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Pyridinium salts represent a preferred group of naturally 
and  synthetically important compounds1 and exhibit high 
antibacterial2–5 and anticancer6 activities. Their derivatives may 
be potential pharmacophores for the development of new 
anti-tubercular candidates.7 As a result of rational molecular 
modifications, some pyridinium salt derivatives not only have a 
remarkable antibacterial capability but demonstrate low toxicity to 
non-target organisms.8 Piperidine derivatives are close analogues 
of pharmacologically active compounds, mainly antiviral and 
antitumour. Such molecules have found application as synthetic 
drugs of wide pharmacological action: analgesics, anesthetics, 
antipsychotics, antidepressants, opiate receptor agonists or 
anticancer drugs.9–13 Compounds with piperidinone scaffold can 
inhibit MDM2 protein, which plays a role in tumour development.14

Over the past ten years, multicomponent reactions have 
proven to be a convenient and environmentally friendly method 
for the synthesis of complex molecules including polymers and 
polysubstituted N-containing heterocycles.15–19 Such processes 
are advantageous compared to multi-step synthesis due to 
simplicity and availability of reagents, decrease in the number of 
synthesis stages, simplification of the isolation of final 
compounds, reduction in solvent consumption. Previously we 
performed multicomponent syntheses of substituted piperidines 
with NH4OAc or aqueous ammonia as a nitrogen source for the 
formation of the piperidine ring.20–22

Herein, we present a four-component synthesis of novel 
piperidine-containing pyridinium salts bearing three stereogenic 
centres. Refluxing of dicyano-substituted olefins 1a–g, aromatic 
aldehydes 2a–g (both with electron-withdrawing and electron-
donating substituents), 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium 
halogenides 3a–d and ammonium acetate leads to products of 
type 4 (Scheme 1). The procedure was optimized in the course 

of the preparation of polysubstituted 2-hydroxy-2-trifluoro-
methylpiperidines.23

The NMR spectra of products 4 showed only one set of signals 
suggesting stereoselective formation of individual diastereomers. 
Their structures were confirmed by NMR spectroscopy. The 
structure of representative compound 4d was ultimately 
established by X-ray diffraction study (Figure 1).† This study 
indicated that configuration of three stereogenic centres of 4d 
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The Michael–Mannich–cyclization cascade of dicyano 
olefins, 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium halogenides, 
aromatic aldehydes and ammonium acetate provides 
convenient stereoselective formation of (4,6-diaryl-5,5-
dicyano-2-oxo-piperidin-3-yl)pyridin-1-ium halogenides 
with three stereogenic centres. Ammonium acetate plays 
dual role acting as a base and as a nitrogen source.
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Scheme 1 Reagents and conditions: i, Michael acceptor 1 (2 mmol), 
aldehyde 2 (2 mmol), 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium halogenide 3 
(2 mmol), NH4OAc (4 mmol), MeOH (10 ml), reflux, 2 h. Isolated yields 
are given.Au
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should be assigned as 3SR,4SR,6RS. In this case, the molecule 
would acquire conformation when bulky aryl substituents are 
located in sterically least hindered positions relative to each other.

A possible reaction pathway is shown in Scheme 2. The 
multicomponent reaction between Michael acceptors 1, 
aldehydes 2, 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium bromide 3 
and ammonium acetate is a three-step domino process. The first 
step of the process is the Michael addition of ylide generated 
from 3 to the electron-deficient olefin 1 to form the Michael 
adduct A. The subsequent Mannich reaction of A, aldehyde 2 
and ammonia, which is formed from ammonium acetate, leads to 
intermediate B. The latter would undergo intramolecular 
cyclization with the formation of (4,6-diaryl-5,5-dicyano-2-
oxopiperidin-3-yl)pyridin-1-ium halogenides which were 
identified and characterized in this work for the first time.

In conclusion, we have developed a four-component 
stereoselective single-step synthesis of pyridinium salts with 
piperidin-2-one moieties utilizing Michael acceptors, 
1-(2-alkoxy-2-oxoethyl)pyridin-1-ium halogenides, aromatic 
aldehydes and ammonium acetate as a nitrogen source for the 
piperidine cycle. Our method allows one to obtain stereo-

selectively (4,6-diaryl-5,5-dicyano-2-oxopiperidin-3-yl)pyridin-
1-ium halogenides with three stereogenic centres as single 
diastereomers. The pure products are isolated by simple filtration, 
and column chromatography is entirely avoided.
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in the online version at doi: 10.1016/j.mencom.2023.10.007.
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† Crystal data for 4d. C24H19BrCl2N4O2 (M = 546.24), T = 99.99(10) K, 
l = 1.54184 Å, monoclinic, space group P121/c1, a = 13.08353(7),  
b = 10.91141(5) and c = 16.00256(7) Å, a = 90°, b = 96.2874(4)°, 
g = 90°, V = 2270.781(18) Å3, Z = 4, dcalc = 1.598 g cm–3. Absorption 
coefficient 4.888 mm–1, F(000) = 1104, crystal size 
0.19 × 0.08 × 0.05 mm3, q range for data collection 3.398 to 77.828°, 
index ranges –16 £ h £ 16, –13 £ k £ 13, –16 £ l £ 20, reflections 
collected 50661, independent reflections 4846 (Rint= 0.0404), observed 
reflections 4801, completeness to q 67.684° (100.0%). Absorption 
correction semi-empirical from equivalents, max. and min. transmission 
1.00000 and 0.64472, refinement method full-matrix least-squares on F2, 
data/restraints/parameters 4846/0/375, goodness-of-fit on F2 = 1.055. 
Final R indices [I > 2s(I )]: R1 = 0.0246, wR2 = 0.0651, R indices (all 
data): R1 = 0.0247, wR2 = 0.0653, extinction coefficient 0.00030(7), 
largest diff. peak and hole 0.557 and –0.371 e Å–3. 
 CCDC 2213725 contains the supplementary crystallographic data for 
this paper. These data can be obtained free of charge from The Cambridge 
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.
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Figure 1 Molecular structure of compound 4d.
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