• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2022/2023

Методы теоретической информатики

Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 4-й курс, 3 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Преподаватели: Захаров Павел Александрович, Милованов Алексей Сергеевич
Язык: русский
Кредиты: 4
Контактные часы: 44

Программа дисциплины

Аннотация

Основная цель освоения дисциплины «Выпуклое программирование и аппроксимационные алгоритмы» обучить студентов основным понятиям и методам построения приближенных алгоритмов для задач комбинаторноий оптимизации, которые основаны на решении выпуклых релаксациий задачи.
Цель освоения дисциплины

Цель освоения дисциплины

  • Освоить общие приемы построения приближенных алгоритмов: метод усреднения, ЛП релаксации, SDP релаксации.
  • Изучить классические примеры использования метода усреднения, ЛП релаксаций и SDP релаксаций.
  • Научиться анализировать сложность приближенных алгоритмов и их точность.
Планируемые результаты обучения

Планируемые результаты обучения

  • Воспроизводит доказательства основных результатов о точности приближенных алгоритмов
  • Оценивает точность приближения SDP релаксации
  • Оценивает точность приближения в методе усреднения
  • Оценивает точность приближения ЛП релаксации
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Средние оценки и дерандомизация
  • ЛП релаксации задач комбинаторной оптимизации
  • SDP релаксации
  • Знакомство с иерархией Лассера
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
  • неблокирующий Коллоквиум
  • неблокирующий Письменная работа
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 3 модуль
    0.35 * Домашнее задание + 0.35 * Коллоквиум + 0.3 * Письменная работа
Список литературы

Список литературы

Рекомендуемая основная литература

  • Комбинаторная оптимизация : теория и алгоритмы, Корте, Б., 2015

Рекомендуемая дополнительная литература

  • A mathematical view of interior-point methods in convex optimization, Renegar, J., 2001
  • Lectures on modern convex optimization : analysis, algorithms, and engineering applications, Ben-Tal, A., 2001
  • Эффективные методы в нелинейном программировании, Нестеров, Ю. Е., 1989

Авторы

  • Милованов Алексей Сергеевич
  • Вялый Михаил Николаевич