Бакалавриат
2020/2021
Анализ категориальных данных в статистических пакетах
Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Статус:
Курс по выбору (Политология)
Направление:
41.03.04. Политология
Кто читает:
Кафедра высшей математики
Где читается:
Факультет социальных наук
Когда читается:
3-й курс, 3, 4 модуль
Формат изучения:
без онлайн-курса
Преподаватели:
Сальникова Дарья Вячеславовна
Язык:
русский
Кредиты:
4
Контактные часы:
56
Программа дисциплины
Аннотация
Освоение дисциплины «Анализ категориальных данных в статистических пакетах» позволяет получить базовые знания и навыки по применению ряда популярных методов к решению задач, связанных с анализом эмпирических данных, в том случае, когда зависимая переменная измерена в порядковой или номинальной шкале. Например, для изучения того, какие индивидуальные характеристики могут повлиять на то, ходит ли человек на выборы, за кого он голосует. Курс охватывает модели бинарного выбора, модели множественного выбора с упорядоченным откликом (порядковая логистическая регрессия), а также мультиномиальные регрессионные модели. На занятиях используется RStudio для отработки применения изученных методов.
Цель освоения дисциплины
- Выработка компетенций по решению политологических и социально-экономических задач, связанных с анализом данных в том случае, когда изучаемые зависимые признаки имеют дискретную природу.
Планируемые результаты обучения
- уметь применять основные модели бинарного и множественного выбора, уметь корректно интерпретировать и визуализировать результаты их оценивания
- владеть навыками реализации моделей бинарного и множественного выбора в статистических пакетах (Rstudio)
Содержание учебной дисциплины
- 1.1 Линейная модель регрессииДискретные зависимые переменные. Латентный признак и наблюдаемые исходы. Линейная вероятностная моделью
- 1.2. Логистическая регрессияОценивание моделейс дискретными зависимыми переменными. Метод максимального правдоподобия (ММП). Модели бинарного выбора: логистическая регрессия (логит-модель) и пробит-модель. Условия на ошибки моделей бинарного выбора. Интерпретация коэффициентов логистической регрессии при непрерывных и категориальных переменных. Шансы и отношения шансов. Предсказанные вероятности. До верительные интервалы. Графическое представление результатов. Сравнение коэффициентов логит - и пробит-моделей.
- 1.3. Проверка гипотез.Проверка гипотез о линейных ограничениях на коэффициенты: тест Вальда, тест отношения правдоподобия. Проверка гипотез об адекватности модели (критерии качества модели), сравнение моделей. (pseudo-R2, AIC, BIC). Анализ остатков модели. Выявление нетипичных наблюдений.
- 2. Модели множественного неупорядоченного выбора.Номинальные переменные. Мультиномиальная логистическая регрессия. Интерпретация коэффициентов мультиномиальной логистической регрессии. Условная логистическая регрессия (Conditional logit). Предположение о независимости от посторонних альтернатив.
- 3. Модели множественного упорядоченного выбора.Порядковые переменные. Порядковая логистическая регрессия. Оценивание порядковой логистической регрессии. Интерпретация коэффициентов порядковой логистической регрессии. Предположение о параллельности регрессий: тест Бранта. Обобщенная модель множественного упорядоченного выбора (Generalized ordered logit) / частичная модель пропорциональных шансов (Partial proportional odds model).