• A
• A
• A
• АБB
• АБB
• АБB
• А
• А
• А
• А
• А
Обычная версия сайта
Бакалавриат 2020/2021

## Анализ и визуализация сетей

Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 4-й курс, 3 модуль
Формат изучения: с онлайн-курсом
Охват аудитории: для своего кампуса
Язык: английский
Кредиты: 4

### Course Syllabus

#### Abstract

This course introduces methods and algorithms for analysing and visualizing graphs and networks. The course includes a review of modern network analysis and visualization techniques with their applications in various domains. We will concern on three main topics: network analysis methods based on applied graph theory, graph drawing algorithms, applications of network analysis and visualization to real problems.

#### Learning Objectives

• To know the classification of main network analysis tasks, basic methods and algorithms, most popular software tools.
• To be able to define a graph-theoretic description of network analysis task and corresponding network visualization requirements.
• To be able to select reasonably an appropriate project solutions and tools for network analysis workflow.
• To be able to develop a new variants of graph drawing algorithms.

#### Expected Learning Outcomes

• Students know the basic concepts of analysing and visualizing graphs and networks.
• Students select and justify appropriate graph drawing method and algorithm.
• Students design and solve graph-theoretical mathematical models.
• Students use development techniques, skills and tools necessary to network visualization.

#### Course Contents

• Introduction
<ol style="list-style-type: decimal;"><li>The classification of graph analysis tasks.</li> <li>Main approaches to graph algorithms.</li> <li>Graph data file formats.</li> <li>Graph databases.</li> <li>The pool of main network analysis tools.</li></ol>
• Graphs, topology and geometry
<ol style="list-style-type: decimal;"><li>Adjacency and neighbourhood.</li> <li>Hierarchies, trees and taxonomies.</li> <li>Cliques and dense fragments.</li> <li>Centrality.</li> <li>Planarity.</li></ol>
• Visualization of small graphs: drawing and layout
<ol style="list-style-type: decimal;"><li>The classification of goals and constraints.</li> <li>Symmetry-based approaches.</li> <li>Hierarchical approaches.</li> <li>Iterative approaches.</li> <li>Force-directed drawing.</li> <li>Orthogonal drawing.</li> <li>Radial and circular drawing.</li> <li>Treemaps.</li> <li>Geographic layout and maps.</li></ol>
• Visualization of large graphs
<ol style="list-style-type: decimal;"><li>Scalability.</li> <li>Graph fragments and filters.</li> <li>Approximate drawing.</li> <li>Random walks and other randomization techniques.</li></ol>
• Interactive visualization of graphs
<ol style="list-style-type: decimal;"><li>Zoom, scale, pan, rotate.</li> <li>Dynamic visualization.</li> <li>Best practices in user interaction.</li></ol>
• Visualization of graphs and networks in real world applications
<ol style="list-style-type: decimal;"><li>Social networks analysis.</li> <li>Logistics and supply chains.</li> <li>Cheminformatics.</li> <li>Bioinformatics</li></ol>
• Modern trends in graph databases and network analysis software

#### Assessment Elements

• Home assignment 1
• Home assignment 2
• Home assignment 3
• In-class assignments
• Individual project

#### Interim Assessment

• Interim assessment (3 module)
0.15 * Home assignment 1 + 0.15 * Home assignment 2 + 0.15 * Home assignment 3 + 0.15 * In-class assignments + 0.4 * Individual project

#### Recommended Core Bibliography

• Brath, R., Jonker, D. Graph Analysis and Visualization: Discovering Business Opportunity in Linked Data. – Wiley, 2015. – 513 pp.