverse

changes exists.17 On the other hand, any improving path that starts at the complete network

is not surely improving relative to G as soon as G contains all 1-link networks. The reason for

this is explained in Example 2: any player deleting a link at the first step of a path from the

complete network cannot be sure that a credible improving path which will be followed after

that will make her better off. In section 5 we will show that the existence of an improving but

not surely improving path from the complete network to a 1-link network makes the complete

network unstable according to many existing farsighted stability concepts (PWFS, vN-MFS and

Level-K) but stable according to our concept.

4 Cautious path stable set of networks

We now introduce a concept of cautious path stability, or briefly, CPS. We prove the existence

of this set, describe its properties, including internal stability and property to be an “absorbing”

set of networks, and state conditions for uniqueness.

4.1 Definition and difference from other concepts

We define the cautious path stable set G as a minimal set which satisfies external stability. That

is, for any network outside the set there exists a surely improving path relative to G leading to

some network in the set, and no proper subset of G satisfies this condition.

16The proof of Lemma 2 is included in the proof of Lemma 1 and is, therefore, omitted. Indeed, in order to
show that P ′′ is a surely improving path in Lemma 1, one needs to verify, in particular, that it is an improving
path, and this requires only that the first of the two improving paths is surely improving.

17Recall that there are no improving paths that start at a 1-link network.
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Definition 3 A set of networks G ∈ G is cautious path stable (CPS) if (1) ∀ g′ ∈ G \ G
∃P ∈ PSI(g′, G) such that P leads to G, and (2) ∀ G′ ( G it holds that G′ violates (1).

In the next subsection we will show that a cautious path stable set of networks always exists, and

condition (1) of external stability guarantees that it is not empty. Condition (1) also means that

networks within a stable set are robust to perturbations leading to some network outside the set.

Notice that external stability is trivially satisfied by the whole network space G. This motivates

the requirement of minimality in condition (2).

The key features underlying the concept of the cautious path stable set – a generic definition

of path payoffs and players’ cautiousness – distinguish this concept from many other notions

of farsighted pairwise stability. In particular, a generic definition of payoffs is novel relative

to all pairwise stability concepts that we are aware off, while cautiousness is new relative to

the concepts of von Neumann-Morgenstern pairwise farsightedly stable set (vN-MFS), pairwise

farsightedly stable set (PWFS) and level-K farsightedly stable set introduced in Herings et al.

(2009) and Herings et al. (2014).18

However, just as our concept, or rather its equivalent definition in terms of both external and

internal stability (Proposition 2), vN-MFS imposes internal and external stability, and requires

that no proper subset of the stable set satisfies these two conditions. But instead of surely

improving paths and generic preferences over the process of network formation, the definition

of the vN-MFS set employs the notion of improving paths and assumes that preferences are

determined by payoffs in final networks of the paths. Likewise, PWFS considers preferences that

are determined by final network payoffs, and the similarity with the cautious path stable set

becomes apparent only when the same preferences are imposed in our setting. In section 6 we

show that in this special case, our concept satisfies the same three conditions – deterrence of

external deviations, external stability and minimality – that characterise the PWFS set. Still,

even in this case the important difference remains: the external stability in our definition requires

the existence of not just an improving but surely improving path from any network outside G

to a network in G. This requirement “adds more cautiousness” to players’ behaviour relative to

what is assumed in Herings et al. (2009) as players in our setting consider the consequences of

adding and deleting a link not only when they are in a network inside but also outside G.

In a simple case when set G consists of a single network, the stability of G is fully determined

by condition (1) of the definition as condition (2) of minimality is trivially satisfied.

Remark 1 The set {g} is cautious path stable if and only if ∀ g′ 6= g ∃P ∈ PSI(g′, {g}) such

that P leads to g.

Furthermore, the minimality of a cautious path stable set implies that if {g} is a cautious path

stable set, then it does not belong to any other stable set. But there may exist other cautious path

stable sets that do not contain g. More generally, a possibility that the same network belongs to

one stable set and lies outside some other is common for set-valued stability concepts. This has

18The definition of these concepts is provided in the Supplementary Appendix.
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to do with the fact that whether a network is stable or not is not determined in isolation but

hinges upon stability of all networks in the stable set.

4.2 Existence and characterisation of CPS sets

The first result establishes the existence of a cautious path stable set.

Proposition 1 A cautious path stable set of networks exists.

Proof. The proof of Proposition 1 is straightforward. Notice that the whole network space G
trivially satisfies condition (1) of the definition of a cautious path stable set. If it is also the

minimal set that satisfies this condition, then G is cautious path stable. Otherwise, there must

exist a proper subset of G, G′ ( G, that satisfies condition (1). Then by analogy either G′ is a

minimal set that satisfies (1), so that G′ is cautious path stable, or there exists a proper subset

of G′ that satisfies this condition, etc. As the cardinality of set G is finite, the sequence of thus

constructed subsets of G satisfying (1) is finite, and the last, “smallest” subset in this sequence

is minimal, so that both conditions (1) and (2) hold.

The next statement proposes an alternative definition of a cautious path stable set in terms

of both external and internal stability conditions. It involves two claims. First, a cautious path

stable set satisfies internal stability: for any pair of networks in the set, there does not exist a

surely improving path between them. Second, the converse is also true, in the sense that a set of

networks which satisfies external and internal stability and which is minimal with respect to both

conditions, is also minimal with respect to the condition of external stability alone. Therefore,

such set is cautious path stable.19

Proposition 2 The set G is cautious path stable if and only if it satisfies three conditions: (1)

∀ g′ ∈ G \G ∃P ∈ PSI(g′, G) such that P leads to G; (2) ∀ g ∈ G 6 ∃P ∈ PSI(g,G) such that P

leads to G \ {g}; (3) ∀G′ ( G it holds that G′ violates at least one of conditions (1), (2).

The proof of Proposition 2 is provided in the Appendix. The first claim, that a cautious path

stable set G satisfies internal stability, follows from the observation that if it did not, then there

would exist a network g ∈ G from which a surely improving path leads to some other network in

G. By removing this network g from the set, we would obtain a smaller set G′, which satisfies

the property that from any network outside G′ there exists a surely improving path relative to

G′ leading to G′ either “directly” or via network g (by Lemma 1). But this would mean that

G′ satisfies external stability, which is ruled out by minimality of the cautious path stable set G.

The converse is established by employing a similar idea. If set G that satisfies conditions (1) – (3)

was not minimal with respect to condition (1) of external stability alone, then one could prove

the existence of a proper subset of G which satisfies not only external but also internal stability,

and thus, contradicts the minimality condition (3).

19Note that while an additional condition of internal stability works in the direction of reducing the set of
networks in G, a milder condition that it is a minimal set for which both conditions are satisfied (and not just
external stability), tends to increase this set.
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Internal stability of a cautious path stable set turns out to be important for establishing its

other notable property. Proposition 3 maintains that a cautious path stable set can be thought

of as representing a set of stationary or “absorbing” networks: once a network in a cautious path

stable set G is reached by a surely improving path from outside the set, it cannot be left without

coming back to exactly the same network. That is, for any network g ∈ G, it holds that either

there are no surely improving paths starting at g, or any surely improving path eventually leads

back to g.

Proposition 3 If G is a cautious path stable set, then for every g ∈ G, it holds that either

PSI(g,G) is an empty set, or any P ∈ PSI(g,G) is such that it leads to g or forms a subpath of

a longer surely improving path P̄ = P ⊕ P ′ ∈ PSI(g,G) that leads to G.

Proof. Suppose that g ∈ G and there is a surely improving path relative to G starting at network

g. By internal stability of G established in Proposition 2, this path cannot lead to another network

in G, and if it leads to some network g′ outside G, then it is certain to have a continuation back

to set G – according to the external stability of G. This continuation must lead back to exactly

the same network g, as if it leads to any other network, then by transitivity of surely improving

paths (see Lemma 1) we would obtain a surely improving path from g to another network in G,

which is a contradiction to G’s internal stability.20

Recall that the proof of existence in Proposition 1 constructs one cautious path stable set.

But the outcome of the proposed procedure, in general, depends on the exact choice of proper

subsets satisfying external stability at each step in the decreasing sequence. Therefore, a cautious

path stable set might not be unique. The next proposition provides two simple conditions that

are sufficient for uniqueness. It states that if there are no improving paths starting at networks

in set G or any such path leads back to the initial network, and if the external stability condition

holds, then G is the unique cautious path stable set.

Proposition 4 If for every g ∈ G, P I(g) = ∅ or any P ∈ P I(g) is such that P leads to g, and

for every g′ ∈ G \G, ∃P ∈ PSI(g′, G) such that P leads to G, then G is the unique cautious path

stable set.

Proof. First, it is easy to see that set G is cautious path stable as it satisfies condition (1)

and no proper subset of G satisfies this condition. Second, since no improving paths lead from a

network in G to any other network, G must be a subset of any cautious path stable set. Then

by minimality, G is the unique cautious path stable set.

Proposition 4 implies, in particular, that if there exists a Pareto dominant network, where

each player’s payoff is strictly larger than in any other network, and if players’ path payoffs

assign sufficiently high weight to a final network, then this Pareto dominant network is the unique

20Note that network g′ outside G may itself be a part of some other cautious path stable set. However, by
simply adding it to set G or replacing g with g′, we won’t (or won’t necessarily) obtain a stable set as some of its
key properties would be lost: the former would violate minimality of the cautious path stable set, and both the
former and the latter may violate internal and external stability.
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cautious path stable set. In section 5, we will also show by means of examples that Proposition

4 cannot be extended to an “if and only if” statement.

Our next proposition provides another couple of simple conditions that describe a cautious

path stable set. These conditions are less restrictive than those required for uniqueness, and the

proof follows immediately from the definition of the cautious path stable set.

Proposition 5 If for every g ∈ G, any P ∈ P I(g) is such that P leads to g or to G \G, and for

every g′ ∈ G \G, ∃P ∈ PSI(g′, G) such that P leads to G, then G is a cautious path stable set.

5 Examples of CPS sets

In this section we derive predictions of cautious path stability in four network formation games,

using four different specifications of players’ preferences. We also compare these predictions

with those of other concepts of farsighted and myopic pairwise stability. Clearly, the predictions

depend crucially on the specification of players’ preferences, which strengthens the key motivation

for this paper: in the environments where players may care not just about their immediate or

final payoffs and where preferences of different players can be different, a new theory is required

to make predictions about stable outcomes.

Game 1 corresponds to the network formation game of Examples 1 and 2. We call it a game

with equal value networks as the sum of players’ payoffs associated with each network is the

same. In Game 2 the main idea is that players have heterogeneous preferences: two players are

farsighted and care only about the last network of each path and one player is myopic and derives

utility only from the first network. Owing to this heterogeneity, the CPS prediction turns out to

be asymmetric: only one specific 1-link network is stable (together with the complete network).

Finally, Games 3 and 4 are the standard co-author model of Jackson and Wolinsky (1996) and

the criminal networks model of Calvó-Armengol and Zenou (2004), respectively. The results are

summarised by Table 1 at the end of the section.21

Game 1: Equal value networks Consider the network formation game, where players’

payoffs in every network are given by Figure 1. As in Examples 1 and 2, suppose that players’

path payoffs are the arithmetic average of their payoffs in all networks of a path.22 Below we

will show that in this case the unique cautious path stable set of networks is G = {g1, g2, g3, g7}.
Indeed, from the discussion in Example 1 it follows that all 1-link networks must belong to any

stable set, as there are no improving paths starting at these networks. And as soon as all 1-link

networks belong to a stable set, the complete network must belong to each stable set, too, since

no path starting at the complete network is surely improving relative to the set containing all

1-link networks. On the other hand, from the empty network and all 2-link networks there exists

a surely improving path relative to G to a 1-link network. Then Definition 3 immediately implies

that G = {g1, g2, g3, g7} is a cautious path stable set and this set is unique.

21In all four games network payoff allocation across players is anonymous, that is, payoffs depend only on players’
positions in the network, and not on their label.

22It is easy to show that the same stability predictions result from path payoffs defined by exponential discounting
when δ ≥ 1

9
(so that 22

1−δ ≥ 24 + 6δ
1−δ ).
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Other farsighted and myopic stability concepts, namely, PWS, PWMS, PWFS, vN-MFS,

LPWC, LFC and Level-K (for all K ≥ 1), also identify each of the 1-link networks as stable

but none of them, apart from LPWC and LFC, identifies the complete network as stable. The

predictions of LPWC, instead, turn out to be very broad: all but the empty network belong to

the LPWC set, so that even the 2-link networks are identified as stable.23 The reason why the

complete network is not stable according to most farsighted stability concepts has to do with

the fact that there exists a farsighted improving path (or a combination of farsighted improving

paths of length at most K), as defined in Herings et al. (2009) and Herings et al. (2014), from

the complete network to each of the 1-link networks. In our setting, improving paths from the

complete to 1-link networks also exist but none of them is surely improving. As for the myopic

stability concepts, PWS and PWMS do not identify the complete network as stable because

deleting a link by either player increases her immediate payoff.

Game 2: Heterogeneous preferences Consider a network formation game where network

payoffs are such that adding a link in any network immediately improves the involved players’

payoffs but worsens the payoff of the remaining, third player. Such structure of payoffs may arise in

the context of countries signing trade agreements or military/political alliances, or firms entering

into R&D collaborations with each other. For example, in trade, a new bilateral agreement

is often beneficial to both involved countries but has a negative effect on their existing trade

partners, which is known as the concession diversion effect (Ethier, 1998; Goyal and Joshi, 2006).

Similarly with R&D collaborations, while a new collaboration between two firms boosts their

productivity and increases profits, the third firm on the market may lose as its rivals become

more competitive. Figure 2 provides an example of a network formation game with such payoff

structure.
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Figure 2: Game 2.

23The stability of 2-link networks according to the LPWC set but not according to our concept bears on the
fact that payoffs in intermediate networks on a path matter for players in our setting but not in the definition of
the LPWC set. A more detailed explanation is provided in the Supplementary Appendix where the concept of the
LPWC set is defined.
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Suppose that in this game players have different preferences over the process of network

formation. Player 1 (Pl.1(M)) is myopic in that she cares only about her payoff in the first

network of any path. By contrast, Players 2 and 3 (Pl.2(F ), Pl.3(F )) are farsighted and care only

about the last network of a path. Thus, while Player 1 has incentives to add or delete a link

whenever this results in immediate improvement, Players 2 and 3 are only willing to do so if their

payoff in the final network improves. It turns out that such contrasting approaches to network

formation in this game produce an “asymmetric” cautious path stable set G = {g3, g7}, where

only one of the three 1-link networks is stable, and namely, the network in which the farsighted

players are linked. Note that if the preferences of all players were the same, such asymmetry in

stability outcomes would not arise. For example, it is easy to see that if all players were myopic,

the unique cautious path stable set would be {g7}, the complete network. Indeed, no improving

paths start at g7 but from any other network there is an improving path to g7.
24 Similarly, if all

players were farsighted and derived utility only from the last network, the unique cautious path

stable set would be {g1, g2, g3, g7}, including all 1-link networks and the complete network. The

argument is provided in the Supplementary Appendix.

The inability to generate asymmetric predictions is also true for other concepts of pairwise

myopic and farsighted network stability: all of them assume identical preferences across players

and lead to symmetric outcomes.25 For example, in this particular game, {g7} is the unique

prediction of PWS, PWMS and Level-K, for all K ≥ 1; {g1, g2, g3, g7} is the prediction of vN-

MFS, LPWC, LFC and PWFS; and PWFS identifies, in addition, a number of other sets as

stable, that include each of the 2-link networks in symmetric combinations. So, while myopic and

Level-K concepts do not capture a possibility for a stable 1-link relationship at all (as immediate

benefits from deviation exist), farsighted concepts predict stability of all 1-link networks. The

latter, however, is not very reasonable when one of the linked players (with payoff 10) is myopic.

Indeed, the myopic player in such situation can immediately benefit from adding a link with an

isolated player, and that isolated player (with the worst possible payoff) would prefer to have a

link, too. Thus, a deviation from such 1-link networks is very likely. The only 1-link network

where such deviation would not occur is identified as stable by our concept. In this network,

the linked players are farsighted and thus, cannot be tempted by a possibility of an immediate

but temporary gain (from adding the second link), knowing that a future development from

that network is likely to reduce their status quo payoffs. One possible interpretation of this

result is that even in the presence of myopic players and immediate gains from deviations, the

myopically unstable but beneficial bilateral relationship can be sustained as long as partners in

the relationship choose each other “carefully”, by the principle of similar preference for the long

term payoffs. As simple and intuitive as this result may seem, our farsighted concept is the only

one that allows generating it precisely.

24Recall that when players derive utility only from the first network of each path, any improving path is surely
improving. See the discussion after Definition 2.

25A recent paper by Herings et al. (2017) allows for the interaction between myopic and farsighted players in
one-to-one matching problems.
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The proof that G = {g3, g7} is indeed the unique cautious path stable set is provided in the

Supplementary Appendix. It follows from three observations. First, the complete network g7

belongs to any cautious path stable set because there are no even simple improving paths that

start at this network. Second, since g7 is included in any cautious path stable set, g3 must belong

to any cautious path stable set, too, as no improving paths from g3 are surely improving relative

to the set containing g7. Third, for any other network in G \G there exists a path that is surely

improving relative to G and leads to one of the networks in G.

Game 3: Co-author model The underlying story for the co-author model of Jackson and

Wolinsky (1996) is that each player is a researcher, and the amount of time she spends on a

given project is inversely related to the number of projects, ni, that she is involved in. A link

between two players indicates that they are working on the project together. Formally, the payoff

of Player i in a network of co-authorships g is given by

Yi(g) =
∑
j:ij∈g

(
1

ni
+

1

nj
+

1

ninj

)

for any ni > 0, and Yi(g) = 0 for ni = 0. In the 3-player case, this model generates the set of

network payoffs depicted in Figure 3.
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Figure 3: Game 3.

Suppose that in this network formation game, path payoffs of all players are defined by

exponential discounting with factor 0 < δ < 1. We find that whenever the discount factor is high

enough (δ > 2
3), the unique cautious path stable set is G = {g1, g2, g3, g7}, otherwise the unique

cautious path stable set is G = {g7}. The predictions of other farsighted and myopic stability

concepts in Game 3 are either the same as with our concept at δ > 2
3 (vN-MFS, LPWC and

LFC), or the same as with our concept at δ ≤ 2
3 (PWS, PWMS and Level-K, for all K ≥ 1),

or indicate, in addition, the potential stability of 2-link networks (PWFS). The fact that 2-link

networks are identified as stable in some of the PWFS sets is a result of certain incautiousness

or optimism assumed on the part of the players. For example, the set G′ = {g1, g6, g7} is PWFS
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because there exists a farsighted improving path from 1-link networks g2 and g3 to g6 (but not

to other networks in G′). However, the fact that Player 3 in g2 and g3 is willing to add a link on

this path assumes that she disregards the possibility that in g6, the unconnected players have an

incentive to add the last missing link, which would decrease her payoff. Using our definition and

exponential discounting for path payoffs, this particular farsighted improving path is improving

but not surely improving as long as players assign sufficiently high weight to the final network

(δ > 2
3).

To derive predictions of our concept for this game, we first observe that irrespective of the

discount factor, the complete network, g7, must belong to any cautious path stable set as there

are no improving paths from g7 to any other network. Next, we consider two cases, where δ > 2
3

and δ ≤ 2
3 , in turn. If δ > 2

3 , we show that since g7 belongs to each stable set, all 1-link networks

must belong to each stable set, too, as no path starting at a 1-link network is surely improving

relative to a set containing g7. Then all the remaining networks are unstable, since there exists a

surely improving path leading from these networks either to the complete or to a 1-link network.

If δ ≤ 2
3 , then it is easy to show that g7 is the only network in the cautious path stable set as

from any other network there exists a surely improving path to g7. The Supplementary Appendix

provides the details of the argument.

Game 4: Criminal networks In the model of delinquent behavior on networks studied by

Calvó-Armengol and Zenou (2004) criminals compete with each other in criminal activities but

benefit from friendship with other criminals by sharing the know-how about the crime business.

Individuals first decide whether to work or become a criminal and then choose their crime effort.

Here, we consider a simplified version of the model to focus on the formation of links, while

keeping the level of criminal efforts fixed.26

Players are criminals, and links between players mean that they belong to the same criminal

network. Each criminal group has a positive probability of winning the loot B > 0, which is then

divided among the connected individuals based on the network architecture. Criminal i’s payoff

in a network g is given by

Yi(g) = pi(g)[yi(g)(1− ϕ)] + (1− pi(g))yi(g),

where yi(g) is i’s expected share of the loot, pi(g) is the probability of being caught, and ϕ > 0

is the penalty rate. The values of yi(g) and pi(g) are determined by the size of the criminal com-

ponent to which i belongs and by the number of connections of each criminal in the component.

The exact expressions are provided in the Supplementary Appendix, while Figure 4 depicts the

payoffs (in 1/9-th’s) for the 3-player networks with B = 1 and ϕ = 0.5.

Suppose that on any path of networks players care about their average payoff but no further

than one step away from their status quo network. That is, for any path P = {g1, .., gK} of

length K ≥ 2 the path payoff of player i is given by πi(P ) = 1
2 (Yi(g1) + Yi(g2)), while for a

path consisting of a single network (K = 1) πi(P ) = Yi(g1). In the Supplementary Appendix we

26The same simplified model is considered in Herings et al. (2009).

19



t t t t
t t t tt t t t

J
J
J
J










2 2

2

Pl.3

Pl.1 Pl.2

g0 g1 g2 g3

2.5 2.5

2

2.5 2

2.5

2 2.5

2.5

t t t t
t t t tt t t t


























J

J
J
J

J
J
J
J

J
J
J
J

J
J
J
J










9 0

0

0 9

0

0 0

9

3 3

3

g4 g5 g6 g7

Figure 4: Game 4.

show that in this case, the unique cautious path stable set is G = {g1, g2, g3, g7}. Other pairwise

stability concepts predict the stability of either the same set of networks (PWS, PWMS, LPWC,

LFC and Level-K for K = 1), or identify only the complete network as stable (PWFS, vN-MFS,

Level-K for K ≥ 2). The reason why 1-link networks are not stable according to PWFS, vN-

MFS and Level-K for K ≥ 2 is the existence of a two-step farsighted improving path from 1-link

networks to the complete network. Such path is improving when players care only about the final

network but not improving in case of our path payoff definition, where the intermediate 2-link

network matters, too.

The predictions of different farsighted and myopic stability concepts in Games 1 – 4 are

summarised below:

Concept Game 1 Game 2 Game 3 Game 4
PWS g1, g2, g3 g7 g7 g1, g2, g3, g7
PWMS {g1, g2, g3} {g7} {g7} {g1, g2, g3, g7}
PWFS {g1}, {g2}, {g3} {g1, g2, g3, g7}, {g1, g2, g3, g7}, {g7}

{g1, g6, g7}, {g1, g6, g7},
{g2, g5, g7}, {g2, g5, g7},
{g3, g4, g7}, {g3, g4, g7},
{g0, g4, g5, g7}, {g4, g5, g7},
{g0, g4, g6, g7}, {g4, g6, g7},
{g0, g5, g6, g7} {g5, g6, g7}

vN-MFS {g1}, {g2}, {g3} {g1, g2, g3, g7} {g1, g2, g3, g7} {g7}
LPWC {g1, g2, g3, g4, g5, g6, g7} {g1, g2, g3, g7} {g1, g2, g3, g7} {g1, g2, g3, g7}
LFC {g1, g2, g3, g7} {g1, g2, g3, g7} {g1, g2, g3, g7} {g1, g2, g3, g7}
Level-K K = 1: {g1, g2, g3} K ≥ 1: {g7} K ≥ 1: {g7} K = 1: {g1, g2, g3, g7}
stable set K ≥ 2: {g1}, {g2}, {g3} K ≥ 2: {g7}
CPS {g1, g2, g3, g7} {g3, g7} {g1, g2, g3, g7} if δ > 2

3 {g1, g2, g3, g7}
{g7} if δ ≤ 2

3

Table 1: Summary of predictions.
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6 Relationship with other farsighted stability concepts when only
final network payoffs matter

Let us now consider the relationship between cautious path stability and other farsighted stability

concepts.27 Of course, as predictions of the cautious path stable set depend on the exact definition

of players’ path payoffs, it is not possible to derive a general relationship between the existing

concepts and cautious path stable set in case of arbitrary path payoffs. It is therefore natural

to focus on special path payoffs that are considered by these other concepts, where players care

only about the last network of a path. Formally, let a path payoff function of player i be

πi(P ) = Yi(gK), where gK is the final network of path P , and Yi(gK) is the payoff of player i in

this network.

6.1 Notation and results in this special case

To begin with, note that our definitions of improving and surely improving paths can be simplified

since for any path P and any step 1 ≤ k ≤ K−1 on the path, πi(Pk+1) = Yi(gK) and πi(g
|Pk+1|
k ) =

Yi(gk). In fact, with such payoffs, the definition of the improving path becomes identical to the

one of the farsighted improving path in Herings et al. (2009): at each step of this path a player

or a pair of players prefer the final network to the network from which they deviate. Similarly,

a path is surely improving relative to set G if it is an improving path and at each step a player

or a pair of players prefer the final network of any credible improving path starting after their

deviation to the network from which they deviate. For convenience, in the following we will

denote by F I(g) the “ends” of all improving paths that start at network g, that is, the set of

all networks that can be reached from g via an improving path. Similarly, FSI(g,G) will denote

the set of all networks that can be reached from network g via a path that is surely improving

relative to G. By analogy with the paths, the set of networks that can be reached from g via a

surely improving path is a subset of the networks that can be reached via an improving path,

i.e., FSI(g,G) ⊆ F I(g) for any G ⊆ G. Furthermore, rephrasing Lemmas 1 and 2 about the

properties of improving and surely improving paths in the setting where only the final network

payoffs matter, we obtain that 1) if g′ ∈ FSI(g,G) and g′′ ∈ FSI(g′, G′)
⋂
G, where G ∩G′ 6= ∅,

then g′′ ∈ FSI(g,G′′) for any G′′ ⊆ G ∩ G′, and 2) if g′ ∈ FSI(g,G) and g′′ ∈ F I(g′)
⋂
G, then

g′′ ∈ F I(g).

Using this new notation, we can also rewrite the definition of a cautious path stable set of

networks. To emphasise the specific end-of-path payoff specification, we will refer to it as a

cautious final-network stable set, or briefly, the CFNS set.

Definition 4 A set of networks G ⊆ G is cautious final-network stable (CFNS) if (1) ∀ g′ ∈ G\G
FSI(g′, G)

⋂
G 6= ∅, and (2) ∀ G′ ( G it holds that G′ violates (1).

Clearly, all results proved for the cautious path stable set continue to hold in this special

case. Most importantly, a cautious final-network stable set always exists and if for every g ∈ G
27For formal definitions of these concepts see Supplementary Appendix.
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F I(g) = ∅, while for every g′ ∈ G \ G FSI(g′, G)
⋂
G 6= ∅, then G is the unique cautious final-

network stable set. As before, any cautious final-network stable set satisfies not only external

but also internal stability. Moreover, in line with Proposition 2, any set that satisfies external

and internal stability and that is minimal with respect to these two conditions is cautious final-

network stable. Thus, an equivalent representation of a cautious final-network stable set G in

terms of these conditions is: (1) ∀ g′ ∈ G \G FSI(g′, G)
⋂
G 6= ∅, (2) ∀ g ∈ G FSI(g,G)

⋂
G = ∅,

and (3) ∀ G′ ( G it holds that G′ violates at least one of conditions (1), (2). In fact, with

the end-of-path payoff specification, the internal stability condition is even stronger: ∀ g ∈ G

FSI(g,G) = ∅, that is, there are no surely improving paths starting at a network in G. This

is implied by Proposition 3: if there exists a surely improving path starting at a network in G,

it should eventually lead back to exactly the same network. But with the end-of-path payoffs,

a path from a network to itself is never surely improving (not even simple improving). Thus,

networks in a cautious final-network stable set are “absorbing” in even stronger sense: as soon

as a network in G is reached, it cannot be left by any surely improving path. At last, for a set

consisting of a single network Remark 1 implies that set {g} is cautious final-network stable if

and only if ∀ g′ 6= g g ∈ F I(g′).28

6.2 Comparison with other farsighted concepts

Definition 4, stated in terms of network sets FSI rather than path sets PSI , brings our concept

of stability closer to the existing definitions of farsighted stability. In particular, Proposition

6 provides an alternative interpretation of our stability concept that reveals its similarity to

the concept of PWFS. This alternative interpretation is obtained by requiring the deterrence of

external deviations, external stability and minimality – close counterparts of the corresponding

conditions in the definition of the PWFS set. However, in contrast to PWFS, our notion assumes

cautiousness not only when players are located on a network inside but also outside the stable

set. To be more precise, a set of networks G is cautious final-network stable if and only if (i) all

possible pairwise deviations from any network g ∈ G to a network outside G are deterred by a

credible threat of ending up worse off or equally well off, (ii) there exists a surely improving path

relative to G from any network outside the set leading to some network in the set, and (iii) there

is no proper subset of G that satisfies conditions (i) and (ii).

Proposition 6 The set G is cautious final-network stable if and only if three conditions hold:

(i) ∀ g ∈ G,

(ia) ∀ij /∈ g such that g + ij /∈ G, ∃g′ ∈ F I(g + ij)
⋂
G such that (Yi(g

′), Yj(g
′)) =

(Yi(g), Yj(g)) or Yi(g
′) < Yi(g) or Yj(g

′) < Yj(g),

(ib) ∀ij ∈ g such that g − ij /∈ G, ∃g′, g′′ ∈ F I(g − ij)
⋂
G such that Yi(g

′) ≤ Yi(g) and

Yj(g
′′) ≤ Yj(g),

28This formulation of Remark 1 uses improving rather than surely improving paths because when G = {g} and
players care only about their final network payoffs, any improving path to g is surely improving relative to G.
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(ii) ∀ g′ ∈ G \G FSI(g′, G)
⋂
G 6= ∅,

(iii) ∀G′ ( G at least one of conditions (ia), (ib), (ii) is violated by G′.

Condition (i) of the proposition requires that when players are in a network inside G, they do not

have incentives to add or delete a link which would lead to a network outside G, as there exists a

risk that after such a deviation some improving path will be followed and lead to g′ ∈ G, where

the payoff of these players is lower or equal to their payoff in the status quo. This means that

players in a network inside G are cautious as they compare their current payoff to the (credible)

worst-case scenario in case of a deviation. In exactly the same way, condition (ii) implies that

players are also cautious when they are in a network outside G. From any network outside G

there must exist a surely improving path leading to some network in G, which means that players

are only willing to add or delete a link on the path if after that move, their payoff is certain to

increase.

This cautiousness of players’ behaviour assumed in the second, external stability condition is

where the key difference from the concept of PWFS comes in. According to the corresponding

condition in the PWFS, when players are in a network outside G, they behave optimistically, or

otherwise, have a possibility to fully communicate and commit, because they rely on the existence

of some farsighted improving path that leads to a network in G (and improves their payoffs), but

disregard the possibility of potentially “bad” diversions from this path.29 Therefore, our concept

“adds more cautiousness” to players’ behaviour relative to what is assumed in Herings et al.

(2009).30

In what follows we use Definition 4 and Proposition 6 to establish some regularities in the

relationship between cautious final-network stable sets and sets identified as stable by concepts of

PWFS, vN-MFS and LPWC (Herings et al., 2009). First, observe that since any surely improving

path is farsighted improving but not vice versa, the external stability condition in our definition

is harder to satisfy, while the internal stability condition is easier. Therefore, given otherwise

identical definitions of the cautious final-network stable set and the vN-MFS set, it is intuitive

that our stable set must be larger. Similarly, given the characterization of a cautious final-network

stable set in Proposition 6, our stable set must be larger than a PWFS set: while both sets

satisfy the same condition (i) regarding the deterrence of external deviations, the cautious final-

network stable set satisfies a stronger external stability condition. This intuition is formalised by

Proposition 7:

29More formally, by definition of the PWFS set, being in a network inside G means that players do not have
incentives to deviate to a network outside G, as after such a deviation, there exists a farsighted improving path
that leads back to G and makes these players worse off or equally well off. On the other hand, being in a network
outside G means that there exists some farsighted improving path that leads to G.

30Consider, for example, that in Games 2 and 3, the stability of six PWFS sets that include one or two 2-link
networks and the complete network relies, in particular, on the observation that from each of the 1-link networks
(outside the stable set) there exists a one-step improving path to a 2-link network in the set. However, this path is
not surely improving. Indeed, although either of the linked players in a 1-link network could achieve a short-term
gain by forming a link with the third player, cautious players would not do so as they foresee that the other two
players would then have an incentive to form the last link, leaving them with a lower payoff. For this reason, none
of these three PWFS sets is cautious final-network stable.
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Proposition 7 (vN-MFS and PWFS) The following relationships hold:

1. For any vN-MFS set G, there exists a cautious final-network stable set G∗, such that G ⊆ G∗,
and there does not exist a cautious final-network stable set G∗∗ such that G∗∗ ⊂ G.

2. For any cautious final-network stable set G∗, there exists a PWFS set G such that G ⊆ G∗,
and there does not exist a PWFS set G′ such that G∗ ⊂ G′.

Note that the first statement of Proposition 7 cannot be extended to a claim that any CFNS

set G∗ includes a vN-MFS set as a subset, because a vN-MFS set may not exist. Also, the second

statement cannot be extended to a claim that G ⊆ G∗ holds for any PWFS set G. That is, given

a PWFS set, one cannot always find a cautious final-network stable set to which this PWFS set

belongs. This can be demonstrated by Games 2 and 3 discussed in section 5. In both games, the

unique CFNS set is {g1, g2, g3, g7}, and many PWFS sets are not subsets of this set. Intuitively,

the reason for that is suggested by Proposition 6: while the external stability condition (ii) allows

for more networks in the CFNS set than the corresponding condition in the definition of the

PWFS set, as more networks are added to a given PWFS set to meet this condition, some other

networks may become “redundant” due to the minimality condition (iii).31 However, if G is the

unique PWFS set, in which case it is also the unique vN-MFS set (by Corollary 5 in Herings

et al. (2009)), then G must be a subset of any cautious final-network stable set.

Corollary 1 If G is the unique PWFS set (and the unique vN-MFS set), then for any cautious

final-network stable set G∗, G ⊆ G∗.

Next, we observe that when a cautious final-network stable set G satisfies an additional constraint

that there are no improving paths between any two networks in G, then G is PWFS and also

vN-MFS. Furthermore, if there are no improving paths at all that start at networks in G, then

the cautious final-network stable set is the unique PWFS and vN-MFS set. In the latter case,

also the cautious final-network stable set itself is unique, as follows from Proposition 4.

Proposition 8 (vN-MFS and PWFS) If G is a cautious final-network stable set such that

∀g ∈ G F I(g)
⋂
G = ∅, then G is a PWFS set and a vN-MFS set. Furthermore, if ∀g ∈ G

F I(g) = ∅, then G is the unique cautious final-network stable, PWFS and vN-MFS set.

The converse of Proposition 8 is, in general, not true. That is, it is not always the case that

a PWFS set or a vN-MFS set is at the same time cautious final-network stable. For example,

in Games 2 and 3, the first part of Proposition 8 applies but the converse is not true: there are

seven PWFS sets and only one of them is cautious final-network stable. On the other hand, if

a PWFS set or vN-MFS set consists of a single network, then it is also a cautious final-network

stable set. The argument is simple: when G = {g} and players care only about their final network

payoffs, any improving path to g is also surely improving relative to G. Therefore, the external

stability satisfied by the PWFS and vN-MFS set {g} holds in the stronger sense assumed by our

definition.
31Also, with a larger set G some networks may stop satisfying condition (i).
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Corollary 2 The set {g} is cautious final-network stable if and only if it is PWFS and vN-

MFS. If in addition, F I(g) = ∅, then {g} is the unique cautious final-network stable, PWFS and

vN-MFS set.

Finally, let us consider the relationship between cautious final-network stability and concepts

of the LPWC and LFC sets, that also feature cautiousness. The important finding stated by

Proposition 9 is that any cautious final-network stable set is pairwise consistent. Therefore, by

definition, it is a subset of the largest pairwise consistent set (LPWC).

Proposition 9 (LPWC) If G∗ is a cautious final-network stable set, then G∗ is pairwise con-

sistent. Therefore, any cautious final-network stable set G∗ is a subset of the LPWC set G,

G∗ ⊆ G.

The fact that any cautious final-network stable set is pairwise consistent means that both external

and internal deviations are deterred from any network in the set. On the other hand, a pairwise

consistent set is not always cautious final-network stable, as it does not necessarily satisfy the

external stability condition or is not minimal with respect to this condition. Therefore, in general,

the LPWC set is larger than the set identified by our concept. One example where this is not

the case is when the LPWC set is a singleton, as then its only subset is the set itself:

Corollary 3 If {g} is the LPWC set, then {g} is the unique cautious final-network stable set.

The converse is not true. For example, in Game 4, the unique cautious final-network stable set

is {g7} (in accordance with Corollary 2), while the LPWC set is {g1, g2, g3, g7}.
As for the concept of LFC, note that when considered in a special case of 2-player coalitions

and pairwise approach to network formation, it is essentially identical to the LPWC set but relies

on a different rule of link formation: when a link is added, not one but both involved players

must strictly improve their payoff in a final network. Instead, our definition, as most of the other

pairwise approaches to network formation, assumes that creating a link between players must

strictly benefit just one of them, while the payoff of the other player may remain unchanged.

For this reason and as we explain in more detail in the Supplementary Appendix (see Definition

6), a general relationship between the predictions of our concept and those of LFC (as well as

between LFC and LPWC) is hard to derive. On the other hand, due to the similarity between

LFC and LPWC, it is easy to show, by analogy with Proposition 9, that if also in our definition

improvements by creation of new links required both agents to become strictly better off, then

any cautious final-network stable set would be farsightedly consistent and form a subset of the

largest farsightedly consistent set (LFC).

To conclude the discussion, we note that here we focused on concepts that assume perfect

foresight, leaving aside the comparison with such concepts as level-K farsighted stability (Herings

et al., 2014) and K-step pairwise stability (Morbitzer et al., 2014). Addressing the case of limited

foresight would require modifying our theory in a way proposed by the above papers, where players

look only a few steps ahead and decide on whether or not a path is improving by considering the
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chains of others’ reactions that are no longer than K steps. The theoretical investigation of such

alternative approach remains for future research.

7 Conclusion

In this paper we propose a new framework for the analysis of cooperative pairwise network forma-

tion in the environment involving a regular flow of payoffs. The most notable and novel feature

of this framework is that it extends the existing theories by allowing for arbitrary and hetero-

geneous preferences over the process of network formation. In addition, we assume that players

are cautious, and in the environment where at least one of full communication or commitment

is not possible, they will not add or delete a link if there is a possibility that it will make them

worse off in the longer run. This definition of cautiousness is in the spirit of max-min strategies,

and admittedly, it is appropriate in some but not all network formation games. We adopt this

approach (of “extreme pessimism”) as it seems to be the simplest way of capturing cautiousness,

without having to deal with beliefs and weighting of a (potentially infinite) number of different

alternatives.

We call a set of networks G cautious path stable (CPS) if it is a minimal set that satisfies

external stability. We show that such set of networks always exists and that it can be alternatively

characterized in terms of both, external and internal stability conditions and minimality with

respect to both conditions. The key features underlying this definition – players’ cautiousness

and arbitrary preferences – distinguish the concept of the cautious path stable set from other

notions of farsighted pairwise stability.

Using examples, we demonstrate the predictions of our concept and emphasize the importance

of developing a concept of network stability that takes into account a broader set of preference

definitions than those that are typically assumed in the existing myopic and farsighted approaches.

Finally, we consider the case where players care only about their end-of-path payoffs, as in most

of the farsighted theories of network formation. In this setting we identify some relationships

between our concept, which in this case we refer to as cautious final-network stable set, and

existing farsighted stability concepts, such as the pairwise farsightedly stable set (PWFS), von

Neumann-Morgenstern pairwise farsightedly stable set (vN-MFS) and largest pairwise consistent

set (LPWC).

8 Appendix

Proof of Lemma 1. Suppose P = {g1, .., gK} and P ′ = {gK , .., gK+N}, where g1 = g, gK = g′

and gK+N = g′′. Let P ∈ PSI(g1, G) and P ′ ∈ PSI(gK , G′), where G ∩ G′ 6= ∅ and gK+N ∈ G.

By definition, P ′′ = P ⊕ P ′2 = {g1, .., gK , gK+1, .., gK+N}. Below we will show recursively that

for any k in the decreasing sequence K − 1,K − 2, .., 1, the continuation of path P ′′ from step k,

P ′′k , is a surely improving path relative to set G′′, where G′′ is any subset of G ∩ G′. Then, as

P ′′1 = P ′′, the last step of the argument will complete the proof.
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Consider P ′′K−1 = {gK−1, gK , gK+1, .., gK+N} = {gK−1} ⊕ P ′. Suppose that i and j are the

players involved in the first-step change on this path, from gK−1 to gK , i.e., gK = gK−1 + ij or

gK = gK−1 − ij. To show that P ′′K−1 ∈ PSI(gK−1, G′′), let us first verify that P ′′K−1 ∈ P I(gK−1).
This follows from the fact that P ′ ∈ P I(gK) by definition, and players i, j prefer path P ′ to

staying in gK−1 for |P ′| steps. The latter is an immediate implication of the fact that P is a surely

improving path relative to G, so that by definition, for any P̃ ∈ P I(gK) leading to G, including

the path P ′, the following inequalities hold: (a) πi(P̃ ) ≥ πi(g
|P̃ |
K−1) and πj(P̃ ) ≥ πj(g

|P̃ |
K−1), with

at least one inequality being strict, if gK = gK−1 + ij, or (b) πi(P̃ ) > πi(g
|P̃ |
K−1) if gK = gK−1− ij.

Now, given that P ′ is a surely improving path relative to G′ and hence, also relative to G′′ ⊆ G′,
that is, P ′ ∈ PSI(gK , G′′), and inequalities (a), (b) hold for any P̃ ∈ P I(gK) that leads to G and

hence, also for any improving path that leads to G′′ ⊆ G, it follows that conditions (i) and (ii)

of the definition of a surely improving path relative to G′′ are satisfied for all steps on the path

P ′′K−1 = {gK−1} ⊕ P ′. Thus, P ′′K−1 ∈ PSI(gK−1, G′′).
Next, consider P ′′K−2 = {gK−2, gK , gK−1, gK , .., gK+N} = {gK−2} ⊕ P ′′K−1. Repeating the

same argument as before, we will conclude that P ′′K−2 ∈ PSI(gK−2, G
′′). Then by analogy,

we can construct a sequence of surely improving paths P ′′K−1, P
′′
K−2, P

′′
K−3, .., P

′′
2 , P ′′. Thus,

P ′′ ∈ PSI(g1), where g1 = g.

Proof of Proposition 2.

(⇒): Suppose that set G is cautious path stable. Then by definition it is a minimal set that

satisfies condition (1), and it only remains to verify that it also satisfies condition (2). Suppose

that this is not the case, and there exists a pair of networks g, g′ ∈ G such that there is a surely

improving path relative to G leading from g to g′. Denote this path by P . Below we show that a

smaller set G′ = G\{g} satisfies condition (1). This will contradict the assumption of minimality

of set G and thus, complete the proof.

Note that since path P from g to g′ is surely improving relative to G, it is also surely improving

relative to the smaller set G′. The same is true about surely improving paths from other networks

outside G, which by condition (1) have at least one surely improving path leading to G. If for

some of these other networks, say, network g′′, a surely improving path to G does not lead to G′,

then it must be that it leads to g.32 Denote this path by P̃ . So, there exist two surely improving

paths relative to G′: P̃ that leads from g′′ to g and P that leads from g to g′. Then by Lemma 1,

path P̃ ⊕P2 is surely improving relative to G′ and it leads to G′. Thus, set G′ satisfies condition

(1) and we arrive at the desired contradiction.

(⇐): Suppose that set G satisfies the conditions of external stability (1), internal stability (2)

and it is also a minimal set that satisfies these both conditions (3). We need to verify that set G

is, in fact, a minimal set that satisfies condition (1) alone. Suppose, on the contrary, that there

exists a proper subset G′ ( G which also satisfies (1). Below we argue that such smaller set G′

either satisfies (2) or contains another proper subset that satisfies both conditions, (1) and (2).

32Recall that by Definition 2, the end network of a surely improving path relative to G′ does not have to belong
to G′.
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In either case, this will contradict the assumed minimality of set G and thus, conclude the proof.

Suppose that G′ does not satisfy (2), so that there exists a network g′ ∈ G′ and path P ∈
PSI(g′, G′) such that P leads to G′ \ {g′}. The following algorithm constructs a proper subset of

G′ that satisfies both, (1) and (2).

Consider G1 = G′ \ {g′}. G1 satisfies condition (1). Indeed, from g′ there exists a path P

leading to G1 that is surely improving relative to G1. Similarly, from any other network outside

G′, which by condition (1) has at least one surely improving path leading to G′, this path is also

surely improving relative to G1 and it leads either to G1 or to g′. When the latter is true, so that

for some network g′′ outside G1 the surely improving path from g′′ to G′ ends at g′, then denote

this path by P̃ and consider a longer path P̃ ⊕ P2. By Lemma 1, this path is surely improving

relative to G1 and it leads to G1. Thus, G1 satisfies condition (1).

If G1 also satisfies condition (2), then we obtain the desired contradiction. If condition (2)

is not satisfied, then we reduce the set further by constructing G2 = G1 \ {g1}, where g1 is

such a network in G1 from which there exists a surely improving path relative to G1 leading to

G1 \{g1}. Iterating this reasoning, we can build a decreasing sequence {Gk}k≥1 of proper subsets

of G′, satisfying condition (1). As G′ has a finite cardinality, and as a set consisting of a single

network trivially satisfies condition (2), there exists K ≥ 1 such that GK 6= ∅ and satisfies both

conditions, (1) and (2). The existence of such set GK establishes the desired contradiction.

Proof of Proposition 6. Throughout this proof we will employ the alternative definition of a

CFNS, established by Proposition 2, in terms of three conditions: external stability (1), internal

stability (2) and minimality with respect to these first two conditions (3).

(⇒): Let G be CFNS set. Let us verify that conditions (i), (ii) and (iii) of Proposition 6 hold. In

fact, it is enough to verify that conditions (i) and (ii) hold, as then (iii) is satisfied, too. Indeed,

if (iii) is not satisfied, then there exists a proper subset of G, G′ ( G, such that (i) and (ii) hold

for G′. Consider a minimal among such subsets, i.e., G′ ( G that satisfies all three conditions,

(i), (ii) and (iii).33 But then from the proof of sufficiency (⇐) it follows that G′ must satisfy

conditions (1) and (2) of a CFNS set, which contradicts the minimality of the CFNS set G.

So, let us focus on conditions (i) and (ii). Clearly, condition (ii) follows immediately from

the definition of a CFNS set. Also, condition (i) is trivially satisfied when G is a singleton, i.e.,

G = {g}.34 Now, suppose that G contains at least two networks, and condition (i) does not hold.

This means that at least one of the two statements, (a) or (b), is true:

(a) ∃g ∈ G and ij /∈ g such that g + ij /∈ G, and ∀g′ ∈ F I(g + ij)
⋂
G it holds that

(Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g));35

33Such minimal subset of G exists as otherwise we could construct an infinite declining sequence of subsets of
G, all satisfying conditions (i) and (ii). This, however, contradicts the fact that G has a finite cardinality.

34Indeed, in this case, (i) is satisfied as for any ij, g ± ij ∈ G \ G and by condition (ii), there exists a surely
improving path relative to G from g ± ij that leads back to g.

35We use the notation (Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g)) for Yi(g
′) ≥ Yi(g) and Yj(g

′) ≥ Yj(g) with at least one
inequality being strict.
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(b) ∃g ∈ G and ij ∈ g such that g − ij /∈ G, and ∀g′ ∈ F I(g − ij)
⋂
G it holds that Yi(g

′) >

Yi(g).36

If (a) is true, then the inequality (Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g)) holds, in particular, for g′ =

g̃ ∈ FSI(g + ij,G)
⋂
G. Such network g̃ exists, as FSI(g + ij,G)

⋂
G 6= ∅ due to condition

(1) of the definition of a CFNS set. Then, as (Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g)) holds for any

g′ ∈ F I(g + ij)
⋂
G, we obtain that a path from g to g − ij (one step) and further– along the

surely improving path to g̃ is surely improving altogether, that is, FSI(g,G)
⋂
G 6= ∅. However,

this contradicts the internal stability condition (2) of a CFNS set.

Similarly, if (b) is true, then the inequality Yi(g
′) > Yi(g) holds, in particular, for g̃ ∈ FSI(g−

ij,G)
⋂
G. As before, such network g̃ exists due to condition (1) of the definition of a CFNS

set. This, together with the fact that Yi(g
′) > Yi(g) for any g′ ∈ F I(g − ij)

⋂
G, means that

FSI(g,G)
⋂
G 6= ∅. However, this contradicts the internal stability condition (2) of a CFNS set.

Thus, neither (a) or (b) holds, hence, condition (i) is satisfied.

(⇐): Suppose that set G is such that conditions (i), (ii) and (iii) of Proposition 6 hold. Let us

verify that G is a CFNS set, that is, satisfies conditions (1), (2) and (3). In fact, it is enough to

verify conditions (1) and (2), as then (3) follows. Indeed, if not, then there must exist a proper

subset of G, G′ ( G, such that G′ satisfies (1) and (2). But from the proof of necessity (⇒) we

know that conditions (1) and (2) imply (i) and (ii), that is, a proper subset of G, G′, must satisfy

(i) and (ii). This, however, contradicts the minimality of set G established by condition (iii).

Let us focus on conditions (1) and (2). Condition (1) is trivially satisfied, as it is identical to

(ii). If condition (2) is also satisfied, then the proof is completed. Note that this is trivially the

case when G is a singleton. Suppose now that set G contains at least two networks, i.e., |G| ≥ 2,

and condition (2) is not satisfied. This means that there exists a pair of networks g, g′ ∈ G such

that there is a surely improving path relative to G that leads from g to g′. We claim that this

violates condition (iii) of minimality in Proposition 6.

Claim: There exists G′ ( G that satisfies conditions (i) and (ii).

Below we construct this set G′. Consider G1 = G \ {g}. Note that |G1| ≥ 1 as |G| ≥ 2.

G1 satisfies condition (ii). Indeed, a path from g to g′ ∈ G1 that is surely improving relative to

G is also surely improving relative to the subset G1. Also, surely improving paths from other

networks outside G leading to G are surely improving relative to G1. Note that such surely

improving paths from other networks outside G exist since set G satisfies condition (ii). If for

some of these other networks, say, network g′′, a surely improving path to G does not lead to G1,

then it must be that it leads to g. Thus, we have two surely improving paths relative to G1: one

that leads from g′′ to g and another that leads from g to g′. By Lemma 1, the concatenation of

these two paths produces a surely improving path path relative to G1, and it leads to G1. Thus,

G1 satisfies condition (ii).

36Note that this inequality holds for one and the same player, i or j. That is, given link ij, there exists one
player, i or j, such that her payoff in g′ is larger than in g for ∀g′ ∈ F I(g − ij)

⋂
G. Otherwise, (b) would not be

a contradiction to condition (ib).
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Now, if G1 also satisfies condition (i), then the proof is completed. Note that this is trivially

the case when G1 is a singleton. So, suppose that G1 contains at least two networks, i.e., |G1| ≥ 2,

and condition (i) is not satisfied. This means that at least one of the two statements, (a) or (b),

is true:

(a) ∃g1 ∈ G1 and ij /∈ g1 such that g1 + ij /∈ G1, and ∀g′1 ∈ F I(g1 + ij)
⋂
G1 it holds that

(Yi(g
′
1), Yj(g

′
1)) > (Yi(g1), Yj(g1));

(b) ∃g1 ∈ G1 and ij ∈ g1 such that g1 − ij /∈ G1, and ∀g′1 ∈ F I(g1 − ij)
⋂
G1 it holds that

Yi(g
′
1) > Yi(g1).

In particular, the above is true for g′1 = g̃ ∈ FSI(g1 ± ij,G1)
⋂
G1, where g1 satisfies either (a)

or (b). Such network g̃ exists due to the fact that G1 satisfies (ii). This, together with the fact

that the payoffs of i and j improve at any g′1 ∈ F I(g1 ± ij)
⋂
G1 (i.e., the step from g1 to g1 ± ij

is surely improving), means that there is a surely improving path relative to G1 from g1 to g̃:

FSI(g1, G1)
⋂
G1 6= ∅.

Let us define G2 = G1 \ {g1}. |G2| ≥ 1 as |G1| ≥ 2. Repeating the same argument as before,

but with respect to G2 instead of G1, we can show that G2 satisfies condition (ii). If it also

satisfies condition (i), then the proof is completed; otherwise, we construct G3, etc. Iterating this

reasoning, we can construct a decreasing sequence {Gk}k≥1 of proper subsets of G, each satisfying

condition (ii). As G has a finite cardinality, and as a set consisting of a single network trivially

satisfies condition (i), there exists K ≥ 1 such that GK 6= ∅ and satisfies both conditions, (i) and

(ii). Denoting this set GK by G′, we complete the proof of the claim, and also the proof of the

proposition.

Proof of Proposition 7. Below we prove each of the two statements in turn.

1. To start with, observe that for any vN-MFS set G and any g ∈ G, there are no surely

improving paths relative to G that start at g (and lead anywhere in G), i.e., FSI(g,G) = ∅.
Clearly, no surely improving path exists from g to any other network in G, and if there

existed a surely improving path from g to some network g′ outside G, then by Lemma 2

we would obtain a contradiction to the internal stability of a vN-MFS set: by definition of

vN-MFS set, from any network outside G there exists an improving path to G, and thus,

the concatenation of a surely improving path from g to g′ and an improving path from g′

to G would give an improving path between two networks in G.

We now construct a CFNS set to which a given vN-MFS set belongs. Observe that the

whole network space G trivially satisfies the external stability condition (1) of Definition 4.

If it is also the minimal set that satisfies this condition, then G is CFNS, and the proof is

completed. Otherwise, there must exist a network g1 ∈ G from which a surely improving

path leads to some other network in G: FSI(g1,G) 6= ∅. Note that this network g1 lies

outside the vN-MFS set G, as for any g ∈ G, FSI(g,G) ⊆ FSI(g,G) = ∅.
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The smaller set G1 = G\{g1} trivially satisfies the external stability condition.37 If it is also

the minimal set that satisfies this condition, then G1 is CFNS, and the proof is completed.

Otherwise, we reduce the set further by constructing G2 = G1 \ {g2}, where g2 is such a

network in G1 from which there exists a surely improving path relative to G1 leading to

some other network in G1: F
SI(g2, G1)

⋂
G2 6= ∅. Note again, that g2 does not belong to

the vN-MFS set G, as for any g ∈ G, FSI(g,G1) ⊆ FSI(g,G) = ∅.

The smaller set G2 satisfies external stability: a path from g2 to G2 that is surely improving

relative to G1 is also surely improving relative to the subset G2. The same is true about

surely improving paths from other networks outside G1, which at this step is just one

network g1, that was withdrawn first. Note that a surely improving path from that network

to G2 exists: it either leads to G2 directly or via network g2, as in the latter case, the

concatenation of two surely improving paths – from g1 to g2 and from g2 to G2 – is surely

improving (Lemma 1). If set G2 is also the minimal set that satisfies external stability, then

G2 is CFNS. Otherwise, we construct a set G3 = G2 \{g3}, etc. Iterating this reasoning, we

can build a decreasing sequence {Gk}k≥1 of proper subsets of G that (a) satisfy the external

stability condition (1) of Definition 4, and (b) contain the vN-MFS set G (as the networks

withdrawn at each step lie outside the vN-MFS set G). As G has a finite cardinality, and

as the vN-MFS set G cannot be reduced further (recall that by definition, there is no even

a simple improving path between any two networks in G), there exists K ≥ 1 such that GK

is CFNS and G ⊆ GK . This proves the first part of the first statement.

The second part follows from the observation that the existence of a CFNS set G∗∗ such

that G∗∗ ⊂ G would imply that G∗∗ is a strict subset of another CFNS set that contains

G. This is however a contradiction to the minimality of a CFNS set.

2. For the second statement, observe that any CFNS set G∗ satisfies conditions (i) and (ii) in

the definition of the PWFS set, as condition (i) is identical to the one of Proposition 6 and

condition (ii) is weaker than the corresponding external stability condition of Proposition

6. If G∗ also satisfies the minimality condition (iii) of PWFS, then it is PWFS. Otherwise,

there exists a proper subset of G∗ that satisfies all three conditions and is thus PWFS.

Indeed, if G∗ is not a minimal set that satisfies conditions (i) and (ii), then there must exist

G′ ( G∗ that satisfies these two conditions. Similarly, if G′ is not a minimal set that satisfies

(i) and (ii), then there must exists a proper subset of G′ that satisfies both conditions, etc.

As the cardinality of set G∗ is finite, the sequence of thus constructed subsets of G∗ is

finite, and the last, “smallest” subset in this sequence is minimal, that is, satisfies all three

conditions.

To prove that no PWFS set contains a CFNS set as a strict subset, observe that the existence

of such PWFS set, say G′, would imply that G ⊂ G′, where set G is also PWFS. However,

this is ruled out by minimality of a PWFS set.

37Note that a path from g1 that is surely improving relative to G is surely improving relative to its subset.
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Proof of Proposition 8. First, from the external stability of the cautious final-network stable

set it follows that ∀ g′ ∈ G \ G F I(g′)
⋂
G 6= ∅. This, together with the fact that ∀g ∈ G

F I(g)
⋂
G = ∅, implies that G is a vN-MFS set by definition and a PWFS set by Theorem 3 of

Herings et al. (2009).

If in addition F I(g) = ∅, then the external stability condition in the definition of all concepts

(CFNS, PWFS and vN-MFS) implies that G must be a subset of any stable set. Then by

minimality, also present in each definition, G is the unique cautious final-network stable, PWFS

and vN-MFS set.

Proof of Proposition 9. Suppose that G∗ is a CFNS set. Below we show that G∗ satisfies

the definition of a pairwise consistent set (see Definition 5 in the Supplementary Appendix), i.e.

∀g ∈ G∗, both external and internal pairwise deviations are deterred. The deterrence of external

deviations is already established by condition (i) of Proposition 6. It remains to prove that also

all internal deviations are deterred. That is, ∀g ∈ G∗ a deviation to a network g ± ij ∈ G∗

results in lower or equal payoff(s) either immediately (in the network g± ij) or at the end of some

credible improving path starting at g ± ij.
Suppose that this is not the case and there exist g ∈ G∗ and an internal deviation to g±ij ∈ G∗

such that both, immediate payoff(s) and payoff(s) at the end of all credible improving paths from

g ± ij (if any) improve. Formally this means that at least one of the conditions holds:

(a) ∃ij /∈ g such that for g′ = g+ij ∈ G and ∀g′ ∈ F I(g+ij)
⋂
G∗ it holds that (Yi(g

′), Yj(g
′)) >

(Yi(g), Yj(g));

(b) ∃ij ∈ g such that for g′ = g− ij ∈ G and ∀g′ ∈ F I(g− ij)
⋂
G∗ it holds that Yi(g

′) > Yi(g).

Whichever is the case, we obtain that a one-step path from g to g + ij in case (a) and from g

to g − ij in case (b) is surely improving relative to G∗. This is a contradiction to the internal

stability of a CFNS set.
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