• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2020/2021

Машинное обучение

Лучший по критерию «Новизна полученных знаний»
Статус: Курс по выбору (Бизнес-информатика)
Направление: 38.03.05. Бизнес-информатика
Когда читается: 3-й курс, 2 модуль
Формат изучения: с онлайн-курсом
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3

Программа дисциплины

Аннотация

Дисциплина Машинное обучение/Machine learning относится к циклу профессиональных (базовая часть). Изучается на 3-м курсе во 2 модуле. Дисциплина представляет собой on-line курс (Ссылка: https://www.coursera.org/learn/machine-learning). Изучение дисциплины «Машинное обучение» базируется на следующих дисциплинах: программирование, управление данными,теоретические основы информатики. Для освоения учебной дисциплины, студенты должны владеть следующими знаниями: иметь навыки работы на персональном компьютере; иметь базовые навыки программирования.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения данной дисциплины является формирование у студентов представления об основных принципах обучения с учителем и без учителя. А также умение применять алгоритмы машинного обучения на практике, например в проектировании роботов (восприятие, контроль), анализе текстов (онлайн поиск, анти-спам), компьютерном зрении, медицинских информационных системах, обработке аудио, интеллектуальном анализе баз данных и других областях.
Планируемые результаты обучения

Планируемые результаты обучения

  • Интерпретировать задачи машинного обучения, основные принципы обучения с учителем/без учителя. Иллюстрировать примеры, в том числе представленные в онлайн курсе. Интерпретировать основные принципы работы с Matlab/Octava.
  • Сравнивать задачи классификации и задачи регрессии. Иллюстрировать задачи классификации (бинарной и множественной). Сравнивать наиболее известные классификаторы (логистическая регрессия, деревья решений, случайный лес, метод опорных векторов).
  • Применять различные виды классификаторов для решения практических задач. Объяснять необходимость применения кросс-валидации.
  • Интерпретировать задачу кластеризации. Применять на практике основные алгоритмы кластеризации (k-means и иерархические методы) и метод главных компонент (PCA).
  • Интерпретировать виды нейронных сетей (сверточные, рекуррентные, глубокие). Применять их для решения практических задач (распознавание текста, цифр).
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Нейронные сети.
    Виды нейронных сетей (глубокие, рекуррентные, сверточные ). Пример нейронной сети для распознавания цифр.
  • Кластеризация
    Задача кластеризации. Метод k-средних. Метод главных компонент. Аномальные данные.
  • Виды классификаторов. Кросс валидация.
    Рассматриваются различные классификаторы (метод опорных векторов (SVM), деревья решений (Decision Tree), метод ближайшего соседа (KNeighbors), случайный лес (Random Forest)). Необходимость применения кросс валидации (Cross Validation).
  • Задачи машинного обучения (регрессия, классификация, кластеризация). Линейная регрессия. Знакомство с Matlab/Octava.
    Модель линейной регрессии для решения задачи прогнозирования. Знакомство со средой Matlab/Octava (переменные, циклы, функции).
  • Задача классификации. Бинарный классификатор. Метод градиентного спуска. Регуляризация.
    Применение логистической регрессии для решения задачи бинарной классификации. Понятие регуляризации.
Элементы контроля

Элементы контроля

  • неблокирующий лабораторные работы
    На занятиях студенты выполняют лабораторные работы по пройденной теме. Например, реализуют спам-фильтр на языке Python
  • неблокирующий устный экзамен
  • неблокирующий лабораторные работы
    На занятиях студенты выполняют лабораторные работы по пройденной теме. Например, реализуют спам-фильтр на языке Python
  • неблокирующий устный экзамен
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.4 * лабораторные работы + 0.6 * устный экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Bell, J. (2015). Machine Learning : Hands-On for Developers and Technical Professionals. Indianapolis, Ind: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=872454
  • Iba, H. (2018). Evolutionary Approach to Machine Learning and Deep Neural Networks : Neuro-Evolution and Gene Regulatory Networks. Singapore: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1833749
  • Izenman, A. J. (2008). Modern Multivariate Statistical Techniques : Regression, Classification, and Manifold Learning. New York: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=275789
  • Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: a guide for data scientists. O’Reilly Media. (HSE access: http://ebookcentral.proquest.com/lib/hselibrary-ebooks/detail.action?docID=4698164)
  • Красавин А. В., Жумагулов Я. В. - КОМПЬЮТЕРНЫЙ ПРАКТИКУМ В СРЕДЕ MATLAB 2-е изд. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 277с. - ISBN: 978-5-534-08509-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/kompyuternyy-praktikum-v-srede-matlab-442328
  • Рашка С. - Python и машинное обучение: крайне необходимое пособие по новейшей предсказательной аналитике, обязательное для более глубокого понимания методологии машинного обучения - Издательство "ДМК Пресс" - 2017 - 418с. - ISBN: 978-5-97060-409-0 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/100905

Рекомендуемая дополнительная литература

  • Goldberg, Y. (2017). Neural Network Methods in Natural Language Processing. [San Rafael, California]: Morgan & Claypool Publishers. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1506512
  • Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2017). Machine Learning : Algorithms and Applications. Boca Raton: CRC Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1293656
  • Palumbo, F., International Federation of Classification Societies, Montanari, A., & Vichi, M. (2017). Data Science : Innovative Developments in Data Analysis and Clustering. Cham: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1548455