• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Language Proficiency
English
Contacts
Phone:
+7 (495) 772-9590 * 15160
Address: 34 Tallinskaya Ulitsa, room 428
Timetable
SPIN-RSCI: 1946-6559
ORCID: 0000-0001-8979-2451
ResearcherID: F-7091-2016
Scopus AuthorID: 7202887350
Google Scholar
Office hours
пятница: 18.10-20.10
Supervisor
A. V. Belov
Printable version

 

Have you spotted a typo?
Highlight it, click Ctrl+Enter and send us a message. Thank you for your help!
To be used only for spelling or punctuation mistakes.

Valery Afanasiev

  • Tenured Professor (2018)
  • Valery Afanasiev has been at HSE University since 2012.

Education, Degrees and Academic Titles

  • 1984
    Professor
  • 1983

    Doctor of Sciences* in System Analysis, Management and Information Processing
    RAS Trapeznikov Institute of Control Sciences

  • 1975
    Associate Professor
  • 1972

    Candidate of Sciences* (PhD)

  • 1966

    Master's
    Moscow Institute of Electronic Engineering

  • 1965

    Degree
    Moscow Power Engineering Institute

* Candidate of Sciences
According to the International Standard Classification of Education (ISCED) 2011, Candidate of Sciences belongs to ISCED level 8 - "doctoral or equivalent", together with PhD, DPhil, D.Lit, D.Sc, LL.D, Doctorate or similar. Candidate of Sciences allows its holders to reach the level of the Associate Professor.
* Doctor of Sciences
A post-doctoral degree called Doctor of Sciences is given to reflect second advanced research qualifications or higher doctorates in ISCED 2011.

Professional Interests

Awards and Accomplishments

Publications44

Editorial board membership

  • Automation. Modern Technologies

  • 2016: Member of the Editorial Board, Автоматизация. Современные технологии.

  • 2000: Member of the Editorial Board, Проблемы управления.

Conferences

  • 2016

    8-th IFAC Conference on Manufacturing Modelling, Management and Control (Troyes). Presentation: Viscosity Solution of Bellman-Isaacs Equation Arising in Non-Linear Uncertain Object Control

  • 2015
    1st Conference on Modelling, Identification and Control (MICNON 2015) (Saint-Petersburg). Presentation: Control of Nonlinear Uncertain Object in the Problem of Motion along the Given Trajectory
  • System Identification and Control Problems (SICPRO 2015) (Moscow). Presentation: АЛГОРИТМИЧЕСКОЕ КОНСТРУИРОВАНИЕ В ЗАДАЧАХ ИДЕНТИФИКАЦИИ НЕОПРЕДЕЕЛННЫХ ОБЪЕКТОВ
  • 1st Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON 2015) (Saint-Petersburg). Presentation: Control of Nonlinear Uncertain Object in the Problem of Motion along the Given Trajectory
  • 2014

    XII ВСЕРОССИЙСКОЕ СОВЕЩАНИЕ ПО ПРОБЛЕМАМ УПРАВЛЕНИЯ ВСПУ-2014 (Москва). Presentation: Управление нелинейным объектом с параметрами, зависящими от состояния, в задаче слежения

  • 2010
    International Conference on Information Processing and Control Engineering (ICIPCE 2015) (Москва). Presentation: Control of nonlinear uncertain object in the problem of motion along the given trajectory

Parametric Optimization of Nonlinear Systems Represented by Models Using the Extended Linearization Method , Automation and Remote Control, 2021, Vol. 82, No. 2, pp. 245–263. © DOI: 10.1134/S0005117921020053

Differential game in the problem of controlling a nonlinear object with restrictions on control actions

Parametric Optimization of Nonline-ar Systems Represented by Models Using the Extended Linearization Method

The optimal control problem formulated for a class of nonlinear objects that can represented as objects with a linear structure and state-dependent parameters. The linear structure of the transformed nonlinear system and the quadratic quality functional allow us to switch from the need to search for solutions of the Hamilton-Jacobi equation to a Riccati-type equation with state-dependent parameters in the synthesis of optimal control. The main problem of implementing optimal control is associated with the problem of finding a solution to such an equation. The article proposes an algorithmic method of parametric optimization of the controller, based on the use of the necessary optimality conditions for the considered control system. The constructed algorithms can be used both for optimization of non-stationary objects themselves, if the corresponding parameters are selected for this purpose, and for optimization of the entire controlled system with the help of the corresponding parametric tuning of the controllers. The effectiveness of the developed algorithms demonstrated by the example of drug treatment of patients with HIV.

Automation and Remote Control, 2021, 82(2), 245-263 рр.

DOI
10.1134/S0005117921020053

Differential Games of Pursuit with Several Pursuers and One Evader

A differential game of several players is considered as follows. One player (attacker) penetrates some space, and several other players (pursuers) appear simultaneously to intercept the attacker. Upon detecting the pursuers, the attacker tries to evade them. The dynamics of each player are described by a time-invariant linear system of a general type with scalar control. A quadratic functional is introduced, and the differential game is treated as an optimal control problem. Two subproblems are solved as follows. The first subproblem is to construct a strategy for pursuing the attacker by several players having complete equal information about the game. The second subproblem is to construct such a strategy under incomplete information about the attacker actively opposing the pursuers. The simulation results are presented. The zero-sum differential game solution can be used for studying the final stage of pursuit, in which several pursuers and one evader participate.

Control Sciences. 2021. №1.21-30 рр DOI: http://doi.org/10.25728/cs.2021.1.3

Employment history

From 1972 to present - assistant, senior lecturer, associate professor, professor.
Time work: departamena professor of applied mathematics at the Moscow Institute of Electronics and Mathematics.

Visiting Professor (2002-2010): The Bauman Moscow Technical University. Russian University of Peoples' Friendship.

Since 2011, Professor (on conditions of part-time) at Moscow State University (Department of Physics)

Textbook: Mathematical Theory of Control Systems Design.

Mathematical Theory of Control Systems Design. V.N. Afanas’ev, V.B. Kolmanovskii, V.R. Nosov. Kluwer Academic Publisher. Dordrecht/Boston/London. 670 p.

The book is based on several courses of lectures on control theory and applications which were delivered by the authors for a number of years at Moscow Electronics and Mathematics University.

Monography. Control of uncertain dynamic objects

V.N. Afanasiev Control of uncertain dynamic objects. Moscow. Fimatlit. 2008. 208 p.

The book examines the controlled systems, which describe the behavior of linear and nonlinear differential inclusions with fuzzy given initial conditions.

Monography: Control uncertain nonlinear dynamic objects

V. N. Afanasiev. Control uncertain nonlinear dynamic objects

The book is devoted to a systematic exposition of the methods of mathematical design of nonlinear uncertain dynamical systems, systems can be represented with parameters depending on the state. Material book may be of interest for professionals working in the management of a variety of objects, as well as for students and postgraduates of relevant specialties.


MATHEMATICAL CONTROL THEORY CONTINUOUS DYNAMIC SYSTEMS

Timetable for today

Full timetable

HSE Staff Members Awarded Status of Tenured Professor

On June 22, several HSE lecturers and staff members were awarded the status of Tenured Professor at a meeting of HSE Academic Council. Sixteen HSE staff members became Distinguished Professors at the Higher School of Economics for the first time.