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Abstract

We introduce a new concept of stability in network formation, perfect pairwise stability,

and prove that a perfect pairwise stable network exists. Perfect pairwise stability strictly

refines pairwise stability concept of Jackson and Wolinsky [25], by transposing the idea of

“trembling hand” perfection from non-cooperative games to the framework of cooperative,

pairwise network formation. The existence result extends that of Bich and Morhaim [4].

We prove that our concept is distinct from standard refinements of pairwise stability in the

literature: strongly stable networks, introduced by Jackson and Van den Nouweland [22], and

non-cooperative refinements – pairwise-Nash and perfect Nash equilibria of Myerson’s linking

game, studied by Calvó-Armengol and İlkılıç [7]. We also apply perfect pairwise stability to

sequential network formation and prove that it allows refining sequential pairwise stability, a

natural analogue of subgame perfection in a setting with cooperative, pairwise link formation.
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1 Introduction

The concept of pairwise stability for network formation has been introduced by Jackson and Wolinsky [25]

as an attempt to explain the shape of social and economic networks that are stable and thus, likely to be

observed. Basically, a network is a set of nodes and links, where links capture relationships between the

nodes, such as, for example, friendship and co-author relationships between people, hyperlinks between

web pages, financial transactions between banks, etc.

The interesting novel feature of Jackson and Wolinsky’s concept, distinguishing it from other pre-

viously defined concepts, is that it takes into account both cooperative and non-cooperative aspects of

link formation.1 Indeed, by definition, a network is pairwise stable if “no two agents could gain from

linking and no single agent could gain by severing one of his or her links” (see [25]). This feature is

prevalent in many social and economic interactions, in which entering into a new relationship requires a

consent of both involved parties, while terminating a relationship is a unilateral decision. This appealing

mix of cooperative and non-cooperative aspects in the definition of pairwise stability, together with the

concept’s simplicity, make it a prominent and widely used concept, that has also become seminal for the

subsequent works on network formation.2

However, pairwise stability has some limitations. First, the existence of a pairwise stable network is

not guaranteed. This problem has been recently solved by Bich and Morhaim [4] who showed that the

existence can be established for a large class of models if one considers weighted networks. By definition,

links in a weighted network have weights, that are measured by real numbers between 0 and 1 and can be

interpreted, for example, as a strength of relationships between agents. Yet, even if we restrict attention

to weighted networks, three important issues remain:

1. pairwise stability often leads to a large number of predictions,

2. it is not robust to small perturbations (in the sense that an agent or a pair of agents in a pairwise

stable network may benefit from changing the weight of the link they are involved in as soon as

other links’ weights are slightly changed),

3. it does not always remove choices that are dominated.

As a simple illustration of the issues listed above, consider unweighted networks between three agents

and assume that the payoff of all agents is 1 when the network is complete (i.e. all links are formed), and

0 otherwise. The empty network (for which no links are formed) and the complete network are pairwise

stable: for the former, no pair of agents can benefit from creating a link, and for the latter, no agent

has an incentive to delete a link. However, among these two networks, the complete network is a more

reasonable prediction for stability. First, if no links are formed, any pair of agents have nothing to lose

from creating a link, and they would strictly benefit from doing so if the other links are formed, too.

Thus, in some sense, creating a link is a “dominant” choice for every pair of agents. Second, given any

1Most concepts employ either purely non-cooperative, Nash equilibrium approach, or rely on the idea of cooperative
network formation by coalitions. A non-cooperative approach is adopted, for example, in Myerson [29] and in a large
literature that followed: Bala and Goyal [2], Bloch [5], Currarini and Morelli [9], Jackson and Watts [24], Hojman and
Szeidl [17], Galeotti and Goyal [12], etc. A cooperative, coalitional approach is used, among others, in [1], [8], [31], [16],
[26] and [30]. For recent surveys see Mauleon and Vannetelbosch [27] and Jackson, Rogers and Zenou[20], [21].

2See, for example, Jackson and Watts [23], Goyal and Joshi [14], Hellmann [15], Miyauchi [28], Bloch and Dutta [6]. For
surveys, see Jackson [19] and Mauleon and Vannetelbosch [27].
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pair of agents, if there is at least a small probability that all other links are formed, then this pair of

agents has a strict incentive to form the link. This means that the empty network is not “robust” to

small perturbations on other links. Yet, the concept of pairwise stability does not capture this difference

in stability properties of the complete network (which is robust to perturbations and undominated) and

the empty network (which is not robust and dominated). Moreover, it is easy to see that considering

weighted networks would not help the situation in this example.

Thus, an important question is whether one can prove the existence of a weighted pairwise stable

network that is robust to perturbations and for which no links’ choices of agents are dominated. In this

paper, we show that the answer to this question is “yes”. We introduce the concept of perfect pairwise

stability that refines pairwise stability, and we show that this concept addresses the problematic issues

with pairwise stability described above. In particular, in the considered example it identifies just the

complete network as stable.

We build a theoretical foundation for the concept of perfect pairwise stability. To that end, we provide

its formal definition, prove that it is a refinement of pairwise stability and show that it satisfies three

important properties – Existence (E), Admissibility (A) and Perturbation (P). The first property asserts

that there always exists at least a weighted perfect pairwise stable network. The second property of

Admissibility states that in a perfect pairwise stable network, no choice of link weights is dominated.

Finally, the third property of Perturbation establishes the equivalence between the fact that a network

is perfect pairwise stable and that it is a limit of a sequence of completely weighted networks3 that are

all “ε-close” to being pairwise stable.

In the second part of the paper, we also introduce a new sequential setting for network formation and

define the notion of sequential pairwise stability associated with it. We compare that notion to perfect

pairwise stability. More precisely, we first show that the sequential network formation structure can be

embedded into a static (i.e. non-sequential) network formation structure in a natural way. Then we prove

that among many pairwise stable networks in this static structure, the perfect pairwise stable networks

correspond to some well behaved sequential pairwise stable networks in the initial sequential structure.

Thus, perfect pairwise stability allows to refine sequential pairwise stability.

Naturally, we are not the first to propose a refinement of pairwise stability. Other well known re-

finements are the concepts of strong pairwise stability by Jackson and Van den Nouweland [22] and

pairwise-Nash stability initially proposed by Jackson and Wolinsky [25] and formally studied by Calvó-

Armengol and İlkılıç [7], İlkılıç [18] and Gilles and Sarangi [13]. Nevertheless, these refinements do not

satisfy all of the properties (E), (A), (P). For example, strong pairwise stability refines pairwise stability

by considering all deviating coalitions of two or more agents, which often imposes so many conditions on

the outcome of network formation that a strongly stable network does not exist. The non-existence issue

also arises for the concept of pairwise-Nash stability. We also show that, conditional on existence, the

concepts of strong pairwise stability and pairwise-Nash stability may result in different predictions than

those of perfect pairwise stability.

Importantly, we demonstrate that our notion of perfect pairwise stability cannot be seen as a perfect

Nash equilibrium of a conventional linking game à la Myerson [29] or another natural non-cooperative

game where decisions on links are made by “link advisers” rather than the agents themselves. Therefore,

3i.e. of networks in which all links’ weights are in ]0, 1[.
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our theory requires new constructions and proofs, beyond those existing for non-cooperative games and

perfect Nash equilibria.4 Predictions of perfect pairwise stability are also different from those of a

strong Nash equilibrium in these games, where, by analogy with strong pairwise stability, a strong Nash

equilibrium network is defined as a network that is immune to any coordinated deviations ([10], [11]).5

To be precise, we show that the concept of perfect pairwise stability and the concepts of perfect Nash

and strong Nash equilibrium may lead to different and non-overlapping predictions.6

The paper is organized as follows. In Section 2, after some preliminaries where pairwise stability and

mixed pairwise stability are defined, we introduce the concept of perfect pairwise stability. In Section 3,

we derive the existence, admissibility and perturbation properties of the perfect pairwise stable networks.

In Section 4, we discuss the relationship of perfect pairwise stability with strong stability and other

existing concepts. Finally, in Section 5, we introduce a sequential framework for network formation,

define a concept of sequential pairwise stability and establish the relationship between that concept and

our concept of perfect pairwise stability for the associated static structure. Last, we provide the proofs

of the results in the appendix.

2 Pairwise stability and perfect pairwise stability

In this section we define the concept of perfect pairwise stability and demonstrate its effectiveness through

two simple examples. To do that, however, we first introduce some basic notation and define weighted and

unweighted societies, mixed extension of an unweighted society, as well as pairwise and mixed pairwise

stability, which are to be refined by perfect pairwise stability.

2.1 Notation. Definition of pairwise stability

An unweighted network7 (resp. weighted network) is a triplet (N,L, g), where N is a (finite) set of nodes,

L ⊆ {{i, j} ∈ N ×N : i 6= j} is a set of feasible links and g is a mapping from L to {0, 1} (resp. to [0, 1]).

The set N can be thought of as a set of players, or agents, that interact with each other in the network.

Two agents i and j are connected in the unweighted network (N,L, g) if g({i, j}) = 1 and not connected

if g({i, j}) = 0. For simplicity of notation, the link {i, j} ∈ L and value g({i, j}) will be denoted simply

by ij and gij . A weighted network allows to capture not just the existence of the relationship between

agents but also its intensity: gij ∈ [0, 1] measures the intensity, or weight, of the link ij.

Throughout this paper, we allow the set of feasible links L to be a strict subset of {{i, j} ∈ N ×N :

i 6= j} because depending on the application, certain links may be impossible. For example, in marriage

networks links between some nodes can be prevented due to legal restrictions. Note also that if we denote

by G′ (resp. G) the set of unweighted (resp. weighted) networks, then by abuse of notation, we can say

that G′ ⊂ G since any mapping g from L to {0, 1} induces a mapping from L to [0, 1]. A weighted network

4This is mainly due to the fact that pairwise stability concept itself cannot be described in a natural way as a Nash
equilibrium of a non-cooperative game.

5The difference with the cooperative concept of strong pairwise stability of Jackson and Van den Nouweland is that
strong Nash equilibrium considers coordinated deviations in the strategy profile of the deviating coalition.

6In addition, neither of the two non-cooperative concepts – perfect Nash equilibrium or strong Nash equilibrium, –
guarantee the existence, though for the former, the existence would be obtained in mixed strategies.

7The networks considered in this paper are also undirected, meaning that a link between i and j has no direction.
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(N,L, g) will be called completely weighted if for every ij ∈ L, gij ∈]0, 1[, and it will be called complete

if gij = 1 for every ij ∈ L.

To take into account possible strategic interactions in the network, we next define the notion of a

society that, most importantly, incorporates the definition of agents’ payoffs. An unweighted society is a

triplet (N,L, v), where N is a set of agents, L is a set of feasible links, and v = (v1, ..., vN ) is a profile

of payoff functions vi : G′ → R for every agent i ∈ N and every unweighted network in G′. The same

construction with weighted networks defines a weighted society, for which the payoff functions vi are

defined on G, the set of all weighted networks. Sometimes in the paper we will refer to this society as a

static society (weighted or not), in contrast to a sequential society, which will be defined later, and which

incorporates sequential decisions through time.

We further define a network that is different from a given unweighted or weighted network by at most

one link. In case of unweighted networks, for any g ∈ G′ and every link ij, we denote by g + ij the

unweighted network where link ij has been added if gij = 0, and g + ij = g otherwise. Similarly, for

every link ij, we denote by g− ij the unweighted network where link ij has been removed if gij = 1, and

g− ij = g otherwise. In case of weighted networks, where a link weight can take a continuum of possible

values, the set of possible changes on one link is much richer. In this case let g̃ = (x, g−ij) denote a

weighted network obtained from g by replacing the weight of link ij by x. Formally, if g ∈ G is a weighted

network, then for every link ij and every x ∈ [0, 1], g̃ = (x, g−ij) denotes the weighted network such that

g̃kl = gkl for every kl 6= ij, and g̃ij = x. Clearly, if g is an unweighted network, then g + ij = (1, g−ij)

and g − ij = (0, g−ij).

Using this notation, we now introduce a slight modification of pairwise stability concept of Jackson

and Wolinsky [25]. Referring to the original concept of Jackson-Wolinsky as JW-pairwise stability, we

define pairwise stability (and compare it to JW-pairwise stability) as follows:

Definition 1. The unweighted network g ∈ G′ is pairwise stable (resp. JW-pairwise stable) with respect

to v if:

1. for every ij ∈ L such that gij = 1, vi(g − ij) ≤ vi(g) and vj(g − ij) ≤ vj(g);

2. for every ij ∈ L such that gij = 0, if vi(g + ij) > vi(g), then vj(g + ij) ≤ vj(g) (resp. vj(g + ij) <

vj(g).)

Thus, a network is pairwise stable when no single agent can benefit from deleting one of her links,

and no pair of agents can strictly benefit from creating a link. The only difference between this definition

and the one of Jackson and Wolinsky is that the last inequality in the second condition is weak, while

it is strict in the original definition. This means that pairwise stability definition above is a weakening

of JW-pairwise stability: while according to JW-pairwise stability, a network is not stable when some

agent i strictly prefers to add the link with j and j is indifferent between adding the link or not (the

link should be added in that case), by Definition 1, this situation does not impede stability. Basically, in

the new definition this amounts to assuming that agent j, being indifferent between adding the link or

not, will refuse to add it. This weakening is necessary to obtain a general existence result.8 Moreover,

8With the original concept of Jackson-Wolinsky, we can only obtain a generic existence result, as explained in the next
section.
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as we demonstrate in the next subsection, this small difference between the two definitions does not, in

general, produce a substantial difference in stability predictions.

2.2 Relationship between our definition of pairwise stability and Jackson-

Wolinsky’s definition

Let us first construct an example where our notion of pairwise stability is a strict weakening of Jackson-

Wolinsky’s notion.

Example 1. (A pairwise stable network which is not JW-pairwise stable)

Suppose there are three agents with payoffs in all but one unweighted network being zero. The empty

network and the one 1-link network with non-zero payoffs are presented below:

0 3

01 0 2

0

1 1

The empty network satisfies pairwise stability Definition 1 but is not JW-pairwise stable, since if

agents 1 and 3 link with each other, then agent 1 is strictly better off and agent 3 is indifferent.

One simple observation suggested by Example 1 is that JW-pairwise stability and our definition

coincide when a profile of payoff functions v = (v1, ..., vN ) satisfies the condition of “no indifference”:

for any g ∈ G′ and every ij /∈ g, whenever vi(g + ij) > vi(g), it holds that vj(g + ij) 6= vj(g). Remark

that the situation of Example 1 is rather exceptional: a small perturbation of the payoffs, – for example,

adding a small ε 6= 0 to the payoff of agent 3 in the 1-link network, – would enact the condition of no

indifference and remove the distinction between Jackson-Wolinsky’s and our concept.

The proposition below formalizes this idea. In this proposition, we use the fact that given a fixed set

of agents N and a set of feasible links L, defining a society (N,L, v) is equivalent to choosing an element

p = (pi,g)(i,g)∈N×G′ ∈ RN2|L| in the space of payoffs of all agents on the set of all possible networks (of

cardinality 2|L|). Let vp denote the profile of payoff functions defined by p, i.e. vp(g) = (pi,g)i∈N . Then,

the following result states that JW-pairwise stable networks and pairwise stable networks coincide in

general:

Proposition 1. There exists an open and full-measure set9 P ⊂ RN2|L| such that for every p ∈ P ,

the set of JW-pairwise stable networks and the set of pairwise stable networks coincide in the society

(N,L, vp).

We can extend this proposition by allowing other kinds of perturbations of the payoffs. Let us assume

that the payoff function vi : G′×E → R of every player i ∈ N is parametrized by some finite-dimensional

parameter p ∈ E, E being the Euclidean space of parameters, and let v = (v1, ..., vN ) be the profile

of payoff functions. Beyond the previous case, where the parameter is the payoff function itself, now

parameter p can represent a part of the payoff function, such as a cost parameter, the intrinsic value of

9This means that the Lebesgue measure of {p ∈ RN2|L| : p /∈ P} is zero.
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a relationship, etc. For example, if agent i derives utility u from each agent that is connected to i via a

path of links (denote the number of these agents by µi(g)), but pays cost c > 0 for each of her own links,

then for every g ∈ G′, her payoff function can be defined as

vi(g, p) = uµi(g)− c
∑
ij∈L

gij ,

where p = (u, c) is a 2-dimensional parameter. When u = 1 and µi(g) includes agent i herself, this is the

payoff function in the network formation model of Bala and Goyal [2]. Alternatively, if agent i derives

(possibly heterogeneous) utility from each formed link in the network, and the utility of absent links is

0, then vi(g, p) =
∑
kj∈L ukjgkj , where p = {ukj}kj∈L is a |L|-dimensional parameter. Another example

is the payoff function in the Connections’ model of Jackson and Wolinsky [25]:

vi(g, p) = wii +
∑
j 6=i

δtijwij −
∑
ij∈L

cijgij ,

where the multi-dimensional parameter p is a 4-uple p = (w, c, t, δ): {wij}i,j∈N denotes the “intrinsic

value” of individual j to individual i, {cij}ij∈L is the cost to i of maintaining the link ij, {tij(g)}i,j∈N,g∈G′
denotes the number of links in the shortest path between i and j in network g (setting tij(g) =∞ if there

is no path between i and j), and finally, 0 < δ < 1 relates the utility that i derives from being connected

to j to her distance to j.

Then, the following proposition generalizes Proposition 1:

Proposition 2. Assume that the following regularity condition holds: for every i ∈ N , the differential

Dp(vi(1, g−ij , p)−vi(0, g−ij , p)) exists and is non-zero at any (g, p) such that vi(1, g−ij , p)−vi(0, g−ij , p) =

0. Then, there exists an open and full-measure subset P of E such that for every p ∈ P , the set of JW-

pairwise stable networks and the set of pairwise stable networks coincide in the society (N,L, (vi(·, p))i∈N ).

The regularity condition in this proposition means that if agent i is indifferent between having a link

or not, given network g, a small modification of parameter p guarantees that i is not indifferent any

more. That is, the indifference may occur only for some specific values of p. One can show that the

regularity condition holds for Jackson-Wolinsky’s Connections’ model and for Bala-Goyal’s undirected

model.10 Moreover, in the particular case where the parameter p is the function v itself, the regularity

condition is automatically satisfied (which proves Proposition 1 above): indeed, recalling that in this

case, vi(1, g−ij , p)− vi(0, g−ij , p) = pi,(1,g−ij)− pi,(0,g−ij), this function is thus linear in p and is non-zero,

thus its differential Dp(vi(1, g−ij , p)− vi(0, g−ij , p)) is non-zero.

Proof. For every given g ∈ G′ and every agent i, define P̄ (g, i) = {p ∈ E : vi(1, g−ij , p)− vi(0, g−ij , p) =

0}. From regularity condition, it is a submanifold of codimension 1 of E (thus a closed 0-measure subset

of E). In particular, the finite union P̄ = ∪i∈N,g∈G′ P̄ (g, i) is a closed and 0-measure subset of E.

Defining P = E \ P̄ , we obtain that for every p ∈ P and every network g ∈ G′, no agent i in the society

(N,L, (vi(·, p))i∈N ) is indifferent between having a link or not. In particular, every g ∈ G′ satisfies the no

10For Baya-Goyal model, it comes from ∂
∂c

(vi(1, g−ij , p) − vi(0, g−ij , p)) = −1. For Jackson and Wolinsky model, it

comes from ∂
∂cij

(vi(1, g−ij , p)− vi(0, g−ij , p)) = −1.
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indifference condition, and the two concepts of JW-pairwise stability and pairwise stability must coincide

in (N,L, (vi(·, p))i∈N ) when p ∈ P .

2.3 Mixed pairwise stable network

In this section, we extend the definition of pairwise stability to weighted networks, following Bich and

Morhaim [4] . To this end, we first introduce a particular type of weighted society, called mixed extension

of an unweighted society, by analogy with mixed extension of games. To every unweighted society (N,L, v)

we associate the mixed extension of (N,L, v), by allowing agents to form links randomly, and by defining

payoffs in this society as the expected payoff in a random unweighted network. Formally, we define

Definition 2. The mixed extension of an unweighted society (N,L, v) is the weighted society (N,L, ṽ)

defined by

ṽi(g) =
∑
g′∈G′

(
∏

ij:g′ij=1

gij
∏

ij:g′ij=0

(1− gij))vi(g′)

for every agent i ∈ N and every weighted network g ∈ G.

The interpretation is the following: for every fixed weighted network g ∈ G, we interpret gij as the

probability that the (unweighted) link ij is activated by pair ij. Then, assuming mutual independence of

the activation of different links, g defines a probability distribution Pg on the set of unweighted networks,

and ṽi(g) is the expected value of vi(g
′), g′ being some random (unweighted) network distributed according

to Pg. In particular, if g is an unweighted network itself, i.e., g ∈ G′, then ṽi(g) = vi(g).

In [4], Bich and Morhaim extend the definition of pairwise stability (initially applied to unweighted

networks) to mixed extension of unweighted societies. Just as for the concept of pairwise stability the

consent of both agents is needed to create the link but one agent’s decision is enough to sever the link,

suppose now that both agents must approve an increase in the probability/weight of their joint link but

any agent can decrease the probability/weight of any one of her links unilaterally.11 Formally:

Definition 3. The weighted network g ∈ G is mixed pairwise stable with respect to v if:

1. for every ij ∈ L, for every dij ∈ [0, gij [, ṽi(dij , g−ij) ≤ ṽi(g) and ṽj(dij , g−ij) ≤ ṽj(g);

2. for every ij ∈ L, for every dij ∈]gij , 1], there exists k ∈ {i, j} such that ṽk(dij , g−ij) ≤ ṽk(g).

Thus, a mixed pairwise stable network can be viewed as a probability distribution over possible links

(with the probabilities being independent across links) that satisfies the property that no agent has a

strict incentive to decrease the probability of any one of her links, and no two agents have an incentive to

increase the probability of their common link. Of course, this definition can be applied to an unweighted

network g ∈ G′, too (which is a weighted network with all weights being either 0 or 1).

While it is known that an unweighted pairwise stable network does not always exist, the existence of

a mixed pairwise stable network is established in Bich and Morhaim [4]:

Theorem. For every unweighted society (N,L, v), the mixed extension of the society admits a mixed

pairwise stable network.

11An interpretation is that it usually takes both involved individuals to make a relationship more intense, – for example, by
meeting each other more frequently, – but any one of these individuals can lower the frequency of such meetings unilaterally
if he/she desires, even if the other individual would have preferred otherwise.
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The following example presents a situation in which there exists a unique (weighted) mixed pairwise

stable network, while an (unweighted) pairwise stable network does not exist.

Example 2. Consider three agents and denote by x, y, z the weights of the links between agents 1 and

2, 1 and 3, and 2 and 3, respectively.

3

1 2x

y z

Since the values of x, y, z fully determine the network that is in place, let, for convenience, (x, y, z)

denote the corresponding network, and vi(x, y, z) and ṽi(x, y, z) denote the payoff and the mixed extension

payoff of agent i in this network. Suppose that the payoffs in the unweighted society are defined as

follows: if x = 0, the payoff of agent 1 is v1(x, y, z) = 0 when y = 0 and v1(x, y, z) = 1 when y = 1; if

x = 1, the payoff of agent 1 is v1(x, y, z) = 1
2 when (y, z) = (0, 0), v1(x, y, z) = 3

2 when (y, z) = (1, 0),

v1(x, y, z) = − 1
2 when (y, z) = (0, 1) and v1(x, y, z) = 1

2 when (y, z) = (1, 1); last, the payoffs of agents

2 and 3 are defined symmetrically. An easy computation proves that the mixed extension payoffs ṽi are

given by:

ṽ1(x, y, z) = x( 1
2 − z) + y,

ṽ2(x, y, z) = z( 1
2 − y) + x,

ṽ3(x, y, z) = y( 1
2 − x) + z.

Let us prove that ( 1
2 ,

1
2 ,

1
2 ) is the only mixed pairwise stable network, that is, in particular, there does

not exist an unweighted pairwise stable network. First, it is easy to verify that ( 1
2 ,

1
2 ,

1
2 ) is indeed a mixed

pairwise stable network. To see why it is the only one, consider the following argument. If x > 1
2 , then

agent 3 should decrease the weight y of her link with agent 1, i.e., we should have y = 0. Then, both

agents 2 and 3 would have an incentive to increase together the weight z of their common link, i.e., we

should have z = 1. But then, agent 1 should decrease the weight x of her link with 2, i.e., x = 0, which

contradicts x > 1
2 . The same argument applies in case when y > 1

2 or z > 1
2 . Thus, in any stable network

we should have x ≤ 1
2 , y ≤ 1

2 and z ≤ 1
2 . Now, if x < 1

2 , then agents 1 and 3 should increase the weight y

of their common link, i.e., y = 1, which is a contradiction to y ≤ 1
2 . By symmetry, we finally obtain that

x = y = z = 1
2 . Thus, ( 1

2 ,
1
2 ,

1
2 ) is the unique mixed pairwise stable network, and an unweighted pairwise

stable network does not exist.

The following proposition establishes the relationship between pairwise stability and mixed pairwise

stability in the set of unweighted networks, for which both notions are defined. It is straightforward that

any mixed pairwise stable network is pairwise stable since by definition, it is robust to a larger set of

perturbations than just adding or deleting the full link. But the reverse is also true. Thus, pairwise

stable networks in an unweighted society can be seen as particular mixed pairwise stable networks in the

mixed extension of the society.

Proposition 3. If g ∈ G′, then g is pairwise stable if and only if it is mixed pairwise stable.
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The proof of the proposition is provided in Appendix 7.1.

Remark 1. One simple property that appears to be useful for deriving the above proposition together

with a number of other results in the paper is the following representation of the mixed extension payoff.

By definition of ṽi:

ṽi(dij , g−ij) = ṽi(0, g−ij)(1− dij) + ṽi(1, g−ij)dij ∀dij ∈ [0, 1].

In particular, this representation implies that if ṽi(0, g−ij) < ṽi(1, g−ij), then ṽi(dij , g−ij) is increasing in

dij ∈ [0, 1]; if ṽi(0, g−ij) > ṽi(1, g−ij), then ṽi(dij , g−ij) is decreasing in dij ∈ [0, 1]; and if ṽi(0, g−ij) =

ṽi(1, g−ij), then ṽi(dij , g−ij) does not depend on dij .

2.4 Perfect pairwise stability

Pairwise stability can lead to a large number of predictions. Moreover, some of these predictions are less

“reasonable” than others: namely, a network can be pairwise stable even if one or more agents in this

network would prefer to change the weight of one of their links completely in response to a very small

perturbation on other agents’ links. We now introduce a new stability concept, perfect pairwise stability,

which avoids such issues. By analogy with trembling hand perfect Nash equilibrium, that refines Nash

equilibrium in non-cooperative games, perfect pairwise stability refines pairwise stability. We start with

an example which illustrates the main idea, and which shows why refining pairwise stability concept is

important.

Example 3. Consider the set of three agents N = {1, 2, 3}. Let vi(g) = 0 for any i ∈ N whenever

network g ∈ G′ is not complete, and vi(g) = 1 for every i when g ∈ G′ is complete. Then the mixed

extension payoff ṽi of vi is ṽi(x, y, z) = xyz, i = 1, 2, 3.

3

1 2x

y z

In this example, there is a continuum E of (mixed) pairwise stable networks:12

E = {(x, 0, 0), (0, y, 0), (0, 0, z) : (x, y, z) ∈ [0, 1]3} ∪ {(1, 1, 1)}.

Yet, only (1, 1, 1) is perfect pairwise stable, because it is stable with respect to any small perturbations

of the weights. For example, consider (x, y, z) = (0, 0, 0). If for some reason, x and y are slightly modified,

then agents 2 and 3 should change drastically the weight of their common link, increasing it from 0 to

1. The situation is similar for (x, 0, 0), (0, y, 0) and (0, 0, z). For (x, y, z) = (1, 1, 1), the situation is

completely different, since for example, for every small perturbation of x and y, agents 2 and 3 continue

to prefer z = 1. Symmetrically, for every small perturbation of x and z or y and z, the remaining link’s

weight remains equal to 1.

12The other networks are clearly not pairwise stable because (a) with positive weights of two links, there is an incentive
to increase the weight of the third link, (b) with positive weights of all three links, where not all weights are equal to 1,
there is an incentive for every two agents i and j to increase the weight gij .
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To formalize this idea, we provide the following definition:

Definition 4. A network g is perfect pairwise stable with respect to v if and only if there exists a sequence

of completely weighted networks (gn)n≥0 converging to g such that the following two conditions hold:

1. For every ij ∈ L and every dij ∈ [0, gij [, ṽi(dij , g
n
−ij) ≤ ṽi(gij , gn−ij) and ṽj(dij , g

n
−ij) ≤ ṽj(gij , gn−ij).

2. For every ij ∈ L and dij ∈]gij , 1], there exists k ∈ {i, j} such that ṽk(dij , g
n
−ij) ≤ ṽk(gij , g

n
−ij).

Thus, g is perfect pairwise stable with respect to v if for every link ij, agents i and j have no incentive

to modify the weight of their common link gij (given the rules of pairwise stability concept), even if i and

j anticipate small modifications gn−ij of the other links g−ij . Proposition 4 below confirms that perfect

pairwise stability is indeed a refinement of (mixed) pairwise stability (point 1), but it also claims that the

two concepts coincide when we restrict attention to completely weighted networks (point 2). The latter

is implied by the observation that if network g is completely weighted, then it is obviously a limit of the

constant sequence of completely weighted networks gn = g for all n (so that whenever g is mixed pairwise

stable, it is also perfect pairwise stable). This means that the concept of perfect pairwise stability is

interesting when some link weights of g are 0 or 1.

Proposition 4. 1) Every perfect pairwise stable network is mixed pairwise stable.

2) Every mixed pairwise stable network which is completely weighted is perfect pairwise stable.

Proof. Point 1) is straightforward by contraposition: if g is not mixed pairwise stable, then Condition 1

or Condition 2 in Definition 3 of mixed pairwise stability is not satisfied, and by continuity of the payoffs,

Condition 1 or Condition 2 in Definition 4 is also violated. For point 2), if g is a pairwise stable and

completely weighted, then one can take gn = g for all n, and Definition 4 holds for g.

Example. (Continuation of Example 3) We now prove that network (1, 1, 1) in Example 3 is the unique

perfect pairwise stable network. First, to see why (1, 1, 1) is perfect pairwise stable, consider some

sequence of completely weighted networks (gn)n≥0 converging to it. Clearly, it is (strictly) optimal for

each agent to choose a weight of 1 for a link with any other agent, given that the other weights are positive.

Second, (0, 0, 0) is not perfect pairwise stable: for every sequence of completely weighted networks (gn)n≥0

converging to (0, 0, 0), it is strictly better for each pair of agents to choose a link weight equal to 1, given

that the other weights (in gn) are strictly positive. We can prove similarly that the other pairwise stable

networks in this example are not perfect pairwise stable either.

The next example provides another illustration of the power of perfect pairwise stability in reducing

the set of predictions of pairwise stability.

Example 4. Suppose there are at least three agents in set N , and the payoff of every agent in an

unweighted network is positive and strictly increasing in the total number of links in the network as long

as no single agent is isolated, i.e., has no links. If at least one agent is isolated, then the payoff of every

agent is zero. That is, for every g ∈ G′, vi(g) is positive and strictly increasing in |L| for all i as soon as

Nj(g) 6= ∅ for all j ∈ N , and vi(g) = 0 otherwise. Here Nj(g) denotes the set of j’s neighbours in g, that

is, those agents with whom j is directly linked.

10



In this case there are many pairwise stable networks: the complete network and any network with

three or more isolated agents is clearly pairwise stable. Yet, only the complete network is perfect pairwise

stable.

First, it is easy to see that a sequence of networks gn = (1−1/n, .., 1−1/n) converges to the complete

network g = (1, .., 1) as n→∞, and it satisfies Conditions 1 and 2 of Definition 4. Indeed, Condition 2

is trivial in this case, and Condition 1 holds because for every dij ∈ [0, 1[, ṽi(dij , g
n
−ij) < ṽi(1, g

n
−ij). The

latter follows from Remark 1: ṽi is strictly monotonically increasing in dij since ṽi(0, g
n
−ij) < ṽi(1, g

n
−ij).

Second, any other pairwise stable network g is not perfect pairwise stable. Assume, on the contrary,

that there exists a network sequence (gn)n≥0 converging to g (which is not the complete network) such

that, for every n > 0, gn satisfies Conditions 1 and 2 of Definition 4. Consider a pair of agents i and

j such that gij < 1. Then, by Condition 2, it should hold that at least one of the agents i, j becomes

weakly worse off (in terms of payoff ṽ) from increasing the weight of link ij up to 1. This is however not

the case as by Remark 1, both ṽi and ṽj are strictly monotonically increasing in the weight of link ij.

This is a contradiction.

3 Existence, admissibility and perturbation properties of per-

fect pairwise stability concept

In this section we prove that perfect pairwise stability possesses three fundamental properties13: Existence

(E), Admissibility (A) and Perturbation (P).

3.1 Existence

Theorem 1 states the important existence result: the mixed extension of any society has a perfect pairwise

stable network. This theorem is proved in Appendix 7.2.

Theorem 1. For every profile of payoff functions v on G′, there exists a perfect pairwise stable weighted

network g ∈ G.

Thus, just as with pairwise stability (see Section 2.3), a perfect pairwise stable network is guaranteed

to exist, provided that links in the network can be weighted. In fact, it is easy to construct an example

where an unweighted perfect pairwise stable network does not exist. For instance, in Example 2, the only

perfect pairwise stable network is completely weighted because so is the unique pairwise stable network.

Note that the proof of Theorem 1 is not a straightforward application of the standard existence result

for a perfect Nash equilibrium in finite games. Indeed, as explained previously, perfect pairwise stability

is based on both cooperative and non-cooperative behaviors, thus agents in our model do not behave as

players in a non-cooperative game.

3.2 Admissibility

We next introduce a new notion of dominance that takes into account both cooperative and non-

cooperative aspects of pairwise network formation. We show that any perfect pairwise stable network

13Similar properties hold for a trembling hand perfect Nash equilibrium in non-cooperative games.
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is undominated, and we refer to this property as admissibility of our stability concept. In view of this

finding, Theorem 1 states the existence of some undominated network. But here we will demonstrate

that there can exist undominated networks that are not perfect pairwise stable. Thus, perfect pairwise

stability refines the set of undominated networks.

To begin with, Definition 5 transposes the idea of a (weakly) dominated strategy from non-cooperative

games to the framework of cooperative link formation. We say that playing a link (with full weight) is

dominated by not playing it if for at least one of the two agents involved in that link, not having this link

is a weakly better option for all possible configurations of other agents’ links, and it is a strictly better

option for at least one configuration. By the same logic, not playing a link is dominated by playing it

if both involved agents are weakly better off from having that link in place, irrespective of other agents’

links configurations, and they both are strictly better off for at least one of these configurations.

Definition 5. Consider some profile of payoff functions v on G′

1. Playing the full link ij is dominated by not playing this link if there exists some agent k ∈ {i, j}
such that for every g ∈ G′, vk(1, g−ij) ≤ vk(0, g−ij), and this inequality is strict for at least one

g ∈ G′.

2. Not playing some link ij is dominated by playing the full link if for every g ∈ G′, vi(0, g−ij) ≤
vi(1, g−ij) and vj(0, g−ij) ≤ vj(1, g−ij), both inequalities being strict for at least one g ∈ G′.

3. A weighted network g ∈ G is undominated if for every ij such that gij ∈ [0, 1[, not playing link ij is

not dominated by playing the full link, and if for every ij such that gij ∈]0, 1], playing the full link

ij is not dominated by not playing this link.

Note that the property of a network to be undominated rules out situations where some agent or agents

have an incentive to change the weight of their link(s) for any configuration of other links. To see this,

suppose that the opposite of conditions in part 3. of the definition holds. First, assume that for some ij

such that gij ∈ [0, 1[, not playing link ij is dominated by playing the full link. Then, due to multilinearity

of ṽ in v, part 2. of the definition implies that ṽi(0, g−ij) ≤ ṽi(1, g−ij) and ṽj(0, g−ij) ≤ ṽj(1, g−ij), both

inequalities being strict for at least one g. By Remark 1, this means that ṽi(gij , g−ij) ≤ ṽi(1, g−ij) and

ṽj(gij , g−ij) ≤ ṽj(1, g−ij), both inequalities being strict for at least one g. Thus, agents i, j have an

incentive to increase the weight of the link gij to 1. Next, suppose that for some ij such that gij ∈]0, 1],

playing the full link ij is dominated by not playing this link. By the same argument (using multilinearity

of ṽ in v and Remark 1), part 1. of the definition implies that ṽk(gij , g−ij) ≤ ṽk(0, g−ij) for some

k ∈ {i, j}, the inequality being strict for at least one g. Thus, agent k has an incentive to decrease the

weight of the link gij to 0. The property of undominatedness of network g avoids such situations.

Theorem 2. Every perfect pairwise stable network is undominated.

Thus, perfect pairwise stability “filters out” dominated networks. We say that perfect pairwise sta-

bility possesses the property of admissibility. The proof of Theorem 2 is provided in Appendix 7.3. The

following example provides an illustration.

Example 5. Consider the network formation among three agents N = {1, 2, 3}, where agents’ payoffs

v1, v2, v3 are defined as follows:

12



23 full 23 empty

12 & 13 full 12 full, 13 empty 12 empty, 13 full 12 & 13 empty

v1 0 1 0.5 0 0

v2 1 1 1 0 0

v3 1 1 0 1 0

Suppose that in a weighted network g, the link weights are g12 = x, g13 = y, g23 = z. An easy

computation produces ṽ1(x, y, z) = xy(1 − z) + 0.5x(1 − y)(1 − z) = (1 − z)x(0.5y + 0.5), ṽ2(x, y, z) =

z + (1− z)x and ṽ3(x, y, z) = z + (1− z)y. It is easy to see that there is a continuum of pairwise stable

networks: for every x, y, z ∈ [0, 1], networks (1, 1, z) and (x, y, 1) are mixed pairwise stable. Yet, only

(1, 1, 1) is perfect pairwise stable. This is consistent with undominance, since for each of the three links,

not playing the link is dominated by playing it. Thus, (1, 1, 1) is the unique undominated network.

However, not all pairwise stable networks that are undominated are perfect pairwise stable. That

is, perfect pairwise stability refines pairwise stability even beyond removing dominated choices. The

following example describes such a case.

Example 6. There are three agents N = {1, 2, 3}, and vi(g) = 0 for all i ∈ N and all g ∈ G′ apart from

the following four structures:

-1 3

-11 0 2

0

1 0

-1

-1 1

1

1 1

The empty network g = (0, 0, 0) is undominated: not playing link 13 is not dominated by playing it

because the one-link network with g13 = 1 gives payoff −1 to agents 1 and 3, while they obtain 0 when

g13 = 0. Not playing link 12 is not dominated by playing it, because in the network where agents 1, 2

and 2, 3 are linked, player 1 obtains payoff −1, while her payoff is 0 if she does not link with 2. A similar

argument can be used to prove that not playing link 23 is not dominated by playing it.

Yet, g = (0, 0, 0) is not perfect pairwise stable. Indeed, assume the contrary. By definition, there

must exist some network sequence gn = (xn, yn, zn), where xn ∈]0, 1[ is the weight of the link between 1

and 2, yn ∈]0, 1[ is the weight of the link between 1 and 3, and zn ∈]0, 1[ is the weight of the link between

2 and 3, such that it converges to (0, 0, 0) and satisfies the conditions of Definition 4. In gn, agents 1

and 2 have a strict incentive to link fully with each other, at least when n becomes sufficiently large.

Indeed, the mixed extension payoff of agent 2 is ṽ2(xn, yn, zn) = xnynzn+xnzn(1−yn), and it is strictly

increasing in xn. Similarly, the mixed extension payoff of agent 1 is strictly increasing in xn when n is

sufficiently large: ṽ1(xn, yn, zn) = −yn(1− xn)(1− zn) + xnynzn − xnzn(1− yn) + xn(1− yn)(1− zn) =

xn(−2zn + 2ynzn + 1)− yn(1− zn), and since −2zn + 2ynzn + 1 tends to 1 when n tends to +∞, this is

increasing in xn. However, this contradicts Condition 2 of Definition 4 for d12 = 1 and g12 = 0.
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3.3 Perturbation

In this subsection, we give an alternative definition of perfect pairwise stability. According to this

definition, a perfect pairwise stable network can be viewed as a limit of a sequence of “almost pairwise

stable” networks in a “perturbed” setting, where every link exists with a probability that is strictly

between 0 and 1. To be more precise, a perfect pairwise stable network g is a limit of a sequence of εn-

pairwise stable networks gn, where εn-pairwise stability is defined in the same way as pairwise stability,

with the additional constraint that for every link ij, the weight gnij of ij and any deviation dij from this

weight have to belong to [εnij , 1− εnij ].

Theorem 3. The network g is perfect pairwise stable with respect to v if and only if there exists a vector

sequence (εnεnεn)n≥0 ∈]0, 1[|L| converging to 000 and a sequence of weighted networks (gn)n≥0 converging to g

such that for every integer n > 0, gn is εnεnεn-pairwise stable in the following sense:

1. gnij ∈ [εnij , 1− εnij ] for every ij ∈ L.

2. For every ij ∈ L and every dij ∈ [εnij , 1 − εnij ] with dij < gnij, we have ṽi(dij , g
n
−ij) ≤ ṽi(g

n) and

ṽj(dij , g
n
−ij) ≤ ṽj(gn).

3. For every ij ∈ L and every dij ∈ [εnij , 1 − εnij ] with dij > gnij, there exist k ∈ {i, j} such that

ṽk(dij , g
n
−ij) ≤ ṽk(gn).

Note that if gn is εn-pairwise stable, it may not be pairwise stable when gnij = 1− εnij or gnij = εnij for

some link ij. This is because if gnij = εnij , then Condition 2 of Theorem 3 is not restrictive at ij, and if

gnij = 1− εnij , then Condition 3 is not restrictive at ij.14

The following remark is useful, and we employ it in the proof of Theorem 3 (see Appendix 7.4).

Remark 2. For every n ≥ 0, Condition 2 (resp. Condition 3) above is equivalent to the following

Conditions 2′ (resp. Condition 3′):

2′. For every ij ∈ L such that [ṽi(0, g
n
−ij) > ṽi(1, g

n
−ij) or ṽj(0, g

n
−ij) > ṽj(1, g

n
−ij)], we have gnij = εnij .

3′. For every ij ∈ L such that [ṽi(1, g
n
−ij) > ṽi(0, g

n
−ij) and ṽj(1, g

n
−ij) > ṽj(0, g

n
−ij)], we have gnij =

1− εnij .

Indeed, suppose first that gn satisfies Condition 2. If link ij is such that ṽi(dij , g
n
−ij) or ṽj(dij , g

n
−ij)

are decreasing in dij , as in the premise of Condition 2′, then gnij must be equal to εnij , as if gnij > εnij , then

we would obtain from Condition 2 that ṽi(dij , g
n
−ij) and ṽj(dij , g

n
−ij) are non-decreasing with respect to

dij on ]εnij , g
n
ij [, a contradiction. Similarly, suppose that gn satisfies Condition 3. Then if link ij is such

that ṽi(dij , g
n
−ij) and ṽj(dij , g

n
−ij) are increasing in dij , as in the premise of Condition 3′ (see Remark

1), then gnij must be equal to 1 − εnij , as if gnij < 1 − εnij , then we would obtain from Condition 3 that

there exists k ∈ {i, j} such that ṽk(dij , g
n
−ij) is non-increasing with respect to dij on ]gnij , 1 − εnij [, a

contradiction. Conversely, suppose that gn satisfies Condition 2′. If gnij 6= εnij , then it must be that

both ṽi(dij , g
n
−ij) and ṽj(dij , g

n
−ij) are non-decreasing in dij . This implies, in particular, that Condition

2 holds. The last implication, that Condition 3′ entails Condition 3, is similar.

14Otherwise, if gnij 6= 1 − εnij and gnij 6= εnij , then Conditions 2-3 are, in fact, equivalent to the corresponding conditions

for pairwise stability: by affinity of ṽi(dij , g
n
−ij) and ṽj(dij , g

n
−ij) with respect to dij , when they are weakly monotone in

dij on some nonempty open intervals, they are also monotone on the whole segment [0, 1].
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Remark 2 implies that a perfect pairwise stable network can be equivalently defined as a limit of a

sequence of completely weighted networks (gn)n≥0, in which all links ij that are strictly beneficial for

both involved agents have a weight of 1− εnij , and all links that are strictly “disliked” by at least one of

the involved agents have a weight of εnij .

4 Relationship with other concepts

We now compare predictions of perfect pairwise stability concept with those emerging from three different

models of network formation: strong (pairwise) stability concept introduced by Jackson and Van den

Nouweland [22], perfect Nash, pairwise-Nash and strong Nash equilibria of the network formation game

initially proposed by Myerson [29], and perfect Nash equilibria of the game between “link advisers”,

where decisions of two agents involved in a link are replaced by a decision of one link adviser.15

4.1 Relationship with strong (pairwise) stability concept

The concept of strong pairwise stability, introduced by Jackson and Van den Nouweland [22], is a well

known refinement of pairwise stability.16 It is therefore important to establish whether a specific rela-

tionship exists between this concept and our main concept of perfect pairwise stability.

First, let us define the concept of strong pairwise stability using the original terminology of the

authors. Let S ⊂ N be some coalition of agents. An unweighted network g′ is obtainable from an

unweighted network g via deviation by S if:

(i) for every link ij in g′ but not in g, the agents i and j both belong to the coalition S;

(ii) for every link ij in g but not in g′, at least one of the agents i or j belongs to S.

Thus, g′ is obtainable from g via deviation by S if by adding some links between agents in S, or

by removing some links of agents in S, we can transform network g into g′. Now, given a profile of

payoff functions v = (v1, ..., vN ) defined on the set of unweighted networks G′, network g ∈ G′ is called

JV-strongly stable (for Jackson, Van den Nouweland) if for every coalition S ⊂ N and every unweighted

network g′ obtainable from g via deviation by S, the following holds: when vi(g
′) > vi(g) for some i ∈ S,

there exists j ∈ S such that vj(g
′) < vj(g).

It is easy to see that a JV-strongly stable network is pairwise stable in the sense of Jackson and

Wolinsky. Indeed, if g is JV-strongly stable, and g′ is obtainable from g by deleting one link of some

agent i, then by choosing S = {i} in the definition, we obtain that vi(g
′) ≤ vi(g). Also, if g′ is obtainable

from g by creating a link between agents i and j, then by choosing S = {i, j} in the definition, we obtain

that if vk(g′) > vk(g) for some agent k ∈ {i, j}, then vl(g
′) < vl(g) for the other agent l ∈ {i, j}. In fact,

JV-strong stability is, in general, a strict refinement of pairwise stability as the conditions above should

also hold for any coalition of more than two agents.

Just as with our definition of pairwise stability (Definition 1), that slightly weakens the definition by

Jackson and Wolinsky, it is possible to relax the conditions of JV-strong stability by defining a strongly

stable network. Let us say that an unweighted network g is strongly stable if for every coalition S ⊂ N

15The formal description of the game is provided in Section 4.2.2.
16The original definition omits the term “pairwise” in the name, and we only use it here to make a clear distinction with

the concept of strong Nash stability that will be discussed in the next section.
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and every unweighted network g′ obtainable from g via deviation by S, when vi(g
′) > vi(g) for some

i ∈ S, there exists j ∈ S such that vj(g
′) ≤ vj(g). Thus, the difference from the original definition of

Jackson and Van den Nouweland is that the last inequality is weak. We have seen that our concept of

pairwise stability and JW-pairwise stability coincide generically (see Section 2.2). An analogous proof

can be employed to show that the same is true for our concept of strong stability and JV-strong stability.

Despite this weakening, a strongly stable network may not exist, because the requirement of robustness

to deviations by all coalitions is very demanding.

The following proposition states that the concept of (JV-)strongly stable networks and perfect pair-

wise stable networks lead to different and non-overlapping predictions. That is, they possess different

properties, and neither of them implies the other.

Proposition 5. 1. There can be some (JV-)strongly stable networks which are not perfect pairwise

stable.

2. Conversely, there can be some perfect pairwise stable networks which are not (JV-)strongly stable.

The proof is established by the following example:

Example 7. Consider three agents with payoffs in unweighted networks defined below:

-1 3

-11 -1 2

1

1 -1

0

-1 0

-1

0 0

-1

1 -1

1

-1 -1

-1

-1 1

0

0 0

In this example, the complete network and all 1-link networks are pairwise stable17 since severance of

the existing link or creation of a new link does not improve the involved agents’ payoffs; 1-link network

where agents 1 and 3 are connected is also strongly stable and JV-strongly stable, because no coalition

S can change this network in a way that would improve the payoffs of every agent in S.

Yet, none of the 1-link networks is perfect pairwise stable, because for any two unlinked agents, not

playing a link is dominated by playing the full link. This makes the complete network the only perfect

pairwise stable as it is the only undominated network. However, the complete network is not strongly

stable and not JV-strongly stable because a coalition of agents 1 and 3 can delete their links with agent

2 and strictly improve their payoffs.

4.2 Relationship with non-cooperative network formation concepts

In this subsection, we present two natural models of network formation using games: in each model,

we compare the predictions given by perfect Nash equilibria with those given by perfect pairwise stable

17The second and third 1-link networks are pairwise stable but not JW-pairwise stable.
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networks.

4.2.1 Myerson’s linking game

In [29], Myerson explicitly describes a process by which agents form bilateral links and defines a Nash

stable network. The strategy of each player i is a vector (xij)j 6=i ∈ {0, 1}n−1, where xij = 1 (resp.

xij = 0) indicates that player i wants to connect (resp. does not want to connect) with j, and n is the

total number of players. Given the strategy profile of all players, the (unweighted) network g is formed

by letting link ij form (i.e. gij = 1) if and only if xij · xji = 1. Then a network g is called Nash stable if

there exists a (pure strategy) Nash equilibrium that generates g.

Making a step further, we can consider (trembling hand) perfect Nash equilibria, pairwise-Nash equilib-

ria and strong Nash equilibria of Myerson’s game and then compare the associated equilibrium networks

with perfect pairwise stable networks. Pairwise-Nash equilibrium concept is introduced in Jackson and

Wolinsky [25], and strong Nash equilibrium is used in the network formation theory of Dutta and Mu-

tuswami [10].18 By definition, pairwise-Nash equilibrium networks are robust to bilateral commonly

agreed one-link creation, and to unilateral multi-link severance. Simply put, a pairwise-Nash equilibrium

strategy profile induces a network that is both pairwise stable and Nash stable. A strong Nash equilib-

rium strategy profile satisfies the property that there does not exist a coalition and a strategy profile for

the coalition that would make every member of the coalition weakly better off and at least one of the

members – strictly better off.

Proposition 6. 1. In Myerson’s linking game, there can be some strategy profiles which are per-

fect Nash equilibria (resp. pairwise-Nash equilibria, or strong Nash equilibria) but which induce

networks that are only pairwise stable but not perfect pairwise stable.

2. Conversely, there exist some perfect pairwise stable networks which cannot be induced by strategy

profiles that are perfect Nash equilibria (resp. pairwise-Nash equilibria, or strong Nash equilibria)

of Myerson’s linking game.

The proof can be found in the appendix. It shows that the three considered concepts of strong Nash

equilibrium, pairwise-Nash equilibrium and perfect Nash equilibrium in Myerson’s linking game differ

from ours. This result is not so surprising with respect to strong Nash equilibria and pairwise-Nash

equilibria, which do not always exist, but it is more interesting with respect to the concept of perfect

Nash equilibrium (which always exists in mixed strategies).

4.2.2 A game between link advisers

Another natural game theoretic approach to model network formation is the following: consider a game

where each player represents “a link” with two possible strategies – to form the link or not, – and obtains

the payoff equal to the minimum of the payoffs derived by agents involved in this link. This can be

thought of as a situation where every pair of agents in our original setting has a representative decision

maker, or adviser, who cares about the minimum payoff derived by these agents and makes a linking

decision on their behalf. Thus, we obtain a game among n(n − 1)/2 advisers, and the strategy of each

18Pairwise-Nash and perfect Nash equilibria of Myerson’s linking game are also studied in Calvó-Armengol and İlkılıç [7].
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adviser ij is defined by xij ∈ {0, 1}, where xij = 1 (resp. xij = 0) indicates that adviser ij wants to form

the link (resp. does not want to form the link). The strategy profile of all advisers results in (unweighted)

network g, and the payoff of adviser ij is defined by min{ui(g), uj(g)}, where ui(g) and uj(g) are the

payoffs of agents i and j. As in the previous subsection, we can consider perfect Nash equilibria of this

game and compare the induced equilibrium networks with perfect pairwise stable networks.

Proposition 7. 1. In the game between link advisers, there can be some strategy profiles which are

perfect Nash equilibria but which induce networks that are only pairwise stable but not perfect

pairwise stable.

2. Conversely, there exist some perfect pairwise stable networks which cannot be induced by strategy

profiles that are perfect Nash equilibria of the game between link advisers.

This result proves that the two concepts are disjoint. This is intuitive since the game between link

advisers gives the decision power to the agent with the lowest payoff on each link, while in the definition

of pairwise stability concept, the power is given to one or both agents, depending on whether the link

has to be deleted or added. The proof of the proposition can be found in the appendix.

5 Sequential pairwise stability and perfect pairwise stability

In this section we introduce a sequential framework for network formation, and define the concept of

sequential pairwise stability in sequential societies. Importantly, the sequential framework we propose

is distinct from the standard sequential framework in non-cooperative game theory (i.e. extensive form

games), mainly because in each period, a pair of agents decide whether to link or not, and these decisions

are made using the rules of pairwise stability concept : cooperatively when the link is added and non-

cooperatively when the link is deleted. We then show that perfect pairwise stability allows to refine

sequential pairwise stability. To begin with, we illustrate the main idea of this section using an example,

which is most intuitively described by the following real-life situation.

Example 8. Consider competition in the international market for, say, TVs between Japanese and

Korean firms. Before the competition, firms in each country can join their efforts to produce a better,

more technologically advanced TV model by forming a joint venture or by jointly investing in R&D.

Let’s interpret this joint venture/investment as link creation between the firms. This collaborative effort

is costly as it requires time and resources, but it improves the competitiveness of the firms on the

international market. Suppose also that Japanese firms have a more advanced technology to start with,

so that their product wins the competition on the international market when either none of the sides

(neither Korea, nor Japan) invests in technological improvements or both sides do. For the disadvantaged

Korean firms this means that they are only willing to make a joint investment (form a link with each

other) when the Japanese firms do not link. Moreover, let the cost of investment for one of the Japanese

firms be particularly high, so that it would prefer to never invest in technology improvement, even if this

comes at a cost of “losing” the competition.

To keep things simple, suppose that there are just two Korean firms, 1 and 2, and two Japanese

firms, 3 and 4. Korean firms make their joint investment decision first, followed by the decision of the

Japanese firms. The cost of the joint venture (link) for each of the Korean firms is c1 = c2 = c > 0,
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while the costs for the Japanese firms are c4 = c, c3 = 2c. The value of winning the competition on the

international market is v for each firm in the winning country, while the value of loosing is 0. Assume

that v − c > 0 > v − 2c. Given this description and using a conventional representation of sequential

decisions in game theory, Figure 1 depicts the corresponding sequential society19, where L stands for the

decision to link and NL for the decision not to link.
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Figure 1: Sequential link formation.

Note that this sequential society is not equivalent to an extensive form game. First, at each node,

it is a pair of agents that makes a decision, and such pair cannot be considered as one player since the

payoffs of the two agents can be different. Second, the decision made by the agents at each node is

mutual, being a result of negotiations and power relationships. To model this fact, we once again use

the idea of pairwise stability of Jackson and Wolinsky. Namely, we could expect the pair (3,4) to choose

NL (No link) if (1,2) chooses NL, because for both agents 3 and 4 this is strictly better. If, on the other

hand, (1,2) chooses L (Link), then there is a conflict between agents 3 and 4 since 3 prefers NL while 4

prefers L. In this case we could expect NL to happen if links are the result of a consensus, since agent

3 would object to the formation of a link. Finally, anticipating this behavior, the pair of agents (1,2)

should choose L.

An important observation is that the described sequential society can be associated with a static one

(without the time dimension) as follows. Let us duplicate agents 3 and 4 to reflect a possibility of two

histories of play preceding their decisions in the sequential structure. As a result, the static society will

possess six agents: 1, 2, 3|L, 4|L, 3|NL, 4|NL, where, for example, 3|L means “agent 3, given that agents 1

and 2 have chosen to link” and 4|NL is “agent 4, given that agents 1 and 2 have chosen not to link”. Now,

we can define the set of feasible links in this static society to be equal to L̃ = {12, 3|L4|L, 3|NL4|NL},
where only those links are authorized that are possible in the sequential society. Finally, to define the

payoffs in the static society, observe that every network in the static society induces a unique path in the

tree above, which perfectly determines the payoff of agents 1, 2, 3 and 4 in the sequential society. Then

let us define the payoffs of all agents in the static society to be the same as in the induced sequential

society. Namely, let the payoffs of agents 3|L and 3|NL (resp. 4|L and 4|NL) be the same as the payoff

of agent 3 (resp. 4) in the corresponding sequential society. That is, the payoffs of the contingent agents

19The formal definition will be provided below.
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only depend on the actual path that is induced by the network in the static society.

Studying the pairwise stable networks in this static society, we recover our prediction from the se-

quential structure: the network defined by g12 = 1, g3|L,4|L = 0, g3|NL,4|NL
= 0 and associated with the

payoff vector (v − c, v − c, 0, 0) is pairwise stable. Indeed, none of the agents or pairs of agents in this

network has an incentive to deviate: 3|NL and 4|NL cannot influence the outcome even if they change the

decision, 3|L will refuse to create the link with 4|L, and 1 and 2 are both interested in keeping the link.

There also exists a second pairwise stable network in the static society: g12 = 0, g3|L,4|L = 1,

g3|NL,4|NL
= 0, associated with the payoff vector (0, 0, v, v). It is pairwise stable because what 3|L and

4|L choose cannot influence the final outcome given the choice NL of 1 and 2; 3|NL and 4|NL have no

incentive to link; and 1 and 2 prefer to remain unlinked given the choices that follow.

Note that this second pairwise stable network rests on the fact that the pair of agents (3, 4) threaten

to link if (1, 2) link. This is, however, not a credible threat because it is “irrational” for the pair (3, 4)

to choose L if (1, 2) have indeed decided to link (agent 3 would oppose linking with 4 in this case), but

of course this does not matter if (1, 2) do not link. It is then clear that the standard pairwise stability

concept does not prevent such non-credible threats. But perfect pairwise stability concept does. Indeed,

this “non-credible pairwise stable network” is not perfect pairwise stable in the static society, since

whenever there is a small positive probability that a link between agents 1 and 2 is formed, agent 3 would

refuse to link with 4 (even though agent 4 would still like to link).On the other hand, in the first pairwise

stable network, such situation does not occur: all agents’ choices are “robust” to small perturbations on

other links, so that this network is perfect pairwise stable. We call this perfect pairwise stable network

sequentially pairwise stable. It means that all decisions made in the process of formation of this network

are consistent with pairwise stability after every possible history of preceding link formation (and for the

anticipated future choices). In particular, such network excludes the possibility of non-credible threats.20

To summarize the example, there are multiple pairwise stable networks in the static society, but only

one of them is perfect pairwise stable, and it corresponds to what seems to be the intuitive “rational”

prediction in the sequential structure. We now build the theoretical basis for such sequential rationality

through the notion of sequential pairwise network formation.

Let us first fix some new notation and definitions. Consider a finite number of periods t = 1, ..., T and

a sequence of agents’ pairs labelled by a time period (i1, j1), ..., (iT , jT ). At any time t the pair ij = itjt

chooses an action: to link (gij = 1) or not to link (gij = 1). As this action can be different for different

histories of preceding choices, the behavior of the pair ij is characterized by a mutual strategy sij , which

specifies the action that ij takes after every possible history. Formally, a mutual strategy sitjt of pair itjt

at time t is a function from the set of histories up to (but not including) time t, Ht−1 = {0, 1}t−1, to

{0, 1}. Here, for every t ≥ 2, the set of histories Ht−1 contains all profiles of actions (gi1j1 , ..., git−1jt−1
)

of pairs (i1, j1), ..., (it−1, jt−1), and for t = 1, it is, by convention, a fixed singleton, called g∅ (which

represents a state before any action).

20To complete the example, we should note that there also exists a third pairwise stable network in the static society,
which is almost the same as the first one, but (3|NL, 4|NL) choose to link: g12 = 1, g3|L,4|L = 0, g3|NL,4|NL

= 1. Unlike

the second pairwise stable network, this network does not rely on non-credible threats: no matter what (3|NL, 4|NL) do,
agents 1 and 2 prefer to choose L, given that (3|L, 4|L) choose NL. However, if with a small probability agents (1, 2) did
choose NL, (3|NL, 4|NL) would immediately change their decision to NL. Thus, this third pairwise stable network is not
perfect pairwise stable either.
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For every history ht−1 ∈ Ht−1 and every profile of mutual strategies s = (sitjt)t=1,...,T , we define

the path generated by s starting at ht−1 and denote it by p|ht−1
(s). This is a sequence of weights

(gt, ..., gT ) that are defined inductively by decisions of all pairs ij from time t onwards, as follows:

gt = sitjt(ht−1), gt+1 = sit+1jt+1
(ht−1, sitjj (ht−1)), etc. We also assume that every path starting at

h0 = g∅ induces a payoff for every agent: for every i ∈ N , there is a function ui : {0, 1}T → R, where

ui(g
1, ..., gT ) is interpreted as the payoff of agent i when the sequence of chosen links is g1, ..., gT . We

now collect these new notions in the definition of a sequential society :

Definition 6. A sequential society is a quadruplet (N,T, I, u) where N is the set of agents, T > 0 is

the finite time horizon, I = (i1, j1), ..., (iT , jT ) is a sequence of pairs of agents,and u = (u1, ..., uN ) is a

profile of agents’ payoff functions, where ui : {0, 1}T → R for all i ∈ N .

Next, to define the concept of sequential pairwise stability, which is central to our analysis here, we

also need the following definition of a pairwise stable link weight :

Definition 7. Given two agents i, j ∈ N , consider payoff functions ai : {0, 1} → R and aj : {0, 1} → R,

which associates to each possible link weight gij ∈ {0, 1} between agents i and j their payoffs ai(gij) and

aj(gij). Then gij is said to be a pairwise stable weight of (i, j, ai, aj) if:

• whenever gij = 1, ai(0) ≤ ai(gij) and aj(0) ≤ aj(gij);

• whenever gij = 0, ai(1) ≤ ai(gij) or aj(1) ≤ aj(gij).

We will also call (i, j, ai, aj) a one-shot society.

In brief, payoffs ai and aj depend only on the weight of the link between i and j and satisfy the

property of pairwise stability in the usual sense: when i and j are linked (gij = 1), none of them can

strictly benefit from cutting the link, and when i and j are not linked (gij = 0), then at least one of them

cannot strictly benefit from adding the link.

Given these definitions, we can now define the concept of sequential pairwise stability.21

Definition 8. Consider a sequential society S = (N,T, I, u). A profile of mutual strategies s =

(sitjt)t=1,...,T is sequentially pairwise stable if for every t = 1, ..., T and every history ht−1 ∈ {0, 1}t−1

(t ≥ 1), sitjt(ht−1) is a pairwise stable weight of (it, jt, a, b) where a(gij) = uit(ht−1, gij , p|(ht−1,gij)(s))

and b(gij) = ujt(ht−1, gij , p|(ht−1,gij)(s)) for every gij ∈ {0, 1}.

Thus, a sequentially pairwise stable strategy profile s satisfies the property that for every time t, the

linking choice of the pair (it, jt) is optimal in the sense of Definition 7 (with the payoffs being uit , ujt),

for every history of the preceding linking choices and the linking choices that will be made after the choice

of (it, jt) according to strategy s.

As we explained in the motivating example at the beginning of this section, given a sequential society

(N,T, I, u), it is always possible to associate a static society (N̂ , L̂, û) with it, as follows:

• The set of agents N̂ of the static society is the set of all pairs (ht−1, i) where t = 1, ..., T , ht−1 ∈
{0, 1}t−1 and i ∈ {it, jt}. We call the pair (ht−1, i) a contingent agent, and it should be interpreted

as agent i given that ht−1 has occurred.

21The proof of existence of a sequentially pairwise stable strategy profile when the set of possible weights is finite or is
an interval, is developed in Bich and Fixary [3].
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• The set of feasible links L̂ is the set of pairs ((ht−1, i), (ht−1, j)) where t ∈ {1, ..., T} and {i, j} =

{it, jt}, that is, two contingent agents can link if and only if they are associated with the same

history (this corresponds exactly to the pairs of agents that can link in the sequential structure).

• The payoff û(ht−1,i)(g) of the (contingent) agent (ht−1, i) (with i ∈ {it, jt}) at some network g ∈ L̂
is defined as follows: g determines a (unique) path in the sequential structure, that we call p(g) ∈
{0, 1}T , and we can define û(ht−1,i)(g) = ui(p(g)). That is, the payoff of a contingent agent depends

only on the agent and the path generated by the mutual strategies induced by g.

The following proposition states the key result of this section: perfect pairwise stability concept allows

to refine sequential pairwise stability. The proof is provided in Appendix 7.7.

Theorem 4. Every profile of mutual strategies in the sequential society S = (N,T, I, u) which induces

a perfect pairwise stable network in the static society (N̂ , L̂, û) associated with S is sequentially pairwise

stable.

Thus, perfect pairwise stability can be seen as a refinement of sequential pairwise stability, and in

general, this refinement is strict. That is, the set of all sequentially pairwise stable profiles contains, in

general strictly, the set of those sequentially pairwise stable profiles which induce perfect pairwise stable

networks. The following example proves that there could be some sequentially pairwise stable mutual

strategy profiles that do not induce perfect pairwise stable networks.

Consider 3 agents, where at time t = 1, agents 1 and 2 decide whether to link or not, and then, at

time t = 2, agents 1 and 3 decide whether to link. Formally, using the notation of this section, i1 = 1,

j1 = 2, i2 = 1, j2 = 3, and the pairs of agents that have a possibility to form a link are (i1, j1) = (1, 2)

and (i2, j2) = (1, 3).

At t = 1 the decision of agents 1 and 2 to link is denoted by x := gi1j1 = 1 and the decision not to

link is x = 0. At time t = 2, the decision of agents 1 and 3 to link is denoted by y := gi2j2 = 1 and

the decision not to link is y = 0. Further, assume that agents 2 and 3 always receive 0 except when

(x, y) = (0, 1), in which case they both receive −1. Agent 1 obtains 0 if y = 0, 1 if (x, y) = (0, 1), and −2

if (x, y) = (1, 1).

Given x = 0, agent 3 strictly prefers to not have a link with agent 1 (i.e. y = 0), and given x = 1,

agent 1 strictly prefers to not have a link with agent 3 (i.e. y = 0). Thus, if (x, y) is a sequentially pairwise

stable profile, then y = 0. But then agents 1 and 2 are indifferent between choosing x = 1 and x = 0,

and we obtain two sequentially pairwise stable strategy profiles, [x = 0, y = 0 for all x] and [x = 1, y = 0

for all x]. Note, however, that only the first mutual strategy profile induces a perfect pairwise stable

network: indeed, if there is a strictly positive probability that y = 1 is chosen at t = 2, then at t = 1,

agent 1 strictly prefers x = 0 (which gives her a positive payoff instead of a negative one from choosing

x = 1) and agent 2 strictly prefers x = 1 (which gives her a zero payoff instead of a negative one from

choosing x = 0). Since agent 1 has the power to veto the link, [x = 0, y = 0 for all x] is the only mutual

strategy profile that “survives” small probabilistic perturbations.
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6 Conclusion

We develop a new concept of stability in network formation, perfect pairwise stability, which refines

pairwise stability of Jackson and Wolinsky [25]. We prove that a perfect pairwise stable network (1)

always exist, (2) removes dominated link choices and (3) represents a limit of a sequence of ε-pairwise

stable networks in which every link has a positive weight. Even though the proposed concept shares some

properties with perfect Nash equilibrium (Selten’s refinement of Nash equilibrium), our theory requires

new definitions and proofs due to one key difference: perfect pairwise stability is both a non-cooperative

and cooperative concept. We also analyze a sequential model of network formation, where a pair of agents

decide on the weight of their relationship in each period. In this setting we show that perfect pairwise

stability refines sequential pairwise stability by selecting a more desirable outcome.

More generally, this paper demonstrates that the refinement methodology can be transposed from

a non-cooperative framework of game theory to a cooperative framework of network formation theory.

This opens up many perspectives for further research, such as, for example, the study of “proper pairwise

stability”, by analogy with Myerson’s proper equilibrium notion, or an axiomatization of strategic stability

à la Kohlberg-Mertens, adapted to network formation. Another interesting research direction would be

to relax perfect information assumption in our sequential model and assume instead that some pairs of

agents cannot observe previous linking decisions. One could then analyze network stability in this setting

by studying a version of “perfect-Bayesian stable networks”.

7 Appendix

7.1 Proof of Proposition 3

Let g ∈ G′. First, assume that g is mixed pairwise stable. To show that it is also pairwise stable, let

us use a proof by contradiction. If g is not pairwise stable, there are two cases. In the first case, some

agent i ∈ N can strictly increase her payoff by removing some link ij, but then vi(g − ij) = ṽi(g − ij) >
ṽi(g) = vi(g), which contradicts the assumption that g is mixed pairwise stable. In the second case,

two agents i and j can strictly increase their payoffs by adding the link ij, but then for each k ∈ {i, j},
vk(g + ij) = ṽk(g + ij) > ṽk(g) = vk(g), which also contradicts the assumption that g is mixed pairwise

stable.

Conversely, assume that g ∈ G′ is pairwise stable, but not mixed pairwise stable. Again, there are

two cases. In the first case, some agent i can strictly increase her payoff by decreasing the weight of

some link ij. That is, there exists a link ij for which gij = 1 such that for some g′ij ∈ [0, gij [ we have

ṽi(g
′
ij , g−ij) > ṽi(g). From Remark 1, we obtain ṽi(g

′
ij , g−ij) = g′ij ṽi(1, g−ij) + (1 − g′ij)ṽi(0, g−ij) =

g′ij ṽi(g) + (1 − g′ij)ṽi(0, g−ij). Now, since ṽi(g
′
ij , g−ij) > ṽi(g), it must be that ṽi(0, g−ij) > ṽi(g), i.e.,

vi(g− ij) > vi(g), which contradicts the pairwise stability of g. In the second case, some pair of agents i

and j can strictly increase their payoffs by increasing the weight of the link ij. That is, there exists a link

ij for which gij = 0 such that for some g′ij ∈]gij , 1] we have ṽi(g
′
ij , g−ij) > ṽi(g) and ṽj(g

′
ij , g−ij) > ṽj(g).

By the same logic as above, using Remark 1, we obtain that vi(g + ij) = ṽi(1, g−ij) > vi(g) = ṽi(g) and

vj(g + ij) = ṽj(1, g−ij) > vi(g) = ṽj(g), which contradicts the pairwise stability of g.
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7.2 Proof of Theorem 1

For every agent i ∈ N and every integer n > 0, let us define the function vni : G → R by

vni (g) = ṽi(
1

n
+ (1− 2

n
)g),

so that vni is equal to ṽi up to a rescaling of g. Here, 1
n + (1 − 2

n )g is simply an affine combination

of the complete network and g, and it is clearly a weighted network because of the coefficients in this

combination.

Now, a pairwise stable weighted network g of the society (N,L, (vni )i∈N ) can be defined exactly as a

mixed pairwise stable network in Definition 3 (for the original definition see [4]), that is:

1. for every ij ∈ L, for every dij ∈ [0, gij [, v
n
i (dij , g−ij) ≤ vni (g) and vnj (dij , g−ij) ≤ vnj (g).

2. for every ij ∈ L, for every dij ∈]gij , 1], there exists k ∈ {i, j} such that vnk (dij , g−ij) ≤ vnk (g).

Since for every link ij, vni (.) is affine with respect to gij , and since vni is a continuous mapping, the

society (N,L, (vni )i∈N ) admits a weighted pairwise stable network gn (see [4], Theorem 3.2). In particular,

the above property 1. written for gn implies that for every integer n, every ij ∈ L, every dij ∈ [0, gnij [,

and every l ∈ {i, j}, we have

ṽl(
1

n
+ (1− 2

n
)dij ,

1

n
+ (1− 2

n
)gn−ij) ≤ ṽl(

1

n
+ (1− 2

n
)gn). (1)

Similarly, property 2. written for gn implies that for every integer n, every ij ∈ L and every dij ∈]gnij , 1]

there exists k ∈ {i, j} such that

ṽk(
1

n
+ (1− 2

n
)dij ,

1

n
+ (1− 2

n
)gn−ij) ≤ ṽk(

1

n
+ (1− 2

n
)gn). (2)

Now, since the set of weighted networks is compact (because it is a finite product of the compact

interval [0, 1]), there exists a subsequence (gφ(n))n≥0 of (gn)n≥0 that converges to some weighted network

ḡ, where φ : N → N is an increasing mapping. Next, we define the sequence of weighted networks

g′n = 1
φ(n) + (1− 2

φ(n) )g
φ(n) and observe that each g′n is completely weighted, and the sequence (g′n)n≥0

converges to ḡ. In what follows we will show that ḡ is a perfect pairwise stable network because networks

g′n satisfy conditions 1. and 2. of Definition 4. This will complete the proof.

To start with, note that using a re-normalization of dij and writing the inequality (1) at φ(n), we

obtain that for every dij ∈ [ 1
φ(n) , g

′n
ij [, and every l ∈ {i, j},

ṽl(dij , g
′n
−ij) ≤ ṽl(g′n). (3)

Suppose first that ḡij 6= 0. This means that g′nij >
1

φ(n) for n large enough (because g′nij converges

to ḡij > 0 and 1
φ(n) converges to 0). Thus, the inequality (3) is true for dij in a nonempty interval

[ 1
φ(n) , g

′φ(n)
ij [. This inequality together with the fact that ṽl(dij , g

′n
−ij) is affine with respect to dij imply

that ṽl(dij , g
′n
−ij) is non-decreasing with respect to dij . But then it must be the case that for every ij ∈ L

and every dij ∈ [0, ḡij [,

ṽi(dij , g
′n
−ij) ≤ ṽi(ḡij , g′n−ij) and ṽj(dij , g

′n
−ij) ≤ ṽj(ḡij , g′n−ij),

24



which is the first condition in the Definition 4 of perfect pairwise stability. Remark that this condition is

obviously true when ḡij = 0, since in that case nothing needs to be checked.

The second condition is obtained in the same way: the inequality (2) written at φ(n) implies that for

every integer n, every ij ∈ L and every dij ∈]g
φ(n)
ij , 1], there exists k ∈ {i, j} such that:

ṽk(
1

φ(n)
+ (1− 2

φ(n)
)dij , g

′n
−ij) ≤ ṽk(g′n).

Up to a re-normalization of dij , we obtain that for every dij ∈]g′nij , 1− 1
φ(n) ],

ṽk(dij , g
′n
−ij) ≤ ṽk(g′n). (4)

Suppose that ḡij 6= 1. This means that g′nij < 1 − 1
φ(n) for n large enough (because g′nij converges

to ḡij < 1 and 1 − 1
φ(n) converges to 1), so that the obtained inequality is true for a nonempty interval

dij ∈]g′nij , 1 − 1
φ(n) ]. Remark that the integer k in (4) could, in general, depend on dij and n. But note

that we can find the same dij < 1 in all intervals ]g′nij , 1 − 1
φ(n) ] when n is large enough, and since k

takes only two values, i or j, one can always construct a subsequence of n such that for this subsequence

inequality (4) holds for one and the same agent. Thus, we can assume, without any loss of generality,

that k does not depend on n.

Then, since the above inequality is true on the nonempty interval dij ∈]g′nij , 1 − 1
φ(n) ], and since

ṽk(dij , g
′n
−ij) is affine with respect to dij , it must be that ṽk(dij , g

′n
−ij) is non-increasing with respect to

dij . This implies that for every ij ∈ L and every dij ∈]ḡij , 1],

ṽk(dij , g
′n
−ij) ≤ ṽk(ḡij , g

′n
−ij),

which is the second condition in the Definition 4 of perfect pairwise stability. Finally, note that this

second condition is obviously true when ḡij = 1, since in that case nothing needs to be checked.

7.3 Proof of Theorem 2

Let ḡ ∈ G be a perfect pairwise stable network. By Definition 4, this means that there exists a sequence

of networks (gn)n≥0 converging to ḡ, with gnij ∈]0, 1[ for every ij ∈ L, such that each network in the

sequence satisfies Conditions 1 and 2 of Definition 4. We show that a network ḡ is undominated using a

proof by contradiction.

Assume first that for some link ij in ḡ such that ḡij ∈]0, 1], playing the full link ij is dominated by

not playing it. Then by definition, for at least one of the two agents – let’s say agent i – it must be

the case that for every g ∈ G′ we have vi(1, g−ij) ≤ vi(0, g−ij), and this inequality is strict for at least

one g. Then, it is easy to see that ṽi(1, g
n
−ij) < ṽi(0, g

n
−ij). Indeed, by definition of the mixed extension

ṽ, ṽi(1, g
n
−ij) − ṽi(0, gn−ij) is a convex combination of the terms vi(1, g−ij) − vi(0, g−ij) for all g ∈ G′,

with all coefficients in the combination being strictly greater than zero (since gnij ∈]0, 1[) and all terms

being non-positive and strictly negative for at least one of them. From Remark 1, it then follows that

ṽi(dij , g
n
−ij) is (strictly) decreasing in dij . Thus, by Definition 4 (Condition 1) it must be that ḡij = 0,

which contradicts the assumption that ḡij ∈]0, 1].

Second, assume that for some link ij such that ḡij ∈ [0, 1[, not playing link ij is dominated by
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playing the full link. Thus, for every g ∈ G′, vi(0, g−ij) ≤ vi(1, g−ij) and vj(0, g−ij) ≤ vj(1, g−ij), both

inequalities being strict for at least one g. Using the same argument as above, since ṽi and ṽj are convex

combinations of payoffs in unweighted networks, for one of which both inequalities are strict, we obtain

that ṽi(0, g
n
−ij) < ṽi(1, g

n
−ij) and ṽj(0, g

n
−ij) < ṽj(1, g

n
−ij). By Remark 1, this implies that ṽk(dij , g

n
−ij) is

(strictly) increasing in dij for both k ∈ {i, j}. Thus, by Definition 4 (Condition 2), we must have that

ḡij = 1, which is a contradiction to the assumption that ḡij ∈ [0, 1[.

7.4 Proof of Theorem 3

First, suppose that g is perfect pairwise stable. By Definition 4, this means that there exists a sequence

of completely weighted networks gn converging to g that satisfies Conditions 1 and 2 of Definition 4. Let

us define a sequence (εnεnεn)n≥0 of perturbations as follows:

1. εnij = gnij for every ij such that gij = 0.

2. εnij = 1− gnij for every ij such that gij = 1.

3. εnij = min{gnij , 1− gnij , 1
n} otherwise.

Below we show that for every n > 0, gn and εnεnεn satisfy all conditions in Theorem 3:

1. The sequence (εnεnεn)n≥0 converges to zero, by definition of each εnij and because gn converges to g.

2. Condition 1 of Theorem 3 holds by definition.

3. Conditions 2 and 3 of Theorem 3 hold, because their equivalent Conditions 2′ and 3′ of Remark 2

are satisfied:

• If ṽi(0, g
n
−ij) > ṽi(1, g

n
−ij), then ṽi(dij , g

n
−ij) is strictly decreasing in dij ∈ [0, 1] (see Remark

1). Consistency with Condition 1 in Definition 4 requires that gij = 0. Thus, by definition,

εnij = gnij , which means that Condition 2′ holds.

• If ṽi(1, g
n
−ij) > ṽi(0, g

n
−ij) and ṽi(1, g

n
−ij) > ṽi(0, g

n
−ij), then both ṽi and ṽj are strictly increas-

ing in dij ∈ [0, 1] (see Remark 1). Then, consistency with Condition 2 in Definition 4 requires

that gij = 1. Thus, by definition, εnij = 1− gnij , which means that Condition 3′ holds.

Conversely, suppose that g satisfies conditions of Theorem 3: there exists a vector sequence of per-

turbations (εnεnεn)n≥0 ∈]0, 1[|L| converging to 000 and a sequence of networks (gn)n≥0 converging to g such

that for every n > 0, Conditions 1-3 of Theorem 3 hold. Let us replace Conditions 2-3 of Theorem 3 by

the equivalent Conditions 2′-3′ of Remark 2. Below we show that the network sequence (gn)n≥0 satisfies

Conditions 1-2 of Definition 4.

First, due to Condition 2′ of Remark 2, for any ij ∈ L such that gnij 6= εnij , it must be that both

ṽi(dij , g
n
−ij) and ṽj(dij , g

n
−ij) are non-decreasing in dij . This implies, in particular, that Condition 1 of

Definition 4 holds. Second, due to Condition 3′ of Remark 2, for any ij ∈ L such that gnij 6= 1 − εnij ,
at least one of ṽi(dij , g

n
−ij), ṽj(dij , g

n
−ij) must be non-increasing in dij . This means that Condition 2 of

Definition 4 holds.
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7.5 Proof of Proposition 6

Proof of the first statement. First, we prove the existence of perfect Nash equilibria and pairwise-

Nash equilibria of Myerson’s linking game (with some payoffs combination), such that these equilibria

induce networks that are not perfect pairwise stable. Consider the following example, with three agents.

The payoffs of all agents are 0 in all unweighted networks, except for the following specific networks:

-2 3

-21 0 2

0

-2 -2

1

1 1

We will show that the empty network is not perfect pairwise stable, but that it is generated by a

strategy profile in Myerson’s linking game which is a perfect Nash and pairwise-Nash equilibrium.

Note that the empty network is pairwise stable because no pair of agents has a strict incentive to

create a link. It is however not perfect pairwise, because not playing the link 23 is dominated by playing

this link. Thus, from Theorem 2, the empty network cannot be perfect pairwise stable.22

On the other hand, the null strategy profile xxx = ((x12, x13), (x21, x23), (x31, x32)) = 000, which induces

the empty network in Myerson’s linking game, is both perfect Nash and pairwise-Nash stable. First, it is

clearly pairwise-Nash stable, because the empty network is pairwise stable and xxx is a Nash equilibrium of

the linking game (since unilateral deviations have no effects). Second, to prove that xxx is a perfect Nash

equilibrium, consider a (probabilistic) perturbation of this strategy profile, xεxεxε, whose components belong

to ]0, ε[ for some ε ∈]0, 1].

It is easy to see that none of the players has an incentive to change her own strategy (0, 0) in response

to the perturbed strategies of the other two players when ε → 0. First, if player 1 plays (0, 0) against

xε−1xε−1xε−1, she gets 0 for sure. If she plays one of the three other possible strategies (0, 1), (1, 0) or (1, 1), then

the probability that the complete network is formed (this is the only network for which player 1’s payoff

is positive) is either 0 (if strategies (0, 1) or (1, 0) are chosen) or is negligible compared to the probability

that 1-link networks are formed (if strategy (1, 1) is chosen). In the former case, the expected payoff

of player 1, given the perturbed strategies of the others, is negative, while in the latter case it turns to

be negative for sufficiently small ε.23 Thus, player 1 has no interest in switching to any of these other

strategies when ε → 0. That is, playing (0, 0) is a best-response of this player to xε−1xε−1xε−1 when ε is small

enough.

Now, consider player 2. Just as with player 1, if she plays strategy (0, 0) against xε−2xε−2xε−2, then her payoff

is 0 for sure, while if she chooses one of the other three possible strategies, then her expected payoff is

either negative or zero, at least as soon as ε becomes sufficiently small. Indeed, when player 2 plays

(1, 0) or (0, 1), the probability that the complete network is formed (this is the only network for which

player 2’s payoff is positive) is 0, thus the expected payoff of player 2 is either 0 (if her strategy is (0, 1))

or negative (if her strategy is (1, 0)). When player 2 plays (1, 1), then similarly to above, the complete

network is formed with positive but small probability, and as ε → 0, this probability can be neglected,

22Actually, it is easy to prove that the unique perfect pairwise stable network in this example is the complete network.
23Indeed, if player 1 chooses strategy (1, 1), her expected payoff, given the perturbed strategy profile of the other two

players, is −2xε
31(1−xε

23x
ε
32)(1−xε

21)− 2xε
21(1−xε

23x
ε
32)(1−xε

31) +xε
31x

ε
21(xε

23x
ε
32). This is negative when ε is sufficiently

small.

27



compared to the probability of the 1-link networks. This means that the expected payoff of player 2 if

she plays (1, 1, ) will be strictly negative for sufficiently small ε > 0. Finally, the argument for player 3 is

exactly the same as for player 2 due to symmetry of their payoffs.

The argument above implies that the empty network is generated by a perfect Nash equilibrium of

the linking game, and we have seen that it is also pairwise-Nash stable. Yet, it is not perfect pairwise

stable.

It remains to prove that there exist strong Nash equilibria of Myerson’s linking game (with some

payoffs combination), which induce networks that are not perfect pairwise stable. To do that, let us refer

to the Example 7 of section 4.1. In that example, the 1-link network where players 1 and 3 are linked is

generated by a strong Nash equilibrium of the corresponding linking game. Indeed, it is easy to see that

the strategy profile xxx = ((0, 1), (0, 0), (1, 0)), which produces this network, is a Nash equilibrium, and no

coalition can improve their payoffs by any coordinated deviation from this strategy. However, this 1-link

network is not perfect pairwise stable because the only perfect pairwise stable network in that example

is complete.

Proof of the second statement. In Example 7, the complete network is perfect pairwise stable, but

it is not induced by a strong Nash equilibrium of Myerson’s linking game. Indeed, the only strategy

profile that generates the complete network is xxx = ((1, 1), (1, 1), (1, 1)), and even though this is a Nash

equilibrium of the linking game, it is not a strong Nash equilibrium: a coalition of players 1 and 3 can

deviate to a strategy profile ((0, 1), (1, 0)) (thus, deleting a link with player 2) and strictly benefit from

this deviation.

To finish the proof, it remains to show that a perfect pairwise stable network is not always induced

by a perfect Nash or pairwise-Nash equilibrium of Myerson’s game. To do that, consider the following

example with three players. The payoffs of the three players are 0, except for the 2-link and one of the

1-link networks:

-1 3

-11 -1 2

-1

-1 -1

-1

-1 -1

1

-1 -1

0

0 0

Consider the strategy profile xxx = ((1, 1), (1, 1), (1, 1)), which induces the complete network. This

network is perfect pairwise stable because it is robust to small probabilistic perturbations of the link

weights. Indeed, if we consider a perturbed network where each link weight belongs to ]1− ε, 1[ for some

ε ∈]0, 1], then no agent has an incentive to remove any of her links, because with high probability (when

ε → 0) this would result in a 2-link network, with the payoff of −1. By comparison, if she chooses to

keep her links, the payoff will be 0 with high probability. But xxx is not a Nash equilibrium in Myerson’s

linking game, since player 3 has an incentive to deviate to strategy (0, 0). In particular, xxx is neither a

perfect Nash nor pairwise-Nash equilibrium.
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7.6 Proof of Proposition 7

Proof of the first statement. Suppose there are three agents. Let their payoffs be 0 in all unweighted

networks, except for the following ones:

-2 3

-21 0 2

0

-2 -2

1

1 -2

Given this payoff structure, payoffs of all link advisers in the 1-link networks above are equal to −2,

while in the complete network they are equal to 1 for adviser 13 and to −2 for advisers 12 and 23. In all

other networks the advisers’ payoffs are 0. We will show that the empty network in this example is not

perfect pairwise stable but is generated by a perfect Nash equilibrium profile of the game between link

advisers.

First, note that the empty network if pairwise stable because no pair of agents has an incentive

to create a link, but it is not perfect pairwise stable. By contradiction, assume that there exist some

network sequence gn = (xn, yn, zn), where xn ∈]0, 1[ is the weight between 1 and 2, yn ∈]0, 1[ is the weight

between 1 and 3, zn ∈]0, 1[ is the weight between 2 and 3, such that it converges to (0, 0, 0) and satisfies

the conditions of Definition 4. For n large enough (such that yn < 1/2), agents 2 and 3 in network gn have

a strict incentive to set the weight of their joint link zn as high as possible since their mixed extension

payoff is strictly increasing in zn:

ṽ2(xn, yn, zn) = −2xn(1− yn)(1− zn)− 2xnynzn = −2xn(1− yn) + 2xnzn(1− 2yn),

ṽ3(xn, yn, zn) = −2yn(1− xn)(1− zn) + xnynzn. But this contradicts Condition 2 of Definition 4, taking

ij = 23 and dij = 1.

Second, we prove that the null strategy profile xxx = (0, 0, 0) = 000, which induces the empty network,

is a perfect Nash equilibrium in the linking game between advisers. Indeed, consider a (probabilistic)

perturbation of this strategy profile, xεxεxε, whose components belong to ]0, ε[ for some ε ∈]0, 1]. It is easy to

show that none of the advisers has an incentive to change her own strategy 0 in response to the perturbed

strategies of the other two advisers when ε→ 0. First, if adviser 12 plays 0 against xεxεxε−12, she obtains an

expected payoff of −2xε13(1− xε23). If she plays the other possible strategy, 1, then her expected payoff is

−2(1− xε13)(1− xε23)− 2xε13x
ε
23. Both of these expected payoffs are negative but as ε→ 0, the expected

payoff from playing 0 is larger than the expected payoff from playing 1. Thus, playing 0 is a best-response

of this adviser to xεxεxε−12 when ε is sufficiently small.

For adviser 23 the argument is the same as for 12 since their payoffs are symmetric. So, it remains

to consider adviser 13. For this adviser, the expected payoff from playing 0 in response to the perturbed

strategies of 12 and 23 is −2xε12(1− xε23) and her payoff from playing 1 is −2(1− xε12)(1− xε23) + xε12x
ε
23.

From this, it follows that the expected payoff of adviser 13 from choosing strategy 0 is larger then the

expected payoff from choosing 1 when ε > 0 is small enough. That is, adviser 13 has no interest in

switching to strategy 1 in response to a small perturbation of the strategies of other advisers. Thus, the

empty network (which is not perfect pairwise stable) is induced by a perfect Nash equilibrium of the

game between link advisers.

Proof of the second statement. Consider two agents. Suppose that if the link between them is not
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activated, agent 1 gets 0 and agent 2 gets 2, and suppose that if the link is activated, both agents get

1. Clearly, the empty network is pairwise stable, because agent 2 has no incentive to form the link. It

is also perfect pairwise stable, but it is not induced by a perfect Nash equilibrium of the game between

link advisers (in fact, here, there is only one adviser), since in such a game, the unique Nash equilibrium

(and perfect Nash equilibrium) is to have a link. This is not surprising, since the payoffs in the game

between link advisers give all power to the agent with a lowest payoff on the link, which is not the case

in the definition of pairwise stability concept.

7.7 Proof of Theorem 4

Let S = (N,T, I, u) be a sequential society, and Ŝ = (N̂ , L̂, û) be the static society induced by S. We

show that if a profile s of mutual strategies in the sequential society S induces a perfect pairwise stable

network g in the associated static society (thus g is a network involving contingent agents in N̂), then s

is sequentially pairwise stable. Suppose, on the contrary, that g is a perfect pairwise stable network but

s = (sitjt)t=1,...,T is not sequentially pairwise stable. This means that there exists some time t ∈ {1, ..., T}
and some history ht−1 ∈ {0, 1}t−1 such that sitjt(ht−1) is not a pairwise stable weight of the one-shot

society (it, jt, a, b), where a(x) = uit(ht−1, x, p|(ht−1,x)(s)) and b(x) = ujt(ht−1, x, p|(ht−1,x)(s)) for every

x ∈ {0, 1}. This, in turn, means that one of the two conditions holds:

1. sitjt(ht−1) = 1 and [a(0) > a(1) or b(0) > b(1)], or

2. sitjt(ht−1) = 0 and [a(1) > a(0) and b(1) > b(0)].

Let us consider the case where 1. above is true with a(0) > a(1), the other cases being analogous. For

simplicity, let i = it, j = jt, and let us denote by î the contingent agent (i, ht−1) and by ĵ the contingent

agent (j, ht−1). Hence, we have gîĵ = 1 and

ui(ht−1, 1, p|(ht−1,1)(s)) < ui(ht−1, 0, p|(ht−1,0)(s)). (5)

Since g is perfect pairwise stable, there exists a sequence (gn)n≥0 of completely weighted networks

(thus gn
îĵ

belongs to ]0, 1[ for every contingent agents î and ĵ) which converges to g (in particular, gn
îĵ

converges to 1), and such that Condition 1 of Definition 4 holds. In particular, from this condition and

the fact that gîĵ = 1, it follows that

˜̂uî(0, g
n
−îĵ) ≤ ˜̂uî(1, g

n
−îĵ), (6)

where we recall that û denotes the payoff function on the set of static (unweighted) networks associated

with u, and ˜̂u is its mixed extension (on the set of static weighted networks). This condition simply means

that since gîĵ = 1, agent î should prefer the decision to keep the link with ĵ under small probabilistic

perturbations of the other links.

We will now prove that the two equations, (6) and (5) yield a contradiction. Note that the sequence

(gn)n≥0 induces probabilities on the branches of the tree defining the sequential society, and thus, a

probability distribution Pn on the set of histories. Then the payoff ˜̂uî(gîĵ , g
n
−îĵ) (in the mixed extension

of the society Ŝ) of contingent agent î, given the weight gîĵ ∈ [0, 1] of the link between contingent agents
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î and ĵ, and given the other links’ weights gn−îĵ , can be written as

˜̂uî(gîĵ , g
n
−îĵ) = Pn(ht−1) ·

(
gîĵ

(
Pn(ht−1, 1, p|(ht−1,1)(s) | (ht−1, 1)

)
ui(ht−1, 1, p|(ht−1,1)(s)) +

+(1− Pn(ht−1, 1, p|(ht−1,1)(s) | (ht−1, 1)
)
)αn

)
+

+(1− gîĵ)
(
Pn(ht−1, 0, p|(ht−1,0)(s) | (ht−1, 0))ui(ht−1, 0, p|(ht−1,0)(s)) +

+(1− Pn(ht−1, 0, p|(ht−1,0))(s) | (ht−1, 0))βn
))

+ (1− Pn(ht−1)) · γn,

where αn, βn and γn denote the payoffs of agent i in case when a path different from the one generated

by s was followed, and therefore, do not depend on gîĵ . In particular,

˜̂uî(0, g
n
−îĵ)− ˜̂uî(1, g

n
−îĵ) = Pn(ht−1) ·

((
Pn(ht−1, 0, p|(ht−1,0)(s) | (ht−1, 0))ui(ht−1, 0, p|(ht−1,0)(s)) +

+(1− Pn(ht−1, 0, p|(ht−1,0))(s) | (ht−1, 0))βn
)
−

−
(
Pn(ht−1, 1, p|(ht−1,1)(s) | (ht−1, 1)

)
ui(ht−1, 1, p|(ht−1,1)(s)) +

+(1− Pn(ht−1, 1, p|(ht−1,1)(s) | (ht−1, 1)
)
)αn

))
.

In the above expressions, the (conditional) probabilities Pn
(
ht−1, 1, p|(ht−1,1)(s) | (ht−1, 1)

)
and

Pn
(
ht−1, 0, p|(ht−1,0)(s) | (ht−1, 0)

)
are the probabilities of histories induced by the strategy profile s

(conditional on the fixed history ht−1 and the link choice of îĵ). Thus, they converge to 1 when n tends

to +∞ since Pn is induced by gn, which converges to g, and g is induced by s.

Then in view of equation (5) and the fact that Pn(ht−1) > 0 by definition of gn, this implies that for

n large enough, we should have ˜̂uî(0, g
n
−îĵ)−

˜̂uî(1, g
n
−îĵ) > 0, which is a contradiction with equation (6).
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