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Intuitionistic propositional logic
We say that a set of formulas L is closed under the rule modus ponens (MP) :

A, AOB
B

if B € L whenever Ac L.

The intuitionistic logic is the smallest set of intuitionistic formulas closed under
substitutions and modus ponens, and containing the following axioms:
(Ax1) p 2 (q 2 p);
(Ax2) pD (gD r) S>((pP2>a9)>(pDr)):
(Ax3)
(Ax4) pA gD q;
(AX5) pD (gD (p Aq));
(Ax6)
(AXT)
(Ax8)
(Ax9)

Ax9

qoOpVag;

(p2r)>((g2>r)D>(PVaQ)Dr)

1D>p.

The intuitionistic (or Heyting) propositional logic is denoted by H
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Predicate formulas

Let Var = {v1,vs,...} and PLN = {P/ | i > 0} (n > 0) be a fixed disjoint
countable sets. Var elements are called variables and PL" elements are called
n-ary predicate letters. An atomic formula without equality is either L or P?,
or P (x1,...,xn) for some n >0, x1,...,x, € Var. An atomic formula with
equality can also be of the form a = b, where a, b € Var and ' =’ is an extra

binary predicate letter.
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Predicate formulas

Let Var = {v1,vs,...} and PLN = {P/ | i > 0} (n > 0) be a fixed disjoint
countable sets. Var elements are called variables and PL" elements are called
n-ary predicate letters. An atomic formula without equality is either L or P?,
or P (x1,...,xn) for some n >0, x1,...,x, € Var. An atomic formula with
equality can also be of the form a = b, where a, b € Var and ' =’ is an extra
binary predicate letter.

Intuitionistic predicate formulas (with or without equality) are built from
atomic formulas using the propositional connectives A, V, D and the quantifiers
V, 3. The abbreviations —=A, T, A = B have the same meaning as in the
propositional case; x # y abbreviates —(x = y). For a formula A, a list of
variables x = x1 ... x, and a quantifier Q € {V, 3}, OxA denotes Ox; ... Ox,A.

AF, IF denote the sets of atomic and intuitionistic formulas without equality
respectively. Corresponding sets of formulas with equality are denoted by
AFS) IFE),
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Predicate logics

Consider the following predicate axioms for arbitrary x, y and fixed P, q :
(Ax10) VxP(x) D P(y);
(Ax11) P(y) D IxP(x);
(Ax12) Vx(g D P(x)) D (g D VxP(x));

(Ax13) Vx(P(x) D q) D (3xP(x) D q).

And also consider the following axioms of equality for arbitrary x, y and fixed P:
(Ax14) x = x;
(Ax15) (x =y) 2 (P(x) D P(y)).
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Predicate logics

Definition

A superintuitionistic predicate logic (s.p.l.) is a set L C IF such that:
(s1) L contains the axioms of Heyting's propositional calculus H;
(s2) L contains the predicate axioms ( Ax10) (Ax13);

(s3) L is closed under the rules

AADB
B
(s4) L is closed under IF-substitutions.

VxA; ., . .
modus ponens a V-introduction

Definition
A superintuitionistic predicate logic with equality (s.p.l.=) is a set
L C IF~satisfying (s1) + (sa) and:

(s5) L is closed under IF~-substitutions;
(s6) L contains the axioms of equality (Ax14), (Ax15).
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Algebraic Kripke sheaf semantics [N.-Y. Suzuki, 1999]
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Algebraic Kripke sheaf semantics [N.-Y. Suzuki, 1999]

Definition
Let M = (M, <) be a partially ordered set with the least element 0™ € M and
D be a contravariant functor from M to SET, which means that:

- for every a € M the set D(a) is non-empty;

- for every a,b € M with a < b there exists a map D,y : D(b) — D(a);
- Dsa = idp(,) for every a € M;

- Dpc 0 Doy = D, for every a,b,c € M witha< b < c.

The functor D is called a domain-sheaf over M, a tuple (M, <, 0) is called a
Kripke base and a pair (M, D) is called a Kripke sheaf.
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Algebraic Kripke sheaf semantics [N.-Y. Suzuki, 1999]

Definition
Let M = (M, <) be a partially ordered set with the least element 0™ € M and
D be a contravariant functor from M to SET, which means that:

- for every a € M the set D(a) is non-empty;

- for every a,b € M with a < b there exists a map D,y : D(b) — D(a);

- Dsa = idp(,) for every a € M;

- Dpc 0 Doy = D, for every a,b,c € M witha< b < c.
The functor D is called a domain-sheaf over M, a tuple (M, <, 0) is called a
Kripke base and a pair (M, D) is called a Kripke sheaf.

For each a,b € M and d € D(a), element D.,(d) is said to be inheritor of an
element d at the point b. For each sentence A € ISp(,) and each element

b € M such that b = a we define inheriting sentence A, obtained by replacing
every occurence of every u € D(a) by its inheritor v = D,,(u) at D(b).
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Algebraic Kripke sheaf semantics [N.-Y. Suzuki, 1999]

Definition
Let M = (M, <) be a partially ordered set with the least element 0™ € M and
D be a contravariant functor from M to SET, which means that:

- for every a € M the set D(a) is non-empty;

- for every a,b € M with a < b there exists a map D,y : D(b) — D(a);
- Dsa = idp(,) for every a € M;

- Dpc 0 Doy = D, for every a,b,c € M witha< b < c.

The functor D is called a domain-sheaf over M, a tuple (M, <, 0) is called a
Kripke base and a pair (M, D) is called a Kripke sheaf.

For each a,b € M and d € D(a), element D.,(d) is said to be inheritor of an
element d at the point b. For each sentence A € ISp(,) and each element

b € M such that b = a we define inheriting sentence A, obtained by replacing
every occurence of every u € D(a) by its inheritor v = D,,(u) at D(b).
Definition

Let H denote a category of non-degenerate complete Heyting algebras and
complete monomorphisms. A contravariant functor P from a Kripke base

M = (M, <) to H is called a Heyting-valued-sheaf over M and K = (M, D, P)
is called an algebraic Kripke sheaf.
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Algebraic Kripke sheaf semantics

Definition

A map V which assigns to each pair (a, A) of an element a € M and an atomic
sentence A € AFp an element of P(a) is said to be a valuation on (M, D, P) if
for every a,b € M with a < b implies V(a, A) < Pay (V (b, Aab))

We extend V to a map which to all senteces A of PL" inductively as follows:
V(a,AAB) = V(a, A) NP V(a, B);
- V(a,AV B) = V(a,A) UP® V(a, B);

(
V(a,A D B) = N5k, Pas (V (b, Aw) =72V (b, B));
- V(a,-A) = m";galb P.y (V(b Aup) —FP®) OP(b)) :
(
(a,

V(a, VxA(x)) = nba<b VED( 2 Pab b (V (b, Aab(v)));

V(a, IxA(x)) = UL, V(a, A(v)).
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Algebraic Kripke sheaf semantics

Definition

A map V which assigns to each pair (a, A) of an element a € M and an atomic
sentence A € AFp an element of P(a) is said to be a valuation on (M, D, P) if
for every a,b € M with a < b implies V(a, A) < Pay (V (b, Aab))

We extend V to a map which to all senteces A of PL" inductively as follows:
V(a,AAB) = V(a, A) NP V(a, B);
- V(a,AV B) = V(a,A) UP® V(a, B);

(
V(a,A D B) = N5k, Pas (V (b, Aw) =72V (b, B));
- V(a,-A) = m";galb P.y (V(b Aup) —FP®) OP(b)) :
(
(a,

- V(3,YxA(X)) = ooty Mociay Poo (V (b, Aas(v)));
- V(a, xA(X) = UL, V(a Av)).

Definition
A pair {IC, V) is called an algebraic Kripke sheaf model.

Definition

A formula A is said to be true in an algebraic Kripke sheaf model (K, V') if
V (0M, A) = 1, this fact is denoted as (K, V) |= A. A formula A is said to be
valid in an algebraic Kripke sheaf K if it is true for every valuation V on K.
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Heyting-valued structure semantics [A. Dragalin, 1973]
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Heyting-valued structure semantics [A. Dragalin, 1973]

Let Q be a complete Heyting algebra, D a set, and E : D?> — Q a map such
that for any a,b,c € D :

E(1) E(a,b) = E(b, a);
E(2) E(a,b) A E(b,c) < E(a,c);
E(3) V,ep E(a,a) = 1.
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Heyting-valued structure semantics [A. Dragalin, 1973]

Let Q be a complete Heyting algebra, D a set, and E : D?> — Q a map such
that for any a,b,c € D :

E(1) E(a,b) = E(b, a);
E(2) E(a,b) A E(b,c) < E(a,c);
E(3) V,ep E(a,a) = 1.

Definition

A triple (2, D, E) is called an Q-valued structure or a Heyting valued structure
(H.v.s) over Q. A set D is called an individiual domain and its elements are
called individuals. A map E : D> — Q is called a measure of equality.
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Heyting-valued structure semantics [A. Dragalin, 1973]

Let's extend a measure of equality to tuples a, b € D¥ in the following way:
E(a, b) = E(a1, b1) A A E(ak, bk)
and introduce abbreviations:

E(a, b) := Eab, Eaa := Ea.
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Heyting-valued structure semantics [A. Dragalin, 1973]

Let's extend a measure of equality to tuples a, b € D¥ in the following way:

E(a, b) = E(a1, b1) A A E(ak, bk)
and introduce abbreviations:

E(a, b) := Eab, Eaa := Ea.

Proposition

Every measure of equality E has the following properties:
- E(a,b) < E(a,a);
- Eab < Eaa;
- Eab N Ebc < Eac;

- Vaeor E(a) = 1.
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Heyting-valued structure semantics [A. Dragalin, 1973]

A valuation on a Hv.s F = (Q, D, E) is a map ¢ : AFp — Q such that for
every P € PL" :

p(P(a)) A E (ai, bi) < p(P(b))

whenever a, b € D* and a =; b, which means that a, = by for every k # i,
where ax and by are the k-th elements of vectors a and b.
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Heyting-valued structure semantics [A. Dragalin, 1973]

A valuation on a Hv.s F = (Q,D, E) is a map ¢ : AFp — Q such that for
every P € PL" :

p(P(a)) A E (ai, bi) < p(P(b))

whenever a, b € D* and a =; b, which means that a, = by for every k # i,

where ax and by are the k-th elements of vectors a and b.
We extend the valuation ¢ to all D-sentences in the following way:
- p(L):=0,
- p(a=b) = E(a,b);
(AV B) = p(A) V ¢(B);
- (AN B) = p(A) A p(B);
- p(AD B) = p(A) = ¢(B);
- o
R

IxA) := V ep(Ed A o(A(d)));
VxA) := Nyep(Ed = ¢(A(d))).
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Heyting-valued structure semantics [A. Dragalin, 1973]

A valuation on a Hv.s F = (Q,D, E) is a map ¢ : AFp — Q such that for
every P € PL" :
p(P(a)) A E (ai, bi) < (P(b))

whenever a, b € D* and a =; b, which means that a, = by for every k # i,
where ax and by are the k-th elements of vectors a and b.

We extend the valuation ¢ to all D-sentences in the following way:

- p(L):=0,

- p(a=b) = E(a,b);
P(AV B) = ¢(A)V ¢(B);
- (AN B) = @(A) A @(B);

(
(
(

- (A D B) = p(A) = ¢(B);
- p(IxA) :=V yep(Ed A p(A(d)));
- o(VxA) := Ayep(Ed — 9(A(d))).

Definition

A formula A is said to be true in an algebraic model model (F, ) if p(A) =1,
this fact is denoted as (F, ) = A. A formula A is said to be va//d in an
algebraic model F if it is true for every valuation ¢ on F.
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Theorem
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Theorem

Theorem

For every Suzuki Algebraic Kripke Sheaf S = (M, D, P) there exists a
Heyting-valued structure Fs: = (Qs/, Ds/, Es/) and for every valuation V on S
there exists a valuation ps: on Fs: which has the same set of valid formulas.
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Algebra of Monotonic Maps
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Algebra of Monotonic Maps
Note. Every calculation we will need can be done in the algebra P(0).

Consider a Suzuki-defined algebraic Kripke sheaf S = (M, D, P) and an
arbitrary valuation V on it.

Let Qs be a set of monotonic maps from M to P(0) with algebraic operations
which are defined as follows:

fAg: (FAg)x):=Ff(x)Ng(x);
fvg: (fFVg)x):=rf(x)Ug(x)
fog: (F=g)(x):=[)(fly) = &ly))

yiex
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Algebra of Monotonic Maps

Note. Every calculation we will need can be done in the algebra P(0).

Consider a Suzuki-defined algebraic Kripke sheaf S = (M, D, P) and an
arbitrary valuation V on it.

Let Qs be a set of monotonic maps from M to P(0) with algebraic operations
which are defined as follows:

fAag: (fAg)x):=f(x)Ng(x)

fvg: (fve)lx):=f(x)Ug(x)

fog: (F=g)(x):=[)(fly) = &ly))

YiEX

For every set {fi},., C Qs greatest lower and least upper bounds are defined

termwise as follows:

U{f}:el (U{f},e/) (x) = Ufi(X),'e/,Vxe M

and

ﬂ{fi}iel : (m {f},e/> ﬂ fi(x)icr, Vx € M.
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Algebra of Monotonic Maps

Partial order: £ <% g < Vx (f(x) <Po g(x)), for every f,g € Qs.
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Algebra of Monotonic Maps

Partial order: £ <% g < Vx (f(x) <Po g(x)), for every f,g € Qs.

The least and the greatest elemets of Qs: 0 € Qs : 0(x) := 07 vxc M
1€Qs:1(x):=1" vxe M
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Algebra of Monotonic Maps

Partial order: £ <% g < Vx (f(x) <Po g(x)), for every f,g € Qs.

The least and the greatest elemets of Qs: 0 € Qs : 0(x) := 07 vxc M
1€Qs:1(x):=1" vxe M

Proposition

The set Qs with operations A,V,—,0,1 and LUB and GLB defined previously
is a complete Heyting algebra.
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Disjoint Sheaves
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Disjoint Sheaves

Let S = (M, D, P) be an algebraic Kripke sheaf. Every such Kripke sheaf can
be transformed into a disjoint Kripke sheaf S’ i.e. with disjoint fibers.
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Disjoint Sheaves

Let S = (M, D, P) be an algebraic Kripke sheaf. Every such Kripke sheaf can
be transformed into a disjoint Kripke sheaf S’ i.e. with disjoint fibers.

Individuals: D'(u) := {(a,u)|a € D.}
Transitions:  D;,((a,u)) := (Dw(a), v) for every v = u
Valuation: V'(m,(a,u)) := V(m,a)
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Disjoint Sheaves

Let S = (M, D, P) be an algebraic Kripke sheaf. Every such Kripke sheaf can
be transformed into a disjoint Kripke sheaf S’ i.e. with disjoint fibers.

Individuals: D'(u) := {(a,u)|a € D.}

Transitions:  D;,((a,u)) := (Dw(a), v) for every v = u

Valuation: V'(m,(a,u)) := V(m,a)
Proposition

Algebraic Kripke Sheaves S and S’ are isomorphic.
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Disjoint Sheaves

Let S = (M, D, P) be an algebraic Kripke sheaf. Every such Kripke sheaf can
be transformed into a disjoint Kripke sheaf S’ i.e. with disjoint fibers.

Individuals: D'(u) := {(a,u)|a € D.}

Transitions:  D;,((a,u)) := (Dw(a), v) for every v = u

Valuation: V'(m,(a,u)) := V(m,a)
Proposition

Algebraic Kripke Sheaves S and S’ are isomorphic.

Now instead of S = (M, D, P) we will be working with an equivalent disjoint
algebraic Kripke sheaf &' = (M, D', P).
And let 71 be an isomorphism from S to S'.
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Equivalent H.V.S.
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Equivalent H.V.S.

Let Ds/ :=||
define.

meM D!, be a set of individuals for a H.v.s. we are about to
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Equivalent H.V.S.

Let Ds/ :=||
define.

meM D!, be a set of individuals for a H.v.s. we are about to

Consider an algebra Q5/ which is an algebra of monotonic maps from the
Kripke base M to a complete Heyting algebra P(0). We define the measure of
equality on the set Ds/ for elements a, b € Ds/, which belong to D}, and D),
respectively as follows:

1, if m= u,vand D),(a) = D,,(b)
0, otherwise

Eo (2. )(m) =
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Equivalent H.V.S.

Let Ds = |nem D!, be a set of individuals for a H.v.s. we are about to
define.

Consider an algebra Q5/ which is an algebra of monotonic maps from the
Kripke base M to a complete Heyting algebra P(0). We define the measure of
equality on the set Ds/ for elements a, b € Ds/, which belong to D}, and D),
respectively as follows:

[ 1, ifmuvand D;,(a) = D,,(b)
Es(a, b)(m) := { 0, otherwise

Proposition

The map Es/ is a well-defined measure of existense on (Qs/, Ds/).
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Equivalent H.V.S.

We now see that Fg/ = (Qs/, Dgs, Es/) is a well-defined Heyting valued
structure.

An extension of Eg/ for the elements of Dg, can be constructed by the same
rule that was used in the previous frames in the definition of Heyting-valued
structures.
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Equivalent H.V.S.

We now see that Fg/ = (Qs/, Dgs, Es/) is a well-defined Heyting valued
structure.

An extension of Eg/ for the elements of Dg, can be constructed by the same
rule that was used in the previous frames in the definition of Heyting-valued
structures.

Let structure Fs; = (Qs/, Dss, Es:) be an image of S = (M, D', P) under a
map 72. Due to the disjoint nature of S’, the map 72 is bijective. In order to
prove this, we will construct a map v from Fs/ to S'.

Proposition
Algebraic Kripke Sheaves 8’ and v (12 (S')) = v (Fs+) are isomorphic.
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Equivalency

We now have the following chain of isomorphic structures:
S=(M,D,P) 3 S =(M,D',P) 3 Fs/ = (Qs/, Dss, Esr)

Whereas S and S’ have valuations V and V' which yield coinciding sets of
valid formulas.
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Equivalency

We now have the following chain of isomorphic structures:
S=(M,D,P) 3 S =(M,D',P) 3 Fs/ = (Qs/, Dss, Esr)

Whereas S and S’ have valuations V and V' which yield coinciding sets of
valid formulas.

It remains to define a valuation on Heyting-valued structure F§.
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Generalised Sheaf Valuation

For any formula A € ILpg, with the set of constants C(A), the field of
existence E(A) is defined as:

E(A) = {x € M |Yc € C(A): Esi(c,c)(x) =1}.
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Generalised Sheaf Valuation

For any formula A € ILpg, with the set of constants C(A), the field of
existence E(A) is defined as:

E(A)={x e M |Vce C(A): Es/(c,c)(x) =1}.
For every formula A € ILp_, its inheritor A, can be defined for every point
v € E(A):

A, :=[Dy,, (a1)... Dy, (ak) \a1 ... ax] A, where a; € D

Then, an extension V'* of the algebraic Kripke sheaf valuation V' is defined on
all formulas as:

V' (m,An), if me E(A)
0, otherwise

V't (m, A) = {
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Generalised Sheaf Valuation

For any formula A € ILpg, with the set of constants C(A), the field of
existence E(A) is defined as:

E(A) = {x € M |Yc € C(A): Esi(c,c)(x) =1}.

For every formula A € ILp_, its inheritor A, can be defined for every point
v € E(A):

A, = [D[,l\, (a1) ... D[,k\, (ak)\az ... ak] A, where a; € D),

Then, an extension V'* of the algebraic Kripke sheaf valuation V' is defined on
all formulas as:

V' (m,An), if me E(A)
0, otherwise

V't (m, A) = {

Map V'* has all the properties of the valuation V' so the latter can be
substituted by its more generalised form. The sign + in the notation will now
be omitted and V' will actually denote V'*.
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H.V.S. Valuation

Definition
Let 95/ : AFp,, — Qs be a map defined by:

ps/(A) = {(m,V'(m,A)) | me M} .
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H.V.S. Valuation

Definition
Let 95/ : AFp,, — Qs be a map defined by:

ps/(A) = {(m,V'(m,A)) | me M} .

Proposition
A map g is a valuation on Fs: = (Qs/, Dg/, Es/) in terms of a H.v.s. model

i.e. for every two a,b € Dg, such that a =; b and an arbitrary predicate
P € PL" the following holds:

ps'(P(a)) A Esr (ax, bi) < ¢s:(P(b)).
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H.V.S. Valuation

Definition
Let 95/ : AFp,, — Qs be a map defined by:

ps/(A) = {(m,V'(m,A)) | me M} .

Proposition
A map g is a valuation on Fs: = (Qs/, Dg/, Es/) in terms of a H.v.s. model

i.e. for every two a,b € Dg, such that a =; b and an arbitrary predicate
P € PL" the following holds:

ps'(P(a)) A Esr (ax, bi) < ¢s:(P(b)).

Proposition

The extension of the valuation ¢s/ to all sentences from ILpg is an H.v.s.
valuation.
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Proof of the Theorem

Proposition

For any valuation V' on S’, a valuation 72 (V') := ps: on Fs: has the same set
of true formulas.
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Proof of the Theorem

Proposition
For any valuation V' on S’, a valuation 72 (V') := ps: on Fs: has the same set
of true formulas.

Proof.

For any closed formula A € ILp,, :

V' (OM,A) —1eVmeM V/(mA) =1
SVYme M ps/(A)(m)=V'(mA) =1
< (PS’(A) =1.

So any formula A is true in (S’, V') iff it is true in (12 (S'), 72 (V). O
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Proof of the Theorem

Proposition
Any formula A is valid in S’ iff it is valid in 72 (S').

Proposition

For every Suzuki Algebraic Kripke Sheaf S = (M, D, P) there exists a
Heyting-valued structure Fs: = (Qs/, Ds/, Es/) and for every valuation V on S
there exists a valuation ps: on Fs: which has the same set of true formulas.
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Proof of the Theorem

Proposition
Any formula A is valid in S’ iff it is valid in 72 (S').

Proposition

For every Suzuki Algebraic Kripke Sheaf S = (M, D, P) there exists a
Heyting-valued structure Fs: = (Qs/, Ds/, Es/) and for every valuation V on S
there exists a valuation ps: on Fs: which has the same set of true formulas.

Proof of the Theorem.
As we know, we have three isomorphic structures

S§:=(M,D,P) +* S :=(M,D’,P) «* Fs/ := (Qs/, Dss, Es/)

and due to propositions these maps also establish an isomorphism between
valuations. O
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Fuzzy Sheaves

The generalised disjoint algebraic Kripke sheaf S = (M, D, P, <) where < is a
family of maps =,: DZ — P(0) such that for every u € M :

(a=xub)=(bx=ya), a,be Dy;

(a=ua)#0, a€ Dy;

(a=xub)<(axya), a,be Dy;
(a=xub)AN(b=yb)<(axuc), a,b,c €Dy
(Dw(a) <v D (b)) > (a<u b), a,b € Dy, v = u.
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Fuzzy Sheaves

The generalised disjoint algebraic Kripke sheaf S = (M, D, P, <) where < is a
family of maps =,: DZ — P(0) such that for every u € M :

(a=xub)=(bx=ya), a,be Dy;

(a=ua)#0, a€ Dy;

(a=xub)<(axya), a,be Dy;
(a=xub)AN(b=yb)<(axuc), a,b,c €Dy
(Dw(a) <v D (b)) > (a<u b), a,b € Dy, v = u.

For every atomic sentence of the type a = b where a, b € D, valuation of it is
defined as:
V(u,a=b)=ax,b.

It is obvious that for every u,v € M with v = u :

V (v,Dw(a= b)) > V(u,a=b).
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Thank you for attention!
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