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Comment on “Pushing the frontiers of density
functionals by solving the fractional

electron problem”

Igor S. Gerasimov'*, Timofey V. Losev®®, Evgeny Yu. Epifanov®?, Irina Rudenko®®,
Ivan S. Bushmarinov®*, Alexander A. Ryabov®’*, Petr A. Zhilyaev’*, Michael G. Medvedev®**

Kirkpatrick et al. (Reports, 9 December 2021, p. 1385) trained a neural network-based DFT functional,
DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has
outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the
ability of DM21 to generalize the behavior of such systems does not follow from the published results

and requires revisiting.

he main conclusion of Kirkpatrick et al.
(1) is that the inclusion of FC and FS
systems in a training set of a sufficiently
flexible density functional allows it to
become outstandingly accurate even for
systems with FC/FS character, on which den-
sity functional theory (DFT) usually fails. To
prove this, the authors constructed a local hy-
brid functional with learnable (neural network-
based) enhancement factors and trained it to
simultaneously approximate the energies and
Kohn-Sham orbitals of the target systems. The
training set consists of 1161 reaction/molecular
energies, 1074 energies of FC/FS systems, and
931 sets of reasonable Kohn-Sham orbitals.
The resulting functional, named DM21 by the
authors, was found to be much more accurate
than four functionals—SCAN-D3(BJ) (2, 3),
®BI7X-V (4), M06-2X (5), PW6B95-D3(0) (6)—
commonly used on bond-breaking benchmark
(BBB), GMTKN55 (7), and QM9 (8) test data-
sets. The authors then showed that if they
exclude the FC/FS systems from the training
set, the resulting functional (DM21m) becomes
much less accurate for the BBB dataset but
somewhat more accurate for GMTKN55 and
QMO ones.
Although the conclusion of Kirkpatrick et al.
about the role of FC/FS systems in the training
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set may be correct, it is not the only possible
explanation for their observations. In our
opinion, the improvements in the perform-
ance of DM21 on the BBB test dataset rela-
tive to DM21m may be caused by a much more
prosaic reason: an unintended overlap between
the training and test datasets. Indeed, whereas
the BBB dataset is composed of the dissociation
curves of Hy, Liy, Cy, No, Fy, Hy*, He, ", Liy ",
B,", Ne,", and Al," systems, their dissociated
counterparts [the most problematic cases for
DFT (9)] were used to train the DM21 (but not
DM21m) functional in forms of fractional-spin
and fractional-charge atomics in the FS/FC
training sets (Fig. 1A). Notably, the dimers’
densities constructed from integer-occupied
orbitals already converge into densities of
fractional-orbital atomics at intermediate
separation (Fig. 1B). Thus, the “flat” region of
the dissociation curve has wave function and

Any system in the BBB test set

energy very similar to a pair of individual FS/FC
atomics (Fig. 1B), so we can conclude that the
nontrivial part of the BBB dataset had a very
strong representation in the training set.

This situation highlights the difference be-
tween testing a model in physics and in ma-
chine learning. In physics, the performance
of amodel on a test dataset shows how well
it represents reality; on the contrary, in ma-
chine learning, where a model is trained on
some data (“training set”), its performance
on a test dataset shows the model’s ability
to generalize—that is, to understand versus
to memorize. Because the machine learning
models generally tend to be better at “memo-
rizing” (10), it is crucial to test one on systems
unlike those used to train it (71, 12); otherwise,
the so-called “data leakage” can artificially
inflate the performance metrics. Although
Kirkpatrick et al.’s test dataset has only a small
overall overlap with the training one [figure S2
of (1)], the BBB subset implicitly overlaps with
the training set by ~50% (Fig. 1) and therefore
can hardly be considered a fair test. In our
opinion, the DM21 performance on it mainly
illustrates the DM21 functional’s ability to
memorize the FS/FC systems seen during
training, instead of its ability to generalize the
behavior of such systems.

Apart from the BBB dataset, Kirkpatrick et al.
have also demonstrated good performance of
DM21 on other systems where high FS/FC
character is expected; however, all these tests
do not allow us to make a clear-cut conclusion
regarding the “understanding” of the FS/FC
systems by DM21:

Adenine-thymine base pair: For this system,
the “oracle” used by the authors seems to be
incorrect, because it completely neglects hy-
drogen bonding, which would channel elec-
tron density between the fragments, inducing
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Fig. 1. Leakage of the FS/FC systems into the BBB test dataset. (A) A typical dissociation curve for

a system in the BBB test dataset. The dissociation limit corresponds to a pair of FC or FS systems, both of
which were used to train DM21 (but not DM21m). The “bonding” and “flat” regions are marked with green and
orange braces, respectively. (B) Resemblance between electron densities of dimeric cations with integer
orbital occupations and superpositions of FC atomics; shown electron density difference measures (15)

are integral of squared errors (red) and integral of absolute errors (blue). For clarity, all functions are normed
by absolute values at the equilibrium geometry. Calculations are performed with HF for H, He*, and H,", and
CCSD for He and He,*, using the aug-cc-pV5Z basis set.
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Default settings show absence of spin symmetry
breaking for DM21m, however there exists a
lower-energy broken-symmetry (BS) solution
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Fig. 2. Behavior of DM21 family functionals. (A) Symmetry-preserved and broken-symmetry solutions
of DM21m for the H,4 system. (B) Errors of DM21, DM21m, and mKP16/B13 on the systems from the SIE4x4

dataset. Data are from (I) and (14).

some charge delocalization even in the exact
solution. Thus, we do not know the correct
extent of charge delocalization between the
two molecules. Furthermore, DM21 was not
compared to DM21m on this system.

Compressed chain of hydrogen atoms: This
is the most controversial example because
Kirkpatrick et al. do not provide any details
on their claim that “high-level wave function
methods did not yield spin polarized solutions.”
As far as we know, there is no solid evidence
that a finite chain of hydrogen atoms cannot
have a spin symmetry-broken Kohn-Sham
wave function. Thus, the presented behavior
of DM21 only shows that it is different from the
other functionals, not that it is superior to them.

Moreover, the very fact of spin-symmetric
wave function for DM21 needs further verifi-
cation. We could not converge DM21 for H,,
using the basis set and code published by
Kirkpatrick et al.; however, for DM21m we have
located both symmetry-preserved and broken-
symmetry (BS) solutions, depending on the
starting guess (Fig. 2A). Notably, the default
settings resulted in the symmetry-preserved
solution, which is 44.4- kcal/mol less stable
than the BS one. This result suggests that
the symmetry-preserved solution located by
Kirkpatrick et al. for DM21 may be simply a
wrong self-consistent field stationary point
and, therefore, that a wave function stability
check is required to prove that DM21 has no
lower-energy BS solutions.
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Bicyclobutane reaction barriers: Here, DM21
outperforms DM21m on two conrotatory tran-
sition states (TSs); however, the functionals’
performances on the disrotatory TSs are very
close [table S4 of (I)]. This trend is intriguing
because it is the disrotatory route, which has
high nondynamical correlation (13); however,
DM21m has no problems with it despite the
absence of training on FS/FC systems.

SIE4xc4: dataset from the GMTKN55: This was
designed to test functional accuracies on FC
systems (where self-interaction error is most
pronounced) and contains four systems, two
of which (H," and He,") are also present in the
BBB dataset (for which dissociation limits were
used to train DM21; see above). DM21 outper-
forms DM21m on all systems from this dataset
(Fig. 2B); however, it shows a clear trend of
increasing the errors with distance and is out-
ranked by another ¢""-dependent mKP16/B13
functional (74), which was published by Proynov
and Kong in July 2021.

The analysis above shows that the ability
of DM21 to generalize the behavior of FS/FC
systems does not follow from the available evi-
dence and is yet to be determined. To prove
that DM21 has indeed generalized (not mem-
orized) the behavior of FS/FC systems, authors
might construct an independent test dataset
and compare performances (that is, general-
ization abilities) of DM21 and DM21m on it.

At the same time, the general idea of intro-
ducing exact constraints through a training

5 August 2022

dataset is supported by the DM21mu functional
(differing from DM21m only by the inclusion
of the uniform electron gas in the training
dataset) strongly outperforming DM21m on
all three subsets of the test dataset [figure S4
of (1)]. This result is nontrivial by itself, vividly
demonstrating the importance of the uniform
electron gas constraint for constructing neural
network-based DFT functionals.

To conclude, the problem of generalizing
the behavior of fractional-electron systems
with a neural network-based DFT functional
seems to remain open. However, the overall
approach of imposing exact constraints on a
learned functional via training data is likely to
play an important role in the future of density
functional theory.
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