• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2025/2026

Программирование на Python. Продвинутый уровень

Когда читается: 1-й курс, 2 семестр
Охват аудитории: для своего кампуса
Язык: английский
Кредиты: 4
Контактные часы: 44

Course Syllabus

Abstract

The course includes a wide variety of python tools to refactor/ create/ pull data from the internet/ downloaded files. The main focus will be on using python’s advanced toolset in conjunction with other frameworks/ languages (API) to extract data and manipulate it.
Learning Objectives

Learning Objectives

  • The course objective is to learn to use python libraries for interacting (primarily loading from the internet and manipulating) with data via python.
Expected Learning Outcomes

Expected Learning Outcomes

  • Create comprehensive SQL scripts for the basic tasks for data engineering
  • Get and retrieve information from the internet (mainly web pages) via python automating some routine tasks
  • Parallelize their code for more efficiency using the access to multiple processes
  • Perform basic and more advanced statistical analysis via python
  • Combine their knowledge of the previous topics efficiently to solve complex problems
Course Contents

Course Contents

  • Python extensions for working with SQL (PostgreSQL) framework
  • Python extensions for data scraping
  • Multiprocessing for parallelizing data processing and calculations
  • Intro to python statistical analysis and optimization
  • Revision and project consultation
Assessment Elements

Assessment Elements

  • blocking Exam: In-class assignment
    Completness and correctness of the submitted solutions. In order to get a passing grade for the course, the student must sit (all parts) of the examination.
  • non-blocking Home assignments
  • non-blocking Class Activity
  • non-blocking Project
Interim Assessment

Interim Assessment

  • 2025/2026 2nd semester
    0.13 * Class Activity + 0.42 * Exam: In-class assignment + 0.16 * Home assignments + 0.29 * Project
Bibliography

Bibliography

Recommended Core Bibliography

  • Python для data science, Васильев, Ю., 2023
  • Think Python 2ed - CCBY4_077 - Allen B. Downey - 2022 - Open Educational Resources: libretexts.org - https://ibooks.ru/bookshelf/390862 - 390862 - iBOOKS
  • Криволапов С.Я. - Введение в анализ данных. Поиск структуры данных с применением языка Python - 978-5-16-019001-3 - НИЦ ИНФРА-М - 2024 - https://znanium.ru/catalog/product/2141600 - 2141600 - ZNANIUM
  • Объектно-ориентированное программирование с помощью Python, Кальб, И., 2024

Recommended Additional Bibliography

  • Python in a nutshell : a desktop quick reference, , 2023
  • Паршинцева, Л. С., Многомерный анализ данных на Python : учебник / Л. С. Паршинцева, А. А. Паршинцев. — Москва : КноРус, 2024. — 129 с. — ISBN 978-5-406-12606-6. — URL: https://book.ru/book/951954 (дата обращения: 04.07.2025). — Текст : электронный.

Authors

  • AKINSHIN ANATOLIY ANATOLEVICH
  • Rafaelian Georgii Robertovich