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First, do no harm, Hippocrates (5th century BCE)

Mind the cliff, Wile E. Coyote (20th century CE)

1 Introduction

A protracted period of low real returns on safe assets followed in the wake of the global

financial crisis, and this trend is expected to continue for the foreseeable future.1 These low

returns have raised concerns that financial intermediaries will be tempted to reach for higher

yields by taking excessive (or socially inefficient) risks. The risk-taking behavior that we have

in mind is epitomized by the emergence of NINJA loans in the subprime mortgage market

leading up to the Great Recession, and by the booming of leveraged loans in its aftermath.

To study these concerns, we develop a dynamic macroeconomic model in which limited

liability and deposit insurance provide incentives for a bank to shift from safe assets to

risky assets in its portfolio of loans.2 A risky asset’s return has high upside potential, but its

expected return is lower than that of a safe asset; risky assets are therefore socially inefficient.

In our model, a sudden fall in the returns on safe assets can trigger an extended period of

excessive risk taking, with major consequences for consumption, business investment and

household welfare.

Bank capital requirements can curb these risk-taking incentives, and indeed this prospect

has attracted ongoing interest in the policy and legislative communities.3 In our model, very

high capital requirements force a bank to keep enough “skin in the game” to eliminate

the incentives entirely. But capital requirements also reduce bank deposits, which provide

liquidity services to households. An all-knowing Ramsey planner – faced with aggregate

and sectoral shocks – would maximize the utility of deposits by setting capital requirements

1Estimates of the natural rate (or what the Fed calls r*) are in the range of 50 to 100 basis points; see:
https://www.newyorkfed.org/research/policy/rstar.

2We do not analyze the optimality of either limited liability or bank deposit insurance; we simply take
them as given constraints on the Ramsey planner. Our model would not be adequate for a discussion of
deposit insurance since we exclude the possibility of bank runs.

3Examples abound: The Minneapolis Federal Reserve Bank (2017) set out a plan for imposing a high static
capital reserve requirement and solicited comments on it. Legislators have expressed an interest in simplifying
the complex structure of capital regulation, imposing instead dynamic capital controls or static “buffers.”
Representatives Jeb Hensarling and Maxine Waters sponsored the “JOBS and Investor Confidence Act,” and
Senator Mike Crapo sponsored the “Economic Growth, Regulatory Relief and Consumer Protection Act,”
commonly known as the Crapo Bill. The former legislation did not garner sufficient support, but the latter
was enacted in 2018. Some plans call for capital controls that vary over the business cycle. See the plan of
Greenwood, Hanson, Stein and Sunderam (2017), and of course Basel III, about which we will have much to
say. Academic work is reviewed below.
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just short of triggering a risk-taking episode; triggering a risk-taking episode would lower

household utility by a discrete amount. A less-informed planner in the real world might be

tempted to zip up to the cliff’s edge without actually going over. But this well-meaning

planner runs the risk of a Wile E. Coyote moment, and may be better advised to exercise

caution, or do no harm. Cyclical rules – such as the Basel III guidance – fall into this trap

in our model.

We will explore this policy tradeoff both theoretically and quantitatively. We begin by

showing how a Ramsey planner would respond to individual macroeconomic shocks, or a

change in the volatility of returns in financial markets. We provide examples in which a

Ramsey planner would raise capital requirements: (1) during a downturn caused by a TFP

shock; (2) during an expansion caused by an investment shock; or (3) during an increase in

the volatility of financial market returns.

Some of these examples may seem provocative. But as suggested above, in a more

realistic setting the economy is hit by many shocks simultaneously, and the full Ramsey

policy would require too much information to be implementable. To study this more realistic

case, we calculate the dynamic Ramsey policy for capital requirements when the economy

is bombarded by a full constellation of shocks, and then we study the ability of simple, and

implementable, policy rules to mimic it.

More specifically, we use the simulated method of moments to calibrate our model’s

dynamic structure. This then allows us to calculate dynamic Ramsey capital requirements

when the model economy is driven by a full constellation of shocks. We generate model

data in that stochastic environment, and we regress the Ramsey capital requirements on the

variables suggested by simple policy rules.

None of the rules describe the Ramsey policy well; that is, none of them has a high R-

square. All of the rules fall into the risk-taking trap from time to time, and we can calculate

the frequency of these episodes. We show that slightly elevated static capital requirements

(or “buffers”) largely avoid the Wile E. Coyote moments, and they do about as well as any

implementable policy rule on the level of deposits.

Of particular interest is the Basel III guidance for setting the countercyclical capital buffer

(CCyB). Capital requirements should increase during periods of rapid credit expansion (or

increases in the credit-to-GDP ratio).4 This guidance — which we will call the “Basel rule”

— sounds both sensible and implementable. But in our model, the Basel rule does not come

close to mimicking the Ramsey policy; indeed, a small static buffer can do much better.

Our DSGE model combines key elements of the literature on financial frictions and

macroeconomic stability. Following Van den Heuvel (2008), banks can lend to safe firms

4The guidelines can be found here.
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or risky firms. Both types of firms are subject to aggregate TFP shocks, but a risky firm

is also exposed to an idiosyncratic shock with negative expected value; as mentioned above

risky loans are socially inefficient. The only reason a profit maximizing bank would fund a

risky firm is that limited liability shields it from downside risk; if the return on safe loans is

expected to fall, the bank may take a flier on a risky loan.

Our work clearly draws upon Van den Heuvel (2008). However, Van den Heuvel’s model

does not allow for aggregate economic fluctuations or changes in market volatility; our DSGE

model does. Moreover, our paper is the first to calculate the Ramsey policy and compare it

to implementable policy rules in a more realistic situation in which a constellation of shocks

bombards the economy at the same time.

Several influential contributions to the literature emphasize risks arising from high lever-

age and the expansion of bank credit. Davydiuk (2017) and Malherbe (2020) are examples

of this. Our work offers a complementary perspective that emphasizes the composition of

bank credit, rather than its expansion.

The papers by Begenau (2020), Collard et al. (2017), and Martinez-Miera and Suarez

(2014) share the risk-shifting framework in our model. Begenau (2020) — arguably the

closest analysis to our own — focuses on the optimal level of static capital requirements in the

steady state. Our focus is on cyclical capital requirements, and their comparison with static

buffers. Martinez-Miera and Suarez (2014) develop a model with systemic risk and frictions in

the market for bank equity. By contrast, our model has a frictionless equity market. Collard

et al. (2017) concentrate on interactions of optimal monetary and prudential policies, in a

setting that keeps bank failures off the equilibrium path. We abstract from monetary policy,

but we allow for business-cycle fluctuations and risk taking on the equilibrium path.

Our results show no support for the Basel rule. Our findings may therefore seem to fly

in the face of Schularick and Taylor (2012), Jordà et al. (2017), and Mian et al. (2017), who

present empirical evidence that is often cited in support of Basel-III style counter-cyclical

regulation. However, the causal connection behind their observed correlations is hard to

divine. Gomes et al. (2018) develop a model that shares our emphasis on risks arising from

changes in the composition of bank credit, rather than the expansion of credit. Nonetheless,

they show that their model can replicate the empirical evidence presented by Schularick and

Taylor (2012), Jordà et al. (2017), and Mian et al. (2017).

Finally, other contributions show how leverage can increase financial fragility and the

risk of bank runs. Examples include Angeloni and Faia (2013), Gertler and Kiyotaki (2015),

Faria-e-Castro (2019), and Gertler et al. (2020). We make our formal analysis stark by

setting aside bank runs, but of course we recognize the possibility of bank runs in reality.

The rest of the paper proceeds as follows. Section 2 describes the model. Section 3
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discusses the model’s calibration, including the choice of steady-state capital requirements.

Section 4 describes our numerical methods for the model solutions. Section 5 discusses the

Ramsey policy we take as optimal. Section 6 presents the responses to different shocks

and discusses the Ramsey policy for capital requirements. Section 7 considers some simple

implementable rules. A series of appendices provide more detailed derivations of some of our

results, and Appendix H performs important sensitivity analyses; Section 8 summarizes the

results of Appendix H. And Section 9 concludes.

2 The Model

Our model extends a standard RBC model to include banks that enjoy limited liability

and government deposit insurance. These are the main features that allow for excessive, or

socially inefficient, risk taking, and of course the RBC framework allows for macroeconomic

shocks that cause business cycles. Our model consists of households, banks, non-financial

firms, and a government whose sole purpose is to provide bank deposit insurance. Banks are

at the heart of our model, but the exposition is smoother if we begin with the less exciting

firms and households.

But first, a note on notation: There are measure one continua of households, banks and

non-financial firms. In what follows, small letters denote individual households, banks or

firms; capital letters represent aggregate values. Safe firms (defined below) carry a super-

script s; risky firms carry a superscript r.

2.1 Non-Financial Firms

Non-financial firms are competitive and earn zero profits. There are goods producing

firms and capital producing firms. We begin with the former.

2.1.1 Goods Producing Firms

Firms live for just two periods. A firm born in period t, obtains a bank loan, lft , to buy

the capital, kt+1, that it will use for production in period t+ 1; so,

lft = Qtkt+1, (1)

where Qt is the price of capital (or the price of investment). The ex-post return on the loan

is Rt+1l
f
t = Rt+1Qtkt+1, where we shall soon see that Rt+1 is the rate of return on capital

ownership. So, these bank loans might be better described as equity positions.
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There is a continuum of firms of measure 1. But the firms come in two types: “safe” firms

face only aggregate shocks, while “risky” firms face both aggregate shocks and idiosyncratic

shocks.

In period t+ 1, a safe firm hires labor, hst+1, to produce

yst+1 = At+1(k
s
t+1)

α(hst+1)
1−α, (2)

where At+1 is an aggregate TFP shock. When a safe firm takes the loan in period t, it knows

that the firm will hire the optimal hst+1 next period. So, the safe firm chooses lf,st and kst+1in

period t, and then hst+1 in period t+ 1, to

max
lf,st ,kst+1

Et

{
max
hs
t+1

[
yst+1 + (1− δ)Qt+1k

s
t+1 −Wt+1h

s
t+1 −Rs

t+1l
f,s
t

]}
, (3)

where δ is the capital depreciation rate, and Wt+1 is the real wage rate. This maximization

is subject to (1) and (2). The first-order conditions for this maximization problem imply

EtR
s
t+1 = αEt

{
At+1

Qt

(
hst+1

kst+1

)1−α

+ (1− δ)
Qt+1

Qt

}
, (4)

where the first term within the brackets is the rental rate on a unit of capital, and the second

term is the capital gain on a non-depreciated unit of capital.

A risky firm employs the technology yrt+1 = At+1

(
krt+1

)α (
hrt+1

)1−α
+ εt+1k

r
t+1, where εt+1

is an idiosyncratic shock that follows a Normal distribution G with a negative mean, − ξ,

and standard deviation τ :5

PDF of εt+1, g(εt+1) =
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
, (5)

CDF of εt+1, G(εt+1) =
1

2

[
1 + erf

(
εt+1 + ξ

τ
√
2

)]
.

The risky firm chooses lf,rt and krt+1, and then hrt+1, to

max
lf,rt ,krt+1

Et

{
max
hr
t+1

[
yrt+1 + (1− δ)Qt+1k

r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t

]}
, (6)

subject to the analogous constraints. The first-order conditions for this maximization, the

zero-profit condition for firms, and equation (8) below, imply

EtR
r
t+1=EtR

s
t+1 -

ξ

Qt

. (7)

5exp(x) = ex is the exponential function and erf(x) = 1√
π

´ x

−x
exp

(
−v2

)
dv = 2√

π

´ x

0
exp

(
−v2

)
dv.
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So the idiosyncratic shock lowers the expected value, and increases the variance, of the return

on a loan to a risky firm. Risky loans are socially inefficient, or in our language, excessively

risky.

Note finally that the marginal product of labor for safe and risky firms is given by

(1−α)At+1(k
i
t+1/h

i
t+1)

α where i denotes the type of firm (i ∈ {s, r}). Labor is mobile across

firms, and both types of firms face the same real wage rate. So, the first-order conditions for

labor in period t+ 1 imply the capital labor ratios equalize across sectors.

krt+1/h
r
t+1 = kst+1/h

s
t+1. (8)

The Appendix provides the details on aggregation across firms; we show that there is a

representative safe firm that produces

Y s
t+1 = At+1(K

s
t+1)

α(Hs
t+1)

1−α, (9)

and also a representative risky firm that produces

Y r
t+1 = At+1

(
Kr

t+1

)
α
(
Hr

t+1

)1−α − ξKr
t+1, (10)

where capital letters represent aggregate values.

2.1.2 Capital Producing Firms

At the end of period t, goods producing firms sell their capital to competitive capital

producing firms. Letting Igt denote gross investment, the evolution of capital follows

It = ηt

[
1− ϕ

2

(
Igt
Igt−1

− 1

)2
]
Igt , (11)

where ηt is an investment-specific technology shock, and ϕ is a measure of the severity of

investment adjustment costs.6 The aggregate capital stock evolves according to

Ks
t+1 +Kr

t+1 = It + (1− δ) (Ks
t +Kr

t ) . (12)

The capital producing firms are owned by households, and solve the problem

max
Igt+i

Et

∞∑
i=0

ψt,t+i

{
Qt+iηt+i

[
1− ϕ

2

(
Igt+i

Igt+i−1

− 1

)2
]
Igt+i − Igt+i

}
, (13)

6We include investment adjustment costs, and later habits in consumption, to make our model fit the
data better. But they are not an integral part of the logic behind capital requirements.
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where ψt,t+i = β λct+i

λct
is the stochastic discount factor of the households, which are described

next.

2.2 Households

The representative household’s problem is

max
Ct,Dt,Es

t ,E
r
t

E

∞∑
t=0

βt

[
(Ct − κCt−1)

1−ςc − 1

1− ςc
+ ς0

D1−ςd
t − 1

1− ςd

]
, (14)

subject to

Ct +Dt + Es
t + Er

t = Wt +Rd
t−1Dt−1 +Re,s

t Es
t−1 +Re,r

t Er
t−1 − Tt, (15)

Es
t ≥ 0,

Er
t ≥ 0.

Households value consumption, Ct, and value the liquidity services of bank deposits, Dt; β

is the discount factor; 0 < κ < 1 is the habit persistence parameter, ςc > 0 captures the

intertemporal elasticity of substitution, ς0 > 0 is the utility weight on deposits, and ςd > 0 is

the inverse elasticity of household demand for deposits with respect to changes in the interest

rate. We put deposits in the utility function in lieu of modeling a particular transactions

technology. For simplicity, we assume that households supply labor inelastically, and we have

normalized the supply of labor to be one.7 Household assets include deposits, Dt, which pay

a gross real rate Rd
t , and two types of bank equity: Es

t is equity in a “safe” bank, which

lends to a safe firm and pays Re,s
t+1 next period; Er

t is equity in a “risky” bank, which lends

to a risky firm and pays Re,r
t+1. The returns on equity are of course not known when the

household invests. By contrast, the return on deposits is known, and deposits are protected

by deposit insurance; deposits are the safe asset in our model. Finally, households pay lump

sum taxes, Tt, to fund the government’s deposit insurance program.

The household’s first-order conditions include:

C : (Ct − κCt−1)
−ςc − βκEt (Ct+1 − κCt)

−ςc − λct = 0, (16)

D : ς0D
−ςd
t − λct + Etβλct+1R

d
t = 0, (17)

Es : −λct + Etβλct+1R
e,s
t+1 + ζst = 0, (18)

Er : −λct + Etβλct+1R
e,r
t+1 + ζrt = 0, (19)

7While the total supply of labor is fixed, its distribution across safe and risky firms is market determined.
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where λct, ζ
s
t and ζrt are the Lagrangian multipliers for the budget constraint and the two

non-negativity constraints.

If households did not value deposits for their liquidity services (ς0 = 0), (17) would be the

standard RBC Euler equation, and Rd
t would be the standard CAPM rate. But households

do value deposits in our model, and Rd
t is below the CAPM rate. Equity is not a safe asset,

and it does not provide liquidity services. So, deposits will be the cheaper source of funding

for banks. This fact will play an important role in what follows.

2.3 Banks

Banks are at the heart of our model. First, we set the stage by describing their incentives

to take excessive risk. Then, we discuss the banking sector in some detail.

2.3.1 Incentives to Take Excessive Risk and Capital Requirements

We saw from the section on firms that EtR
r
t+1 < EtR

s
t+1. So, why would a profit-

maximizing bank ever invest in a risky firm? Limited liability and government deposit

insurance are the culprits here. Limited liability shields the bank from downside risk. More-

over, deposit insurance actually subsidizes risk taking; it makes bank deposits the safe asset,

lowering the cost of issuing deposits, and allowing the bank to expand its portfolio of safe or

risky loans. In what follows, we will see that if the expected return on investment in a safe

firm falls, due say to a negative TFP shock, the bank may be tempted to take a flier on the

risky firm.

As we will see, capital requirements are a potential remedy for excessive risk taking.

In what follows, we will consider a requirement that says equity finance cannot fall below

a fraction γt of the bank’s loans. A high γt requires the bank and its equity holders to

keep more skin in the game, and it shrinks the bank’s portfolio since equity finance is more

expensive than deposit finance.

2.3.2 The Banking Sector

A measure one continuum of perfectly competitive banks are born each period, and

they live for two periods. In the first period, a bank issues equity and deposits to households,

and uses the proceeds to make loans to firms; in the second period, the bank receives the

return on its investments and liquidates its assets and liabilities.

More specifically, in period t, a bank incurs a cost of originating and monitoring its loans,

flt, where lt is the amount of the loans. The bank creates a loan portfolio by directing a
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fraction σt of its loans to a risky firm; the remainder of its loans go to a safe firm.8 Since

Rr
t+1 = Rs

t+1 +
εt+1

Qt
, the ex-post return on the portfolio will be Rs

t+1 + σt
εt+1

Qt
. Note that

nwt+1 ≡
(
Rs

t+1 − f + σt
εt+1

Qt

)
lt − Rd

t dt is the bank’s net worth in period t + 1. If nwt+1 is

positive, the bank pays its depositors and distributes the rest to its equity holders. If it is

negative, the bank declares bankruptcy; its depositors are protected by deposit insurance,

but its equity holders get nothing.

The bank’s objective is to maximize the expected return of its equity holders, whose

stochastic discount factor is ψt,t+i. Let ε∗t+1 be the realization of the idiosyncratic shock

below which the bank’s net worth is negative; that is,
(
Rs

t+1 − f + σt
ε∗t+1

Qt

)
lt − Rd

t dt= 0.

Since the distributions of aggregate and idiosyncratic shocks are independent of each other,

we can nest expectations with respect to the idiosyncratic shock within the expectation of

the aggregate and idiosyncratic shocks, and the representative bank’s maximization problem

can be written as:

max
lt,dt,et,σt

Et

ψt.t+1

 ∞̂

ε∗t+1

nwt+1 dG(εt+1)


− et, (20)

subject to

lt = et + dt,

et ≥ γtlt, (21)

lt ≥ 0,

σ ≤ σt ≤ σ̄,

where et is equity issued to households. The first constraint is the bank’s balance sheet, and

the second is the bank’s capital requirement. The third constraint rules out short selling;

its role will be discussed in Section 4. The fourth imposes limits on the fraction of a bank’s

portfolio that can go to safe or risky loans. In our calibrations, σ̄ is set equal to 0.99 and σ

is set equal to 0.01; so, banks can get very close to totally safe or totally risky portfolios if

they so choose.9

The bank’s first-order conditions can be found in the Appendix. They are not particularly

8Our assumption that a bank only deals with one safe and one risky firm comes at no loss of generality
because all the safe firms are identical, and diversification among the risky firms does not take full advantage
of the bank’s limited liability. See Collard et al (2017) for a more formal exposition of this result.

9These limits on σt are necessary for the numerical methods that follow.
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elucidating. In the next subsection, we discuss the bank’s basic tradeoff when it decides how

risky to make its portfolio of loans.

2.3.3 The Bank’s Dividends and Its Choice of σt

In the Appendix, we derive the bank’s expected (discounted) dividend function,

Ω(σt; lt, dt, et) = Et [ψt,t+1lt (ω1 + ω2)] , (22)

where

ω1 ≡
(
Rs

t+1 − f −Rd
t (1− γt)−

ξσt
Qt

)(
1−G(ε∗t+1)

)
, (23)

ω2 ≡
(
σt
Qt

)
τ√
2π

exp

(
−
(
ε∗t+1 + ξ

τ
√
2

)2
)
, (24)

and where 1−G(ε∗t+1) is the probability that the bank will not default.

The first component, ω1, is the return on a loan portfolio with a fraction σt going to

a risky firm; −ξ is the (negative) expected value of the idiosyncratic shock. The second

component, ω2, is a bonus attributable to the bank’s limited liability; the higher is the

standard deviation of the idiosyncratic shock, τ, the higher is the upside potential for a risky

loan, while the downside risk is protected by limited liability.

Increasing σt makes the portfolio more risky. More risk decreases the ex-post return on

the bank’s portfolio, but it increases the bonus from limited liability. This is the tradeoff

that a bank faces.

2.4 The Government

The government provides deposit insurance, and collects taxes to pay for it. Given the

Ricardian nature of the model, a lump sum tax, Tt, can balance the budget each period

without distorting private decision making. In the Appendix, we show the tax necessary to

support the insurance scheme is

Tt =
σt−1Lt−1

Qt−1

τ√
2π

exp

(
−
(
(Rd

t−1(1−γt−1)+f−Rs
t)Qt−1+ξσt−1

σt−1

√
2τ

)2
)

− (25)

1
2
Lt−1

(
Rs

t − f − σt−1ξ
Qt−1

−Rd
t−1 (1− γt−1)

)[
1 + erf

(
(Rd

t−1(1−γt−1)+f−Rs
t)Qt−1+ξσt−1

σt−1

√
2τ

)]
,
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where Lt is the aggregate amount of loans provided by the banking sector. As might be

expected, more risk taking (a higher σt−1) and/or a higher variance (τ) of the idiosyncratic

shock increases the taxes required to protect deposits.

2.5 Analytical Characterization of Equilibrium

We are able to derive some analytical results that enhance our understanding of the

model’s equilibrium, and how to calculate it. More generally, we will require numerical

methods.

2.5.1 Two Propositions and a Corollary

As discussed in the section on households, deposits are a cheaper source of bank

funding than equity. So, a bank will fund as much of its loans by issuing deposits as is

allowed by the capital requirements. We formalize this argument and prove the following

proposition in the Appendix.

Proposition 1. In equilibrium, capital requirements always bind; that is, et = γtlt.

The next proposition, and its corollary, show that we need only consider two values of the

bank’s portfolio risk parameter, σt, when we derive the model’s equilibrium. The proposition

is established in the Appendix.

Proposition 2. The expected dividends function of banks, Ω(σt; lt, dt, et), is convex in σt.

This result holds for arbitrary (and not necessarily continuous) distributions of the idiosyn-

cratic shock.

Corollary. There are no equilibria with σ < σt < σ̄.

The intuition for this proposition and its corollary is as follows: If σt is high enough,

the bank will be bankrupt for low values of εt anyway, so it might as well take on as much

risk as possible to maximize the portfolio’s upside potential for high values of εt. If σt is low

enough, the bank will not be bankrupt even for low values of εt, and the value of limited

liability is negated; the bank might as well take on the minimum risk to raise the expected

value of its portfolio.

Note also that a risky bank seeks to maximize its exposure to the idiosyncratic shock εt.

Limited liability incentivizes banks to “fail big.” So, a risky bank would not want to diversify

its loan portfolio by lending to more than one risky firm.10

10In reality, bank regulators would not allow a bank to lend to a single firm. But our result really says
that risky banks seek exposure to a single idiosyncratic shock εt. To circumvent regulation, for example, a
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2.5.2 Equilibrium and Aggregation

We consider a competitive equilibrium in which each bank takes aggregate prices as given.

The Appendix lists all the equilibrium conditions of our model. In this subsection, we only

present the equilibrium conditions that are not already included in the preceding subsections.

We let µt denote the fraction of banks with risky portfolios (banks that choose σt = σ̄) at

date t; the remaining fraction 1− µt are safe banks (σt = σ).

The fraction µt is endogenously determined by equity positions of households: we have

µt =
Er

t

Er
t +Es

t
. At any point in time, the economy may be in a safe equilibrium (with µt = 0),

a risky equilibrium (with µt = 1), or a mixed equilibrium (with 0 < µt < 1).

Each bank within a group (safe or risky) is alike and solves the same maximization

problem in which it chooses lit, d
i
t, e

i
t according to its type i ∈ {s, r}. The aggregate loans to

the (representative) safe firm come from two sources: 1) from all safe banks (of measure 1−µt)

that allocate 1− σ share of their loan portfolio to safe projects and 2) from all risky banks

(of measure µt) that allocate 1− σ̄ share of their loan portfolio to safe projects. Therefore,

the equilibrium conditions linking our bank-level and firm-level variables representing loans

are

QtK
s
t+1 = (1− σ) (1− µt) l

s
t + (1− σ̄)µtl

r
t . (26)

Similarly,

QtK
r
t+1 = σ (1− µt) l

s
t + σ̄µtl

r
t . (27)

The aggregate bank loans are linked to the individual bank loans by: Lr
t = µtl

r
t and Ls

t =

(1− µt)l
s
t . Therefore, we can describe the latter two equations by using aggregate loans

QtK
s
t+1 = (1− σ)Ls

t + (1− σ̄)Lr
t , (28)

QtK
r
t+1 = σLs

t + σ̄Lr
t . (29)

The equity positions taken by households, in turn, determine the equity positions of

individual banks: Er
t = µte

r
t and E

s
t = (1− µt)e

s
t . The returns on the equity positions taken

by households at date t are linked to the dividends paid by banks at date t+ 1. We have:

Er
tR

e,r
t+1 =(ωr

1 + ωr
2)L

r
t , (30)

Es
tR

e,s
t+1 =(ωs

1 + ωs
2)L

s
t , (31)

where we use the fact that max
[
nwr

t+1, 0
]
is linear in loans; ω1 and ω2 were defined in

bank may hold a seemingly diversified portfolio of MBS with all the loans exposed to the risk of a decrease
in house prices. These incentives seem relevant for the literature on Securitization surveyed by Gorton and
Metrick (2013).
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equations (23) and (24). Deposits held by households are issued by (safe and risky) banks:

Dt = Ds
t +Dr

t where Ds
t = Ls

t − Es
t and Dr

t = Lr
t − Er

t .

The equilibrium conditions linking our aggregate and individual firm-specific variables

are straightforward, but cumbersome in terms of notation. We state the conditions in the

Appendix. The market-clearing conditions for labor, capital, and goods are

Hs
t +Hr

t = 1, (32)

Ks
t +Kr

t = Kt, (33)

and

Y s
t + Y r

t = Ct + Igt . (34)

3 Calibration of Parameters and the Optimal Steady-

State Capital Requirement

Our calibrated parameters are reported in Table 1. We use standard values for the

discount factor β, the capital share α, the intertemporal elasticity of substitution ϱc, and

the depreciation rate δ. Our setup for investment adjustment costs mimics the one used by

Altig et al. (2011). We pick a value of ϕ consistent with the broad range from their analysis

and related literature.

Two parameters that govern the attractiveness of excessively risky loans are specific to

our model: τ is the standard deviation of the risky firm’s idiosyncratic shock, and ξ is the

the average penalty for financing risky projects.11 A higher value for τ makes risky loans

more attractive (by further exploiting limited liability) and a higher value for ξ makes risky

loans less attractive.

To choose these parameters in an empirically relevant way, we rely on a definition of

excessive risk that was agreed upon by three regulators of U.S. depository institutions —

the Office of the Comptroller of the Currency, the Board of Governors of the Federal Reserve,

and the Federal Deposit Insurance Corporation. In March of 2013, these regulators issued

guidance on leveraged lending with the aim of ensuring that financial institutions did not

“unnecessarily heighten risks by originating poorly underwritten loans.”12 This guidance

established a bright line that loans to firms with a debt-to-EBITDA ratio of 6 or above

would raise supervisory concerns.13

11More precisely, −ξ is the expected return on a risky loan.
12The inter agency guidance on leveraged lending can be found here.
13EBITDA is earnings before interest, taxes, depreciation, and amortization.
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We choose τ to make the variance of returns on a risky project match the variance of

returns from lending to a firm with a debt-to-EBITDA ratio of 6. We focus on variances

conditional on starting from the non-stochastic steady state. Given τ , we choose the value

of ξ to make γ = 0.10 be the steady-state capital requirement that is just high enough to

prevent lending to risky firms. We note that 10% is consistent with the static values of capital

requirements proposed by Basel III; it also lies within a span of values usually considered in

the literature on optimal capital regulation.14

We choose f to make the average spread between the safe loan rate and the deposit rate

equal to 2.26 percent per annum. We take this value from Collard et al. (2017).

Finally, the parameters ς0 and ςd appear in the household’s utility of deposits. The values

of these parameters are potentially important to our inquiry, since the fundamental tradeoff

for our Ramsey planner is between the utility of deposits and the disutility of excessive

risk taking. ς0 measures the importance of the utility of deposits relative to the utility of

consumption. We choose the value of ς0 to make the steady-state interest rate on bank

deposits equal to 0.86% per quarter, a value we borrow from an estimate in Begenau (2020);

in particular, we set ς0 = 0.25. The willingness of households to vary their supply of deposits

as consumption or deposit rates move is governed by the parameter ςd; the lower is this

parameter value, the more willing are households to adjust deposits to cushion fluctuations

in consumption. We set ςd = 1.1, a numerical approximation of the log case. We discuss the

sensitivity of our results to this parameter in Section 8.

4 Numerical Methods

Occasionally binding nonnegativity constraints on bank loans complicate the solution of

our model. To address these complications, we rely on the OccBin toolkit developed by

Guerrieri and Iacoviello (2015); they also provide an extensive discussion of the accuracy

of their solution. Their algorithm can be applied to models with a large number of state

variables, such as ours.

So why did we complicate matters by imposing nonnegativity constraints on loans? We

needed to rule out the short selling of assets (or negative loans). To see why, suppose banks

are in the safe equilibrium; in this case, risky loans are overpriced compared to safe loans

(because expected returns on risky loans are relatively lower in the safe equilibrium); absent

short-selling restrictions, each bank would want to short risky loans. Similar reasoning

applies to the risky equilibrium, in which the banks in our model would short safe loans. In

14In Section 8, we explain why we don’t use our model to directly calculate an optimal steady-state capital
requirement.
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either of these cases, arbitrageurs would force the expected returns on safe and risky loans

to equality. And this would result in the mixed equilibrium (described in Section 2.5.2) in

which 0 < µt < 1.

5 The Ramsey Policy and Its Numerical Derivation

To compute optimal capital requirements, we focus on the Ramsey problem, conditional

on the restrictions of the decentralized equilibrium. The Ramsey program selects the path

of capital requirements that maximizes the conditional expectation of the household’s utility

as of time zero. More precisely, following a dual approach, the Ramsey planner chooses the

sequence of capital requirements {γ∗t }
∞
t=0 to maximize the household utility function, (14),

subject to the equilibrium conditions implied by the optimality conditions of households,

firms and banks, and the market clearing conditions. The non-negativity and short-selling

restrictions that we noted above complicate this Ramsey problem. We proceed by proposing

a natural candidate for the solution and then verifying that the proposed solution does indeed

maximize the objective function, (14).

Our proposed solution is to consider the sequence of capital requirements {γ∗t }
∞
t=0 that is

set at the lowest level necessary to prevent risk taking – given the realizations of the shocks

– at any date t. This sequence dominates any alternative path
{
γAt
}∞
t=0

in which γAt = γ∗t

for t ̸= tk and γAt = γ∗t + ∆ for t = tk and some ∆ ̸= 0. When ∆ > 0,
{
γAt
}∞
t=0

is welfare

dominated by {γ∗t }
∞
t=0 because a higher capital requirement in period tk leads to welfare

losses from the reduced amount of liquidity services without altering risk-taking incentives.

This holds for any tk and does not depend on the size of ∆ > 0. When ∆ < 0, banks

switch to funding socially inefficient risky projects in period tk under
{
γAt
}∞
t=0

. The decrease

in the capital requirement involves an output loss of ξK from making risky loans, but it

may increase the liquidity services that enter into household utility. The trade-off between

these two considerations determines the impact on welfare. For a small decrease in capital

requirements (i.e. negative values of ∆ close to zero), the former consideration is more

important. Why? Since banks jump to the risky equilibrium, the lower capital requirement

entails a discrete drop in welfare, arising from the drop in output. By contrast, the welfare

gain (or loss) associated with liquidity provision is a second order change.

Our reasoning above establishes that the Ramsey planner’s objective function has a local

maximum along the path {γ∗t }
∞
t=0. To show that this is indeed a global maximum, we must

check the welfare effect of a large decrease in capital requirements; in this case, liquidity

considerations will not be of second order. To see how liquidity considerations compare to

the welfare loss associated with inefficient risk taking, we compare (numerically) the welfare
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measure under our candidate for optimal policy to welfare under an alternative policy that

maximizes the benefit of liquidity provision under the risk-taking regime. All the equilibria

under the risk-taking regime have the same level of expected output; so, we only need to

consider the policy that maximizes liquidity provision. The gains from liquidity services are

maximized when γAtk = 0. Therefore, we need to compare conditional welfare under {γ∗t }
∞
t=0

to the alternatives that let the capital requirement go down to zero, in some periods.

To check quantitatively if setting capital requirements to zero becomes optimal in re-

sponse to shocks, we use a variant of the OccBin algorithm. We consider a horizon J and

construct all possible combinations of periods from 1 to J in which capital requirements are

hardwired to go to zero whenever a switch to the risk-taking regime is made, but are set

to the lowest possible levels necessary to prevent risk-taking {γ∗t }
∞
t=0 otherwise.15 Then, for

each combination, we calculate the conditional welfare and compare it against the condi-

tional welfare of keeping capital requirements at {γ∗t }
∞
t=0. We verify that the proposed path

of {γ∗t }
∞
t=0 that makes capital requirements just large enough to prevent excessive risk-taking

incentives is, in fact, globally optimal in our parameterization.

6 Optimal Dynamic Capital Requirements

In this section, we show how a Ramsey planner would set capital requirement ratios, γt, in

response to various shocks that can cause excessive risk taking. All of the shocks we consider

in this section follow exogenously set AR(1) processes, which are specified below.16 We take

two steps in preparation for our discussion here. First, we ask what might trigger a risk-

taking episode in the first place. Then, we show how exogenous shocks to the Planner’s policy

instrument – capital requirements – would affect financing decisions and real allocations.17

6.1 What Triggers an Excessive Risk-Taking Episode?

The answer to this question is rather complex because the banker’s maximization problem

has so many moving parts. We give a detailed answer in the Appendix; here we offer a simpler

explanation that focuses on the main forces at work.

Consider the expected dividends for safe and risky firms, Ωs
t ≡ Ω(σ; lt, dt, et) and Ωr

t ≡
Ω(σ̄; lt, dt, et) respectively. Anything that would make Ωr

t − Ωs
t go positive will trigger a

15For each of our checks, we recompute the path of the minimum capital requirements that prevent risk as
this path also depends on the evolution of the endogenous variables in the regime with excessive risk taking.

16The rest of the parameter settings are given in Table 1, except that here we set φ = 100 and κ = 0.
17For the purposes of this section, we have set the steady-state capital requirement at 10.1 percent, 0.1

percent higher than is necessary to avoid excessive risk taking in the steady state. This facilitates our
numerical solution methods.

17



risk-taking episode. Equation (22) specifies Ω(σt; lt, dt, et) for all values of σt, where it will

be recalled that

ε∗t+1 = −Qt

σt

[
Rs

t+1 − f −Rd
t (1− γt)

]
(35)

is the realization of a bank’s idiosyncratic shock below which its net worth is negative, and

G(ε∗t+1) is the probability that the bank will fail. Implicit in the formulation of the banker’s

problem, (20), is the fact that G ′(ε∗t+1) > 0 and G(ε∗t+1) → 0 as ε∗t+1 → −∞.

For purely expositional purposes, we will in this subsection suppose that σ = 0 and

σ̄ = 1. With these simplifications, (22) implies

Ωs
t = Et

[
ψt,t+1l

s
t

(
Rs

t+1 − f −Rd
t (1− γt)

)]
and (36)

Ωr
t = Et

[
ψt,t+1l

r
t

((
Rs

t+1 − f −Rd
t (1− γt)−

ξ

Qt

)(
1−G(ε∗t+1)

)
+

τ

Qt

√
2π

exp

(
−
(
ε∗t+1 + ξ

τ
√
2

)2
))] (37)

where it will be recalled that

Rs
t+1 = α

{
At+1

Qt

(
Hs

t+1

Ks
t+1

)1−α

+ (1− δ)
Qt+1

Qt

}
. (38)

What might turn Ωr
t −Ωs

t positive, triggering a risk-taking episode? The obvious culprit

is the interest rate spread Rs
t+1 − f − Rd

t (1− γt) . An expected narrowing of this spread

will decrease Ωs
t more than Ωr

t since 1 − G(ε∗t+1) is less than one in the risk-taking regime.

Moreover, a narrowing of the spread has a secondary effect on Ωr
t that is a little more subtle:

(35) implies that ε∗t+1 will rise. The presence of ε
∗
t+1 (instead of −∞) in the bank’s expected

profits, (20), represents the value of limited liability to banks. Idiosyncratic shocks below

this cut-off point cannot lower the bank’s profits. An increase in ε∗t+1 would enhance the

value of the shield of limited liability and increase Ωr
t .
18 Note finally that if a risk-taking

episode is triggered, there will be a jump in σ, and therefore a further jump in ε∗t+1 .

So, what might narrow the interest rate spread and provoke a risk-taking episode? There

are a number of possibilities. Perhaps the most obvious would be a fall in the expected return

on safe assets; for example, an expected fall in TFP could trigger a risk-taking episode. Two

parameters in (37) are also of interest. An increase in the standard deviation of the idiosyn-

cratic shock, τ , will raise Ωr
t since it increases the upside potential of the risky asset (while

18It is hard to see these results in (37) without investigating a number of special cases, some involving the
absolute value of ε∗t+1 + ξ. These special cases are relegated to the Appendix.
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the downside potential is unchanged because of limited liability). The second parameter is

the expected value of the risky firm’s idiosyncratic shock, −ξ; ξ is the average penalty for

investing in the risky asset. A fall in this parameter would also raise Ωr
t .

Note also that a loosening of the capital requirement, γt, would decrease the interest rate

spread and could trigger a risk-taking episode. A loosening of the capital requirement allows

the bank to fund more of its loans with deposits; this reduces the cost of banking and allows

the bank to keep less skin in the game. The bank expands its lending and switches to risky

loans. And note finally that a dynamic capital requirement could hold Ωr
t − Ωs

t constant at

its steady-state value; banks would never leave the safe equilibrium. As seen in Section 5,

this option is the Ramsey planner’s policy.

The intuitive exposition just given relied upon two simplifying assumptions – one made

explicit, and the other implicit – that must now be undone. The explicit assumption was

that σ = 0 and σ̄ = 1. In the numerical analysis that follows, σ is set equal to 0.01 and σ̄ is

set equal to 0.99; in equilibrium, there must be both safe and risky loans (and firms). The

implicit assumption was that a bank could observe both Ωr
t and Ωs

t , and then choose its loan

portfolio accordingly. But, we cannot have both Ωr
t and Ωs

t in equilibrium. If we are not in

a risk taking episode, we have Ωs
t , and Ωr

t is an off-equilibrium object; during a risk-taking

episode, we have Ωr
t , and Ωs

t is an off-equilibrium object.

However, there is an equilibrium spread in asset returns – whose evolution is closely

related to Ωr
t − Ωs

t – that we can track:

St ≡ Et

[
Re,r

t+1 −Re,s
t+1

]
. (39)

St is the expected spread between the returns on risky and safe equity. Because of our

minimum scale assumptions, a small amount of risky loans will be extended in the safe

regime, and conversely, a small amount of safe loans will be extended in the risky regime;

so, the returns on equity are equilibrium objects. In a risk-taking episode, St turns positive.

Once the episode is over, the spread turns negative.19

19There is a simple relationship between St and Ωr
t − Ωs

t when computing Ωr
t and Ωs

t conditional on,
respectively, the risky and safe loans actually extended (rather than the desired amount of loans). In that

case, St ≡ Et

[
Re,r

t+1 −Re,s
t+1

]
=

Ωr
t

Er
t
− Ωs

t

Es
t
. The thought experiment by which a banker compares the expected

dividends for a desired level of loans is intuitive, but we solve the model by referring to the Lagrange
multipliers on the non-negativity constraints for safe and risky loans. When extending safe loans leads to
higher expected dividends, a banker would want to short-sell risky loans, turning the corresponding Lagrange
multiplier positive; analogously, when extending risky loans leads to higher expected dividends, a banker
would want to short-sell safe loans. These two conditions allow us to determine which regime applies in any

period more easily than attempting to construct Et
Ωr

t+1

Er
t

and Et
Ωs

t+1

Es
t
, whose computation requires taking a

stand on the entire path of future actions.
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6.2 Capital Requirement Shocks

The next two subsections illustrate the transmission mechanism for capital requirement

policy. And in particular, we show that increases and decreases in capital requirements have

asymmetric effects on bank decision making and economic outcomes.

6.2.1 An Increase in Capital Requirements

Figure 1 shows the effects of a one percentage point increase in the capital requirement,

γt; this shock has a persistence parameter of 0.9. An increase in the capital requirement

forces a bank to shift its funding mix from deposits to equity; this shift increases the cost of

funding a given amount of loans since deposits have liquidity value, and they will be held by

the households at a lower rate of return. The shock does make the bank safer by requiring

it to keep more skin in the game.

Note that the Modigliani-Miller Theorem does not hold in our model, since once again

deposits are valued for their transactions services. So, even though the economy stays in a

safe equilibrium, tighter capital requirements can have real effects on the macroeconomy.

More precisely, an increase in the capital requirement acts like a tax hike on banks.

Households, who own the banks, are effectively poorer. They cut back on consumption, and

since labor is inelastically supplied, their savings increase correspondingly. But under our

calibration, the movements in consumption, investment and output are tiny, as can be seen

in Figure 1. The real side of the economy is hardly affected.

There are first-order effects in the financial sector, and they can affect household utility.

First and foremost, the increase in equity funding reduces the bank’s demand for deposits,

and the deposit rate falls. Moreover, the increase in household savings pushes up the supply

of deposits, which reinforces the decrease in the deposit rate. Deposits make up close to

90 percent of bank funding in our calibration. Somewhat paradoxically, the increase in

capital requirements, and the subsequent fall in the deposit rate, end up reducing the cost

of banking.20 However, the large drop in deposits, coupled with the (almost imperceptible)

fall in consumption, decreases household utility, as can be seen in the last panel in Figure

1.21

Over time, these movements reverse themselves. The capital requirement falls, and de-

posits recover. The capital stock falls, increasing the marginal product of capital and Rs,

which pushes Ωs up relative to Ωr. The economy reverts to its steady state.

20Begenau (2020) also finds that an increase in capital requirements can reduce the cost of bank funding
and increase lending.

21Welfare is calculated as the present discounted value of utility at a given point in time; it moves as the
state variables change.

20



6.2.2 A Decrease in Capital Requirements

The dashed lines in Figure 2 show the response to a 1 percent decrease in the capital

requirement, with an auto-regressive coefficient of 0.9. Deposits rise and bank equity falls,

as the lower capital requirement allows banks to switch to the cheaper source of funding. As

explained in Section 6.1, a loosening of the capital requirement immediately triggers a risk-

taking episode. On average, risky firms produce less output since a risky firm’s idiosyncratic

shock has a negative expected value; so, output and income fall substantially.22 Consumption

and investment also fall. In subsequent periods, the demand for capital falls, as does its price,

Qt. The fall in Qt, coupled with the jump in σt, increases the cut-off point ε∗t+1 discussed in

Section 6.1, making risky loans more attractive; Ωr
t and R

e,r
t+1 rise. The spread St immediately

goes positive. These events are pictured in Panels 5 and 7.

Over time, the capital requirement rises and the process described above reverses itself.

When St falls to zero, σt jumps back to its lower bound, and the economy jumps back to

a safe equilibrium. Capital is more productive in a safe equilibrium, since lending to the

inefficient risky firms is almost eliminated. This creates a jump in the price of capital, Qt,

and a jump in the return on safe loans, as can be seen in (38); the expected return on safe

equity spikes. Gradually, the economy returns to its steady state.

Takeaways:

Positive and negative shocks to the capital requirement have asymmetric effects on the

economy, and they are not the mirror images found in linear models. Loosening capital

requirements triggers an excessive risk-taking episode, and consumption and output fall.

For comparison, the solid lines in Figure 2, repeat the responses shown in Figure 1; the

responses of consumption and output are so small as to be imperceptible with the re-scaling

of the axes. Loosening capital requirements produces a major disruption on the real side of

the economy; for a tightening of capital requirements, what happens in the financial sector

stays in the financial sector.

6.3 TFP Shock

TFP shocks have played a major role in RBC modeling. Figure 3 illustrates the effects

of a contractionary TFP shock; At falls by 1.5 percent (or one standard deviation), and has

a persistence parameter of 0.95. In each panel, the dashed line shows what would happen if

γt were to be held constant at its steady-state value; the solid line shows what would happen

if the Ramsey planner set the path of γt.

22Put another way, some of the risky loans fail, destroying bank equity and increasing the taxes necessary
to insure deposits. So, output and income fall.
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We begin with the case of fixed capital requirements. Since the shock is auto-correlated,

today’s TFP shock lowers the expected marginal productivity of capital for the next period,

and thus the expected return on safe assets. As explained in Section 6.1, this triggers a risk-

taking episode. Re,s
t+1 falls and the spread St jumps positive. Risky firms produce less output

on average; so, output and income fall substantially, as does consumption. As output and the

marginal productivity of capital fall, the demand for capital falls, lowering the investment

price, Qt. For use in Section 7 below, we also track the credit-to-GDP ratio. It falls, as

under our calibration, bank loans decrease more quickly than GDP.

Over time, the TFP shock dissipates and the process described above reverses itself.

Among other things, the falling capital stock raises the marginal productivity of capital and

the return on safe assets, and also the price of investment. St falls, and jumps negative

after σt drops to its lower bound, and the economy jumps back to a safe equilibrium. The

credit-to-GDP ratio rises, and then midway starts to fall.

Next, we turn to the Ramsey planner’s solution, shown by the solid lines in Figure 3. The

planner’s policy is to set capital requirements just tight enough to keep safe loans attractive;

as we have seen, any higher would unnecessarily deprive households of the deposits that

they value. γt jumps on impact, and falls back to its steady-state value as the TFP shock

dissipates.

While the planner’s policy avoids risk-taking episodes, it cannot undo the damage done

by the TFP shock itself. The shock lowers the household’s net worth, and it responds by

decreasing consumption and increasing savings/investment. All this is familiar from the

RBC literature. Indeed, absent the possibility of excessive risk taking, our model has no

banking frictions; in essence, it reduces to the standard RBC model in which there is no role

for macroeconomic policy. It may be interesting to note that the gap between the paths of

consumption in the third panel is largely determined by the size of ξ, the expected loss on

risky loans; ξ is a measure of the economic inefficiency in our model.

Takeaways:

A one standard deviation shock to TFP causes a 1.5 percent decrease in output. However,

the optimal capital requirement needs only a modest adjustment, an increase of 15 basis

points. After its initial fall, the credit-to-GDP ratio rises and then falls midway through

the cycle; optimal capital requirements do not follow the guidance laid out by the Basel III

accords.
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6.4 An Expansionary Investment Technology Shock

Here we study a positive ηt shock in the equation for net investment, (11). The

shock has a persistence parameter of 0.8, and we calibrate the size of the shock to increase

output by 1% at its peak, roughly on a par with the TFP shock described previously. Figure

4 illustrates the effects of this shock. Once again, the dashed lines show what would happen

if the capital requirement were kept at its steady-state value, while the solid lines represent

the Ramsey solution.

This shock was not considered in Section 6.1, but its effects are readily translatable to the

discussion there. A positive shock to investment in period t increases the supply of capital

next period, Kt+1, lowering the expected marginal product of capital and the expected return

on the safe asset. The expected return on safe equity falls, and a risk-taking episode is begun,

even though the shock itself is expansionary.

Note that the expected return on safe equity only drops for one period. To see why, note

that the decrease in the marginal product of capital causes the price of capital, Qt+1, to fall,

and this raises the return on safe loans in period t+2. However, the damage is already done;

the risk-taking episode has already been triggered, as documented by the jump in St. The

risky firms produce less output on average, and output and consumption fall. From here

on, the story is much the same as before. The investment shock decays over time and the

process gradually reverses itself. Note that there is an upward spike in the expected return

on safe loans when the economy jumps back to a safe equilibrium.

The solid lines illustrate what would happen if the Ramsey planner set the path of γt.

The planner raises the capital requirement just enough to offset the switch to excessive risk

taking. Consumption and investment rise more in this case since there are no bankruptcies

and equity losses to lower household income.

Takeaways:

In this example, the Ramsey planner raises capital requirements as the economy goes into

a boom period, which may be thought to be in line with Basel III’s cyclical buffers; however,

the credit-to-GDP ratio falls initially. Once again, this ratio subsequently rises, and then

falls midway through the cycle. The optimal adjustment in the capital requirement is again

small; γt only rises by a little over 0.2 percentage points. But the distance between the solid

and dashed lines is substantial.

6.5 A Volatility Shock

In the steady state, the standard deviation of the idiosyncratic shock, τ, affecting risky

firms is 5.5%. Our volatility shock increases the standard deviation by 15 basis points,
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after which it follows an AR(1) process (with persistence parameter 0.8) back to 5.5%. As

explained in Section 6.1, an increase in volatility raises the expected return on risky loans,

since it enhances the upside potential of risky loans while the downside risk is protected by

limited liability.

Figure 5 illustrates the economic consequences of this volatility shock. As before, the

dashed lines show what would happen if γt were to be held constant. The shock is big

enough to entice banks to switch to risky loans, some of which will fail, increasing taxes

and destroying bank equity. The story that follows is by now familiar. Consumption and

investment fall. Eventually, the shock dissipates and the falling capital stock raises Rs enough

to make safe loans attractive again. As the solid lines illustrate, the Ramsey planner would

increase capital requirements just enough to eliminate the excessive risk taking. Under the

Ramsey policy, there is no change in the expected return on safe equity or on St; the shock

has absolutely no effect outside of financial markets.

Takeaways:

With no change in capital requirements, the effect of this shock on consumption and

output is rather small; however, the shock itself was not large. Note that the path followed

by the credit-to-GDP ratio in the inefficient solution is not a good indicator for the direction

of optimal policy.

7 Implementable Buffer Rules

The Ramsey policy derived in Section 6 was in response to three different shocks, each

of which was considered in isolation. In practice policymakers face a much more difficult

challenge: the economy is actually driven by a multiplicity of shocks, all occurring at the

same time; policymakers have to respond to the full stochastic structure of the economy. In

our model, we can derive the Ramsey policy when the economy is hit by a full constellation

of shocks, but it is implausible to think that policymakers would be able to implement it.

So, in this section, we consider simple policy rules in which the capital requirement responds

to one or two observable endogenous variables, and we ask which, if any, of these rules can

closely mimic the actual Ramsey policy. Of particular interest will be Basel III’s capital

buffer rule in which capital requirements respond positively to the credit-to-GDP ratio.

This exercise is neither easy nor straightforward. The first step is to decide which shocks

drive the macroeconomy. In our baseline calibration, we use the volatility shock and the two

macroeconomic shocks – TFP and ISP (investment specific). The moments we match are

the variances, correlation, and auto-covariances of chained real GDP, chained real private

investment, and the implicit price deflator for chained investment (divided by the price
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deflator for consumption).

The next step is to calibrate the shocks to make model moments match moments in the

U.S. data. We allow each shock to follow an auto-regressive process of order 1, and we need to

size the persistence parameters and the standard deviations of the innovations. We also want

to size the investment adjustment cost parameter, ϕ, and the habits parameter, κ. To do

this, we use a SMM (simulated method of moments) procedure. For this calibration, we are

focusing on variances, covariances, and auto-covariances of all the observed variables, with

the estimation sample starting in 1980. We experiment with the SMM optimal weighting

matrix, and we match observed moments from bandpass-filtered data (selecting standard

business cycle frequencies) against analogous moments simulated from a sample of 2000

model observations (also bandpass filtered).

Finally, it should be noted that we are also calculating and imposing the Ramsey policy

for capital requirements in our model simulations.23 So, the model output gives us data

for the optimal dynamic capital requirements, and model data are generated under the

assumption that the optimal capital requirements are in place. With that assumption, there

is no discernible difference in the targeted moments. The Ramsey policy varies capital

requirements to avoid excessive risk-taking episodes, otherwise having little impact on the

macroeconomy.

7.1 Matching Moments, Shock Processes and Variance Decompo-

sitions

Table 4 shows that our calibration is very good; model moments are close to data mo-

ments. Tables 2 and 3 show the calibrated shock processes and the variance decompositions.

It may be interesting to note that the persistence parameter for the TFP shock is 0.79,

which is somewhat lower than what is normally assumed in the RBC literature.24 Finally,

the parameters for consumption habits and investment adjustment costs that minimize the

distance function are 0.93 and 0.06 respectively.

In our calibration, all of the shocks are persistent. In the variance decompositions, the

TFP shock explains all of the variations in GDP and investment, while the volatility shock

explains the variation in the Ramsey policy settings.

23Why the Ramsey policy? We are calibrating to data from the pre-crisis period; the period between S&L
crises and 2008 did not have great bank failures. Either capital requirements were high enough, or shocks
were small enough, to avoid risk taking. In the context of our model, the Ramsey policy captures this.

24In most of the RBC literature, the persistence parameter is estimated by a simple auto-regression on
TFP data.
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7.2 Implementable Capital Buffer Rules

The Ramsey policy requires full knowledge of all the shocks, making its implementation

virtually impossible in practice. Here, we focus on simple rules that may be able to mimic

the optimal policy; these rules are based on one or two observable variables, and they are

clearly implementable. The Basel III cyclical buffer, which runs off of the credit-to-GDP

ratio, will be of particular interest. We will also compare these simple rules to more complex

rules that are probably not implementable.

To derive the policy rules, we use data generated by our simulations. That is, we regress

the Ramsey policy settings on one or more of the endogenous variables (and a constant).

Then, we use a variety of measures to rank the alternative rules. The first, and perhaps the

most obvious, measure is the R-square of the regression; the higher the R-square, the more

closely the rule tracks the Ramsey settings. But there are other measures – performance

measures – that focus on what the rule actually achieves. A good rule should minimize the

frequency of excessive risk-taking episodes; the Ramsey policy eliminates them altogether.

But recall that there is a tradeoff here. The frequency of episodes can also be minimized,

or even eliminated, by simply setting the static capital requirement at a very high level.

This cannot be the only performance measure that we consider since a very high capital

requirement forces banks to limit the deposits they issue, and deposits are valued for their

transactions services. So, the second performance measure is the average level of deposits

that it achieves – the higher, the better.

Simple Rules

The Basel rule does not work well; it has a low R-square and poor performance measures

unless the steady-state capital requirement is raised from 10 percent to 11 percent. Here the

work is being done by the static capital buffer, and not the rules themselves. The reason for

the poor performance can be seen in the variance decompositions of Table 3. The volatility

shock explains 97 percent of the variation in the capital requirement, but only 1 percent of

the variation in the credit-to-GDP ratio.

Only rules that assume an implausible amount of information, including the shocks pro-

cesses and their innovations, come close to matching the performance of the Ramsey policy.

So, we go on to study static capital requirements.
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The Efficiency of Static Capital Buffers

The results reported in the previous sections seem to indicate that the steady-state cap-

ital requirement is an important instrument in the regulator’s tool kit. Table 12 bears that

out. Here, there are no rules, just static capital buffers. The last row gives the performance

measures achieved by the Ramsey planner. The first row with numbers reports the perfor-

mance measures if the static capital requirement is raised from the 10 percent benchmark

to 10.1 percent; they are not good. However, if the requirement is raised to 11.5 percent,

the results are almost as good as those achieved by the Ramsey planner. This suggests that

the regulator need not bother with dynamic capital requirements. If the static capital re-

quirement is raised to 11.5 percent, the performance measures are very close to the optimal

ones.

Takeaways: Simple rules, like the Basel rule, do not perform well. However, eschewing

policy rules and increasing the static capital requirement by as little as 1 percentage point

nearly achieves the performance standards set by the Ramsey policy.

8 Sensitivity Analysis: a Summary of Appendix H

In this section, we discuss the sensitivity of our results to various parameter settings,

and to alternative calibrations of the shock processes that drive the model’s economy. The

actual sensitivity analysis is performed in Appendix H.

8.1 The Optimal Steady-State Capital Requirement

As noted in the calibration section, Section 3, there are two parameters that are specific

to our model: τ is the standard deviation of the risky firm’s idiosyncratic shock, and ξ is

the average penalty for financing risky projects.25 We chose τ to fit the data, and then we

treated ξ as a free parameter. We chose ξ to pin down an empirically plausible optimal

steady-state capital requirement; that is, we set ξ to make γ = 0.10.

Why did we not try to choose ξ empirically, and then calculate an optimal steady-state

capital requirement directly? We show in Appendix H that small variations in τ or ξ would

support a wide range of steady-state capital requirements. For example, steady-state capital

requirements vary from about 5% to 15% when ξ is chosen from a very narrow range. τ and

ξ cannot be credibly estimated with that kind of precision, suggesting that our model is not

suitable for a serious attempt to pin down the optimal steady-state value.

25More specifically, -ξ is the expected loss on a risky loan.
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8.2 Volatility of Optimal Dynamic Responses

How much do optimal dynamic capital requirements have to be adjusted? In Appendix

H, we explore the relative volatility of the optimal dynamic responses implied by three

parameters: τ , ξ, and ςd (the inverse of the interest rate elasticity of the household’s supply

of bank deposits). As an example, we focus on the dynamic response to a TFP shock. We

show that an increase in τ, or a decrease in ξ, require a larger adjustment in the optimal

capital requirements. These results may not be too surprising, since these parameter changes

increase the attractiveness of risky loans.

In line with related papers, we choose ςd to imply an interest elasticity of deposit supply

close to 1. Our results are not sensitive to lowering the elasticity in the range between

0.15 and 1. As we raise the elasticity towards infinity, however, the risk-taking incentives

grow, and the optimal capital requirements becomes more volatile. We don’t think this is

an empirically relevant result.

8.3 An Alternative Calibration of Shock Processes

In Section 7.1, we calibrated shock processes to make our model’s moments match those

found in the U.S. data. We then used the calibrated model to evaluate implementable policy

rules for dynamic capital requirements. Under our benchmark calibration, static capital

buffers dominated these policy rules.

The first step in the procedure was to decide which shocks drive the macroeconomy. In

our baseline calibration, we used the volatility shock and the two macroeconomic shocks –

TFP and ISP (investment specific). The resulting model was very good at matching moments

in the data.

The choice of shocks is, however, not innocent. In Appendix H, we consider an alterna-

tive calibration that only uses the two macroeconomic shocks – TFP and ISP (investment

specific), and we show that this calibration is just as good as our benchmark calibration in

terms of matching moments. In this model, the ISP shock is an important driver of our

dynamic capital controls, and indeed a simple rule based on the price of investment, Qt,

tracks the Ramsey policy fairly well. However, the Basel rule still performs badly, and a

static buffer looks even more effective.

9 Conclusion

In our model, bank risk taking is endogenous, and the temptation to take excessive (or

socially inefficient) risk is enabled by limited liability and government deposit insurance,
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which protect banks and depositors from the more extreme losses. Both macroeconomic

shocks and market volatility shocks can trigger bouts of excessive risk taking by lowering the

expected return on safer investments. Capital requirements can eliminate that temptation

by making banks keep more skin in the game, but this may come at the cost of limiting

liquidity-producing deposits.

We provide examples in which a Ramsey planner would raise capital requirements in

response to either cyclical booms or busts (depending upon the underlying shocks), and

raise capital requirements in response to an increase in market volatility that has little

consequence for the business cycle.

In practice, the policymaker’s problem is more difficult than responding to a single well-

identified shock. The policymaker has to respond to the full constellation of shocks that drive

the economy. Accordingly, the informational requirements for a regulator are daunting, even

in our stylized model where we only have two projects that banks can finance. In practice

regulators would have to keep track of expected relative returns for a myriad possible projects.

We find it implausible to think that a policymaker could implement the optimal Ramsey

policy in practice. In this environment, it is tempting to look for market indicators that

might point the way to appropriate changes in the capital requirement. However, we showed

that popular candidates – such as growth in the credit-to-GDP ratio – were unlikely to be

reliable indicators. To this end, we employed an SMM procedure to: (1) calibrate the shock

processes that drive our model economy, (2) calculate the Ramsey policy in that environment,

and (3) evaluate implementable policy rules against the Ramsey benchmark. Most policy

rules fell into the risk-taking trap with an unfortunate frequency. Fortunately, we found that

a small static buffer – slightly higher than the optimal steady-state capital requirement –

avoided the Wile E. Coyote moments and achieved levels of deposits close to the Ramsey

policy. Some finely tuned policy rules — such as a rule following the Basel III guidance on

the setting of countercyclical capital buffers — may sound sensible but turn out to do more

harm than good in our model. Fine tuning capital requirements seems exceedingly risky; the

Hippocratic Oath – First, do no harm – may be an appropriate guide for well-intentioned

regulators.
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Table 1: Parameters

Value Description

Conventional

β 0.99 Discount rate

α 0.3 Capital share in production

ϱc 1.1 Elasticity of substitution for consumption

δ 0.025 Depreciation rate

ςd 1.1 Interest rate elasticity of supply of deposits

Specific Target/Explanation

τ 0.05521 Standard deviation of idiosyncratic shock Debt
EBITDA = 6

ξ 0.00076 Minus mean of idiosyncratic shock Cap. requirement= 10%

ς0 0.015 Relative weight on liquidity in the utility function Quarterly rate on bank debt= 0.86%

f 0.0055 Linear Cost of Banking Rs −Rd = 2.26%

ϕ 0.06 Investment adjustment costs estimated by SMM

κ 0.93 Habits estimated by SMM

σ 0.01 Minimum risk that banks can take needed for numerical solution method

σ̄ 0.99 Maximum risk that banks can take needed for numerical solution method
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Table 2: Shock Processes

AR(1) param. Innov. St. Dev.
TFP 0.79 0.0093
ISP 0.95 0.0052
Volatility 0.80 0.0015

Distance Function 0.0012289856

Table 3: Variance Decomposition

var(GDP) var(invest.) var(invest. p.) var(gamma) var(credit/GDP)
TFP 100 100 8 0 65
ISP 0 0 92 2 35
Volatility 0 0 0 98 0
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Table 4: Matching Moments

Data Model
Var(GDP) 0.92 0.97
Corr(GDP,Investment) 0.96 1.00
Corr(GDP,Investment Price) 0.08 0.08
Var(Investment) 27.68 27.68
Corr(Investment,Investment Price) 0.02 0.06
Var(Investment Price) 0.40 0.38
Autocorr(GDP) 0.93 0.88
Autocorr(Investment) 0.93 0.88
Autocorr(Investment Price) 0.87 0.88
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Table 5: Simple Rules

Simple Rule

R Square First 
variable

Second 
variable

Quarters with 
excessive risk-
taking (per 100 

years)

Average 
deposit 
under 

simple rule

Quarters with 
excessive risk-
taking (per 100 

years).

Average 
deposit under 
simple rule.

Number 
quarters with 

excessive risk-
taking (per 100 

years)..

Average 
deposit under 
simple rule..

1. Invest. p. 0.043 -0.066 195.6 8.273 69.6 13.297 6.0 15.830
2. Expected banking spread 0.613 0.773 211.2 7.647 77.6 12.991 6.8 15.802
3. GDP 0.000 -0.001 210.8 7.697 79.6 12.903 6.8 15.805
4. Credit/GDP 0.016 -0.005 208.4 7.777 76.8 13.027 7.2 15.788

5. Credit/GDP wih positive coef
0.005

Convergence 
problems

83.2 12.780 6.8 15.805

6. Expected safe return and 
deposit rate

0.974 861.783
Convergence 

problems
Convergence 

problems
Convergence 

problems

7. All shock processes, 
innovations, expected safe 
return and deposit rate

1.000
Too many 
to show

-861.892 0 16.223 0.0 16.151 0 16.061

8. All shock processes, 
innovations, and lagged capital 
requirement

1.000
Too many 
to show

0 16.223 0.0 16.151 0 16.061

Static buffer = 100 basis pointsRegression coeffiecients Static buffer = 10 basis points Static buffer = 50 basis points
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Table 6: The Efficiency of Static Buffers

Static Buffer 
Number of quarters 
with excessive risk 

taking (per 100 years) 

Average 
deposit  

10 bp 210.8 7.678 

20 bp 172.0 9.216 

30 bp 140.8 10.479 

40 bp 108.8 11.784 

50 bp 79.2 12.920 

100 bp 6.8 15.805 

150 bp 0 15.991 

Optimal Rule 0 16.241 
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Figure 1: Higher Capital Requirement Shock
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Figure 2: Capital Requirement Shocks
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Figure 3: Negative TFP Shock
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Figure 4: Positive Investment Shock
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Figure 5: Positive Volatility Shock
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A The Bank’s Problem

A.1 Baseline: First-Order Conditions

Substituting dt = lt − et into equation (20) and writing dG(εt+1) explicitly turn the

objective into:

max
lt,et,σt

Et

ψt,t+1

 ∞̂

ε∗t+1

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)− flt

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1

− et

 ,

subject to

et ≥ γtlt,

lt ≥ 0,

σ ≤ σt ≤ σ̄,

where ψt,t+1 = β λct+1

λct
is the stochastic discount factor and ε∗t+1 =

(
Rd

t+f−Rs
t+1

σt
− Rd

t et
σtlt

)
Qt

is the shield of limited liability. Note that we expressed ε∗t+1 from
(
Rs

t+1 + σt
ε∗t+1

Qt

)
lt −

Rd
t (lt − et)− flt = 0 to get the lower limit of the integral.

Append the Lagrangian multiplier χ1t to the constraint et ≥ γlt and χ2t to the constraint

lt ≥ 0. Conditional on the optimal choice of σt, the first-order conditions are:

∂L
∂lt

= Et

ψt,t+1

=0︷ ︸︸ ︷((
Rs

t+1 + σt

(
Rd

t + f −Rs
t+1

σt
− Rd

t et
σtlt

))
lt −Rd

t (lt − et)− flt

)
·
∂ε∗t+1

∂lt

+ χ2t+

Et

 ∞̂

ε∗t+1

ψt,t+1
∂

∂lt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)− flt

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1

− γχ1t = 0,

∂L
∂et

= −Et

ψt,t+1

=0︷ ︸︸ ︷((
Rs

t+1 + σt

(
Rd

t + f −Rs
t+1

σt
− Rd

t et
σtlt

))
lt −Rd

t (lt − et)− flt

)
·
∂ε∗t+1

∂et

+ χ1t+

Et

 ∞̂

ε∗t+1

ψt,t+1
∂

∂et

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)− flt

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1

− 1 = 0,

2



χ1t (et − γtlt) = 0,

χ2tlt = 0,

et − γtlt ≥ 0,

lt ≥ 0,

χ1t ≥ 0,

χ2t ≥ 0,

We are using the Leibniz integral rule above to find the partial derivatives of the profit

function. Note that the first term is zero in the differentiation because the upper limit of

the integral does not depend on any of the choice variables.

Next, express the integrals in the first-order conditions above using the erf function,

wherever possible. Note that we omit the stochastic discount factor and the expectation

operator in writing up the expressions of the next integrals. We include those terms in the

final exposition.

Work on ∂
∂lt

:

∞̂

(
Rd
t +f−Rs

t+1
σt

−Rd
t et

σtlt

)
Qt

∂

∂lt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)− flt

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 =

∞̂

(
Rd
t +f−Rs

t+1
σt

−Rd
t et

σtlt

)
Qt

(
Rs

t+1 + σt
εt+1

Qt

−Rd
t − f

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 =

σt
Qt

∞̂

(
Rd
t +f−Rs

t+1
σt

−Rd
t et

σtlt

)
Qt

εt+1
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1+

(
Rs

t+1 −Rd
t − f

) ∞̂

(
Rd
t +f−Rs

t+1
σt

−Rd
t et

σtlt

)
Qt

1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1.

Break the calculation of the integral into two parts.

∞̂

(
Rd
t +f−Rs

t+1
σt

−Rd
t et

σtlt

)
Qt

εt+1
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 =

Introduce a change in variables to recast the integral in terms of the Standard Normal
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distribution. Use v = εt+1+ξ√
2τ

, or equivalently εt+1 = v
√
2τ − ξ, and remember that for

the change x = φ(t), the integral
´ φ(b)
φ(a)

f(x)dx becomes
´ b
a
f(φ(t))φ′(t)dt. Here we use that

dv = dεt+1√
2τ

, so we need to multiply dv by
√
2τ to express dεt+1 in terms of dv. Moreover,

we need to transform the lower limit using v. So we need to add ξ to the lower limit of the

integral and divide the result by
√
2τ .

∞̂

(Rd
t (lt−et)+flt−Rs

t+1lt)Qt+ξσtlt

σtlt
√
2τ

(
v
√
2τ − ξ

) √
2τ√
2πτ 2

exp
(
−v2

)
dv =

√
2τ√
π

∞̂

(Rd
t (lt−et)+flt−Rs

t+1lt)Qt+ξσtlt

σtlt
√

2τ

v exp
(
−v2

)
dv − ξ√

π

∞̂

(Rd
t (lt−et)+flt−Rs

t+1lt)Qt+ξσtlt

σtlt
√

2τ

exp
(
−v2

)
dv =

−
√
2τ

2
√
π
exp

(
−v2

)∣∣∣∣∣
∞

(Rd
t (lt−et)+flt−Rs

t+1lt)Qt+ξσtlt

σtlt
√

2τ

− ξ√
π


∞̂

0

exp
(
−v2

)
dv −

(Rd
t (lt−et)+flt−Rs

t+1lt)Qt+ξσtlt

σtlt
√

2τˆ

0

exp
(
−v2

)
dv

 =

0 + lt
τ√
2π

exp

−

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)2
−

ξ√
π

[√
π

2
erf(∞)−

√
π

2
erf

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)]
=

τ√
2π

exp

−

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)2
− ξ

2

[
1− erf

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)]
,

where we used that erf(x) = 2√
π

´ x
0
exp (−v2).

Let us express

∞̂

(
Rd
t +f−Rs

t+1
σt

−Rd
t et

σtlt

)
Qt

(
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

))
dεt+1 in terms of the

error function. Again, use the transformation v = εt+1+ξ√
2τ

or εt+1 = v
√
2τ − ξ

∞̂

(Rd
t (lt−et)+flt−Rs

t+1lt)Qt+ξσtlt

σtlt
√

2τ

√
2τ√
2πτ 2

exp
(
−v2

)
dv =

1√
π

∞̂

(Rd
t (lt−et)+flt−Rs

t+1lt)Qt+ξσtlt

σtlt
√
2τ

exp
(
−v2

)
dv =

1

2

(
1− erf

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

))
.
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Therefore,

Et


∞̂

(
Rd
t +f−Rs

t+1
σt

−Rd
t et

σtlt

)
Qt

∂

∂lt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)− flt

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1

 =

Et

 σt
Qt

τ√
2π

exp

−

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)2
− σtξ

2Qt

[
1− erf

((
Rd

t (lt − et) + f −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)]+

Et

[(
Rs

t+1 −Rd
t − f

) 1
2

(
1− erf

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

))]
=

Et

 σt
Qt

τ√
2π

exp

−

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)2
 +

(
Rs

t+1 −
σtξ
Qt

−Rd
t − f

2

)[
1− erf

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)]]
.

Similarly, work on ∂
∂et

∞̂

(
Rd
t +f−Rs

t+1
σt

−
Rd
t+1et

σtlt

)
Qt

∂

∂et

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)− flt

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 =

∞̂

(
Rd
t +f−Rs

t+1
σt

−
Rd
t+1et

σtlt

)
Qt

Rd
t

1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 = Rd

t

1

2

(
1− erf

(
Rd

t (lt − et) + flt −Rs
t+1lt + ξσtlt

σtlt
√
2τ

))
.

In sum, the FOCs can be written as follows:

Et

βλct+1

λct

 σt
Qt

τ√
2π

exp

−


(
Rd

t

(
1− et

lt

)
+ f −Rs

t+1

)
Qt + ξσt

σt
√
2τ

2
+

(
Rs

t+1 −
σtξ
Qt

−Rd
t − f

2

)1− erf


(
Rd

t

(
1− et

lt

)
+ f −Rs

t+1

)
Qt + ξσt

σt
√
2τ

+ χ2t = γχ1t,

(A.1)

Et

{
β λct+1

λct

[
Rd

t
1
2

(
1− erf

((
Rd

t

(
1− et

lt

)
+f−Rs

t+1

)
Qt+ξσt

σt

√
2τ

))]}
− 1 + χ1t = 0. (A.2)
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There are complementary slackness conditions which can be described by:

(et − γlt)χ1t = 0,

ltχ2t = 0.

A.2 Proof of Proposition 1

Equations (18) and (19) can be expressed as

βEt
λct+1

λct
Re,i

t+1 = 1− ζ it
λct

,

where i ∈ {s, r} denotes the type of equity. In this expression, substitute eq. (A.2) for 1.

Therefore,

Et

{
β λct+1

λct

[
Rd

t
1
2

(
1− erf

((
Rd

t

(
1− eit

lit

)
+f−Rs

t+1

)
Qt+ξσi

t

σi
t

√
2τ

))]
−Re,i

t+1

}
− ζit

λct
+ χi

1t = 0.

(A.3)

Since the range of the erf function is between −1 and 1, i.e.−1 ≤ erf(x) ≤ 1, we know

that the following expression is between Ψ∗
1 and Ψ∗

2:

Ψ∗
1 ≤ Et

{
β λct+1

λct

[
Rd

t
1
2

(
1− erf

((
Rd

t

(
1− eit

lit

)
+f−Rs

t+1

)
Qt+ξσi

t

σi
t

√
2τ

))
−Re,i

t+1

]}
≤ Ψ∗

2,

where

Ψ∗
1 = Et

{
β
λct+1

λct

[
0−Re,i

t+1

]}
,

Ψ∗
2 = Et

{
β
λct+1

λct

[
Rd

t −Re,i
t+1

]}
.

Using Etβλct+1R
e,i
t+1 + ζ it = λct (that comes from the household’s FOCs with respect to

eit for each i ∈ {s, r}), substitute it for λct in equation (17). We get:

Et

{
βλct+1

[
Rd

t −Re,i
t+1

]}
= −ς0D−ςd

t + ζ it .

Note that ς0D
−ςd
t > 0 under the usual (and mild) assumptions on the preferences for liquidity.

Moreover, the Lagrangian multiplier on the households budget constraint, λct, is positive. It

reflects the fact that the budget constraint always binds given the standard assumptions on

6



the preferences (Inada conditions). The latest expression is transformed into the following

after dividing it by λct:

Et

{
β
λct+1

λct

[
Rd

t −Re,i
t+1

]}
︸ ︷︷ ︸

=Ψ∗
2

− ζ it
λct

= −ς0D
−ςd
t

λct
< 0.

Thus, Ψ∗
2 <

ζit
λct

.

Rewriting eq. (A.3)

Et

βλct+1

λct

Rd
t

1

2

1− erf


(
Rd

t

(
1− eit

lit

)
+ f −Rs

t+1

)
Qt + ξσi

t

σi
t

√
2τ

−Re,i
t+1

 =
ζ it
λct

− χi
1t =

Combine it with Ψ∗
2 <

ζit
λct

to find

ζ it
λct

− χ1t < Ψ∗
2 <

ζ it
λct

.

Hence, χi
1t > 0. □

A.3 Combined First-Order Conditions

Et

{
β λct+1

λct

[
σt

Qt

τ√
2π

exp

(
−
((

Rd
t

(
1− et

lt

)
+f−Rs

t+1

)
Qt+ξσt

σt

√
2τ

)2
)

+(
Rs

t+1−
σtξ
Qt

−Rd
t−f

2

)[
1− erf

((
Rd

t

(
1− et

lt

)
+f−Rs

t+1

)
Qt+ξσt

σt

√
2τ

)]]}
+ χ2t = γχ1t,

Et

{
β λct+1

λct

[
Rd

t
1
2

(
1− erf

((
Rd

t

(
1− et

lt

)
+f−Rs

t+1

)
Qt+ξσt

σt

√
2τ

))]}
− 1 + χ1t = 0.

Since χ1t > 0, multiply the second equation by γt and add it to the first equation using
et
lt
= γt. Therefore, the FOCs can be combined into:

Et

{
β λct+1

λct

[
σt

Qt

τ√
2π

exp

(
−
(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσt

σt

√
2τ

)2
)
+

1
2

(
Rs

t+1 −
σtξ
Qt

−Rd
t − f

)[
1− erf

(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσt

σt

√
2τ

)]]}
= γt − χ2t,

χ2tlt = 0.
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A.4 Zero-Profit Condition

Consider the zero-profit condition under all states of nature. Since there is no agency

problem between banks and households, this condition captures the fact that all the profits

(or losses) are distributed to equity holders after realization of shocks at the beginning

of each period. In each aggregate state, banks whose investments in risky firms pan out

will have returns that satisfy on average (over the realizations of the idiosyncratic shock)[(
Rs

t+1 +
σt

Qt

)
lt −Rd

t (lt − et)− flt

]
−
´
Re

t+1,b(b) · et = 0, where the bounds of the integral

are chosen such that we integrate over banks for which the profit is non-negative, while banks

whose risky investments earn low (negative) returns will have Re
t+1,b = 0. Therefore,

Re
t+1 =

∞̂

(
Rd
t (1−γt)+f−Rs

t+1
σt

)
Qt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t dt − flt

)
1√
2πτ2

exp
(
− (εt+1+ξ)2

2τ2

)
dεt+1

et
+

(
Rd
t (1−γt)+f−Rs

t+1
σt

)
Qtˆ

−∞

0 · 1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 =

1

et

∞̂

(
Rd
t (1−γt)+f−Rs

t+1
σt

)
Qt

(
Rs

t+1lt −Rd
t dt − flt

) 1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 +

1

et

∞̂

(
Rd
t (1−γt)+f−Rs

t+1
σt

)
Qt

σt
εt+1

Qt

lt
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1 =

1
et

[(
Rs

t+1lt −Rd
t dt − flt

)
1
2

(
1− erf

(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσt

σt

√
2τ

))
+

σtlt
Qt

(
τ√
2π

exp

(
−
(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσt

σt

√
2τ

)2
)

− ξ
2

[
1− erf

(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσt

σt

√
2τ

)])]
=

lt
et

{
σt

Qt

τ√
2π

exp

(
−
(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσt

σt

√
2τ

)2
)
+

1
2

(
Rs

t+1 −
σtξ
Qt

−Rd
t (1− γt)− f

)[
1− erf

(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσt

σt

√
2τ

)]}
.
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Since lt
et
= 1

γt
, we can rewrite the latter condition as (using that it holds for each i ∈ {s, r}):

Re,i
t+1 =

σi
t

Qt

τ√
2π

exp

−
(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσi

t

σi
t

√
2τ

)2
+ 1

2

(
Rs

t+1−
σi
tξ

Qt
−Rd

t (1−γt)−f

)[
1−erf

(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσi

t

σi
t

√
2τ

)]
γt

.

Note that the combined FOC from Appendix A.3 can be expressed as:

Et

{
β λct+1

λct

[
σi
t

Qt

τ√
2π

exp

(
−
(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσi

t

σi
t

√
2τ

)2
)
+

1
2

(
Rs

t+1 −
σi
tξ

Qt
−Rd

t − f
)[

1− erf

(
(Rd

t (1−γt)+f−Rs
t+1)Qt+ξσi

t

σi
t

√
2τ

)]]}
=

γt − χi
2t = γt

(
Etβ

λct+1

λct
Re,i

t+1 +
ζit
λct

)
− χi

2t,

where we substitute for 1 from Household’s FOC with respect to two types of equity:

βEt
λct+1

λct
Re,i

t+1 = 1− ζit
λct

.

Notice that lit > 0 implies both χi
2t = 0 and ζ it = 0 which say that the zero-profit condition

implies the FOC.

A.5 Expression of Expected Dividends

Expected dividends (valued on date t) are defined as

Ω (µt, σt; lt, dt, et) =

Et

βλct+1

λct

∞̂

(
Rd
t (lt−et)+flt

σtlt
−

Rs
t+1
σt

)
Qt

((
Rs

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)− flt

)
1√
2πτ 2

exp

(
−(εt+1 + ξ)2

2τ 2

)
dεt+1

 =

We have already calculated all the necessary integrals in Appendix A.1. Therefore,

Et

βλct+1

λct

σtlt
Qt

τ√
2π

exp

−

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)2
+

(
Rs

t+1lt −Rd
t (lt − et)− flt − σtξ

Qt
lt

)
2

[
1− erf

((
Rd

t (lt − et) + flt −Rs
t+1lt

)
Qt + ξσtlt

σtlt
√
2τ

)] .
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B The Non-Financial Firm’s Problem

B.1 Safe firms

Let πs
t+1 denote the revenue of a safe firm in period t+ 1 net of expenses:

πs
t+1 = yst+1 + (1− δ)Qtk

s
t+1 −Wt+1h

s
t+1 −Rs

t+1l
f,s
t .

In this notation, the problem of the safe firm is to

max
lf,st ,kst+1

Et

{
max
hs
t+1

πs
t+1

}
.

The first-order condition for maxhs
t+1
πs
t+1 is

∂πs
t+1

∂hs
t+1

= 0. It implies that

Wt+1 =
∂yst+1

∂hst+1

= (1− α)
yst+1

hst+1

= (1− α)At+1

(
kst+1

hst+1

)α

, (B.1)

hst+1 = (1− α)
yst+1

Wt+1

= (1− α)
At+1

(
kst+1

)α (
hst+1

)1−α

Wt+1

. (B.2)

Accordingly, the safe firm’s Lagrangian is:

Lsafe =Et

{
At+1

(
kst+1

)α (
hst+1

)1−α
+ (1− δ)Qt+1k

s
t+1 −Wt+1h

s
t+1 −Rs

t+1l
f,s
t

}
+

λshtEt

{
(1− α)

At+1

(
kst+1

)α (
hst+1

)1−α

Wt+1

− hst+1

}
+ λslt

(
lf,st −Qtk

s
t+1

)
.

Notice that there is no expectation operator on the Lagrangian multipliers because those

constraints hold under every state of nature. The problem implies the following first-order

conditions

∂Lsafe

∂lf,st

= −Et

[
Rs

t+1

]
+ λslt = 0,

∂Lsafe

∂kst+1

= Et

[
α
yst+1

kst+1

+ (1− δ)Qt+1

]
+ λsht (1− α)αEt

[
At+1

Wt+1

(
kst+1

hst+1

)α−1
]
− λsltQt = 0,

∂Lsafe

∂hst+1

= (1− α)
At+1

(
kst+1

)α (
hst+1

)1−α

Wt+1

−Wt+1 + λsht

[
(1− α)2

At+1

Wt+1

(
kst+1

hst+1

)α

− 1

]
= 0.

Combining ∂Lsafe

∂hs
t+1

= 0 with equation (B.2) yields λsht = 0. Then, plugging ∂Lsafe

∂lf,st

= 0 into

10



∂Lsafe

∂kst+1
for λslt, we get

Et

[
Rs

t+1

]
Qt = Et

[
α
yst+1

kst+1

+ (1− δ)Qt+1

]
.

Consider the zero-profit condition of the safe firm under all states of nature. Since the

production function has constant returns to scale,

yst+1 =
∂yst+1

∂kst+1

kst+1 +
∂yst+1

∂hst+1

hst+1 = αAt+1

(
kst+1

hst+1

)α−1

kst+1 +Wt+1h
s
t+1,

where we use equation (B.2) to substitute for Wt+1 in the last equality. Plugging the expres-

sion of yst+1 into πs
t+1 = 0 and using Qtk

s
t+1 = lf,st , we find that:

αAt+1

(
kst+1

hst+1

)α−1

kst+1 + (1− δ)Qt+1k
s
t+1 −Rs

t+1Qtk
s
t+1 = 0.

Since kst+1 > 0, we can divide by kst+1 to get

Rs
t+1Qt = αAt+1

(
kst+1

hst+1

)α−1

+ (1− δ)Qt+1 (B.3)

under all states of nature. This condition implies the first-order condition

Et

[
Rs

t+1

]
Qt = Et

[
αAt+1

(
kst+1

hst+1

)α−1

+ (1− δ)Qt+1

]
.

B.2 Risky Firms

Let πr
t+1 denote the revenue of a risky firm in period t+ 1 net of expenses:

πr
t+1 = yrt+1 + (1− δ)Qtk

r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t .

In this notation, the problem of the risky firm is to

max
lf,rt ,krt+1

Et

{
max
hr
t+1

πr
t+1

}
.
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The first-order condition for maxhr
t+1
πr
t+1 is

∂πr
t+1

∂hr
t+1

= 0. It implies that

Wt+1 =
∂yrt+1

∂hrt+1

= (1− α)At+1

(
krt+1

hrt+1

)α

, (B.4)

hrt+1 = (1− α)
At+1

(
krt+1

)α (
hrt+1

)1−α

Wt+1

. (B.5)

Accordingly, the risky firm’s Lagrangian is:

Lrisky =Et

[
At+1

(
krt+1

)α (
hrt+1

)1−α
+ εt+1k

r
t+1 + (1− δ)Qt+1k

r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t

]
+

λrhtEt

[
(1− α)

At+1

(
krt+1

)α (
hrt+1

)1−α

Wt+1

− hrt+1

]
+ λrlt

(
lf,rt −Qtk

r
t+1

)
.

Notice that there is no expectation operator on the Lagrangian multipliers because those

constraints hold under every state of nature. The problem implies the following first-order

conditions

∂Lrisky

∂lf,rt

= −Et

[
Rr

t+1

]
+ λrlt = 0,

∂Lrisky

∂krt+1

= Et

[
αAt+1

(
krt+1

hrt+1

)α−1

+ εt+1 + (1− δ)Qt+1

]
+

λrhtEt

[
α (1− α)

At+1

Wt+1

(
krt+1

hrt+1

)α−1
]
− λrltQt = 0,

∂Lrisky

∂hrt+1

= (1− α)At+1

(
krt+1

hrt+1

)α

−Wt+1 + λrht

[
(1− α)2

At+1

Wt+1

(
krt+1

hrt+1

)α

− 1

]
= 0.

Equation (B.4) together with ∂Lrisky

∂hr
t+1

= 0 yield λrht = 0. Plugging ∂Lrisky

∂lf,rt

= 0 into ∂Lrisky

∂krt+1
for

λrlt, we get

Et

[
Rr

t+1

]
Qt = Et

[
αAt+1

(
krt+1

hrt+1

)α−1

+ (1− δ)Qt+1 + εt+1

]
.

Combining equation (B.1) with equation (B.4):

kst+1

hst+1

=
krt+1

hrt+1

(B.6)

under all states of nature. But remember that the first-order condition of the safe firm
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implies

Et

[
Rs

t+1

]
Qt = Et

[
αAt+1

(
kst+1

hst+1

)α−1

+ (1− δ)Qt+1

]
.

Therefore

Et

[
Rs

t+1

]
Qt = Et

[
Rs

t+1Qt + εt+1

]
.

Consider the zero-profit condition of the risky firm under all states of nature.

πr
t+1 = yrt+1 + (1− δ)Qtk

r
t+1 −Wt+1h

r
t+1 −Rr

t+1l
f,r
t =

yrt+1 + (1− δ)Qtk
r
t+1 − (1− α)At+1

(
krt+1

)α (
hrt+1

)1−α −Rr
t+1l

f,r
t =

αAt+1

(
krt+1

)α (
hrt+1

)1−α
+ εt+1k

r
t+1 + (1− δ)Qtk

r
t+1 −Rr

t+1l
f,r
t =

αAt+1

(
krt+1

hrt+1

)α−1

krt+1 + εt+1k
r
t+1 + (1− δ)Qtk

r
t+1 −Rr

t+1l
f,r
t = 0,

where we use equation (B.5) to substitute for Wt+1h
r
t+1. Using equation (B.3) together with

equation (B.6), we can express

αAt+1

(
krt+1

hrt+1

)α−1

= Rs
t+1Qt − (1− δ)Qt+1,

that holds under all states of nature. Plugging it into the zero-profit condition and using

Qtk
r
t+1 = lf,rt , we find that:

Rs
t+1Qtk

r
t+1 − (1− δ)Qt+1k

r
t+1 + εt+1k

r
t+1 + (1− δ)Qtk

r
t+1 −Rr

t+1Qtk
r
t+1 = 0.

Since krt+1 > 0, we can divide by krt+1 to get

Rr
t+1Qt = Rs

t+1Qt + εt+1

under all states of nature. This condition implies

Et

[
Rr

t+1

]
Qt = Et

[
Rs

t+1Qt + εt+1

]
.

B.3 Aggregating across firms

Here we show that we can aggregate individual firms into two representative firms. Let

kij,t denote the capital chosen by firm i that is financed by borrowing from bank j. Both i and

j lie within the continuum of measure 1 of banks and firms, respectively. In this notation,

13



equation (B.6) is written as
kij,t+1

hij,t+1

=
kt+1

ht+1

, (B.7)

for all j ∈ [0, 1] and i ∈ [0, 1]. Each firm chooses the same capital-to-labor ratio independently

of the type of bank it borrows from.

Note that σt is the fraction of risky firms at date t; the remaining fraction 1−σt of firms

are safe firms. Let’s index firms as follows: firm j1, with j1 ∈ [0, σt], can only access a risky

technology subject to both aggregate and idiosyncratic shocks; firm j2, with j2 ∈ [σt, 1] has

access to a safe production technology subject to aggregate shocks only. Since there are no

equilibria with σ < σt < σ̄, the fraction of risky firms is linked to the fraction of banks with

risky portfolios as follows:

σt = (1− µt)σ + µtσ̄.

Define the following objects: Let Ks
s,t+1 =

´ 1
σt

´ 1
µt
kij,t+1djdi be the total capital allocated

to the safe technology and financed by borrowing from the banks that choose a fraction σ

of risky projects. Let Ks
r,t+1 =

´ 1
σt

´ µt

0
kij,t+1djdi be the total capital allocated to the safe

technology and financed by borrowing from the banks that choose a fraction σ̄ of risky

projects. We let Ks
t+1 denote the total capital allocated to the safe technology. Thus,

Ks
t+1 =

1ˆ

σt

1ˆ

0

kij,t+1djdi = Ks
s,t+1 +Ks

r,t+1,

Let Kr
s,t+1 =

´ σt

0

´ 1
µt
kij,t+1djdi be the total capital allocated to the risky technology and

financed by borrowing from the banks that choose a fraction σ of risky projects. Let

Kr
r,t+1 =

´ σt

0

´ µt

0
kij,t+1djdi be the total capital allocated to the safe technology and financed

by borrowing from the banks that choose a fraction σ̄ of risky projects. We let Kr
t+1 denote

the total capital allocated to the risky technology. Thus,

Kr
t+1 =

σtˆ

0

1ˆ

0

kij,t+1djdi = Kr
s,t+1 +Kr

r,t+1,

The same upper and lower case notation applies to labor, i.e. Hs
s,t+1 =

´ 1

σt

´ 1

µt
hij,t+1djdi;

Hs
r,t+1 =

´ 1
σt

´ µt

0
hij,t+1djdi; H

r
s,t+1 =

´ σt

0

´ 1
µt
hij,t+1djdi; H

r
r,t+1 =

´ σt

0

´ µt

0
hij,t+1djdi.
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Safe representative firm produces:

Y s
t =

1ˆ

σt−1

1ˆ

0

At

(
kij,t
)α (

hij,t
)1−α

djdi =

1ˆ

σt−1

1ˆ

0

F
(
kij,t, h

i
j,t

)
djdi =

Using that the technology has Constant Returns to Scale:

=

1ˆ

σt−1

1ˆ

0

[
Fkij,t

(
kij,t, h

i
j,t

)
kij,t + Fhi

j,t

(
kij,t, h

i
j,t

)
hij,t

]
djdi =

where Fkij,t

(
kij,t, h

i
j,t

)
and Fhi

j,t

(
kij,t, h

i
j,t

)
denote the partial derivative of F

(
kij,t, h

i
j,t

)
with

respect to kij,t and hij,t, respectively. Since these partial derivatives are homogeneous of

degree zero, we can express them in term of capital-labor ratio, i.e.

=

1ˆ

σt−1

1ˆ

0

[
fkij,t

(
kij,t
hij,t

)
kij,t + fhi

j,t

(
kij,t
hij,t

)
hij,t

]
djdi = Plugging equation (B.7) =

=

1ˆ

σt−1

1ˆ

0

[
fkt

(
kt
ht

)
kij,t + fht

(
kt
ht

)
hij,t

]
djdi =

fkt

(
kt
ht

) 1ˆ

σt

1ˆ

0

kij,tdjdi

+ fht

(
kt
ht

) 1ˆ

σt

1ˆ

0

hij,tdjdi

 = fkt

(
kt
ht

)
Ks

t + fht

(
kt
ht

)
Hs

t =

Since
Ks

s,t

Hs
s,t

=
Ks

r,t

Hs
r,t

= kt
ht
,then

Ks
t

Hs
t

ht

kt
=
(

Ks
s,t+Ks

r,t

Hs
s,t+Hs

r,t

)
Hs

r,t

Ks
r,t

= 1. Therefore
Ks

t

Hs
t
= kt

ht
.

= fKs
t

(
Ks

t

Hs
t

)
Ks

t + fHs
t

(
Ks

t

Hs
t

)
Hs

t = At (K
s
t )

α (Hs
t )

1−α .

Risky representative firm:

Y r
t =

σt−1ˆ

0

1ˆ

0

[
At

(
kij,t
)α (

hij,t
)1−α

+ εij,tk
i
j,t

]
djdi =

σt−1ˆ

0

1ˆ

0

F
(
kij,t, h

i
j,t

)
djdi+

σt−1ˆ

0

1ˆ

0

εij,tk
i
j,tdjdi

Note that the similar steps described above apply to the first term in the summation,

so that
´ σt−1

0

´ 1
0
F
(
kij,t, h

i
j,t

)
djdi = At (K

r
t )

α (Hr
t )

1−α. To express the second term, notice

that
´ σt−1

0

´ 1
0
εij,tk

i
j,tdjdi = −ξ. Moreover since each risky firm solves the same maximization

problem, it chooses the same amount of capital independently of the type of bank it borrows
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from. Therefore,
´ σt−1

0

´ 1
0
εij,tk

i
j,tdjdi = −ξKr

t . Hence,

Y r
t = At (K

r
t )

α (Hr
t )

1−α − ξKr
t .

C The Government

The government levies the tax to fully compensate for the loss to the deposit insurance

fund due to rescue of defaulted banks.

Tt = −

(
Rd
t−1Dt−1+fLt−1

σt−1Lt−1
− Rs

t
σt−1

)
Qt−1ˆ

−∞

((
Rs

t +
σt−1εt
Qt−1

)
Lt−1 −Rd

t−1Dt−1 − fLt−1

)
dG(εt) =

−

 ∞̂

−∞

((
Rs

t − f +
σt−1εt
Qt−1

)
Lt−1 −Rd

t−1Dt−1

)
dG(εt)−

∞̂

(
Rd
t−1Dt−1+fLt−1

σt−1Lt−1
− Rs

t
σt−1

)
Qt−1

((
Rs

t − f +
σt−1εt
Qt−1

)
Lt−1 −Rd

t−1Dt−1

)
dG(εt)

 =

Note that in the square bracket the first term equals
(
Rs

t − f − σt−1ξ
Qt−1

)
Lt−1 +Rd

t−1Dt−1. We

have already calculated the second term. Therefore,

=
σt−1Lt−1

Qt−1

τ√
2π

exp

(
−
(
Rd

t−1 (1− γt−1)Qt−1 + fQt−1 −Rs
tQt−1 + ξσt−1

σt−1

√
2τ

)2
)

−
(
Rs

t − f − σt−1ξ

Qt−1

)
Lt−1 +Rd

t−1Dt−1+

1

2
Lt−1

(
Rs

t − f − σt−1ξ

Qt−1

− (1− γt−1)R
d
t−1

)[
1− erf

(
Rd

t−1 (1− γt−1)Qt−1 + fQt−1 −Rs
tQt−1 + ξσt−1

σt−1

√
2τ

)]
=

σt−1Lt−1

Qt−1

τ√
2π

exp

(
−
(
Rd

t−1 (1− γt−1)Qt−1 + fQt−1 −Rs
tQt−1 + ξσt−1

σt−1

√
2τ

)2
)
−

1

2

(
Rs

tLt−1 −
σt−1ξ

Qt−1

Lt−1 −Rd
t−1Dt−1 − fLt−1

)[
1 + erf

(
Rd

t−1 (1− γt−1)Qt−1 + fQt−1 −Rs
tQt−1 + ξσt−1

σt−1

√
2τ

)]
.

D Choice of Risk

This appendix shows a proof that the expected dividends function of banks is convex in

the risk parameter σt. This result guarantees that banks choose either the maximum risk,

σ̄, or the minimum risk, σ, to maximize their profits, so all the intermediate values of σt,

which may result from the first-order conditions with respect to σt, are not optimal.

We generalize the proof taken from Van den Heuvel (2008) to the case with aggregate
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uncertainty. The proof applies to an arbitrary distribution of the idiosyncratic shock, εt+1,

with non-positive mean, so our example of a Normal distribution considered in the analysis

is not a special case which can drive our results. We use it for our quantitative analysis.

Assumption. ε has a cumulative distribution function Gε with support [ε, ε̄], with ε < 0 <

ε̄. The mean of ε is equal to −ξ (ξ > 0). ε is independent of the aggregate shock. The

aggregate shock does not depend on the choice of σt.

Note that we do not restrict the analysis to the bounded support26, so ε and ε̄ can take

−∞ and +∞, respectively. Note that Gε need not be continuous.

Let ε̂(σt, R
s
t+1) ≡

(
Rd

t dt
σtlt

− Rs
t+1+f

σt

)
Qt =

Rd
t (1−γt)+f−Rs

t+1

σt
Qt, where the latter equation uses

the result that the capital requirement constraint always binds. It denotes the realization

of the idiosyncratic shock below which the bank’s net worth is negative. Let π(σt, R
s
t+1) =

Eε

[((
Rs

t+1 − f + σtε
Qt

)
lt −Rd

t dt

)+]
be a function of expected dividends (taken over the

idiosyncratic shock only) under some realization of Rs
t+1 which is considered to be fixed

in this function. To account for the aggregate uncertainty, Rs
t+1 needs to be a random

variable. Therefore, expected dividends taken into account both idiosyncratic and aggregate

uncertainty are

Π(σt) =

ˆ

Ω

π
(
σt, R

s
t+1(ω)

)
P (dω) = Et

 ε̄ˆ

ε̂(σt, Rs
t+1)

((
Rs

t+1 − f +
σtε

Qt

)
lt −Rd

t dt

)
dGε

 =

Et

 ε̄ˆ

ε

((
Rs

t+1 − f +
σtε

Qt

)
lt −Rd

t dt

)
dGε

− Et

 ε̂(σt, Rs
t+1)ˆ

ε

((
Rs

t+1 − f +
σtε

Qt

)
lt −Rd

t dt

)
dGε

 =

EtR
s
t+1lt −Rd

t dt − flt −
σtξ

Qt

lt −
σtlt
Qt

Et

 ε̂(σt, Rs
t+1)ˆ

ε

(
ε− ε̂(σt, R

s
t+1)

)
dGε

 =

EtR
s
t+1lt −Rd

t dt − flt +
lt
Qt

σtEt

 ε̂(σt, Rs
t+1)ˆ

ε

(
ε̂(σt, R

s
t+1)− ε

)
dGε

− σtξ

 .

Note that in the derivations above we express
(
Rs

t+1 − f + σtε
Qt

)
lt − Rd

t dt in terms of

ε̂(σt, R
s
t+1) and ε using the definition of ε̂(σt, R

s
t+1).

The proof below shows that Π(σt) is convex in σt. Since the expression of Π(σt) involves

the term which is linear in σt and
lt
Qt

≥ 0, the sufficient condition for Π(σt) to be convex in

26Unbounded support is more relevant if we consider aggregate risk
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σt is that

H(σt) ≡ Et

[ˆ ε̂(σt)

ε
(ε̂(σt)− ε) dGε

]
σt

is convex in σt.

Claim. H(σt) ≡ ltEt

[´ ε̂(σt)

ε
(
ε̂(σt, R

s
t+1)− ε

)
dGε

]
σt is convex in σt:

Proof. Steps of the proof:

1. Define h(σt, R
s
t+1) ≡ σt

[´ ε̂(σt, Rs
t+1)

ε
(
ε̂(σt, R

s
t+1)− ε

)
dGε

]
in which the aggregate un-

certainty is taken off. Consider 3 cases:

(a) Realization of Rs
t+1 is such that ε̂(σt, R

s
t+1) =

Rd
t (1−γt)+f−Rs

t+1

σt
> 0, so Rs

t+1 <

Rd
t (1− γt) + f,

(b) Realization of Rs
t+1 is such that ε̂(σt, R

s
t+1) =

Rd
t (1−γt)+f−Rs

t+1

σt
< 0, so Rs

t+1 >

Rd
t (1− γt) + f,

(c) Realization of Rs
t+1 is such that ε̂(σt, R

s
t+1) =

Rd
t (1−γt)+f−Rs

t+1

σt
= 0, so Rs

t+1 =

Rd
t (1− γt) + f,

Show that h(σt, R
s
t+1) is convex in σt in cases 1a and 1b and h(σt, R

s
t+1) is linear in σt

in case 1c.

2. Employ the argument that convexity is preserved under non-negative scaling and ad-

dition (guaranteed by the expectation operator over the aggregate uncertainty) to find

that H(σt) is convex.

Let’s show each step of the proof formally

1. Let σ1t < σ2t and, for λ ∈ (0, 1), define σλt = λσ1t+(1−λ)σ2t. Let ε̂i = ε̂(σit, R
s
t+1) ≡

Rd
t (1−γt)+f−Rs

t+1

σit
Qt, for i = 1, 2, λ.
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(a) Rs
t+1 < Rd

t (1− γt) + f : it implies that ε̂2 < ε̂λ < ε̂1,

h(σλt) = (λσ1t + (1− λ)σ2t)

{ˆ ε̂(σλt)

ε
(ε̂(σλt)− ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂λ − ε) dGε −

ˆ ε̂1

ε̂λ

(ε̂λ − ε) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂λ − ε) dGε +

ˆ ε̂λ

ε̂2

(ε̂λ − ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂1

ε̂λ

(ε− ε̂λ) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂λ

ε̂2

(ε̂λ − ε) dGε

}
≤

λσ1t

{ˆ ε̂1

ε
(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂1

ε̂λ

(ε̂1 − ε̂λ) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂λ

ε̂2

(ε̂λ − ε̂2) dGε

}
,

where the inequality sign comes from
´ ε̂1
ε̂λ

(ε− ε̂λ) dGε ≤
´ ε̂1
ε̂λ

(ε̂1 − ε̂λ) dGε and´ ε̂λ
ε̂2

(ε̂λ − ε) dGε ≤
´ ε̂λ
ε̂2

(ε̂λ − ε̂2) dGε. Substituting for the definitions of h(σ1t) =

σ1t
´ ε̂1
ε (ε̂1 − ε) dGε and h(σ2t) = σ2t

´ ε̂2
ε (ε̂2 − ε) dGε, we get:

h(σλt) ≤ λh(σ1t) + (1− λ)h(σ2t) + λσ1t {(ε̂λ − ε̂1)Gε(ε̂λ)}+

(1− λ)σ2t {(ε̂λ − ε̂2)Gε(ε̂λ)} = λh(σ1t) + (1− λ)h(σ2t)+

Gε(ε̂λ) (λσ1t (ε̂λ − ε̂1) + (1− λ)σ2t (ε̂λ − ε̂2)) = λh(σ1t) + (1− λ)h(σ2t),

where we use that σ1t = lt
(
Rd

t (1− γt) + f −Rs
t+1

)
= σ2tε̂2 = σλtε̂λ in the last

equality. So,

λσ1t (ε̂λ − ε̂1) + (1− λ)σ2t (ε̂λ − ε̂2) =

ε̂λ (λσ1t + (1− λ)σ2t)−
(
Rd

t (1− γt) + f −Rs
t+1

)
(λ+ (1− λ)) =

σλtε̂λ −
(
Rd

t (1− γt) + f −Rs
t+1

)
=
(
Rd

t (1− γt) + f −Rs
t+1

)
−
(
Rd

t (1− γt) + f −Rs
t+1

)
= 0.

Therefore, h(σt) is convex in σt for R
s
t+1 < Rd

t (1− γt) + f .
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(b) Rs
t+1 > Rd

t (1− γt) + f : it implies that ε̂1 < ε̂λ < ε̂2

h(σλt) = (λσ1t + (1− λ)σ2t)

{ˆ ε̂(σλt)

ε
(ε̂(σλt)− ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂λ − ε) dGε +

ˆ ε̂λ

ε̂1

(ε̂λ − ε) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂λ − ε) dGε −

ˆ ε̂2

ε̂λ

(ε̂λ − ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂λ

ε̂1

(ε̂λ − ε) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂2

ε̂λ

(ε− ε̂λ) dGε

}
≤

λσ1t

{ˆ ε̂1

ε
(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂λ

ε̂1

(ε̂λ − ε̂1) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂2

ε̂λ

(ε̂2 − ε̂λ) dGε

}
,

where the inequality sign comes from
´ ε̂λ
ε̂1

(ε̂λ − ε) dGε ≤
´ ε̂λ
ε̂1

(ε̂λ − ε̂1) dGε and´ ε̂2
ε̂λ

(ε− ε̂λ) dGε ≤
´ ε̂2
ε̂λ

(ε̂2 − ε̂λ) dGε. Substituting for the definitions of h(σ1t) =

σ1t
´ ε̂1
ε (ε̂1 − ε) dGε and h(σ2t) = σ2t

´ ε̂2
ε (ε̂2 − ε) dGε, we get:

h(σλt) ≤ λh(σ1t) + (1− λ)h(σ2t) + λσ1t {(ε̂λ − ε̂1)Gε(ε̂λ)}+

(1− λ)σ2t {(ε̂λ − ε̂2)Gε(ε̂λ)} = λh(σ1t) + (1− λ)h(σ2t)+

Gε(ε̂λ) (λσ1t (ε̂λ − ε̂1) + (1− λ)σ2t (ε̂λ − ε̂2)) = λh(σ1t) + (1− λ)h(σ2t),

where the last equality follows from the same reasoning employed in the previous

case. Therefore, h(σt) is convex in σt for R
s
t+1 > Rd

t (1− γt) + f .

(c) Rs
t+1 = Rd

t (1− γt) + f . Hence, ε̂(σt) = 0 and

h(σt) = σt

[ˆ 0

ε
(0− ε) dGε

]
,

which is linear in σt

2. We found in 1 that h(σt, R
s
t+1) is convex in σt for each R

s
t+1 ∈ R. Consider P (ω) ≥ 0
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for each Rs
t+1(ω) ∈ R. Then the following function27:

ˆ
Ω

h
(
σt, R

s
t+1(ω)

)
P (dω) = Eth(σt, R

s
t+1) ≡ H(σt)

is convex in σt. It follows directly from the linearity of the expectation operator which

puts a non-negative weight on every realization of Rs
t+1 and the fact that the sum of

convex functions is a convex function. Therefore, Π(σt) is convex in σt. □

27Linearity in σt for one particular value of R
s
t+1 can be considered as a weakly convex function, so it does

not change the nature of the argument
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E Equilibrium Conditions

For ∀i ∈ [s, r]:

(Ct − κCt−1)
−ςc − βκEt (Ct+1 − κCt)

−ςc − λct = 0 (E.1)

ς0D
−ςd
t − λct + Etβλct+1R

d
t = 0, (E.2)

−λct + Etβλct+1R
e,s
t+1 + ζst = 0, (E.3)

−λct + Etβλct+1R
e,r
t+1 + ζrt = 0, (E.4)

ζstE
s
t = 0, (E.5)

ζrtE
r
t = 0 (E.6)

γt − χi
2t = Et

βλct+1

λct

 σi
t

Qt

τ√
2π

exp

−

((
Rd

t (1− γt) + f −Rs
t+1

)
Qt + ξσi

t

σi
t

√
2τ

)2
+

1

2

(
Rs

t+1 −
σi
tξ

Qt

−Rd
t − f

)[
1− erf

((
Rd

t (1− γt) + f −Rs
t+1

)
Qt + ξσi

t

σi
t

√
2τ

)]]}
,

(E.7)

Re,i
t+1 =

1

γt

 σi
t

Qt

τ√
2π

exp

−

((
Rd

t (1− γt) + f −Rs
t+1

)
Qt + ξσi

t

σi
t

√
2τ

)2
+

1

2

(
Rs

t+1 −
σi
tξ

Qt

−Rd
t − f

)[
1− erf

((
Rd

t (1− γt) + f −Rs
t+1

)
Qt + ξσi

t

σi
t

√
2τ

)]}
,

(E.8)

χi
2tl

i
t = 0, (E.9)

σs = σ, (E.10)

σr = σ̄, (E.11)

lit = dit + eit, (E.12)

eit = γtl
i
t, (E.13)

Ω(σi
t; l

i
t, d

i
t, e

i
t) = Et

[
β λct+1

λct
Re,i

t+1e
i
t

]
, (E.14)

µt =
Er

t

Es
t+Er

t
, (E.15)
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Ls
t = (1− µt) l

s
t , (E.16)

Lr
t = µtl

r
t , (E.17)

Ei
t = γtL

i
t, (E.18)

Li
t = Di

t + Ei
t , (E.19)

Dt = Ds
t +Dr

t , (E.20)

Y s
t = At (K

s
t )

α (Hs
t )

1−α , (E.21)

Y r
t = At (K

r
t )

α (Hr
t )

1−α − ξKr
t , (E.22)

QtK
s
t+1 = (1− σ)Ls

t + (1− σ̄)Lr
t , (E.23)

QtK
r
t+1 = σLs

t + σ̄Lr
t , (E.24)

Wt = (1− α)
Y s
t

Hs
t
, (E.25)

Rs
t =

αAt

Qt

(
Ks

t

Hs
t

)α−1

+ (1− δ) Qt+1

Qt
, (E.26)

Rr
t = Rs

t +
εt

Qt−1
, (E.27)

Ks
t

Hs
t
=

Kr
t

Hr
t
, (E.28)

Hs
t +Hr

t = 1, (E.29)

Kt = Ks
t +Kr

t , (E.30)

Kt+1 = It + (1− δ)Kt, (E.31)

It = ηt

[
1− ϕ

2

(
Igt
Igt−1

− 1
)2]

Igt , (E.32)

ηtQt

[
1− ϕ

2

(
Igt
Igt−1

− 1

)2
]
−ηtQtϕ

(
Igt
Igt−1

− 1

)
Igt
Igt−1

− 1+

ηt+1ψt,t+1Qt+1ϕ

(
Igt+1

Igt
− 1

)
Igt+1

(Igt )
2 I

g
t+1 = 0,

(E.33)

Y s
t + Y r

t = Ct + Igt , (E.34)

Tt = Lt−1

 σt−1

Qt−1

τ√
2π

exp

−

((
Rd

t−1 (1− γt−1) + f −Rs
t

)
Qt−1 + ξσt−1

σt−1

√
2τ

)2
−

1

2

(
Rs

t −Rd
t−1 (1− γt−1)− f − ξσt−1

Qt−1

)[
1 + erf

((
Rd

t−1 (1− γt−1) + f −Rs
t

)
Qt−1 + ξσt−1

σt−1

√
2τ

)]}
.

(E.35)
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F Discussion of the Excessive Risk-Taking Mechanism

Following our result derived earlier, we can express the erf function in terms of the share of

non-defaulted deposits of the representative bank and then decompose the expected dividend

into two components:

Ω (µt, σt; lt) = Et {Λt,t+1lt [ω1 + ω2 − (1− γt)]} ,

where

[ω1 + ω2] =



(
Rs

t+1 −Rd
t (1− γt)− f − ξσt

Qt

)(
1−G(ε∗t+1)

)︸ ︷︷ ︸
non-defaulted︸ ︷︷ ︸

ω1 ≡ returns from a loan

portfolio with riskiness σt

+

(
σt
Qt

)
τ√
2π

exp

(
−
(
ε∗t+1 + ξ

τ
√
2

)2
)

︸ ︷︷ ︸
ω2 ≡ bonus from

projects volatility


,

and the cutoff point ε∗t+1 is defined by Rd
t (1− γt)Qt − f −Rs

t+1Qt = σtε
∗
t+1.

The first component, ω1, distinguishes loan returns of riskiness σt controlling for the

variance of idiosyncratic shock (when τ is taken as given). The bank trades off the benefits

from limited liability and deposit insurance with a smaller profitability of riskier projects.

The term ξσt

Qt
reflects, in expectation, the reduction of loan returns for the bank holding σt

share of risky projects. The bank receives net income on loans, Rs
t+1 −Rd

t (1− γt)− f − ξσt

Qt
,

if it does not default on deposits which happens with probability 1 − G(ε∗t+1). If the bank

defaults, it gets zero, i.e. 0 ·G(ε∗t+1) which is not shown in the expression explicitly.

The second counterpart of the above decomposition, ω2, comprises the extra effect of σt

on expected dividends that comes from more dispersed returns from projects. In fact, ω2

is strictly increasing in τ : the bank views projects as a call option the value of which rises

with volatility associated with higher upside. Limited liability bounds the payoff to zero in

the worst case scenario.

Risk-taking incentives depend on the difference between returns on safe loans and returns

on deposits. Table 7 illustrates the effects of greater risk taking on two components of div-

idends for each realization of the aggregate returns. We map aggregate returns into states

of nature and consider two cases depending on the sign of ε∗t+1. The aggregate returns influ-

ence the value of the shield of limited liability. Risk amplifies the effect of the idiosyncratic

shock. So, in every state of nature, the bank’s choice of risk is determined by the expected
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effect of the idiosyncratic shock on the value of the shield of limited liability and returns on

loans. The up-turn arrow, ⇑, indicates that greater risk taking increases the corresponding

component of bank’s dividends. The down-turn arrow, ⇓, means that the corresponding

component of bank’s dividends decreases with greater risk taking. Two arrows turned in the

opposite directions, ⇑⇓, signify that the effect of greater risk taking is undetermined and

depends the parameterization.

Table 7: Illustrating the Effects of Higher Risk on Dividends.

States of nature where
Effects on ω1

Effects on ω2
Rs

t+1 −Rd
t (1− γt)− f − ξσt

Qt
1−G(ε∗t+1)

Rs
t+1 < Rd

t (1− γt) + f ⇔ ε∗t+1 > 0 ⇓ ⇑ ⇑

Rs
t+1 > Rd

t (1− γt) + f ⇔ ε∗t+1 < 0 ⇓ ⇓
if ε∗t+1 > −ξ, then ⇑⇓
if ε∗t+1 ⩽ −ξ, then ⇑

First, ε∗t+1 > 0 indicates that the bank makes losses on safe loans. It happens in those

states of nature where the net income from the zero-risk portfolio is negative, so the bank is

behind the shield of limited liability. By accepting more risk, the bank is more likely to get

a positive net return under a favorable realization of the idiosyncratic shock as risk acts like

a leverage on the size of the shock. Therefore, 1−G(ε∗t+1) rises. This balances with smaller

returns on a portfolio with more risky loans, i.e. Rs
t+1 − Rd

t (1− γt) − f − ξσt

Qt
goes down.

Similarly, gambling on more dispersed returns allows the bank to move away from a zero

return that comes from the limited liability to some positive return that is accompanied by

less frequent defaults. So, the effect of σt on expected dividends from ω2 is positive.

Second, ε∗t+1 < 0 shows that the bank makes positive profits on safe loans. The bank is

more likely to default when it takes on more risk because any negative idiosyncratic shock

would be amplified by risk. The bank internalizes that riskier projects are less profitable.

Therefore, the overall effect of greater risk on ω1 is negative when ε∗t+1 < 0.

Then consider the bonus from projects volatility. If −ξ < ε∗t+1 < 0, there are two

contrasting forces. On the one hand, the bank always benefits from limited liability that

makes the variance of projects returns attractive. On the other hand, the bank is more

concerned about (and more vulnerable to) the variability of returns in the situation when

taking on more risk would result in zero payoff instead of some positive payoff achieved by

smaller risk. It occurs when −ξ < ε∗t+1 < 0. In these states of nature, the bank requires

greater than average realization of the idiosyncratic shock in order to get a positive return.

Call this type of shock a good idiosyncratic shock. This shock happens with probability

smaller than 0.5. Define a bad idiosyncratic shock as a complement to a good idiosyncratic

shock. An increase in risk increases the profits under a good shock. It captures the benefits

from greater upside. At the same time, an increase in risk makes it more likely to get a
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bad shock. The bank trades off marginal profits coming from a good shock with marginal

losses coming from the reduction of profits due to more defaults. Since the probability of the

latter is greater than the probability of the former, the losses from defaults can dominate the

benefits from greater volatility. This force goes in the opposite direction when ε∗t+1 ⩽ −ξ.
The difference is that here the bank is more likely to get a good shock than a bad shock.

Therefore, the bank puts more weight on the benefits from risk taking than on its costs.

It is verified mathematically that the effects of σt on ω2 is unambiguously positive when

ε∗t+1 ⩽ −ξ.
In sum, we find that net returns on safe loans, Rs

t+1 −Rd
t (1− γt)− f , is the main driver

for the bank’s choice of risk. In the partial-equilibrium setting, we differentiate between

three cases that characterize incentives for risk taking.

First, Rs
t+1 < Rd

t (1− γt) + f applies to the states of nature where a relatively large

negative aggregate shock is realized. Two forces against the one that seems to be of lesser

relevance make the bank benefit most from taking risk. Second, −ξ < Rd
t (1− γt)+f−Rs

t+1 <

0 applies to the states of nature where intermediate values (not too large and not too small)

of either negative or positive aggregate shock are realized. There are more forces that lower

incentives for risk. Third, Rd
t (1− γt) + f −Rs

t+1 < −ξ applies to the states of nature where

a positive aggregate shock of a larger size is realized. Interestingly, there is a force associated

with the bonus from projects volatility that makes it possible for the bank to increase risk.

The choice of risk depends on the strength of that force, ω2, relative to the negative exposure

of returns from a loan portfolio to risk, ω1. It still remains a quantitative question to find

out how risk taking is determined in the general equilibrium set-up.

Capital requirements affect risk taking through a change in ε∗t+1. When γt increases, ε
∗
t+1

falls. It means that the bank will be more likely to find itself in the states of nature where

ε∗t+1 is negative. It forces the bank to keep more skin in the game, make the shield of limited

liability less attractive and prevent the switch into financing risky projects.

G Calibration of τ

To calibrate the variance of the idiosyncratic shock τ , we link the production function

of the risky firm to the production function of the safe firm that has a preexisting debt.

Remember that the next period returns to safe and risky loans are given by

Rs
t+1 =

αAt+1

Qt

(
Kt+1

Ht+1

)α−1

+ (1− δ)
Qt+1

Qt

,

Rr
t+1 = Rs

t+1 + σRF
εt+1

Qt

,
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respectively. The parameter σRF is needed to distill the exposure of banks (versus other

financial intermediaries) to the risk arising in the leveraged loan market. It captures the fact

that a certain fraction of leveraged loans is held by the non-bank sector which we do not

model here. The risky bank that finances the maximum share of risky projects earns

Ωrisky
t+1 = Rr

t+1QtK
r
t+1.

It comprises EBITDA and what the bank makes or loses by selling capital to capital pro-

ducers. The safe bank with preexisting debt earns

Ωsafe
t+1 = Rs

t+1Qt (Kt+1 +Bt)−QtBtR
B
t =

(
Rs

t+1

(
1 +

Bt

Kt+1

)
− Bt

Kt+1

RB
t

)
QtKt+1,

where Bt is a predetermined debt, measured in units of capital, and RB
t is a predetermined

interest rate. We equate the conditional variances of the returns to loans

V art
(
Rr

t+1

)
= V art

(
Rs

t+1

(
1 +

Bt

Kt+1

)
− Bt

Kt+1

RB
t

)
to find the variance of the idiosyncratic shock that matches Debt

EBITDA
= 6. Note that

V art
(
Rr

t+1

)
= V art

(
Rs

t+1

)
+

(
σRF

Qt

)2

τ 2,

V art

(
Rs

t+1

(
1 +

Bt

Kt+1

)
− Bt

Kt+1

RB
t

)
=

(
1 +

Bt

Kt+1

)2

V art
(
Rs

t+1

)
,

where Kt+1 is the steady-state level of capital of the safe firms that are financed by commer-

cial banks and Qt = 1 in the steady state.

The conditional variance of the returns on safe loans is given by

V art
(
Rs

t+1

)
= α2

(
Kt+1

Ht+1

)2α−2

V art (At+1) + (1− δ)2V art (Qt+1)+

2α

(
Kt+1

Ht+1

)α−1

(1− δ)Covt (At+1, Qt+1) .

We can calculate the conditional variance of Qt+1 by picking up its process from the

optimization problem of capital producers. However, our approach is meant to be suggestive,

and we equate the conditional variances of Qt+1 and the aggregate shock. The covariance

term is expected to be positive, but we drop it in our calculation because the terms that

multiply the covariance are small. The model’s counterpart for EBITDA is a total output
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net of compensation for labor. Thus

Debt

EBITDA
=

Bt

Y safe
t −WtH

safe
t

=
Bt

αY safe
t

.

The data analog of σRF is the share of leveraged loans held by banks (where the remaining

fraction is held by nonbanks). We choose σRF = 45% from the Shared National Credit Report

issued by the Fed, OCC, and FDIC.

H Sensitivity Analysis

Most of the parameters for our model are standard in the literature but there are a

handful of parameters specific to the key financial friction in our model whose role in our

baseline results warrants further discussion.

Our first set of sensitivity results pertains to the steady-state capital requirements. Our

analysis shows that a wide range of steady-state capital requirements can be supported by

setting τ , the standard deviation of the risky firm’s idiosyncratic shock, or ξ, the average

penalty from financing risky projects, without changing any other parameter. For our cali-

bration, we map the choice of τ into the level of risk that a bank would face when financing

a firm with pre-existing debt. We treat ξ as a free parameter to set an empirically plausible

steady-state capital requirement of 10 percent. We prefer this approach to taking a strong

stance on the average penalty from pursuing risky projects and using the model to support

a firm estimate of an optimal capital requirement in the steady state.

In our next set of sensitivity exercises, we also explore how the same parameters that

strongly influence the steady-state capital requirements, τ and ξ, can affect the size of the

optimal changes in capital requirements in response to shocks. As an example, we focus on

the response to total factor productivty (TFP) shocks. Intuitively, the greater size of the

idiosyncratic returns to risky projects or the smaller the average penalty for risky projects,

the greater is the increase in capital requirements necessary to avoid excessive risk taking in

response to the same-size TFP shock.

Moving beyond the parameters τ and ξ, we discuss sensitivity to the parameterization

of the curvature of deposits in the utility function. In line with related papers that have

explored optimal capital requirements, we choose this curvature to imply an interest elasticity

of deposit supply close to 1. We find little to no difference in our results when exploring

lower values of this elasticity up to one-tenth — those are the values of the interest elasticity

for deposits considered in the papers most closely related to ours. We note that in the

broader literature that examines the role of monetary aggregates in the conduct of monetary
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policy, the value of the relevant interest rate elasticity is far from settled. Calibrating the

curvature of deposits in the utility function to imply a greater interest sensitivity for the

households’ supply of deposits results in a greater increase in funding costs for the same-size

contraction in TFP. In that case, the incentive for banks to switch to risky projects under a

constant capital requirement is magnified and results in a longer permanence in the regime

with excessive risk taking. Accordingly a higher interest rate elasticity for deposits also

results in a greater increase in capital requirements in response to the same size change in

TFP.

Our final set of sensitivity results considers an alternative calibration of the shock pro-

cesses in conjunction with our exploration of the relative merits of simple rules and static

capital buffers. We consider an alternative calibration that only uses the two macroeconomic

shocks – TFP and ISP (investment specific). We show that in this special case, there exist

simple and implementable rules that track the Ramsey policy fairly well. In this case, relative

prices can be used to ameliorate the problem of sorting out the relative size of the shocks.

Accordingly, in this special setting, some simple rules for setting capital requirements for

banks can perform almost as well as the optimal Ramsey rule. Still, it remains the case that

a small capital buffer can also perform nearly as well as the Ramsey policy.

H.1 Steady-state Capital Requirements

Figure 7 illustrates how steady-state capital requirements depend on the choices of two

parameters: 1) τ , the standard deviation of the risky firm’s idiosyncratic shock, and 2) ξ, the

average penalty from financing risky projects. We find that these two parameters are mainly

responsible for driving the variation of steady-state capital requirements. The left subplot

of Figure 7 shows the dependence of steady-state capital requirements on τ keeping all other

parameters fixed. The right subplot of Figure 7 shows the dependence of steady-state capital

requirements on ξ keeping all other parameters fixed. The encircled points in red depict our

baseline calibrated values.

When τ increases, the shield of limited liability becomes more attractive as the upside

potential of risky assets goes up. To prevent excessive risk taking, capital requirements rise.

Therefore, the line slopes upward in the left subplot of Figure 7. Notice that steady-state

capital requirements are relatively sensitive to τ , so we can achieve a wide range of steady-

state capital requirements by changing τ without needing to adjust any other parameters.

When ξ increases, risky projects become less attractive. Capital requirements fall to make

it possible for the economy to benefit from liquidity services without affecting risk-taking

profile. Therefore, the line slopes downward in the right subplot of Figure 7. Notice that
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steady-state capital requirements vary from around 5% to almost 15% when ξ lies within a

relatively narrow range of one percentage point. This graphical analysis demonstrates our

claim that alternative choices of τ and ξ could support a wide range of capital requirements

in the steady state.

Figure 6: Effects of the Standard Deviation of Idiosyncratic Returns for Risky
Projects (τ) and the Average Penalty on Returns for Risky Projects (ξ) on
Steady-state Capital Requirements
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H.2 Optimal Changes in Capital Requirements

For our next set of sensitivity results we show that the same parameters that strongly

influence the steady state capital requirements also affect the size of the optimal adjustments

in capital requirements in response to shocks. As an example of the optimal dynamic adjust-

ments for capital requirements, we focus on the response to TFP shocks. Figure 8 plots the

maximum adjustment (in absolute value) in the optimal capital requirements and output to
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the same 1.5 percent contraction in TFP as in Figure 3, described in Section 6.3 of the main

text. The two subplots on the left side of Figure 8 show the maximum responses of optimal

capital requirements and output for different values of τ keeping all other parameters fixed.

The other subplots on the right side of Figure 8 show the maximum responses of optimal

capital requirements and output for different values of ξ keeping all other parameters fixed.

The circles in these diagrams represent the baseline calibrations.

The maximum adjustment in the optimal capital requirements is especially sensitive to

increases in τ . At the outer range of the values of τ that we consider, we can boost the change

in capital requirements to a more substantive 0.75 percent in response to a TFP shock that,

at its peak, still reduces output by 1.5 percent, just as in Figure 3. The maximum adjustment

in the optimal capital requirements is also sensitive to changes in ξ for relatively small values

of ξ but then it becomes almost insensitive for higher values. At the same time, the response

of output, at its trough, is not affected by different alternatives of ξ.

H.3 Curvature of Deposits in the Utility Function

Sizing the curvature of deposits in the utility function, governed by the parameter ςd,

is closely related to sizing the interest elasticity of money demand, a topic of extensive

interest.28 The debate on the relevant interest elasticity of money demand (our household

supply of deposits to banks) is still far from settled. As noted in Friedman (1966), a major

strand of Keynesian analysis traces the implications of assuming an elasticity of money

demand with respect to the interest rate as being very high, approaching infinity (in Keynes

terms, liquidity preference is, if not absolute, approximately so). By contrast, Friedman and

Schwartz (1963), championed a much lower estimate of 0.15.29. For our model in which the

curvature parameter and the elasticity are the inverse of each other, these stances would

map into a curvature parameter, ςd, close to 0, on the Keynesian side and close to 7 on the

Monetarist side. The more recent literature continues to showcase a wide range of stances.30

We choose a value of ςd of 1.1 to approximate an elasticity of 1 as in Nagel (2016) – our

standard utility function has a discontinuity at 1. Empirical estimates focused on the interest

sensitivity of deposits, as in Begenau (2020), point to values of this elasticity very close to

our choice, about 0.7 (or ςd = 1.4). The extensive sensitivity analysis in Section H of the

Appendix shows that elasticity values in the range 0.15-1 would imply negligible differences

28Bank notes and demand deposits at banks are close substitutes and deposits are an important component
of money stock measures, such as M1 and M2 in the H.6 Release of the Federal Reserve Board.

29See Chapter 12 of Friedman and Schwartz (1963)
30Reviewing some prominent recent examples, Stein (2012) uses a value for the interest elasticity of money

demand approaching infinity and Christiano, Motto and Rostagno (2010) choose an elasticity very close to
0.15 (they set the parameter for the curvature of money in the utility to 7).
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Figure 7: The Maximum Adjustment of Optimal Capital Requirements and Out-
put to a Negative TFP Shock for Alternative Choices of the Parameters Gov-
erning the Standard Deviation of Idiosyncratic Returns for Risky Projects and
the Average Penalty on Returns for Risky Projects (τ and ξ)
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for our results.

Figure 9 considers the same 1.5 percent contraction in total factor productivity as in

Figure 3, described in Section 6.3 of the main text. In Figure 9, the two lines in each panel

show responses for our baseline calibration (the solid line) and for an alternative calibration
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with a curvature parameter for deposits in the utility function set to ςd = 0.001 (the dashed

line) as opposed to 1.1 under our baseline. We chose ςd = 0.001, corresponding to an interest

rate elasticity for deposits of 1
ςd

= 1000, as a stand-in for an infinite interest rate elasticity.

As established in Section 6.3, a contractionary TFP shock reduces the expected returns

from safe projects. With a fixed capital requirement, this contraction can push banks to

engage in excessive risk taking. On the household side, the shock compresses income, but

consumption does not have to fall proportionately with income, as households can reduce

their supply of deposits. All else equal, this reduction in deposits pushes up the funding

costs and makes the shield of limited liability even more attractive for banks, after all with

that shield, banks do not have to repay depositors.

The willingness of households to vary their supply of deposits as consumption or deposit

rates move is governed by the parameter ςd. The lower this parameter, the more willing

households are to adjust deposits to cushion fluctuations in consumption. Notice that from

the first-order condition for the household utility-maximization problem with respect to

deposits (refer to equation (E.2)), one can see that the parameter ςd governs both the inverse

elasticity with respect to the deposit rate and the sensitivity of the reaction of deposits to

changes in the marginal utility of consumption, through the term λt. In our calibration,

we pin down the parameter with empirical evidence from studies that have estimated the

interest sensitivity of deposits or, more broadly, money demand.

As lower values for ςd result in a greater increase in funding costs for the same-size

contraction in technology, the incentive for banks to switch to risky projects under a constant

capital requirement is magnified and results in a longer permanence in the regime with

excessive risk taking. In turn, when we choose capital requirements optimally, lower values

for the parameter ςd will imply that capital requirements have to rise by more, as shown in

Figure 10.

We found no visible difference for values of ςd even lower than 0.001 – intuitively, an

elasticity of 1000 is already very high. We also found that the responses to technology

and other shocks are indistinguishable for our baseline calibration of ςd = 1.1, a numerical

approximation of the log case, relative to 1.4, the value chosen by Begenau (2020) or relative

to even 7, the value estimated by Christiano, Motto and Rostagno (2010). For these higher

values of the parameter, households are already so keen to maintain a stable level of deposits

that increases in the inelasticity do not produce meaningful quantitative effects. To illustrate

these results, we consider additional sensitivity to a broader set of parameters than those

shown in Figures 9 and 10. Figure 11 reports the duration of the regime with excessive risk

taking in reaction to the same 1.5 percent reduction in TFP under a range of values for

ςd, keeping capital requirements fixed. We can see that the number of excessive risk-taking
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episodes is not affected by ςd when ςd > 1.

Figure 8: A Negative TFP Shock Under Fixed Capital Requirements for Al-
ternative Choices of the Parameter Governing the Interest Elasticity for the
Households’ Supply of Deposits (elasticity = 1

ςd
)
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H.4 Alternative Shock Calibration

Here we will consider an alternative calibration that just uses the two macroeconomic

shocks – TFP and ISP (investment specific). We will show that in this special case, there exist

simple and implementable rules that track the Ramsey policy fairly well in this calibration.
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Figure 9: A Negative TFP Shock Under Optimal Capital Requirements for Al-
ternative Choices of the Parameter Governing the Interest Elasticity for the
Households’ Supply of Deposits (elasticity = 1

ςd
)
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These rules can perform differently depending on the calibrations we are using but they share

the same finding that a relatively small capital buffer can perform as well as such rules in

matching the Ramsey policy. The advantages of setting the buffer include that we do not

impose strict informational requirements on the structure of our economy while still being

able to achieve the performance standards set by the Ramsey policy.
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Figure 10: Duration of Excessive Risk Taking for Alternative Choices of the Pa-
rameter Governing the Interest Elasticity for the Households’ Supply of Deposits
(elasticity = 1

ςd
)
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H.4.1 Matching Moments, Shock Processes and Variance Decompositions

We follow exactly the same SMM procedure described in main text to calibrate our model

with the two shocks. The only difference is the number of shocks that we include in the

calibration. Table 10 describes our results of the moment-matching exercise. It shows that

model moments are close to data moments. Notice that there is no discernible difference in

the targeted moments compared to our benchmark calibration in Table 4. Both calibrations

are very good. Moreover, the values of the distance functions reported at the bottom of the

tables show differences that are trivial, on the order of 2× 10−7.

Tables 8 and 9 show the shock processes and the variance decompositions associated with

the calibration considered here. Both shocks are persistent. But in the variance decompo-

sitions, the TFP shock does all of the work for GDP and investment; the ISP shock only

matters for the investment price. Note also that the ISP shock explains all the variation in

the Ramsey policy setting, γ.
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Table 8: Alternative Calibration With TFP and ISP (Investment Specific) Shocks,
Shock Processes

AR(1) param. Innov. St. Dev.
TFP 0.79 0.0093
ISP 0.95 0.0052

Distance Function 0.0012289861

Table 9: Alternative Calibration With TFP and ISP (Investment Specific) Shocks,
Variance Decomposition

var(GDP) var(invest.) var(invest. p.) var(gamma) var(credit/GDP)
TFP 100 99 8 0 59
ISP 0 1 92 100 41

Table 10: Alternative Calibration With TFP and ISP (Investment Specific)
Shocks, Matching Moments

Data Model
Var(GDP) 0.92 0.97
Corr(GDP,Investment) 0.96 1.00
Corr(GDP,Investment Price) 0.08 0.08
Var(Investment) 27.68 27.68
Corr(Investment,Investment Price) 0.02 0.06
Var(Investment Price) 0.40 0.38
Autocorr(GDP) 0.93 0.88
Autocorr(Investment) 0.93 0.88
Autocorr(Investment Price) 0.87 0.88
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H.4.2 Implementable Capital Buffer Rules

Table 11 reports our results for various policy rules under this alternative calibration.

The first column lists the variables in the rule; the second column gives the R-square for the

rule’s regression; the third and fourth columns show the regression coefficients; the fifth and

sixth columns report the rule’s performance measures: the average number of risk-taking

quarters per 100 years and the average level of deposits when the static capital buffer is 10

basis points (that is, when the steady-state capital requirement is raised from 10 percent to

10.1 percent); and finally, the seventh and eighth columns report the performance measures

when the static capital buffer is 30 basis points (or the steady-state capital requirement is

raised to 10.3 percent). The Ramsey policy allows no risk-taking episodes, and the average

level of deposits is 16.25. These performance measures – 0 and 16.25 – are the gold standard,

the standard to which the implementable rules can only hope to aspire.

Table 11 shows that the best implementable rule has capital requirements responding

to the investment price. The R-square is 0.96, so it tracks the Ramsey policy quite well.

And this simple rule comes close to meeting the Ramsey performance standards – no risk-

taking episodes, and an average level of deposits of 16.23 (with a static buffer of just 10

basis points). It is easy to see why this rule does so well. Figures 3 and 4 show that for

both of the shocks that drive the economy, the investment price falls while the Ramsey

capital requirement rises. Moreover, in Table 9, the ISP shock explains all the variation in

the Ramsey requirement, and 92 percent of the variation in the investment price. So the

investment price is a very good signal for what should be done with the capital requirement.

By contrast, the Basel rule does very poorly. The Basel III guidance is to tighten capital

requirements when the credit-to-GDP ratio is rising and relax them when the ratio is falling.

In Table 11, the R-square for this rule is only 0.25. Moreover, the number of risk-taking

quarters per 100 years is very high when the steady-state capital requirement is 10.1 percent,

and the average level of deposits is very low. Note also that the sign of the regression

coefficient is wrong, at least from the perspective of the Basel III recommendations. In the

next row, we impose a positive coefficient, and the results are even worse, as might have

been expected.
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Table 11: Alternative Calibration With TFP and ISP (Investment Specific) Shocks, Simple Rules

Simple rule

R square First 
variable

Second 
variable

Quarters with 
excessive risk-
taking (per 100 

years)

Average 
deposit 

under simple 
rule

Quarters with 
excessive risk-
taking (per 100 

years).

Average 
deposit under 

simple rule.
Invest. p. (best state variable) 0.960 -0.087 0 16.23 0 16.20
Expected banking spread 0.881 0.842 115.6 11.50 0 16.20
GDP 0.002 -0.001 149.6 10.21 10.4 15.79
Credit/GDP 0.250 -0.005 149.2 10.18 4.4 16.02
Credit/GDP wih positive coef 0.005 158.8 9.87 38 14.68
Expected safe return and 
deposit rate

0.826 594.284 -594.312 convergence 
problems

convergence 
problems

convergence 
problems

convergence 
problems

All shock processes, 
innovations, expected safe 
return and deposit rate

1.000
Too many to 

show 0 16.23 0 16.20

All shock processes, 
innovations, and lagged 
capital requirement

1.000
Too many to 

show 0 16.23 0 16.20

Static buffer = 10 basis points Static buffer = 30 basis pointsRegression coefficients
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Raising the steady-state capital requirement to 10.3% brings a huge improvement in the

Basel rule. But, the higher steady-state capital requirement is doing all of the work here: the

number of risk-taking quarters falls dramatically, and the level of deposits rises dramatically.

The latter result may seem counter intuitive, since higher capital requirements force banks

to decrease the proportion of loans that are funded by bank deposits. The answer to this

puzzle is that the level of output and loans is lower during risk-taking episodes. Limiting

the number of risk-taking episodes increases the average amount of credit that is extended,

and this can raise the level of deposits even when deposits account for a lower fraction of

the bank’s funding.

So why does the Basel rule itself do so badly? Figures 3 and 4 show that for both of the

shocks that drive the economy, the credit-to-GDP path reverses direction midway through,

while the paths of the Ramsey capital requirement are monotonic. And from the variance

decompositions reported in Table 9, the ISP shock drives the Ramsey capital requirements,

while it only explains 41 percent of the variation in the credit-to-GDP ratio.

Table 11 also reports the performance of a rule that focuses on GDP. That rule fares no

better than the Basel rule. The R-square is virtually zero; so it is not tracking the Ramsey

policy. And the performance measures are also bad.

The remaining rules are probably not implementable because of their informational re-

quirements. The simplest is a rule that responds to the expected spread between the safe

return and the deposit rate. This rule sounds sensible, given the discussion in Section 6.1,

and indeed it has an R-square of 0.83; it tracks the Ramsey policy fairly well. However, its

performance is so poor that risk-taking episodes can last beyond what our solution methods

can accommodate, leading to convergence problems

The last two rules implausibly assume that the policymaker can observe the shocks and

their innovations. Armed with all this information, the R-squares are 1.0. However, neither of

these rules do any better than the simple investment price rule on the performance measures.

H.4.3 The Efficiency of Static Capital Buffers

The results reported in the previous sections seem to indicate that the steady-state capital

requirement is an important instrument in the regulator’s tool kit.

Table 12 shows the results if there are no rules, just static capital buffers. The last

row gives the performance measures achieved by the Ramsey planner. The first row with

numbers reports the performance measures if the static capital requirement is raised from

the 10 percent benchmark to 10.1 percent; they are not good. However, if the requirement

is raised to 10.4 percent for this alternative calibration, or 11.5 percent for our baseline

calibration, the results are almost as good as those achieved by the Ramsey planner. If
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the static capital requirement is raised to 11.5 percent, the performance measures for both

calibrations are very close to the optimal ones.
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Table 12: The Efficiency of Static Buffers Across Different Calibrations

Static Buffer

Number of 
quarters with 

excessive risk-
taking                    

(per 100 years)

Average 
deposit 

  Number of 
quarters with 

excessive risk-
taking             

(per 100 years)

Average 
deposit 

10 bp 149.2 10.261 210.8 7.678
20 bp 66.8 13.526 172.0 9.216
30 bp 10.8 15.785 140.8 10.479
40 bp 0 16.189 108.8 11.784
50 bp 0 16.171 79.2 12.920
100 bp 0 16.081 6.8 15.805
150 bp 0 15.991 0 15.991
Optimal Rule 0 16.251 0 16.241

Baseline Calibration                
(with volatility shocks)

Alternative Calibration                 
(excludes volatility shocks)
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