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Semilinear parabolic equations [1]

First, we consider the abstract dissipative SPE
du = —Au+ Fl(u) (1)

in a real infinite-dimensional separable Hilbert space X with the norm || - ||. We assume
that the unbounded self-adjoint positive definite linear operator A with domain D(A) C
X has a compact resolvent. If X® = D(A%) with a > 0, then |ju|, = ||A%u|, X" = X,
and X' = D(A).

We let BC?(X®, X) denote the class of C%-smooth mappings X® — X that are
bounded on balls. We assume that a nonlinear function F belongs to BC?(X®, X) for
some o € [0,1) and equation (1) is dissipative, i.e., generates a resolving C*-semiflow

{®,},>0 in the phase space X, and
sup lim |[®uflo < 7 (2)
t— 400

for some r = 0 uniformly in « from arbitrary bounded subsets B C X2,

1. D. Henry, Geometric theory of semilinear parabolic equations, 1981,




Attractors and inertial manifolds [1-3]

The problem of describing the final (at large times) dynamics of SPE by an ordinary
differential equation (ODE) in RY (FD reduction) has been attracting researcher’s
attraction for a long time. In fact, it is required to separate finitely many “determining”
degrees of freedom of an infinite-dimensional dynamical system. In this case, the key
geometric object is the so-called (global) attractor, i.e., the connected compact invariant
set A C X™ that uniformly attracts bounded subsets X“ as t — +o0c. Attractor A
consists of all bounded complete trajectories {u(f)};cn.

The required ODE can sometimes be implemented as an inertial form obtained by
restricting the initial equation to an inertial manifold (IM), i.e, a finite-dimensional
invariant C''-surface M C X containing the attractor and exponentially attracting

(with asymptotic phase) all trajectories of SPE as t — 400,

1. A.V. Babin and M.I. Vishik, Attractors of evolution equations, 1992.
2. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 1997,

3. S. Zelik, Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014).




Alternative FD reduction

The theory of inertial manifolds originally encountered systematic difficulties related
to the requirement of a sufficient sparseness of the spectrum of the linear operator A
in (1). In this connection, several alternative concepts of finite-dimensional reduction of
SPE have therefore been developed starting from [1-4|. Following [3|, we will say that
the dynamics of SPE on the attractor (final dynamics) is finite-dimensional (FD) if there
exists an ODE in BY with Lipschitz vector field, resolving flow {©,},.z, and invariant
compact set X < B such that the phase semiflows { ®,},~ of equation (1) on A and
{ ©,}+=0 are Lipschitz conjugate on X.

1. A. Eden et al., Exponential Attractors for Dissipative Evolution Equations, 1994,
2. J.C. Robinson, J. Dyn. Differ. Eq., 11:3 (1999).

3. A.V. Romanov, Sb. Mathematics, 191:3 (2000).

4. A.V. Romanov, Izv. Math., 65:5 (2001).




Alternative FD reduction — 1

The existence of the inertial manifold implies that the dynamics is finite-dimensional
on the attractor and, in general, looks like a more attractive property. Indeed, in the
first case, the inertial form provides an exponential asymptotics of any solutions of the
SPE at large times, and in the second case, we have an ODE reproducing the original
dynamics only on the attractor itself. Nevertheless, the fact that the dynamics is finite-
dimensional on A means that the structure of limit regimes of SPE with infinitely many
degrees of freedom is no more complicated than the structure of similar regimes of an
ODE with Lipschitz vector field in BV,

There is a hypothesis [1] that the finite-dimensional dynamics on the attractor implies

the existence of an inertial manifold. This hypothesis has not yet been confirmed or

refuted.

1. S. Zelik, Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014).




1D parabolic equations

In this talk, we consider the problem of whether the final dynamics is finite-dimensional

for systems of reaction-diffusion-convection (RDC) equations
du = Dapeu —u—+ flz, u)dou + gz, u), (3)

on the circle T = R |mod Z with u = (u,, .... %y, ). The matrix of diffusion coefficients [
is assumed to be diagonal, D = diag{d,}, d; > 0. We assume that the matrix function
f and the vector function g belong to the class €™ on T x BR™ and write system (3)
in the abstract form (1) with X = L*(T,R™), self-adjoint positive definite operator
Au = u — Duy,, and nonlinearity F': u — f(z,u)d,u + g(z,u). Assume that {X"},=0
is the Hilbert semiscale generated by A and H* = H*(T) are generalized Sobolev L*-
spaces of scalar functions on T with arbitrary s > 0. As the phase space we choose

X = H**(T,R™) with arbitrary o € (3/4, 1) which is fixed below.




1D parabolic equations - 1

One can establish dissipativity of system (3) in X® provided that functions f and g
are finite in u. Anyway, we further assume that system (3) is dissipative in X' and there
exists the global attractor A C X, consisting of vector-functions v = u(z), = € T, of
class C''.

The algebraic structure of the “convection matrix” f = f(x,u), f = {fi;}.1,j € 1.m,
on the convex hull co A C X* plays an important role. We will highlight the case of the

scalar diffusion matrix I) = dF, where d = const and F is the identity matrix.




The final dynamics of systems (3) with scalar diffusion matrix ) and spatially
homogeneous nonlinearity f(u)d.u + g(u) was studied in [1], and the second restriction
seems to be technical. The existence of an inertial manifold was proved in |1] for the scalar
equation (m = 1), and for m > 1, it was proved under the assumption that the function
matrix f(u) is diagonal with a unique nonzero element in a convex neighborhood of the
attractor. For systems (3) on [D, 1] with Dirichle and Neumann boundary conditions,
the existence of an IM was established [2| in the case scalar diffusion matrix D and an
arbitrary convection matrix f. The results obtained in [1, 2] are based on a non-local
change of the phase variable u which “decreases” the dependence of the nonlinear part
(3) on d,u and allows using the well-known in the inertial manifolds theory “spectral gap

condition”.

1. A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 17:1 (201R8).
2. A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 16:6 (2017).




Main results

Here we study whether the dynamics is finite-dimensional on the attractor, but we
do not consider the problem of existence of an inertial manifold for systems of periodic
equations (3). At the same time, we consider the case of nonscalar diffusion matrix D

and prove that the limit dynamics is finite-dimensional for wide classes of systems (3).

Main Theorem [1]. Assume that RDC system (3) is dissipative in X with o €
(3/4, 1). Then the phase dynamics on the attractor A C X" is finite-dimenstonal if any
of the follounng three conditions is satisfied.

(A) The convection matriz f = diag on co A.

(B) The diffusion matriz D is scalar. For all (x,u) € Txco A, the numerical matrices
flz,u(x)) have m distinct real eigenvalues and commute with each other.

(C) The diffusion matriz D is scalar. For all (x,u) € T x co A, the matrices f(x,u)

are symmetric and commute with each other.

1. A.V. Romanov, arXiv:2011.01822 (2020).




The discussion of the results

In the case (A), we have Df = fI) on co A. The assumptions that the matrices are
commutative can conditionally be formulated as *“the consistency of convection with
diffusion” and “self-consistency of convection” on the convex hull of the attractor.

In the class of one-dimensional systems (3), was constructed 1| the first example
of semilinear parabolic equation of mathematical physics (actually, a system of eight
equations with scalar diffusion) that does not demonstrate any finite-dimensional dynamics
on the attractor. Surprisingly, the dynamics of 1D RDC systems in the Dirichlet
Neumann cases looks simpler than in the periodic case. Therefore, the periodic
class seems to be a good testing ground for understanding where the finite-
dimensional final dynamics of semilinear parabolic equations terminates and

the infinite-dimensional final dynamics begins.

1. A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 17:1 (2018).
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Possible generalizations

The results of the talk can be generalized to systems on [0,1] of the form
Ou = DOpru + f[l" u, HIH.:]' {4]

with a smooth vector function f = (fy,..., fin). Such systems with various boundary
conditions can be reduced (see |1, 2|) to the form (4) by the termwise differentiation
and an appropriate change of the variable. The fact that the final dynamics is finite-
dimensional for scalar equations (4) was already proved in |3|.

The existence of an inertial manifold for systems (4) under Dirichlet and Neumann
boundary conditions was proved in [1] in the case f = f(u,u,) and D = dE. One can
get final-dimensional dynamics on the attractor for systems (3) under these conditions
if Df = fD on co A.

We now turn to substantiation of the Main Theorem results.

1. A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 16:6 (2017).
2. A. Kostianko and S. Zelik, Comm. Pure Appl. Anal., 17:1 (2018).
3. A.V. Romanov, Izv. Math., 65:5 (2001).
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FD reduction method for SPEs

Here are two criteria for the dynamics of SPE (1) to be finite-dimensional on the
attractor |1| under the assumption that F' € BC*(X®, X).

(F1) The phase semiflow on A can be extended to the Lipschitz flow:
|®u — ||, < M |Ju—vl, e, teR,

where M > 0 and k > 0 depend only on A.

(GrF) The attractor is a Lipschitz graph over the lowest Fourier modes:
|[Pu—Po|| , = M|u—v|,. wvoved M=DM(A),

for some finite-dimensional spectral projection P € £{X®) of the operator A.

1. A.V. Romanov, Sb. Mathematics, 191:3 (2000).
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FD reduction method for SPEs — 1

Let G(u) = F(u) — Au be the vector field of SPE (1). We will use other sufficient
conditions for the dynamics to be finite-dimensional on the attractor, which were obtained

in [1|. These conditions involve decomposition
Glu) — Glv) = (To(u. v) — T(u,v))(u —v) (5)

on the attractor A, where Tj(u,v) is the field of bounded linear operators in X® and
T(u.v) is the field of unbounded sectorial linear operators on X similar to normal

operators H(u,v) € L(X", X). More accurately,
T(u,v) =S Yu,v)H(u,v)S(u,v), uved S S'el(X), (6)

and || To(u, v)|| < K, [|S(u.v)]| < K. [|S~(u.v)

| < K on Ax Awith K = K(A).

1. A.V. Romanov, Izv. Math., 65:5 (2001).

13 |




FD reduction method for SPEs — 2

We also assume that the total spectrum

Yo = U spec T'(u, v)

u,vcA
is “sufficiently sparse”, but this condition is less restrictive than the spectral gap condition
in the inertial manifolds theory if & # 0. It is known [1], that under some additional
technical assumptions on operators T and T in equality (5) the dynamics on
A is finite-dimensional.

In what follows, we will call the corresponding statement “The Constructive Theorem™.

1. A.V. Romanov, Izv. Math., 65:5 (2001).
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Vector field decomposition

Our goal is to apply The Constructive Theorem to RDC system (3) and to prove
that the final dynamics is finite-dimensional. Let G(u) = —Au+ F'(u) be the vector field

in (3). By the integral mean-value theorem for nonlinear operators, we have
1
Glu) — G(v) = —Ah + I[/ DF(w;)dT)h = Rh, u,v e A, (7)
Jo

where h(z) = u(x) —v(z), z € T, and w, = Tu+ (1 — 7)v. Here D is the Frechet
differentiation. The main idea is related to the change of variable in the linear differential

expression [h for fixed u,v € A, which allows one to eliminate the dependence

on the derivative J.h in (7).

15




Vector field decomposition — 1

To this end, we apply, following the work [1], the transformation I = Uy to
the expression Rh, where the m x m matrix function U(z) = U(z;u,v), = € [0, 1],

is a solution of the linear Cauchy problem

U, = —%D-lﬁ(x}m U) = E, (8)

1
B(zx) = B(x;u,v) = / flz,w-(z))dr, u,ve A (9)
Jo

Here B = B(x;u,v) and U = U(x; u,v) are matrix functions of class C' on 0. 1].

Lemma. If Df(z,u) = f(z,u)D for t € T, u € co A, then
T(u,v) = U(u,v)(wl — DA ) U (u,v), u,veA, (10)

in decomposition (5), (6).

1. D.A. Kamaev, Russ. Math. Surv., 47:5 (1992).
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The adjoint Cauchy problem

The matrix function V(z) = U (z), V = V(z;u,v), z € [0,1], u,v € A, is [1] a

solution of the Cauchy problem
R N ,
V., = Elf D= B(x), V(0)=E, (11)

adjoint to problem (8). After some calculations we found that the periodic boundary

conditions

h(1) = h(0),  hg(1) = h.(0) (12)
become
n(1) =V(1n(0),  7:(1) = V(1)n(0), (13)

where V(1) # F in general. Change in boundary conditions at transition i — 7

explains the FD reduction difficulty in our periodic case.

1. Ju.L. Daleckii and M.G. Krein, Stability of solutions of differential equations in
Banach space, 1974.
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The monodromy operator

Properties of monodromy operators V(1;u,v) € L{R™) play the key role in our
constructions. As a consequence of The Constructive Theorem and the Lemma, we
have

Proposition. If RDC system (3) 1s dissipative in X" with o € (3/4,1), then the
phase dynamics on the attractor is finite-dimensional in each of the following two cases.

(i) The diffusion matriz D is scalar and, for all u,v € A, the monodromy operators
Vil;u,v) are stmilar to symmetric positive definite ones with a fived similarity matriz
C=C(A).

(ii) Df(z,u) = flz,u)D on T x co A and the monodromy operators V(1;u,v) are

similar to diagonal positive definite ones with a fized similarity matriz C' = C(A).

Applying this Proposition we can prove The Main Theorem (Slide 9).

18 |




Some examples

We consider several examples illustrating the above-described theory in terms of
properties of the convection matrix f. Here we restrict ourselves to the case of scalar
diffusion and assume that RDC system (2) is dissipative in the phase space X® with
o € (3/4,1). We assume that all the conditions assumed below on f = f(r,u) are valid

for r € T and u = u(x), u € co A.

19




Some examples — 1

Example 1. Assume that ) = dE and f(z,u) = fi(z, u)Q) with a scalar C™-function
fi and numerical m ¥ m matriz (). Then, the dynamics on the attractor of RDC system
(3) ts finite-dimensional if any of the following two conditions is satisfied:

(i) the matriz () has m distinet real eigenvalues and fi(x, u(x)) # 0;

(ii) the matriz () is symmetric,

Remark. Condition (i) in Example 1 is satisfied, in particular, for upper-triangular
and lower-triangular matrices () with distinct elements on the diagonal. For m = 2 and
) = {q;}, this condition precisely means that (g, — g22)* + 4q12q2; > 0.

Example 2. The dynamics on the attractor of RDC system (3) is finite-dimensional
in the case of m =2, D =dE and f(z,u) = {fi;(z.u)} with fi1 = foo and fi12 = fa.

This is a consequence of The Main Theorem and the commutativity of numerical

a b
b a

matrices of the form

20 |




Some examples — 2

Example 3. Assume that D = dFE, the matriz f = PL((Q), where Py is a polynomial
of degree n = 0 with functional coefficients a; = a;(x,u), 0 <i < n,a; € C*(TxRE™ R),
and the numerical matriz () is symmetric. Then the dynamics of the attractor of RDC
system (3) s finite-dimensional,

Example 4. Assume that [) = dE and f = Q(x), where (} is a C™ function matriz,
Then the dynamics of RDC system (3) is finite-dimensional on the attractor if

Q'(z)=0Q(1~-z). zeT. (14)

where (-)' is the operation of transposition.
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