Ian Marshall
- Associate Professor:Faculty of Mathematics
- Ian Marshall has been at HSE University since 2010.
Courses (2023/2024)
Introduction to Discrete Mathematics and Topology (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 1 year, 1-3 module)Rus
- Measure and Integral (Bachelor’s programme; Faculty of Mathematics; 2 year, 1, 2 module)Rus
- Smooth Manifolds (Bachelor’s programme; Faculty of Mathematics; 3 year, 1-4 module)Rus
- Smooth Manifolds (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
- Past Courses
Courses (2022/2023)
- Calculus (Bachelor’s programme; Faculty of Physics; 2 year, 1, 2 module)Rus
- Calculus (Bachelor’s programme; Faculty of Physics; 1 year, 1-4 module)Rus
Calculus (Bachelor’s programme; Faculty of Biology and Biotechnology; field of study "06.03.01. Биология", field of study "06.03.01. Биология"; 1 year, 2, 3 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Physics; 1 year, 3, 4 module)Rus
Mathematics. Licenciatus (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 3 year, 4 module)Rus
Measure and Integral (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 2 year, 1, 2 module)Rus
- Research Seminar "Smooth Manifolds" (Bachelor’s programme; Faculty of Mathematics; 4 year, 1-4 module)Rus
- Research Seminar "Smooth Manifolds" (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
Courses (2021/2022)
- Algebra (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
Calculus (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 1 year, 1-4 module)Rus
- Mathematics. Licenciatus (Bachelor’s programme; Faculty of Mathematics; 3 year, 4 module)Rus
- Research Seminar (Postgraduate course’s programme)Rus
- Research Seminar "Introduction into Symplectic Geometry, Moment Maps and Localisation" (Optional course (faculty); Faculty of Mathematics; 3, 4 module)Eng
- Research Writing (Postgraduate course’s programme; 1 year, 1 semester)Eng
- Theory of Complex Functions (Bachelor’s programme; Faculty of Mathematics; 2 year, 3, 4 module)Rus
Courses (2020/2021)
- Calculus (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
- Differential Equations (Bachelor’s programme; Faculty of Physics; 1 year, 3, 4 module)Rus
- Research Seminar (Postgraduate course’s programme)Rus
Courses (2019/2020)
- Academic English Writing (Bachelor’s programme; Faculty of Mathematics; 4 year, 1-3 module)Rus
- Research Seminar "Smooth Manifolds" (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-3 module)Rus
- Theory of Functions of Complex Variable (Bachelor’s programme; Faculty of Mathematics; 2 year, 3 module)Rus
Courses (2018/2019)
- Calculus (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
- Calculus (Bachelor’s programme; Faculty of Physics; 2 year, 1, 2 module)Rus
- Foundations of Algebra and Geometry (Minor; Faculty of Mathematics; 1, 2 module)Rus
- Geometry (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Mathematical English (Bachelor’s programme; Faculty of Mathematics; 3 year, 3 module)Eng
- Mathematics Practical Training (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Research Seminar "Integrable Systems of Classical Mechanics" (Optional course (faculty); Faculty of Mathematics; 1, 2 module)Eng
- Research Seminar "Smooth Manifolds" (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-3 module)Rus
Courses (2017/2018)
- Calculus (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Geometry (Bachelor’s programme; Faculty of Mathematics; 1 year, 1-4 module)Rus
- Introduction to Topology (Smooth Manifolds) (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-3 module)Rus
- Mathematical Practical Training 2 (Bachelor’s programme; Faculty of Mathematics; 2 year, 1-4 module)Rus
Mathematics Practical Training (Bachelor’s programme; Faculty of Mathematics; field of study "01.03.01. Математика", field of study "01.03.01. Математика"; 1 year, 1-4 module)Rus
Conferences
- 2020Dynamics in Siberia (Новосибирск). Presentation: Action-Angle Duality for a Poisson-Lie Deformation of theTrigonometric BCn Sutherland System
- 2018
Dynamics in Syberia (Новосибирск). Presentation: Global description of action-angle duality for a Poisson-Lie deformation of the trigonometric BCn Sutherland system
- 2016
XXXV Workshop on Geometric Methods in Physics (Белосток). Presentation: Hamiltonian reduction and Duality for the BCn Ruijsenaars model
Workshop on Classical and Quantum Integrable Systems 2016 (Санкт-Петербург). Presentation: Hamiltonian reduction and duality for the BCn Ruijsenaars model
Publications27
- Article Marshall I. The semi-direct product of Poisson G-spaces // Journal of Geometry and Physics. 2021. Vol. 170. Article 104391. doi
- Article Fairon M., Fehér L., Marshall I. Trigonometric real form of the spin RS model of Krichever and Zabrodin // Annales Henri Poincare. A Journal of Theoretical and Mathematical Physics. 2021. Vol. 22. P. 615-675. doi
- Chapter Fehér L., Marshall I. On the bi-Hamiltonian Structure of the Trigonometric Spin Ruijsenaars–Sutherland Hierarchy, in: Geometric Methods in Physics XXXVIII. Workshop, Białowieża, Poland, 2019. Cham : Birkhäuser, 2020. doi P. 75-87. doi
- Article Fehér L., Marshall I. Global Description of Action-Angle Duality for a Poisson–Lie Deformation of theTrigonometric BCn Sutherland System // Annales Henri Poincare. A Journal of Theoretical and Mathematical Physics. 2019. P. 1217-1262. doi
- Article Marshall I. Spectral parameter dependent Lax pairs for systems of Calogero-Moser type // Letters in Mathematical Physics. 2017. Vol. 107. No. 4. P. 619-642. doi
- Article Fehér L., Marshall I. The action–angle dual of an integrable Hamiltonian system of Ruijsenaars–Schneider–van Diejen type // Journal of Physics A: Mathematical and Theoretical. 2017. Vol. 50. No. 31. P. 1-20. doi
- Article Marshall I. A New Model in the Calogero–Ruijsenaars Family // Communications in Mathematical Physics. 2015. Vol. 338. No. 2. P. 563-587. doi
- Article Marshall I. Poisson reduction of the space of polygons // International Mathematics Research Notices. 2015. Vol. 18. P. 8925-8958. doi
- Article Semenov-Tian-Shansky M., Marshall I. Poisson groups and Schrodinger equation on the circle // Journal of Physics A: Mathematical and Theoretical. 2008. No. 41
- Article Semenov-Tian-Shansky M., Marshall I. Poisson groups and differential Galois theory of Schrodinger equation on the circle // Communications in Mathematical Physics. 2008. No. 284. P. 537-552.
- Article Marshall I., Etingof P., Enriquez B. Comparison of Poisson structures and Poisso -Lie dynamical r-matrices // International Mathematics Research Notices. 2004. Vol. 36. P. 2183-2198.
- Article Feher L., Marshall I. The non-Abelian momentum map for Poisson-Lie symmetries on the charal WZNW phase space // International Mathematics Research Notices. 2004. No. 49. P. 2611-2636.
- Article Marshall I., Feher L. Stability analysis of some integrable Euler equations for SO(n) // Journal of Nonlinear Mathematical Physics. 2003. No. 10(3). P. 304-317.
- Article Marshall I., Feher L. On a poisson-Lie analogue of the classical dynamical Yang-Baxter equation for self-dual Lie algebras // Letters in Mathematical Physics. 2002. No. 62. P. 51-62.
- Article Marshall I. The Kowalewski: Top: r-matrix interpretation and bihamiltonian formulation // Communications in Mathematical Physics. 1998. No. 191. P. 723-734.
- Article Feher L., Marshall I. Extende matrix Gelfand-Dickey hierachies: reduction to classical Lie algebras // Journal of Physics A: Mathematical and Theoretical. 1997. No. 30. P. 5815-5824.
- Article Marshall I., Feher L. Extensions matrix Gelfand-Dickey hierachy from generalised Drinfeld-Sokolov reduction // Communications in Mathematical Physics. 1997. No. 183. P. 423-461.
- Article Marshall I. Removing the time-dependence in a rapidly oscillating Hamiltonian // Nonlinearity. 1997. No. 11. P. 845-857.
- Article Marshall I. Modified systems obtainedby canonical symmetry reduction on T*G // Journal of Geometry and Physics. 1995. No. 16. P. 305-326.
- Article Marshall I. An r-matrix interpetation of modified systems // Physica D: Nonlinear Phenomena. 1994. No. 70D. P. 40-60.
- Article Marshall I., Harnad J., Feher L. Generalised Drinfeld-Sokolov Reduction and KdV-type hierarchies // Communications in Mathematical Physics. 1993. No. 154. P. 181-214.
- Article Liu Q., Marshall I. Two modifications of Ito's equation // Physics Letters A. 1991. No. 160. P. 155-160.
- Article Marshall I. A Lie algebraic setting for Miura maps related to an energy dependent linear problem // Communications in Mathematical Physics. 1990. No. 133. P. 509-520.
- Article Marshall I. Some integrable systems related to affine Lie algebras and homogeneous spaces // Physics Letters A. 1988. No. 127. P. 19-26.
- Article Marshall I., Wojciechowski S. When is a Hamilton System separable? // Journal of Mathematical Physics. 1988. No. 29(6). P. 1338-1346.
- Article Marshall I., Wojciechowski S., Fordy A. A family of quartic potentials related to symmetric spaces // Physics Letters A. 1986. No. 113A. P. 395-400.
- Article Marshall I. A Note on the integrability of the Hamiltonian System describing the motion of a particle in a perturbed radial quartic potential // Physica Scripta. 1985. No. 32. P. 565-567.