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Intuitionistic propositional logic
We say that a set of formulas L is closed under the rule modus ponens (MP) :

A, A ⊃ B

B

if B ∈ L whenever A ∈ L.

The intuitionistic logic is the smallest set of intuitionistic formulas closed under
substitutions and modus ponens, and containing the following axioms:

(Ax1) p ⊃ (q ⊃ p);

(Ax2) p ⊃ (q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r));

(Ax3) p ∧ q ⊃ p;

(Ax4) p ∧ q ⊃ q;

(Ax5) p ⊃ (q ⊃ (p ∧ q));

(Ax6) p ⊃ p ∨ q;

(Ax7) q ⊃ p ∨ q;

(Ax8) (p ⊃ r) ⊃ ((q ⊃ r) ⊃ (p ∨ q) ⊃ r);

(Ax9) ⊥⊃ p.

The intuitionistic (or Heyting) propositional logic is denoted by H
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Predicate formulas

Let Var = {v1, v2, . . .} and PLN = {Pn
i | i ≥ 0} (n ≥ 0) be a fixed disjoint

countable sets. Var elements are called variables and PLn elements are called
n-ary predicate letters. An atomic formula without equality is either ⊥ or P0

i ,
or Pn

i (x1, . . . , xn) for some n ≥ 0, x1, . . . , xn ∈ Var. An atomic formula with
equality can also be of the form a = b, where a, b ∈ Var and ’ = ’ is an extra
binary predicate letter.

Intuitionistic predicate formulas (with or without equality) are built from
atomic formulas using the propositional connectives ∧,∨,⊃ and the quantifiers
∀, ∃. The abbreviations ¬A,>,A ≡ B have the same meaning as in the
propositional case; x 6= y abbreviates ¬(x = y). For a formula A, a list of
variables x = x1 . . . xn and a quantifier Q ∈ {∀, ∃}, QxA denotes Qx1 . . .QxnA.

AF, IF denote the sets of atomic and intuitionistic formulas without equality
respectively. Corresponding sets of formulas with equality are denoted by
AF(=), IF(=).
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Predicate logics

Consider the following predicate axioms for arbitrary x , y and fixed P, q :

(Ax10) ∀xP(x) ⊃ P(y);

(Ax11) P(y) ⊃ ∃xP(x);

(Ax12) ∀x(q ⊃ P(x)) ⊃ (q ⊃ ∀xP(x));

(Ax13) ∀x(P(x) ⊃ q) ⊃ (∃xP(x) ⊃ q).

And also consider the following axioms of equality for arbitrary x , y and fixed P:

(Ax14) x = x ;

(Ax15) (x = y) ⊃ (P(x) ⊃ P(y)).
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Predicate logics

Definition
A superintuitionistic predicate logic (s.p.l.) is a set L ⊆ IF such that:

(s1) L contains the axioms of Heyting’s propositional calculus H;

(s2) L contains the predicate axioms ( Ax10 ) (Ax13);

(s3) L is closed under the rules

A,A ⊃ B

B
modus ponens

∀xA;

A
∀-introduction

(s4) L is closed under IF-substitutions.

Definition
A superintuitionistic predicate logic with equality (s.p.l.=) is a set
L ⊆ IF=satisfying (s1) + (s4) and:

(s5) L is closed under IF=-substitutions;

(s6) L contains the axioms of equality (Ax14), (Ax15).
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Algebraic Kripke sheaf semantics [N.-Y. Suzuki, 1999]

Definition
Let M = 〈M,4〉 be a partially ordered set with the least element 0M ∈ M and
D be a contravariant functor from M to SET , which means that:

- for every a ∈ M the set D(a) is non-empty;

- for every a, b ∈ M with a 4 b there exists a map Dab : D(b)→ D(a);

- Daa = idD(a) for every a ∈ M;

- Dbc ◦ Dab = Dac for every a, b, c ∈ M with a 4 b 4 c.

The functor D is called a domain-sheaf over M , a tuple 〈M,4, 0〉 is called a
Kripke base and a pair 〈M ,D〉 is called a Kripke sheaf.

For each a, b ∈ M and d ∈ D(a), element Dab(d) is said to be inheritor of an
element d at the point b. For each sentence A ∈ ISD(a) and each element
b ∈ M such that b < a we define inheriting sentence Aab obtained by replacing
every occurence of every u ∈ D(a) by its inheritor v = Dab(u) at D(b).

Definition
Let H denote a category of non-degenerate complete Heyting algebras and
complete monomorphisms. A contravariant functor P from a Kripke base
M = 〈M,4〉 to H is called a Heyting-valued-sheaf over M and K = 〈M ,D,P〉
is called an algebraic Kripke sheaf.
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Algebraic Kripke sheaf semantics

Definition
A map V which assigns to each pair (a,A) of an element a ∈ M and an atomic
sentence A ∈ AFD an element of P(a) is said to be a valuation on 〈M ,D,P〉 if
for every a, b ∈ M with a 4 b implies V (a,A) ≤ Pab (V (b,Aab))

We extend V to a map which to all senteces A of PLn inductively as follows:

- V (a,A ∧ B) = V (a,A) ∩P(a) V (a,B);

- V (a,A ∨ B) = V (a,A) ∪P(a) V (a,B);

- V (a,A ⊃ B) =
⋂P(a)

b:a≤b Pab

(
V (b,Aab)→P(b) V (b,Bab)

)
;

- V (a,¬A) =
⋂P(a)

b:a≤b Pab

(
V (b,Aab)→P(b) 0P(b)

)
;

- V (a, ∀xA(x)) =
⋂P(a)

b:a≤b

⋂P(a)
v∈D(a) Pab (V (b,Aab(v)));

- V (a, ∃xA(x)) =
⋃P(a)

v∈D(a) V (a,A(v)).

Definition
A pair 〈K,V 〉 is called an algebraic Kripke sheaf model.

Definition
A formula A is said to be true in an algebraic Kripke sheaf model 〈K,V 〉 if
V
(
0M , Ā

)
= 1, this fact is denoted as 〈K,V 〉 |= A. A formula A is said to be

valid in an algebraic Kripke sheaf K if it is true for every valuation V on K.
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Heyting-valued structure semantics [A. Dragalin, 1973]

Let Ω be a complete Heyting algebra, D a set, and E : D2 → Ω a map such
that for any a, b, c ∈ D :

E(1) E(a, b) = E(b, a);

E(2) E(a, b) ∧ E(b, c) ≤ E(a, c);

E(3)
∨

a∈D E(a, a) = 1.

Definition
A triple 〈Ω,D,E〉 is called an Ω-valued structure or a Heyting valued structure
(H.v.s) over Ω. A set D is called an individiual domain and its elements are
called individuals. A map E : D2 → Ω is called a measure of equality.
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Heyting-valued structure semantics [A. Dragalin, 1973]

Let’s extend a measure of equality to tuples a, b ∈ Dk in the following way:

E(a, b) := E (a1, b1) ∧ · · · ∧ E (ak , bk)

and introduce abbreviations:

E(a, b) := Eab,Eaa := Ea.

Proposition
Every measure of equality E has the following properties:

- E(a, b) ≤ E(a, a);

- Eab ≤ Eaa;

- Eab ∧ Ebc ≤ Eac ;

-
∨

a∈Dk E(a) = 1.
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Heyting-valued structure semantics [A. Dragalin, 1973]
A valuation on a H.v.s F = 〈Ω,D,E〉 is a map ϕ : AFD → Ω such that for
every P ∈ PLn :

ϕ(P(a)) ∧ E (ai , bi ) ≤ ϕ(P(b))

whenever a, b ∈ Dk and a =i b, which means that ak = bk for every k 6= i ,
where ak and bk are the k-th elements of vectors a and b.

We extend the valuation ϕ to all D-sentences in the following way:

- ϕ(⊥) := 0,
- ϕ(a = b) := E(a, b);

- ϕ(A ∨ B) := ϕ(A) ∨ ϕ(B);

- ϕ(A ∧ B) := ϕ(A) ∧ ϕ(B);

- ϕ(A ⊃ B) := ϕ(A)→ ϕ(B);

- ϕ(∃xA) :=
∨

d∈D(Ed ∧ ϕ(A(d)));

- ϕ(∀xA) :=
∧

d∈D(Ed → ϕ(A(d))).

Definition
A formula A is said to be true in an algebraic model model 〈F , ϕ〉 if ϕ(Ā) = 1,
this fact is denoted as 〈F , ϕ〉 |= A. A formula A is said to be valid in an
algebraic model F if it is true for every valuation ϕ on F .
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Theorem

Theorem
For every Suzuki Algebraic Kripke Sheaf S = 〈M,D,P〉 there exists a
Heyting-valued structure FS′ = 〈ΩS′ ,DS′ ,ES′〉 and for every valuation V on S
there exists a valuation ϕS′ on FS′ which has the same set of valid formulas.
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Algebra of Monotonic Maps

Note. Every calculation we will need can be done in the algebra P(0).

Consider a Suzuki-defined algebraic Kripke sheaf S = 〈M ,D,P〉 and an
arbitrary valuation V on it.

Let ΩS be a set of monotonic maps from M to P(0) with algebraic operations
which are defined as follows:

f ∧ g : (f ∧ g)(x) := f (x) ∩ g(x);

f ∨ g : (f ∨ g)(x) := f (x) ∪ g(x);

f → g : (f → g)(x) :=
⋂
y<x

(f (y)→ g(y)),

For every set {fi}i∈I ⊆ ΩS greatest lower and least upper bounds are defined
termwise as follows:⋃

{fi}i∈I :
(⋃
{fi}i∈I

)
(x) =

⋃
fi (x)i∈I , ∀x ∈ M

and⋂
{fi}i∈I :

(⋂
{fi}i∈I

)
(x) =

⋂
fi (x)i∈I , ∀x ∈ M .
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Algebra of Monotonic Maps

Partial order: f ≤ΩS g ⇔ ∀x
(
f (x) ≤P0 g(x)

)
, for every f , g ∈ ΩS .

The least and the greatest elemets of ΩS : 0 ∈ ΩS : 0(x) := 0P0 , ∀x ∈ M
1 ∈ ΩS : 1(x) := 1P0 , ∀x ∈ M

Proposition
The set ΩS with operations ∧,∨,→, 0, 1 and LUB and GLB defined previously
is a complete Heyting algebra.
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Disjoint Sheaves

Let S = 〈M ,D,P〉 be an algebraic Kripke sheaf. Every such Kripke sheaf can
be transformed into a disjoint Kripke sheaf S ′ i.e. with disjoint fibers.

Individuals: D ′(u) := {(a, u)|a ∈ Du}
Transitions: D ′uv ((a, u)) := (Duv (a), v) for every v < u
Valuation: V ′(m, (a, u)) := V (m, a)

Proposition
Algebraic Kripke Sheaves S and S ′ are isomorphic.

Now instead of S = 〈M ,D,P〉 we will be working with an equivalent disjoint
algebraic Kripke sheaf S ′ = 〈M ,D ′,P〉.
And let τ1 be an isomorphism from S to S ′.
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Equivalent H.V.S.

Let DS′ :=
⊔

m∈M D ′m be a set of individuals for a H.v.s. we are about to
define.

Consider an algebra ΩS′ which is an algebra of monotonic maps from the
Kripke base M to a complete Heyting algebra P(0). We define the measure of
equality on the set DS′ for elements a, b ∈ DS′ , which belong to D ′u and D ′v
respectively as follows:

ES′(a, b)(m) :=

{
1, if m < u, v and D ′um(a) = D ′vm(b)
0, otherwise .

Proposition
The map ES′ is a well-defined measure of existense on 〈ΩS′ ,DS′〉.
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Equivalent H.V.S.

We now see that FS′ = 〈ΩS′ ,DS′ ,ES′〉 is a well-defined Heyting valued
structure.

An extension of ES′ for the elements of Dn
S′ can be constructed by the same

rule that was used in the previous frames in the definition of Heyting-valued
structures.

Let structure FS′ = 〈ΩS′ ,DS′ ,ES′〉 be an image of S ′ = 〈M ,D ′,P〉 under a
map τ2. Due to the disjoint nature of S ′, the map τ2 is bijective. In order to
prove this, we will construct a map ν from FS′ to S ′.

Proposition
Algebraic Kripke Sheaves S ′ and ν (τ2 (S ′)) = ν (FS′) are isomorphic.
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Equivalency

We now have the following chain of isomorphic structures:

S = 〈M ,D,P〉 τ1→ S ′ =
〈
M ,D ′,P

〉 τ2→ FS′ = 〈ΩS′ ,DS′ ,ES′〉

Whereas S and S ′ have valuations V and V ′ which yield coinciding sets of
valid formulas.

It remains to define a valuation on Heyting-valued structure F ′S .
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Generalised Sheaf Valuation

For any formula A ∈ ILDS , with the set of constants C(A), the field of
existence E(A) is defined as:

E(A) = {x ∈ M | ∀c ∈ C(A) : ES′(c, c)(x) = 1} .

For every formula A ∈ ILDS′ its inheritor Av can be defined for every point
v ∈ E(A):

Av :=
[
D ′u1v (a1) . . .D ′uk v (ak) \a1 . . . ak

]
A, where ai ∈ D ′ui .

Then, an extension V ′+ of the algebraic Kripke sheaf valuation V ′ is defined on
all formulas as:

V ′+(m,A) :=

{
V ′ (m,Am) , if m ∈ E(A)

0, otherwise
.

Map V ′+ has all the properties of the valuation V ′ so the latter can be
substituted by its more generalised form. The sign + in the notation will now
be omitted and V ′ will actually denote V ′+.
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H.V.S. Valuation

Definition
Let ϕS′ : AFDS′ → ΩS′ be a map defined by:

ϕS′(A) =
{(

m,V ′(m,A)
)
| m ∈ M

}
.

Proposition
A map ϕS′ is a valuation on FS′ = 〈ΩS′ ,DS′ ,ES′〉 in terms of a H.v.s. model
i.e. for every two a, b ∈ Dn

S′ such that a =i b and an arbitrary predicate
P ∈ PLn the following holds:

ϕS′(P(a)) ∧ ES′ (ak , bk) ≤ ϕS′(P(b)).

Proposition
The extension of the valuation ϕS′ to all sentences from ILDS is an H.v.s.
valuation.
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Proof of the Theorem

Proposition
For any valuation V ′ on S ′, a valuation τ2 (V ′) := ϕS′ on FS′ has the same set
of true formulas.

Proof.
For any closed formula A ∈ ILDS′ :

V ′
(
0M ,A

)
= 1⇔ ∀m ∈ M V ′(m,A) = 1

⇔ ∀m ∈ M ϕS′(A)(m) = V ′(m,A) = 1

⇔ ϕS′(A) = 1.

So any formula A is true in 〈S ′,V ′〉 iff it is true in 〈τ2 (S ′) , τ2 (V ′)〉.
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Proof of the Theorem

Proposition
Any formula A is valid in S ′ iff it is valid in τ2 (S ′).

Proposition
For every Suzuki Algebraic Kripke Sheaf S = 〈M,D,P〉 there exists a
Heyting-valued structure FS′ = 〈ΩS′ ,DS′ ,ES′〉 and for every valuation V on S
there exists a valuation ϕS′ on FS′ which has the same set of true formulas.

Proof of the Theorem.
As we know, we have three isomorphic structures

S := 〈M ,D,P〉 τ1←→ S ′ :=
〈
M ,D ′,P

〉 τ2←→ FS′ := 〈ΩS′ ,DS′ ,ES′〉

and due to propositions these maps also establish an isomorphism between
valuations.
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Fuzzy Sheaves

The generalised disjoint algebraic Kripke sheaf S = 〈M ,D,P,�〉 where � is a
family of maps �u: D2

u → P(0) such that for every u ∈ M :

(a �u b) = (b �u a) , a, b ∈ Du;

(a �u a) 6= 0, a ∈ Du;

(a �u b) ≤ (a �u a) , a, b ∈ Du;

(a �u b) ∧ (b �u b) ≤ (a �u c) , a, b, c ∈ Du;

(Duv (a) �v Duv (b)) ≥ (a �u b) , a, b ∈ Du, v < u.

For every atomic sentence of the type a = b where a, b ∈ Du valuation of it is
defined as:

V (u, a = b) = a �u b.

It is obvious that for every u, v ∈ M with v < u :

V (v ,Duv (a = b)) ≥ V (u, a = b).
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Thank you for attention!
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