Highly diastereoselective multicomponent synthesis of pyridinium-substituted piperidin-2-ones with three stereogenic centres

Andrey D. Vinokurov,a Taygib M. Iliyasov,a Kirill A. Karpenko,a Alexandra V. Evstigneeva,a,b Alexandra P. Minaeva,a Michail N. Elinsona and Anatoly N. Vereshchagina

a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, E-mail: vereshchagin@ioc.ac.ru
b National Research University Higher School of Economics (HSE University), 101000 Moscow, Russian Federation

© 2023 Mendeleev Communications. Published by ELSEVIER B.V.
on behalf of the N. D. Zelinsky Institute of Organic Chemistry of theRussian Academy of Sciences.

DOI: 10.1016/j.mencom.2023.10.007

The Michael–Mannich–cyclization cascade of dicyanoolefins, 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium halogenides, aromatic aldehydes and ammonium acetate provides convenient stereoselective formation of (4,6-diaryl-5,5-dicyano-2-oxo-piperidin-3-yl)pyridin-1-ium halogenides with three stereogenic centres. Ammonium acetate plays dual role acting as a base and as a nitrogen source.

Keywords: multicomponent reactions, ylides, pyridinium salts, piperidin-2-ones, ammonium acetate, stereoselectivity.

Dedicated to Academician M. P. Egorov, director of N. D. Zelinsky Institute of Organic Chemistry, on his 70th birthday.

Pyridinium salts represent a preferred group of naturally and synthetically important compounds and exhibit high antibacterial2–5 and anticancer6 activities. Their derivatives may be potential pharmacophores for the development of new anti-tubercular candidates.7 As a result of rational molecular modifications, some pyridinium salt derivatives not only have a remarkable antibacterial capability but demonstrate low toxicity to non-target organisms.8 Piperidine derivatives are close analogues of pharmacologically active compounds, mainly antiviral and antitumour. Such molecules have found application as synthetic antipsychotics, antidepressants, opiate receptor agonists or anticancer drugs.9–13 Compounds with piperidinone scaffold can inhibit MDM2 protein, which plays a role in tumour development.14

Over the past ten years, multicomponent reactions have proven to be a convenient and environmentally friendly method for the synthesis of complex molecules including polymers and polysubstituted N-containing heterocycles.15–19 Such processes are advantageous compared to multi-step synthesis due to simplicity and availability of reagents, decrease in the number of synthesis stages, simplification of the isolation of final compounds, reduction in solvent consumption. Previously we performed multicomponent syntheses of substituted piperidines with NH4OAc or aqueous ammonia as a nitrogen source for the formation of the piperidine ring.20–22

Herein, we present a four-component synthesis of novel piperidine-containing pyridinium salts bearing three stereogenic centres. Refluxing of dicyano-substituted olefins 1a–g, aromatic aldehydes 2a–g (both with electron-withdrawing and electron-donating substituents), 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium halogenides 3a–d and ammonium acetate leads to products of type 4 (Scheme 1). The procedure was optimized in the course of the preparation of polysubstituted 2-hydroxy-2-trifluoromethylpiperidines.23

The NMR spectra of products 4 showed only one set of signals suggesting stereoselective formation of individual diastereomers. Their structures were confirmed by NMR spectroscopy. The structure of representative compound 4d was ultimately established by X-ray diffraction study (Figure 1).3 This study indicated that configuration of three stereogenic centres of 4d is given.

Keywords: multicomponent reactions, ylides, pyridinium salts, piperidin-2-ones, ammonium acetate, stereoselectivity.

Dedicated to Academician M. P. Egorov, director of N. D. Zelinsky Institute of Organic Chemistry, on his 70th birthday.

Pyridinium salts represent a preferred group of naturally and synthetically important compounds and exhibit high antibacterial2–5 and anticancer6 activities. Their derivatives may be potential pharmacophores for the development of new anti-tubercular candidates.7 As a result of rational molecular modifications, some pyridinium salt derivatives not only have a remarkable antibacterial capability but demonstrate low toxicity to non-target organisms.8 Piperidine derivatives are close analogues of pharmacologically active compounds, mainly antiviral and antitumour. Such molecules have found application as synthetic antipsychotics, antidepressants, opiate receptor agonists or anticancer drugs.9–13 Compounds with piperidinone scaffold can inhibit MDM2 protein, which plays a role in tumour development.14

Over the past ten years, multicomponent reactions have proven to be a convenient and environmentally friendly method for the synthesis of complex molecules including polymers and polysubstituted N-containing heterocycles.15–19 Such processes are advantageous compared to multi-step synthesis due to simplicity and availability of reagents, decrease in the number of synthesis stages, simplification of the isolation of final compounds, reduction in solvent consumption. Previously we performed multicomponent syntheses of substituted piperidines with NH4OAc or aqueous ammonia as a nitrogen source for the formation of the piperidine ring.20–22

Herein, we present a four-component synthesis of novel piperidine-containing pyridinium salts bearing three stereogenic centres. Refluxing of dicyano-substituted olefins 1a–g, aromatic aldehydes 2a–g (both with electron-withdrawing and electron-donating substituents), 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium halogenides 3a–d and ammonium acetate leads to products of type 4 (Scheme 1). The procedure was optimized in the course of the preparation of polysubstituted 2-hydroxy-2-trifluoromethylpiperidines.23

The NMR spectra of products 4 showed only one set of signals suggesting stereoselective formation of individual diastereomers. Their structures were confirmed by NMR spectroscopy. The structure of representative compound 4d was ultimately established by X-ray diffraction study (Figure 1).3 This study indicated that configuration of three stereogenic centres of 4d is given.

Keywords: multicomponent reactions, ylides, pyridinium salts, piperidin-2-ones, ammonium acetate, stereoselectivity.

Dedicated to Academician M. P. Egorov, director of N. D. Zelinsky Institute of Organic Chemistry, on his 70th birthday.
A possible reaction pathway is shown in Scheme 2. The multicomponent reaction between Michael acceptors 1, aldehydes 2, 1-[(2-alkoxy-2-oxoethyl)pyridin-1-ium bromide 3 and ammonium acetate is a three-step domino process. The first step of the process is the Michael addition of ylide generated and ammonium acetate is a three-step domino process. The first step of the process is the Michael addition of ylide generated from 3 to the electron-deficient olefin 1 to form the Michael adduct A. The subsequent Mannich reaction of A, aldehyde 2 and ammonia, which is formed from ammonium acetate, leads to intermediate B. The latter would undergo intramolecular cyclization with the formation of (4,6-diaryl-5,5-dicyano-2-piperidin-2-one) moieties utilizing Michael acceptors, identified and characterized in this work for the first time.

In conclusion, we have developed a four-component multicomponent reaction between Michael acceptors 1, aldehydes 2, 1-[(2-alkoxy-2-oxoethyl)pyridin-1-ium bromide 3 and ammonium acetate is a three-step domino process. The first step of the process is the Michael addition of ylide generated from 3 to the electron-deficient olefin 1 to form the Michael adduct A. The subsequent Mannich reaction of A, aldehyde 2 and ammonia, which is formed from ammonium acetate, leads to intermediate B. The latter would undergo intramolecular cyclization with the formation of (4,6-diaryl-5,5-dicyano-2-piperidin-3-yl)pyridin-1-ium halogenides which were identified and characterized in this work for the first time.

In conclusion, we have developed a four-component stereoselective single-step synthesis of pyridinium salts with piperidin-2-one moieties utilizing Michael acceptors, 1-(2-alkoxy-2-oxoethyl)pyridin-1-ium halogenides, aromatic aldehydes and ammonium acetate as a nitrogen source for the piperidine cycle. Our method allows one to obtain stereoselectively (4,6-diaryl-5,5-dicyano-2-piperidin-3-yl)pyridin-1-ium halogenides with three stereogenic centres as single diastereomers. The pure products are isolated by simple filtration, and column chromatography is entirely avoided.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.10.007.

References

Received: 3rd July 2023; Comb. 23/7209