• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2019/2020

Теория выбора и принятия решений

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 3-й курс, 1, 2 модуль
Формат изучения: Full time
Язык: английский
Кредиты: 5

Программа дисциплины

Аннотация

This course presents an introduction to individual and social choice and decision theory. We will introduce and analyse models of individual decision making in forms of binary relations and choice functions, their rationalization by utility functions and properties of rational choice, methods of collective decision making and their properties, problem of power evaluation and theory of matchings as an example of applied problem.
Цель освоения дисциплины

Цель освоения дисциплины

  • to familiarize students with the basic concepts, models and statements of the theory of choice and decision making
  • to familiarize students with the power assessment in voting and in network structures
  • to familiarize students with the matching theory
Результаты освоения дисциплины

Результаты освоения дисциплины

  • know properties and special classes of binary relations
  • know the concept of ordinal utility
  • know choice functions and their rationalization by utility functions and binary relations
  • know properties of social choice rules
  • know the concept of manipulation in collective decision making
  • know centrality measures in networks
  • know the deferred acceptance algorithm and be able to use it in order to find a stable matching
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Mathematical Model of the Decision Making Situation
    Decision making, its participants and stages. Mathematical Theory of Measurement.
  • Utility, Preference and Choice
    Utility function, value function. Binary relations of preference and indifference. Choice functions, their properties. Optimal and undominated alternatives. Context-dependent interval choice.
  • Internal and External stability
    Core. Some rules: position rules, rules based on majority relation, rules based on auxiliary number scale, rules based on tournament matrix. Threshold aggregation rule. Superposition of choice rules.
  • Networks
    Main notions. Classic centrality measures. Short- and Long-Range Interaction. Centralities. Applications.
  • Political Decision Making
    Downsian Analysis. Spatial Model of Voting. McKelvey’s Theorem. Manipulation of agents.
  • Polarization in parliaments: uni- and multidimensional cases
    Power distribution in electoral bodies. Classical power indices: Banzhaf index, Shapley-Shubik index, Johnston index, Deegan-Pakel index. Power indices taking into account agent’s preferences to coalesce. Applications.
  • Assignment problem
    Unicriterial assignment problem. Multicriterial assignment problem. Optimality criterion. Two-sided matchings. One-to-many matchings. Many-to-many matchings. Applications.
Элементы контроля

Элементы контроля

  • homework (неблокирующий)
  • mid-term exam (неблокирующий)
  • final exam (неблокирующий)
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.6 * final exam + 0.2 * homework + 0.2 * mid-term exam
Список литературы

Список литературы

Рекомендуемая основная литература

  • Centrality measures in networks based on nodes attributes, long-range interactions and group infl..., Aleskerov F., Meshcheryakova N., 2016
  • Multidimensional polarization index and its application to an analysis of the russian state duma ..., Aleskerov F., Oleynik V., 2016
  • Power and preferences : an experimental approach. Препринт WP7/2010/05, Aleskerov F., Belianin A., 2010

Рекомендуемая дополнительная литература

  • Network analysis of international migration. Препринт WP7/2016/06, Aleskerov F., Meshcheryakova N., 2016
  • Utility maximization, choice and preference : with 49 figures and 28 tables, Aleskerov F., Bouyssou D., 2007