• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2020/2021

Теория вероятностей и математическая статистика

Статус: Курс обязательный (Социология)
Направление: 39.03.01. Социология
Когда читается: 1-й курс, 4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3

Программа дисциплины

Аннотация

Данный предмет включает в себя изучение и практическое освоение ключевых понятий и подходов теории вероятностей, математической статистики и базовых моделей статистического анализа данных в социальных науках, приобретение концептуального понимания специфики работы с количественными данными, понимания типов задач, которые могут быть решены с помощью математико-статистических методов. Курс теории вероятностей и математической статистики представлен в двух частях: первая часть изучается в 4 модуле на I курсе бакалавриата, вторая часть (продолжение) реализуется в 1 модуле на II курсе бакалавриата. В данной учебной программе приводится тематический перечень для первой части курса.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины является изучение основных понятий и подходов теории вероятностей, математической статистики и базовых методов количественного анализа, позволяющих работать с данными в соответствии с концептуальным пониманием их специфики и математической формализацией задач.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умение решить математические задачи соответствующего профиля: элементы комбинаторики и её основные правила, вероятностное пространство и классическое определение вероятности.
  • Умение решить математические задачи соответствующего профиля: операции с событиями, формула сложения вероятностей, независимые события, условная вероятность.
  • Умение решить математические задачи соответствующего профиля: формула полной вероятности, формула Байеса (априорная и апостериорная вероятности событий).
  • Умение решить математические задачи соответствующего профиля: нахождение закона распределения случайной величины и вычисление её основных параметров -- математического ожидания (среднего), дисперсии (вариации) и стандартного отклонения; решение задач на знание (понимание) свойств математического ожидания и дисперсии.
  • Умение решить математические задачи соответствующего профиля: процесс Бернулли (последовательность событий), математическое ожидание и дисперсия бинарной случайной величины, биномиальный закон распределения случайной величины.
  • Умение решить математические задачи соответствующего профиля: функция плотности, функция распределения (кривая накопленных вероятностей), понятие квантилей распределения.
  • Умение решить математические задачи соответствующего профиля: работа с графиками произвольного и стандартного нормального (z-)распределения, в решении задач применение свойств нормального распределения, работа с таблицей стандартного нормального распределения, вычисление вероятности искомых событий (заданных формализованным условием) для величин, описывающихся нормальным распределением с указанными параметрами -- математическим ожиданием и дисперсией.
  • Умение решить математические задачи соответствующего профиля: применение теоремы Муавра -- Лапласа в контексте случайной социологической выборки и оценки её погрешности; приближенные вычисления вероятности событий в приложениях теоремы Муавра -- Лапласа.
  • Умение решить математические задачи соответствующего профиля: закон больших чисел, его концептуальные и практические характеристики.
  • Умение решить математические задачи соответствующего профиля: процесс Пуассона .
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Предмет теории вероятностей. Случайный эксперимент. Выбор из конечной совокупности. Пространство элементарных исходов (элементарных событий).
    Классическое и статистическое определение понятия вероятности. Случайность как предмет изучения. Предмет теории вероятностей. Случайный эксперимент. Пространство элементарных исходов (событий).
  • События и операции над ними.
    Правила сложения и умножения вероятностей. Условная вероятность. Зависимость и независимость событий. Совместимые и несовместимые события.
  • Формула полной вероятности и формула Байеса.
    Полная группа событий. Формула полной вероятности. Априорные и апостериорные вероятности. Формула Байеса.
  • Случайные величины - дискретные и непрерывные. Характеристики случайной величины – математическое ожидание, дисперсия.
    Дискретные и непрерывные случайные величины. Математические операции со случайными величинами. Основные характеристики случайной величины – математическое ожидание и дисперсия.
  • Испытания Бернулли. Биномиальное распределение.
    Вероятность в дискретных пространствах. Последовательность (серия) испытаний Бернулли.
  • Распределение Пуассона
    Редкие по вероятности случайные величины, которые могут быть описаны согласно закону распределения Пуассона.
  • Функция и плотность распределения случайной величины.
    Функция и плотность распределения. Квантили распределения. Равномерное распределение, его числовые характеристики и квантили.
  • Нормальное распределение: произвольное и стандартное.
    Нормальное распределение: ситуации возникновения, функция и плотность распределения. Произвольное и стандартное нормальное распределение. Работа с таблицами нормального распределения. Квантили распределения.
  • Теорема Муавра -- Лапласа. Центральные предельные теоремы.
    Теорема Муавра -- Лапласа. Центральные предельные теоремы.
  • Закон больших чисел.
    Закон больших чисел.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа №1
    Контрольная работа оценивается в баллах по 10-балльной шкале, при этом в оценивании работы допускается выставление дробного количества баллов (например, 5,5 или 6,5 баллов), которое не подвергается округлению.
  • неблокирующий Контрольная работа №2
    Контрольная работа оценивается в баллах по 10-балльной шкале, при этом в оценивании работы допускается выставление дробного количества баллов (например, 5,5 или 6,5 баллов), которое не подвергается округлению.
  • неблокирующий Экзамен (письменный)
    Оценка за курс является целочисленной – дробная часть округляется по арифметическому принципу. Оценка, полученная студентом в IV модуле, с весом 20% участвует в выставлении итоговой оценки за весь курс целиком, аттестация по которому пройдет в I модуле следующего учебного года (на II курсе). (Согласно учебной программе)
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (4 модуль)
    0.2 * Контрольная работа №1 + 0.2 * Контрольная работа №2 + 0.6 * Экзамен (письменный)
Список литературы

Список литературы

Рекомендуемая основная литература

  • Задачник по теории вероятностей для студентов социально - гуманитарных специальностей, Макаров, А. А., Пашкевич, А. В., 2015
  • Теория вероятностей : учебник для экономических и гуманитарных специальностей: учеб. пособие для вузов, Тюрин, Ю. Н., Макаров, А. А., 2009
  • Теория вероятностей и математическая статистика для социологов и менеджеров : учебник для вузов, Пашкевич, А. В., Макарова, А. А., 2014

Рекомендуемая дополнительная литература

  • Теория вероятностей и статистика : учеб. пособие для 10 и 11 кл. общеобразоват. учреждений, Тюрин, Ю. Н., Макаров, А. А., 2014