• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Восемь вопросов к искусственному интеллекту

Восемь вопросов к искусственному интеллекту

© Alex Knight / Pexels

Словосочетания «нейронные сети», «машинное обучение», «искусственный интеллект» звучат все чаще и чаще. Их произносят Владимир Путин и Максим Кац. Профессию специалиста по анализу данных называют одной из самых востребованных сейчас и в ближайшем будущем. Но вокруг темы искусственного интеллекта существует большое количество мифов и заблуждений. Ответы на наиболее популярные вопросы об искусственном интеллекте (ИИ) VTimes дает Дмитрий Ветров, профессор-исследователь НИУ ВШЭ.

Грозит ли нам восстание машин под предводительством ИИ?

Это одно из самых больших и вредных заблуждений. Технологии ИИ предназначены для решения конкретных интеллектуальных задач. Для каждой задачи используется отдельная модель. Стратегическая цель — создание так называемого сильного ИИ: универсальной обучаемой системы, способной постоянно учиться решать все новые и новые разнообразные типы задач, но не забывающей, как решать старые задачи.

Такая система будет в состоянии пройти тест Тьюринга, то есть при общении с ней человек не сможет отличить, говорит он с компьютером или с человеком. (Пока это за пределами технологических возможностей.) Можно предположить, что с внедрением квантовых компьютеров удастся подступиться к созданию сильного ИИ. Но даже когда он будет создан, это будет всего лишь помощник (или, если угодно, раб) человека, не способный к самостоятельному целеполаганию. Для последнего необходим не искусственный интеллект, а искусственное сознание, когда система осознает себя как мыслящее существо и у нее могут появиться стремления к самосохранению и самовоспроизводству. Ничего даже близко похожего на искусственное сознание мы не наблюдаем, и вряд ли нам это грозит в обозримой перспективе. Чтобы понять, почему это так, необходимо разобраться, что же на самом деле происходит при обучении компьютера.

Что такое технологии ИИ?

С момента появления первых компьютеров они рассматривались как программируемые вычислительные устройства, способные выполнять миллиарды простых арифметических и логических операций по заранее заданному алгоритму. Это позволило решить большое количество важных задач, в первую очередь связанных с расчетами в сложных математических моделях различных процессов, которые описывались дифференциальными уравнениями.

По сути, компьютер использовался для задач, алгоритм решения которых был известен человеку. И только в последние годы человечество стало осознавать, что компьютер способен на много большее — он может находить способ решать задачи, для которых алгоритма решения нет или он не известен человеку. Это стало возможным благодаря развитию технологий машинного обучения, которые сейчас все чаще называют искусственным интеллектом

Несколько упрощая, процесс обучения выглядит следующим образом. Имеется большое число однотипных задач, в которых известно условие и известен правильный ответ или один из возможных ответов. Примером может быть задача машинного перевода, в которой условием является фраза на одном языке, а ответом — ее перевод на другой язык. Модель машинного обучения, например глубинная нейронная сеть, работает по принципу черного ящика, который принимает на вход условие задачи и выдает сигнал в пространстве ответов. Применительно к машинному переводу это будет произвольный текст на втором языке. У черного ящика есть дополнительные параметры. Их значения определяют, как входной сигнал будет преобразовываться в выходной. Процесс обучения черного ящика заключается в поиске таких значений параметров, при котором для заданных входов он выдает сигнал, близкий к желаемым выходам. Настроив параметры так, что для всех задач с известным ответом черный ящик выдает желаемые ответы или близкие к ним, можно рассчитывать, что и для новых задач того же типа черный ящик будет выдавать разумные ответы. Разумеется, в общем случае гарантировать этого нельзя, но для многих популярных моделей машинного обучения действительно удается настроить модель так, что она успешно справляется с решением новых задач того же типа, ответов на которые модель не видела в ходе своего обучения. Из этого примера становится понятно, что существует несколько принципиальных ограничений для технологии машинного обучения. Во-первых, черный ящик должен быть достаточно гибким, что напрямую зависит от числа настраиваемых в ходе обучения параметров. Современные модели включают в себя десятки миллионов параметров, сложным образом определяющих, как входы преобразуются в выходы. Во-вторых, итоговое качество напрямую зависит от числа задач, которые демонстрировались модели в ходе обучения. Поэтому наилучшие результаты ИИ демонстрирует в тех областях, в которых удается накопить огромные объемы данных с миллиардами однотипных задач. В-третьих, ответы задачи должны объективно зависеть от условий. Методы машинного обучения бессмысленно применять, если между входами и выходами нет никакой семантической связи.

В каких сферах ИИ применяется уже сейчас?

Одним из удивительных результатов последних лет стало осознание того, что модели ИИ можно использовать для очень широкого спектра задач, для которых еще 20 лет назад считалось, что они не могут быть решены с помощью компьютера и способность к их решению является атрибутом высшей нервной деятельности. Например, ИИ способен рисовать картины, поддерживать беседу, управлять автомобилем и многое другое. Уже сейчас ИИ активно применяется в системах распознавания печатных и рукописных текстов, распознавании и синтезе речи, интернет-поиске, рекомендательных системах. Из последних достижений можно отметить решение задачи прогноза третичной структуры белков, которая являлась одной из сложнейших и важнейших задач в биологии и которая была решена специалистами компании DeepMind осенью 2020 г.

Не начнется ли деградация людей, если мы научим компьютер думать за нас?

Людям всегда будет, о чем задуматься.

Технологии ИИ — это всего лишь инструменты, заточенные под решение конкретных (пусть и весьма сложных) задач

Подобно тому, как люди физически не ослабли после появления станков и машин, способных заменить человека в физическом труде, появление технологий, способных решить за нас часть когнитивных задач, не приведет к тому, что люди станут меньше работать головой. Просто они начнут делать это для удовольствия, а не для того, что прокормить себя. Наконец, вопросы этики и морали, смысла жизни точно останутся прерогативой человека.

Каковы социальные последствия массового внедрения технологий ИИ?

Не будет преувеличением сказать, что повсеместное внедрение технологий ИИ приведет к серьезным изменениям в стиле и уровне жизни людей. Такие же драматические изменения происходили при повсеместном внедрении паровой машины, развитии электроэнергетики, распространении автомобилей. Человечество перейдет от массового производства одинаковых товаров и услуг к персонифицированным сервисам, многие отрасли народного хозяйства, которые невозможно сейчас представить без людей, будут полностью или частично автоматизированы. В течение пары десятилетий уйдут в прошлое профессии оператора колл-центра, водителя, синхронного переводчика, пилота самолета и др. У большинства людей появятся виртуальные или роботизированные персональные помощники, которые будут помогать в домашнем хозяйстве, следить за состоянием здоровья, планировать досуг. Конечно, часть нынешних профессий отомрет, но бояться этого не надо. Человечество многократно проходило через эпохи технологических трансформаций. На смену отмирающим профессиям придут другие, в которых люди смогут лучше себя реализовать, например киберспорт, стриминг, видеоблогерство и др.

Читать материал полностью

Вам также может быть интересно:

«Каждая статья на NeurIPS — значительный результат»

Сотрудники факультета компьютерных наук НИУ ВШЭ представят 12 своих работ на 37-й конференции NeurIPS. Conference and Workshop on Neural Information Processing Systems — одно из самых значительных событий в сфере искусственного интеллекта и машинного обучения. В этом году она пройдет с 10 по 16 декабря в Новом Орлеане (США).

Проект Центра ИИ ВШЭ получил премию Customer eXperience Awards

«РБК Петербург» подвел итоги проекта-исследования Customer eXperience 2023. В числе победителей отмечен совместный проект Центра искусственного интеллекта НИУ ВШЭ и АО «Новое сервисное бюро» по созданию платформы предиктивной маркетинговой аналитики для индустрии гостеприимства на базе технологий ИИ.

«Внедрение технологий ИИ уже приводит к революционным переменам»

Президент России Владимир Путин, выступая на конференции по искусственному интеллекту AI Journey 2023, подчеркнул, что нужно существенно расширить подготовку кадров ученых-разработчиков. Такую задачу он поставил перед университетами — лидерами первого рейтинга вузов по качеству подготовки специалистов в сфере ИИ, составленного Альянсом в сфере искусственного интеллекта. Напомним, что ВШЭ вошла в лидерскую группу А+ рейтинга. О том, как готовят в Вышке ИИ-специалистов и какие планы у университета в этой области, «Вышке.Главное» рассказал декан факультета компьютерных наук ВШЭ Иван Аржанцев.

«Сегодня сделать большую языковую модель — это гигантский труд»

С 22 по 24 ноября проходит международная онлайн-конференция в сфере технологий искусственного интеллекта AI Journey 2023. В ее работе приняли участие эксперты НИУ ВШЭ. В фокусе обсуждения — языковые модели и методы, которые применяются сегодня для обучения искусственного интеллекта.

Студенты НИУ ВШЭ стали победителями в конкурсе научных статей по ИИ AIJ Science на конференции AI Journey 2023

В Москве проходит Международная конференция по искусственному интеллекту и машинному обучению AI Journey 2023, организованная Сбером. В рамках мероприятия состоялся конкурс научных статей по теме искусственного интеллекта AIJ Science, победу в котором одержали аспирант факультета компьютерных наук Вышки Александр Рогачев и студент 4-го курса бакалавриата ФКН ВШЭ Егор Егоров. Исследование было выполнено в рамках Научно-учебной лаборатории методов анализа больших данных (LAMBDA) ВШЭ.

ВШЭ — в лидерах рейтинга вузов по качеству подготовки специалистов в области ИИ

Альянс в сфере искусственного интеллекта опубликовал рейтинг вузов России, где готовят лучших специалистов по ИИ. Лидерами стали НИУ ВШЭ, МФТИ и ИТМО. В рейтинг вошли 180 университетов из 64 регионов — в 2023 году на программы в области искусственного интеллекта этих вузов были приняты более 5 тыс. студентов.

Победителей и призеров Всероссийской олимпиады по ИИ примут в НИУ ВШЭ без вступительных испытаний

Всероссийская олимпиада по искусственному интеллекту включена в перечень олимпиад школьников Министерства науки и высшего образования на 2023/24 учебный год. В этом году на олимпиаду зарегистрировались почти 16 тысяч школьников со всей России. В финальный этап прошли 50 участников. Из них 4 школьника стали победителями, а 8 — призерами.

Красные линии: эксперты обсудили вопросы этики и права в сфере ИИ

Быстрое развитие технологий искусственного интеллекта требует опережающего этико-гуманитарного осмысления вероятных результатов прогресса и сбалансированных регуляторных мер, стимулирующих применение ИИ и ограждающих человека от возможного негативного влияния. Об этом эксперты говорили на Форуме этики в сфере искусственного интеллекта «Поколение GPT. Красные линИИ», который прошел в ТАСС. В его работе приняли участие представители Вышки.

В НИУ ВШЭ состоялась конференция по машинному обучению Fall into ML 2023

В течение трех дней более 300 участников конференции посетили тематические воркшопы, семинары, секции и постерную сессию. В ходе панельных дискуссий эксперты обсудили регулирование технологий искусственного интеллекта (ИИ) и то, какие мегапроекты могут делать университеты совместно с индустрией для развития ИИ.

ВШЭ, «Яндекс» и «Сириус» запустили бесплатный курс по ИИ для школьников

Факультет компьютерных наук НИУ ВШЭ, «Яндекс» и «Сириус.Курсы» запустили бесплатный курс по искусственному интеллекту для школьников «Глубокое обучение». Старшеклассники узнают, как работают и обучаются нейросети, и познакомятся с востребованными IT-профессиями. Записаться на осенний поток можно до 15 ноября.