Attila Kertesz-Farkas
- Head of Research Lab, Laboratory Head:Faculty of Computer Science / Laboratory on AI for Computational Biology
- Associate Professor:Faculty of Computer Science / School of Data Analysis and Artificial Intelligence
- Attila Kertesz-Farkas has been at HSE University since 2015.
Education and Degrees
- 2022
Doctor of Sciences*
HSE University - 2010
PhD
University of Szeged - 2004
Master's in Computer Science
University of Szeged
A post-doctoral degree called Doctor of Sciences is given to reflect second advanced research qualifications or higher doctorates in ISCED 2011.
Academic Supervision
Courses (2022/2023)
- Discriminative Methods in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; 2 year, 1 semester)Eng
- Generative Models in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; 2 year, 1 semester)Eng
- Mentor's Seminar "Biomedical Data Analysis" (Master’s programme; Faculty of Computer Science; 1 year, 1-4 module)Rus
- Past Courses
Courses (2021/2022)
Discriminative Methods in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "02.06.01. Компьютерные и информационные науки", field of study "09.06.01. Информатика и вычислительная техника"; 1 year, 1 semester)Eng
- Generative Models in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; 1 year, 1 semester)Eng
- Scientific Seminar "Biomedical Data Analysis" (Master’s programme; Faculty of Computer Science; 1 year, 1-4 module)Rus
Courses (2020/2021)
Discriminative Methods in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "02.06.01. Компьютерные и информационные науки", field of study "09.06.01. Информатика и вычислительная техника"; 2 year, 1 semester)Eng
Generative Models in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "02.06.01. Компьютерные и информационные науки", field of study "09.06.01. Информатика и вычислительная техника"; 2 year, 1 semester)Eng
- Scientific Seminar "Biomedical Data Analysis" (Master’s programme; Faculty of Computer Science; 1 year, 1-4 module)Rus
Courses (2019/2020)
- Discriminative Methods in Machine Learning (Postgraduate course’s programme; 2 year, 1 semester)Rus
Discriminative Methods in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "09.06.01. Информатика и вычислительная техника", field of study "02.06.01. Компьютерные и информационные науки"; 2 year, 1 semester)Eng
Generative Models in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "09.06.01. Информатика и вычислительная техника", field of study "02.06.01. Компьютерные и информационные науки"; 2 year, 2 semester)Eng
- Scientific Seminar "Biomedical Data Analysis" (Master’s programme; Faculty of Computer Science; 1 year, 1-4 module)Rus
Courses (2018/2019)
Discriminative Methods in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "09.06.01. Информатика и вычислительная техника", field of study "02.06.01. Компьютерные и информационные науки"; 1 year, 1 semester)Eng
Discriminative Methods in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "09.06.01. Информатика и вычислительная техника", field of study "02.06.01. Компьютерные и информационные науки"; 2 year, 1 semester)Eng
Generative Models in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "09.06.01. Информатика и вычислительная техника", field of study "02.06.01. Компьютерные и информационные науки"; 1 year, 2 semester)Eng
Generative Models in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "09.06.01. Информатика и вычислительная техника", field of study "02.06.01. Компьютерные и информационные науки"; 2 year, 2 semester)Eng
- Research Seminar (Master’s programme; Faculty of Computer Science; 1 year, 1-4 module)Rus
Courses (2017/2018)
Discriminative Methods in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "02.06.01. Компьютерные и информационные науки", field of study "09.06.01. Информатика и вычислительная техника"; 1 year, 1 semester)Eng
Generative Models in Machine Learning (Postgraduate course’s programme; Faculty of Computer Science; field of study "02.06.01. Компьютерные и информационные науки", field of study "09.06.01. Информатика и вычислительная техника"; 1 year, 2 semester)Eng
Dissertation for a degree of Doctor of Science
A. Kertesz-Farkas Computational methods for tandem mass spectrometry data annotation
Publications37
- Article Kertesz-Farkas A., Acquaye F. L., Stafford Noble W. Efficient indexing of peptides for database search using Tide // Journal of Proteome Research. 2023 (in press)
- Chapter Kertesz-Farkas A., Acquaye F. L., Latypov I. Hypernym Information and Sentiment Bias Probing in Distributed Data Representation, in: ICMLC 2023: 2023 15th International Conference on Machine Learning and Computing (ICMLC). NY : Association for Computing Machinery (ACM), 2023. (in press)
- Article Kertesz-Farkas A., Acquaye F. L., Kishankumar Bhimani, English J. K., Fondrie W. E., Grant C., Hoopmann M. R., Lin A., Lu Y. Y., Moritz R. L., MacCoss M. J., Noble W. S. The Crux toolkit for analysis of bottom-up tandem mass spectrometry proteomics data // Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 561-569. doi
- Article Kudriavtseva P., Kashkinov M., Kertész-Farkas A. Deep Convolutional Neural Networks Help Scoring Tandem Mass Spectrometry Data in Database-Searching Approaches // Journal of Proteome Research. 2021. Vol. 20. No. 10. P. 4708-4717. doi
- Article Sulimov P., Voronkova A. V., Kertész-Farkas A. Annotation of tandem mass spectrometry data using stochastic neural networks in shotgun proteomics // Bioinformatics. 2020. Vol. 36. No. 12. P. 3781-3787. doi
- Article Sulimov P., Kertesz-Farkas A. Tailor: A Nonparametric and Rapid Score Calibration Method for Database Search-Based Peptide Identification in Shotgun Proteomics // Journal of Proteome Research. 2020. No. 19(4). P. 1481-1490. doi
- Article Moshkov N., Mathe B., Kertesz-Farkas A., Hollandi R., Horvath P. Test-time augmentation for deep learning-based cell segmentation on microscopy images // Scientific Reports. 2020. Vol. 10. Article 5068. doi
- Article Danilova Yulia, Voronkova Anastasia, Sulimov Pavel, Kertész-Farkas Attila. Bias in False Discovery Rate Estimation in Mass-Spectrometry-Based Peptide Identification // Journal of Proteome Research. 2019. Vol. 18. No. 5. P. 2354-2358. doi
- Article Chereshnev R., Kertesz-Farkas A. GaIn: Human Gait Inference for Lower Limbic Prostheses for Patients Suffering From Double Trans-Femoral Amputation // Sensors. 2018. Vol. 18. No. 12. P. 1-20. doi
- Chapter Kertesz-Farkas A., Chereshnev Roman. HuGaDB: Human Gait Database for Activity Recognition from Wearable Inertial Sensor Networks, in: Analysis of Images, Social Networks and Texts. 6th International Conference, 2017, Revised Selected Papers / Ed. by W. M. van der Aalst, D. I. Ignatov, M. Khachay, S. Kuznetsov, V. Lempitsky, I. A. Lomazova, A. Napoli, A. Panchenko, P. M. Pardalos, A. V. Savchenko, S. Wasserman. Vol. 10716. Cham : Springer, 2018. doi P. 131-141.
- Article Kertesz-Farkas A., Bauwens B. F., Filatov G. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification // Bioinformatics. 2018. Vol. 34. No. 19. P. 3281-3288. doi
- Chapter Shestakoff A., Kertesz-Farkas A., Shmelkin D., Doroshin D. Lookup Lateration: Mapping of Received Signal Strength to Position for Geo-Localization in Outdoor Urban Areas, in: Proceedings of Analysis of Images, Social Networks and Texts – 7th International Conference, AIST 2018, Moscow, Russia, July 5-7, 2018, Revised Selected Papers. Lecture Notes in Computer Science / Ed. by W. M. van der Aalst, V. Batagelj, G. Glavaš,, D. I. Ignatov, M. Khachay, O. Koltsova, S. Kuznetsov, I. A. Lomazova, N. Loukachevitch,, A. Napoli,, A. Savchenko, A. Panchenko,, P. M. Pardalos, M. Pelillo,. Vol. 11179. Berlin : Springer, 2018. doi P. 234-246. doi (in press)
- Article Kertesz-Farkas A., Nikitin D. New bifunctional restriction-modification enzyme AloI isoschizomer (PcoI): Bioinformatics analysis, purification and activity confirmation // Gene. 2018. Vol. 660. P. 8-12. doi
- Article Kertesz-Farkas A., Chereshnev R. RapidHARe: A computationally inexpensive method for real-time human activity recognition from wearable sensors // Journal of Ambient Intelligence and Smart Environments. 2018. Vol. 10. No. 5. P. 377-391. doi
- Article Kertesz-Farkas A., Keich U., Noble W. Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics // Journal of Proteome Research. 2015. Vol. 14. No. 8. P. 3148-3161.
- Article Kertesz-Farkas A., Ali H., Lisek K. Nuclear architecture dictates HIV-1 integration site selection // Nature. 2015. No. 521. P. 227-231.
- Article Kertesz-Farkas A., Noble W. Tandem mass spectrum identification via Cascaded search // Journal or Proteome Research. 2015. Vol. 14. No. 8. P. 3027-3038.
- Article Kertesz-Farkas A., Grant C. E., Howbert J. J., Hoopmann M. R., Eng J. K. Crux: rapid open source protein tandem mass spectrometry analysis // Journal of Proteome Research. 2014. Vol. 13. No. 10. P. 4488-4491.
- Article Kertesz-Farkas A., Juhász J., Szabó D., Pongor S. Emergence of collective territorial defense in bacterial communities: horizontal gene transfer can stabilize microbiomes. // Plos One. 2014. Vol. 9. No. 4
- Article Kertesz-Farkas A., Myers M. P. PTMTreeSearch: a novel two-stage tree-search algorithm with pruning rules for the identification of post-translational modification of proteins in MS/MS spectra. // Bioinformatics. 2014. Vol. 30. No. 2. P. 234-241.
- Article Kertesz-Farkas A., Myers M. P. Precursor mass dependent filtering of mass spectra for proteomics analysis // Protein and peptide letters. 2014. Vol. 21. No. 8. P. 858-863.
- Article Kertesz-Farkas A., Myers M. P. Chemical rule-based filtering of MS/MS spectra. // Bioinformatics. 2013. Vol. 29. No. 7. P. 925-932.
- Article Vera R., Pérez-Riverol, Y., Pérez S., Ligeti B., Kertesz-Farkas A., Pongor S. JBioWH: an open-source Java framework for bioinformatics data integration // Database: the journal of biological databases and curation. 2013 doi
- Chapter Nikitin D. V., Kertesz-Farkas A., Solonin A. S., Mokrishcheva M. L. Bifunctional Prokaryotic DNA-Methyltransferases, in: Methylation - From DNA, RNA and Histones to Diseases and Treatment. InTech, 2012. doi doi
- Article Kertesz-Farkas A., Myers M. P. Data preprocessing and filtering in mass spectrometry based proteomics // Current Bioinformatics. 2012. Vol. 7. No. 2. P. 212-220.
- Article Kertesz-Farkas A., Myers M. P. Database searching in mass spectrometry based proteomics // Current Bioinformatics. 2012. Vol. 7. No. 2. P. 221-230.
- Article Kertesz-Farkas A., Bihary D., Kerenyi A., Gelencser Z., Netotea S., Venturi V., Pongor S. Simulation of communication and cooperation in multispecies bacterial communities with an agent based model // Scalable Computing: Practice and Experience. 2012. Vol. 13. No. 1
- Chapter Kertesz-Farkas A., Myers M. P. PTMSearch: A Greedy Tree Traversal Algorithm for Finding Protein Post-Translational Modifications in Tandem Mass Spectra, in: European Conference on Machine Learning and Principles and Practical Knowledge Discovery in Databases 2 Vol. 6912 . , 2011. P. 162-176. doi
- Article Kertesz-Farkas A., Adadey A., Peterson T. Toward an automatic method for extracting cancer- and other disease-related point mutations from the biomedical literature // Bioinformatics. 2011. Vol. 27. No. 3. P. 408-415.
- Article Kertesz-Farkas A., Pongor S. Detecting atypical examples of known domain types by sequence similarity searching: The SBASE domain library approach // Current Protein and Peptide Science. 2010 doi
- Article Kertesz-Farkas A., Dombi J. Applying Fuzzy Technologies to Equivalence Learning in Protein Classification // Journal of Computational Biology. 2009 doi
- Article Kertesz-Farkas A., Pongor S. Balanced ROC analysis (BAROC) protocol for the evaluation of protein similarities // Journal of Biochemical and Biophysical Methods. 2008 doi
- Article Kertesz-Farkas A., Pongor S. Benchmarking protein classification algorithms via supervised cross-validation // Journal of Biochemical and Biophysical Methods. 2008 doi
- Article Kertesz-Farkas A., Pongor S. A Protein Classification Benchmark collection for Machine Learning // Nucleic Acids Research. 2006 doi
- Article Kertesz-Farkas A., Kajan L., Pongor S. Application of a simple log likelihood ratio approximant to protein sequence classification // Bioinformatics. 2006 doi
- Article Kertesz-Farkas A., Pongor S. Application of compression-based distance measures to protein sequence-classification: a methodological study // Bioinformatics. 2006 doi
- Article Kertesz-Farkas A., Kelemen J., Kocsor A., Puskas L. Kalman Filtering for Disease-State Estimation from Microarray Data // Bioinformatics. 2006 doi
Conferences
- 2100Proteomics-2017 (Valencia). Presentation: High-dimensional generative probabilistic models for peptide-spectrum-matching in tandem mass spectrometry
- Proteomics-2017 (Valencia). Presentation: PTMTreeSearch: a new algorithm for post-translational modification identification in tandem mass spectrometry data
- Proteomics-2017 (Valencia). Presentation: Cascaded false discovery rate control tandem mass spectrometry (MS/MS) data for peptide identification
- 2019Biotechnology: state and prospects of development (Moscow). Presentation: Generative probabilistic modelling of peptide-spectrum matching in tandem mass spectrometry
- Biotechnology: state and prospects of development (Moscow). Presentation: Bias in false discovery rate estimation in mass-spectrometry-based peptide identification
- Biotechnology: state and prospects of development (Moscow). Presentation: Filtering of tandem mass spectrometry data using convolutional neural networks
- 2018The 7th International Conference on Analysis of Images, Social Networks, and Texts (AIST'2018) (Москва). Presentation: Lookup Lateration: Non-linear Received Signal Strength to Distance Mapping for Non-Line-of-Sight Geo-localization in Outdoor Urban Areas
- 2017Analysis of Images, Social Networks and Texts. 6th International Conference, AIST 2017 (Moscow). Presentation: HuGaDB: Database for Human Gait Analysis from Wearable Inertial Sensor Networks
- 2016The 3rd Professor Day (Moskva). Presentation: Large-scale localization method for urban area
- The 5th international conference on Analysis of Images, Social Networks, and Texts (AIST) (Екатеринбург). Presentation: False discovery rate control for database search methods over heterogeneous biological data
- 2014US HUPO (Seattle). Presentation: Peptide identification in tandem mass spectrometry data via cascade search
Research and course projects (BSc, MSc, PhD, postdoc) on reasoning with neural differentiable machines
Research and course projects (BSc, MSc, PhD, postdoc) on learning for mass spectrometry data identification (Bioinformatics)
Employment history
Attila Kertes-Farkas received the best award for his presentation at IMLC 2023 conference
The head of AIC Laboratory, Attila Kertes-Farkas, was awarded for the best presentation at the ICMLC 2023 conference.
Congratulations to the Head of Laboratory on AI for Computational Biology Kertesz-Farkas Attila on receiving the well-deserved award
The head of the laboratory is presented for the award.
Attila Kertesz-Farkas successfully defended Doctoral Thesis
On May 19th, 2022, Attila Kertesz-Farkas defended the doctoral thesis.
Attila Kertesz-Farkas had a talk on FCS's Colloquium meeting
AIC LAB Head had a talk at traditional colloquium.
Seminar "Computational methods for tandem mass spectrometry data annotation"
On November 26, 2021 an online seminar was held on the results of a study by the head of the laboratory Attila Kertesz-Farkas.
Congratulations to the Head of Laboratory on AI for Computational Biology Kertesz-Farkas Attila on receiving the well-deserved award
The head of the laboratory is presented for the award.
"The Efforts Taken by HSE University to Make My Internship Format Online Are Laudable"
John Hopkins graduate Kayode Ahmed is interning at the Faculty. We talked to him about his career path, internship project, and hobbies.
Attila Kertesz-Farkas about New Lab and Research
Laboratory on AI for Computational Biology has opened at the Faculty not so long ago. We talked with its head, Attila Kertesz-Farkas, about the lab, research and his way in science.
A PhD student from the HSE Faculty of Computer Science visited Broad Institute of MIT and Harvard
Nikita Moshkov told us about his experience in Broad Institute of MIT and Harvard, where he stayed from 17 March till May 21.
HSE and University of London: Joint BA Programme in Applied Data Analysis
In 2018, the Higher School of Economics will launch an English-taught double degree programme in partnership with the University of London in Applied Data Analysis. Graduates will be awarded an undergraduate degree from HSE in Applied Mathematics and Information Science and a Bachelor of Science in Data Science and Business Analytics from the University of London. International applicants are invited to apply online starting November 15, 2017.
International Experts in the Faculty of Computer Science
An important step in integrating the university into the global educational, scientific and research space is the expansion of international recruiting. Since its very first year, the Faculty of Computer Science at the Higher School of Economics has had a foreign professor working on staff. In 2015, four internationally recruited experts teach and conduct research in the faculty.
International Experts in the Faculty of Computer Science
An important step in integrating the university into the global educational, scientific and research space is the expansion of international recruiting. Since its very first year, the Faculty of Computer Science at the Higher School of Economics has had a foreign professor working on staff. In 2015, four internationally recruited experts teach and conduct research in the faculty.